WO2019093715A1 - 엘리베이터 분석을 통한 예지 보전 및 고효율 운행방법 - Google Patents

엘리베이터 분석을 통한 예지 보전 및 고효율 운행방법 Download PDF

Info

Publication number
WO2019093715A1
WO2019093715A1 PCT/KR2018/013169 KR2018013169W WO2019093715A1 WO 2019093715 A1 WO2019093715 A1 WO 2019093715A1 KR 2018013169 W KR2018013169 W KR 2018013169W WO 2019093715 A1 WO2019093715 A1 WO 2019093715A1
Authority
WO
WIPO (PCT)
Prior art keywords
elevator
information
driving
driving unit
time
Prior art date
Application number
PCT/KR2018/013169
Other languages
English (en)
French (fr)
Inventor
이영규
Original Assignee
(주)아이티공간
이영규
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)아이티공간, 이영규 filed Critical (주)아이티공간
Priority to DE112018004643.5T priority Critical patent/DE112018004643B4/de
Priority to JP2020520046A priority patent/JP6775098B1/ja
Priority to CN201880065408.3A priority patent/CN111491882B/zh
Publication of WO2019093715A1 publication Critical patent/WO2019093715A1/ko
Priority to US16/836,868 priority patent/US10843898B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/24Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration
    • B66B1/28Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical
    • B66B1/30Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical effective on driving gear, e.g. acting on power electronics, on inverter or rectifier controlled motor
    • B66B1/302Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical effective on driving gear, e.g. acting on power electronics, on inverter or rectifier controlled motor for energy saving
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/0006Monitoring devices or performance analysers
    • B66B5/0018Devices monitoring the operating condition of the elevator system
    • B66B5/0025Devices monitoring the operating condition of the elevator system for maintenance or repair
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/34Details, e.g. call counting devices, data transmission from car to control system, devices giving information to the control system
    • B66B1/3407Setting or modification of parameters of the control system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/0006Monitoring devices or performance analysers
    • B66B5/0037Performance analysers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/02Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions

Definitions

  • the present invention relates to a method for maintaining a predictive value and a high-efficiency driving method through an elevator analysis, and more particularly,
  • the driving information of the driving unit before the generation of the driving information is collected, the threshold level is set based on the collected information, and the driving information of the driving unit, which is collected in real time, is compared with the set threshold level, It is possible to efficiently prevent the safety accident of the elevator due to the failure of the elevator driving unit by performing the stable predictive maintenance of the driving unit and also to extract the driving information of the elevator by analyzing the driving information of the driving unit in real time, The number of elevator trips And a high efficiency operation method by elevator analysis which induces economical operation of an elevator by controlling gate closing time of a floor elevator on the basis of the numerical information .
  • elevators are installed for rapid movement between layers and layers of multi-storied buildings, and installations are continuously increasing due to the increase of high-rise buildings and convenience of use.
  • In Korea about 25,000 elevators are newly installed every year, and 2 million units are expected to be installed by 2020.
  • the elevator includes a driving unit that drives an elevator car through an elevator car and a rope that accommodate a passenger and move the elevator, a control unit that controls the elevator operation, and a power supply unit that supplies power.
  • the driving unit is required to periodically inspect and manage the driving unit so that the safety of the occupant can be easily protected due to the characteristics of an elevator that travels vertically between low and high layers by a mechanical device that substantially drives the elevator.
  • the conventional elevator is regularly inspected by a specialist to prevent a safety accident of the elevator, it is difficult to predict the failure of the driving part of the normal elevator in which the inspection period of the elevator is usually 2 years or less, There is a problem that it is difficult to effectively prevent a safety accident of the vehicle.
  • the elevator since the elevator is typically operated manually by a passenger, the situation such as the number of times of driving per floor, the time zone, the number of passengers, and the like are not taken into consideration at all and the elevator can not be efficiently operated.
  • the electric charges for the elevator operation are not considered at all for the actual use of electric power such as the number of times of driving by the floor, and the charges are usually settled for each floor, so that conventionally, the fare adjustment of the elevator can not be rationalized.
  • the present invention has been made in order to solve all of the above problems, and its object is to provide a driving method of an elevator, which is divided into an elevating and lowering condition of an elevator, The driving information of the driving unit is collected, and the threshold level is set based on the collected information.
  • the present invention provides elevator maintenance and high efficiency operation method by elevator analysis which quantifies (counts) the number of passengers and controls the door closing time of the elevator based on the numerical information to induce economical operation of the elevator.
  • the driving unit collects and divides the current value (driving information), which changes according to the time of the collected driving unit, into the unlocking period, the starting period, the constant speed period, the stopping period, Since the driving information of the driving unit, which is collected in real time, is compared with the upper and lower limit values of the threshold levels corresponding to the respective sections, it is possible to easily detect a region (device) suspected of having an abnormal symptom in the driving unit,
  • the present invention also provides a predictive maintenance method and a high-efficiency operation method through an elevator analysis which can secure an excellent reliability against the detection result of an elevator driving unit.
  • a predictive maintenance and high-efficiency driving method for an elevator which includes driving information of a driving unit in a normal state of an elevator, driving information of a driving unit, (S10) for detecting an abnormality of a driving part which is driven in real time on the basis of the collected driving information and inducing stable elevation maintenance of the elevator driving part (S10)
  • a high-efficiency operation process of extracting operation information of the elevator by analyzing the driving information of the real-time elevator driving unit based on the driving information of the elevator, and controlling the door closing time of the elevator based on the extracted driving information to induce efficient operation of the elevator S20).
  • the predictive maintenance step (S10) when the elevator driving unit lifts up the elevator, information on the magnitude change of the current value with time is measured, and when the elevator is lowered in the normal state, And the measured driving information is divided into a driving unit driving information when the elevator is elevated and a driving unit driving information when the elevator is lowered, (S11), and information on the magnitude of change of the current value according to the time measured in the driving state of the driving unit before the failure of the driving unit occurs when the elevator is elevated, and when a failure occurs in the driving unit And a current value corresponding to a time measured in the driving state of the driving unit
  • an unlocking period for releasing the brake lock of the elevator for elevating or lowering the elevator by changing the magnitude of the current value according to the time of the driving unit collected in the base information collecting step (S11, S12)
  • a lock performing section in which a break lock of the elevator is performed
  • an upper limit value and a lower limit value of the threshold level for the unlocked section, the start section, the constant section, the stop section, and the lock execution section are set,
  • a third step S143 of the detecting step S14 an abnormality is detected by comparing an upper limit value and a lower limit value of a threshold level of the current value according to time of the driving unit, which is driven in real time, If the state of the driving unit is detected as a state of caution and the state of the driving unit is formed to exceed the upper limit value of the threshold level or to be less than the lower limit value in the two periods, And detects the state of the driving unit as a dangerous state when the upper limit value of the threshold level is exceeded or less than the lower limit value in three or more intervals.
  • the high-efficiency driving process (S20) measures the driving information of the driving unit in real time when the driving unit of the elevator is driven, and the measurement information includes the base information of the driving unit collected in the first base information collecting step (S11) (S21) for extracting and storing driving information of the elevator by analyzing and analyzing the elevator driving information stored for a long time in the driving information storing step (S21), and analyzing the elevator driving information stored in the elevator driving information storing step (S22) for controlling the closing time of the door of the vehicle.
  • the driving information storage step S21 collects driving information of the driving unit, which is collected in real time, into a starting section, a constant speed section, and a stationary section included in the first base information collection step S11, Based on the time and current value information at which the constant speed section is maintained, traces the operation section of the elevator against the base information collected at the base information collection step (S11), and finally extracts and stores the number of times of operation of the elevator,
  • the operation control step S22 is a step of numerically counting the number of times the elevator is operated on the basis of the information collected for a long period of time in the driving information storage step S21, So that the occupant can ride on the elevator as much as possible, thereby naturally decreasing the number of times the elevator is operated.
  • the driving information storage step S21 the time zone and the number of occupants in which the elevator driving unit is driven are extracted and stored,
  • the driving control step S22 controls the gate closing time of the elevator on the basis of the time zone in which the driving unit is driven and the passenger information, which are numerically expressed together with the number of driving times of the elevator.
  • the present invention is further characterized in that it further comprises a settlement step S23 for separating and adjusting the floor elevator electric charges in proportion to the number of times of driving based on the number of times the elevator is operated in each floor, which is digitized in the travel control step S22 .
  • driving section driving information (information of change of current value according to time) and failure are classified by the elevating and lowering condition of the elevator
  • the driving information of the driving unit before the generation of the driving information is collected
  • the threshold level is set based on the collected information
  • the driving information of the driving unit, which is collected in real time is compared with the set threshold level
  • the driving unit collects and divides the current value (driving information), which changes according to the time of the collected driving unit, into the unlocking period, the starting period, the constant speed period, the stopping period, Since the driving information of the driving unit, which is collected in real time, is compared with the upper and lower limit values of the threshold levels corresponding to the respective sections, it is possible to easily detect a region (device) suspected of having an abnormal symptom in the driving unit, It is possible not only to perform precise predictive maintenance of the driving part of the elevator driving part but also to secure an excellent reliability of the detection result of the elevator driving part.
  • the electric charges for the elevator operation can be clearly distributed in proportion to the number of times of the elevated elevators to be digitized, which leads to an extremely reasonable charge settlement.
  • FIG. 1 is a block diagram of a predictive maintenance and high-efficiency operation method through elevator analysis according to an embodiment of the present invention.
  • FIG. 1 is a block diagram of an elevator system according to an embodiment of the present invention. Detailed descriptions of well-known functions and constructions that may be unnecessarily obscured by the gist of the present invention will be omitted.
  • FIG. 1 is a block diagram illustrating an elevator maintenance and high-efficiency maintenance method according to an embodiment of the present invention.
  • the predictive maintenance and high efficiency driving method 100 through elevator analysis includes a predictive maintenance process S10 and a highly efficient driving process S20.
  • the driving information of the driving unit and the driving information of the driving unit before the failure occurs are collected in a normal state of the elevator driving unit. Then, based on the collected driving information, Thereby inducing a stable predictive maintenance of the elevator driving unit,
  • the first base information collection step (S11) may include a step of measuring a change in magnitude of a current value according to a time of the driving unit when the elevator driving unit lifts the elevator in a normal state, and when the elevator is lowered in a normal state, And the measured driving information is divided into the driving unit driving information at the time of elevator elevation and the driving unit driving information at the time of the elevator falling and storing them as base information of the driving unit respectively .
  • the elevator is a structure that continuously raises or lowers the low and high layers. Due to the characteristics of the elevator ascending or descending through the power of the driving unit, the driving information of the driving unit collected in the first base information collecting step (S11) It is preferable that the driving information of the driving unit and the driving information of the driving unit are collected when the elevator is lowered when the elevator ascends or descends.
  • the elevator since the driving information of the driving unit is different from the driving information of the driving unit when the elevator moves up and down, the elevator is elevated and lowered in order to clearly detect an abnormal symptom of the driving unit in real time in the detecting step S14
  • the driving information of the driving unit should be collected and compared by distinguishing the condition and the descending condition.
  • driving information of the driving unit in a normal state is collected, and driving information of the driving unit at the time of elevator ascending and driving information of the driving unit at the time of descent are separately collected.
  • a first step in which the elevator is unlocked from the elevator a second step in which the driving unit is initially driven to lift or lower the elevator, A third step of transferring the elevator to another layer through the driving unit, a step of stopping the driving unit after the completion of the conveyance of the elevator, and a fifth step of performing the brake locking of the elevator.
  • the following methods are used in order to detect the abnormality of the driving unit of the elevator by the predictive maintenance and high-efficiency driving method 100 through the elevator analysis of the present invention.
  • an unlocking section for releasing the break lock of the elevator to raise or lower the elevator by changing the magnitude of the current value according to the time of the driving section, which is collected in the first base information collecting step (S11)
  • a control unit for controlling the driving unit to stop the elevator in order to stop the elevator and a control unit for controlling the driving unit to stop the elevator in order to stop the elevator, A stop section in which the drive is stopped, and a lock execution section in which the brake of the elevator is locked Separated by and to collect driving information.
  • the range of the current value recognized in the constant speed section can be set in various ranges in consideration of the conditions such as the size and capacity of the elevator.
  • the information collected as described above is a basis of a threshold level reference value (upper and lower limit values) set for detecting an abnormal symptom of the elevator driving unit in the setting step S13 and the detecting step S14 to be used later.
  • a threshold level reference value upper and lower limit values
  • the second base information collection step (S12) may include measuring the size change information of the current value according to the time measured in the driving state of the driving unit before the failure of the driving unit occurs at the time of elevator elevation, And the measured information is divided into the driving unit information at the time of elevator elevation and the driving unit information at the time of the elevator falling, As the base information of the driving unit.
  • the current value according to the time of the driving unit, which is collected in the second base information collection step S12 may also be the same as the first base information collection step S11, such as the unlocking interval, the starting interval, the constant interval, And the performance information is collected by dividing the performance information into performance periods.
  • the information thus collected is also based on a threshold level reference value (upper and lower limit values) set for detecting an abnormality of the elevator driving unit in the setting step S13 and the detecting step S14.
  • a threshold level reference value upper and lower limit values
  • the setting step S13 is a step of setting a threshold level of a current value according to time of the driving unit at the time of elevator elevation and the driving unit at the time of elevator down based on the information collected in the base information collection step S11 and S12 to be.
  • the detecting step S14 detects an abnormal symptom of the driving unit that is driven in real time through the first process S141, the second process S142, and the third process S143.
  • the first step S141 is a process of collecting driving information of the driving unit in real time in order to check an abnormality of the driving unit when the driving unit is driven to operate the elevator.
  • the second step S142 is a step of comparing the measurement information collected in the first step S141 with the base information collected in the first base information collection step S11 to discriminate whether the elevator is ascending or descending.
  • the third step S143 compares the threshold level of the setting step S13 corresponding to the discrimination information discriminated in the second step S142 with the measurement information collected in the first step S141, Of the patient.
  • step S142 if it is determined in step S142 that driving of the driving unit has been driven to lift the elevator, the driving information of the driving unit, which is collected in real time in the third step S143, ) Detects the abnormality of the driving unit that is driven in real time in comparison with the threshold level of the driving unit set as the condition for elevating and lowering the elevator.
  • the current value according to the time of the driving unit driven in real time is set to the upper limit value of the threshold level set for each section as shown in [ Figure 7] and [ Figure 8]
  • the lower limit values are compared with each other to precisely and clearly detect an abnormal symptom of the driving unit.
  • the detected indications can be clearly recognized, (Part) suspected to be abnormal in the driving unit can be easily detected through the information, and stable management can be achieved through precise and accurate prediction maintenance of the elevator driving unit.
  • the controller may detect the state of the driving unit as an alarm state and detect the state of the driving unit as a dangerous state when the driving state of the driving unit is formed to exceed the upper limit value of the threshold level or lower than the lower limit value in three or more intervals, To be performed effectively.
  • the detected information may be transmitted to the elevator manager through a wire / wireless communication method so that prompt action is taken when an abnormal symptom is detected in the elevator.
  • the high-efficiency driving process S20 extracts the driving information of the elevator by analyzing the driving information of the real-time elevator driving unit based on the driving information of the driving unit in the normal state collected in the predictive maintenance step S10, The door closing time of the elevator is controlled to induce efficient operation of the elevator,
  • a driving information storage step S21, and a driving control step S22 are provided.
  • the driving information of the driving unit collected in the first base information collecting step S11 includes a driving period in which driving of the driving unit is started as shown in [Figure 3] and [ Figure 4]
  • the current value of the driving unit is stabilized and maintained in a constant range in a descending process and a stop period in which driving of the driving unit is stopped for stopping the elevator,
  • the start section and the stop section are sections in which a peak current (overcurrent) is instantaneously formed in the driving section.
  • the start and end of the constant speed section can be clearly set (divided) through this section, It is possible to clearly extract the time information in which the constant speed section is maintained with respect to the travel section (travel distance).
  • the predictive maintenance and high-efficiency driving method 100 through the elevator analysis of the present invention can easily track the driving section and the position of the elevator through a method of tracking and comparing the current value of the driving part that drives the elevator.
  • the driving information storage step S21 measures driving information of the driving unit in real time when the driving unit of the elevator is driven, and the measurement information is based on the base information of the driving unit collected in the first base information collection step S11 And extracts and stores driving information of the elevator.
  • the driving information storage step S21 may collect driving information of the driving unit, which is collected in real time, into a starting period, a constant speed period and a stop period included in the first base information collecting step S11, Based on the time information of the constant speed section and the current value information, traces the service section of the elevator against the base information collected in the first base information collection step (S11), and finally extracts and stores the number of service times of the elevator .
  • the driving information is collected in real time, and the collected driving information is compared with driving information of the driving unit collected in the first base information collecting step (S11)
  • the elevation and descent of the elevator are discriminated by comparing the current value of the driving information collected in the first time in real time with the driving information collected in the first base information collecting step S11, The time during which the section is maintained is tracked against the driving information collected in the first base information collection step S11.
  • the operation control step S22 is a step of analyzing elevator driving information stored for a long period in the driving information storing step S21 and quantifying the elevator driving information, and controlling door closing time of the elevator based on the digitized information.
  • the operation control step S22 is a step of numerically counting the number of times the elevator is driven by the floor based on the information collected for a long period of time in the driving information storage step S21 as shown in [FIG. 11]
  • the door closing time of the elevator is extended so that the occupant can ride on the elevator as much as possible, so that the number of times of the elevator is reduced naturally.
  • the driving information storage step S21 the time zone and the number of occupants in which the elevator driving unit is driven are extracted and stored,
  • the operation control step S22 controls the gate closing time of the elevator on the basis of the time zone in which the driving unit is driven and the passenger information, which is numerically expressed together with the number of times of the elevator's floor driving, as shown in [Fig. 12].
  • the number of passengers in the elevator is calculated by calculating the approximate number of passengers by measuring the weight of the passenger using the weight sensor.
  • the door closing time of the elevator is extended in the characteristic time zone.
  • the door closing time of the elevator is extended to effectively control the door closing of the elevator.
  • a settlement step S23 for separating and adjusting the floor elevator electric charges in proportion to the number of times of driving based on the number of times of elevations to be elevated in the operation control step (S22).
  • the predictive maintenance and high-efficiency driving method 100 of the present invention comprising the above-described processes according to the present invention divides an elevator into elevating and lowering conditions and obtains driving section driving information (change information of current value according to time)
  • the driving information of the driving unit before the occurrence of the failure is collected, the threshold level is set based on the collected information, and the driving information of the driving unit collected in real time is compared with the set threshold level to detect the abnormal signal of the driving unit in real time
  • the number of rows, the time zone and the number of passengers are numerically expressed (statisticalized), and the door closing time of the elevator is controlled based on the digitized information, thereby inducing economical operation of the elevator.
  • the driving unit collects and divides the current value (driving information), which changes according to the time of the collected driving unit, into the unlocking period, the starting period, the constant speed period, the stopping period, Since the driving information of the driving unit, which is collected in real time, is compared with the upper and lower limit values of the threshold levels corresponding to the respective sections, it is possible to easily detect a region (device) suspected of having an abnormal symptom in the driving unit, It is possible not only to perform precise predictive maintenance of the driving part of the elevator driving part but also to secure an excellent reliability of the detection result of the elevator driving part.
  • the electric charges for the elevator operation can be clearly distributed in proportion to the number of times of the elevated elevators to be digitized, which leads to an extremely reasonable charge settlement.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Maintenance And Inspection Apparatuses For Elevators (AREA)
  • Indicating And Signalling Devices For Elevators (AREA)
  • Elevator Control (AREA)
  • Elevator Door Apparatuses (AREA)

Abstract

본 발명은 엘리베이터 분석을 통한 예지 보전 및 고효율 운행방법에 관한 것으로, 그 구성은 엘리베이터의 구동부가 정상적인 상태에서 구동부의 구동정보와, 고장이 발생하기 전에 나타나는 구동부의 구동정보를 수집하고, 그 수집된 구동정보를 기반으로 실시간 구동되는 구동부의 이상징후를 검출하여 엘리베이터 구동부의 안정적인 예지 보전을 유도하는 예지 보전과정(S10);과, 상기 예지 보전과정(S10)에서 수집되는 정상적인 상태의 구동부의 구동정보를 기반으로 실시간 엘리베이터 구동부의 구동정보를 분석하여 엘리베이터의 운행정보를 추출하고, 그 추출된 운행정보를 기반으로 엘리베이터의 문 닫힘 시간을 제어하여 엘리베이터의 효율적인 운행을 유도하는 고효율 운행과정(S20);으로 이루어지는 것을 특징으로 하는 것으로서, 엘리베이터의 승강과 하강 조건으로 구분하여 각각 정상적인 상태의 구동부 구동정보(시간에 따른 전류 값의 변화정보)와 고장이 발생하기 전에 나타난 구동부의 구동정보를 수집하고, 그 수집된 정보를 기반으로 임계 레벨을 설정한 후, 실시간 수집되는 구동부의 구동정보를 설정된 임계 레벨과 대비하여 실시간으로 구동부의 이상징후를 검출하여 엘리베이터 구동부의 안정적인 예지 보전을 수행함으로 엘리베이터 구동부의 고장으로 인한 엘리베이터의 안전사고를 효율적으로 방지할 수 있을 뿐만 아니라, 실시간으로 구동부의 구동정보를 분석하여 엘리베이터의 운행정보를 추출하고, 그 추출된 운행정보를 기반으로 엘리베이터의 층별 운행 횟수, 시간대 및 탑승자 수를 수치화(통계화)하고, 그 수치화된 정보를 기반으로 층별 엘리베이터의 문 닫힘 시간을 제어하여 엘리베이터의 경제적인 운행을 유도하는 효과가 있다. 또한, 구동부가 엘리베이터에 적용되는 특성상 수집되는 구동부의 시간에 따라 변화되는 전류 값(구동정보)을 잠금 해제구간과, 기동구간과, 정속구간과, 정지구간과, 잠금 수행구간으로 구분하여 수집하여 실시간으로 수집되는 구동부의 구동정보를 각각 구간에 해당하는 임계 레벨의 상한값과 하한값과 대비하여 구동부의 이상징후를 검출함으로, 구동부에서 이상징후가 의심되는 부위(기기)를 용이하게 검출할 수 있어 엘리베이터의 구동부의 정밀한 예지 보전을 수행할 수 있을 뿐만 아니라, 엘리베이터 구동부의 검출결과에 대한 우수한 신뢰도를 확보할 수 있는 효과가 있다. 또한, 수치화된 층별 엘리베이터의 운행횟수에 비례하여 엘리베이터 운행에 대한 전기요금을 명확하게 분산할 수 있어 매우 합리적인 요금 정산을 유도할 수 있는 효과가 있다.

Description

엘리베이터 분석을 통한 예지 보전 및 고효율 운행방법{PROGNOSIS MAINTENANCE AND HIGH EFFICIENCY OPERATION METHOD BY ELEVATOR ANALYSIS}
본 발명은 엘리베이터 분석을 통한 예지 보전 및 고효율 운행방법에 관한 것으로, 더욱 상세하게는 엘리베이터의 승강과 하강 조건으로 구분하여 각각 정상적인 상태의 구동부 구동정보(시간에 따른 전류 값의 변화정보)와 고장이 발생하기 전에 나타난 구동부의 구동정보를 수집하고, 그 수집된 정보를 기반으로 임계 레벨을 설정한 후, 실시간 수집되는 구동부의 구동정보를 설정된 임계 레벨과 대비하여 실시간으로 구동부의 이상징후를 검출하여 엘리베이터 구동부의 안정적인 예지 보전을 수행함으로 엘리베이터 구동부의 고장으로 인한 엘리베이터의 안전사고를 효율적으로 방지할 수 있을 뿐만 아니라, 실시간으로 구동부의 구동정보를 분석하여 엘리베이터의 운행정보를 추출하고, 그 추출된 운행정보를 기반으로 엘리베이터의 층별 운행 횟수, 시간대 및 탑승자 수를 수치화(통계화)하고, 그 수치화된 정보를 기반으로 층별 엘리베이터의 문 닫힘 시간을 제어하여 엘리베이터의 경제적인 운행을 유도하는 엘리베이터 분석을 통한 예지 보전 및 고효율 운행방법에 관한 것이다.
일반적으로 엘리베이터는 다층 건물의 층과 층 사이의 신속한 이동을 위해 설치되는 것으로 고층 건물의 증가와 이용 편리성으로 인해 설치가 지속적으로 증가하고 있다. 우리나라의 경우 매년 약 2만 5천대의 엘리베이터가 신규 설치되고 있으며, 2020년까지 약 200만대가 설치될 것으로 예상되고 있다.
이러한 엘리베이터는 크게 탑승객을 수용하여 이동하는 엘리베이터 카와 로프를 통해 엘리베이터 카를 구동시키는 구동부와, 엘리베이터의 운행을 제어하는 제어부와 전원을 공급하는 전원공급부를 포함하여 구성된다.
여기서, 상기 구동부는 실질적으로 엘리베이터를 운행시키는 기계적 장치로 저층과 고층 사이를 왕복 수직 운행하는 엘리베이터의 특성상 탑승자의 안전을 용이하게 보호할 수 있도록 상기 구동부의 주기적인 검사 및 관리가 필요하다.
따라서 종래의 엘리베이터는 전문가를 통해 정기적으로 검사하여 엘리베이터의 안전사고를 예방하고 있으나, 통상 엘리베이터의 검사주기가 2년 이하로 시행되고 있는 현 실정상 엘리베이터의 구동부의 고장을 미리 예지하여 보전하기 어려워 엘리베이터의 안전사고를 효과적으로 방지하기가 곤란하다는 문제점이 있다.
그러므로 엘리베이터 구동부의 고장을 미리 예지하여 보전할 수 있는 방법의 개발이 절실히 필요한 실정이다.
한편, 엘리베이터는 통상 탑승자에 의해 수동적으로 운행되는 특성상 층별 운행횟수, 시간대, 탑승자 수 등의 상황은 전혀 고려되지 않아 엘리베이터의 효율적인 운행이 수행되지 못하고 있는 실정이다.
또한, 엘리베이터 운행에 대한 전기요금은 층별 운행횟수 등 층별 실질적인 전기 사용에 대한 상황은 전혀 고려되지 않고 통상 층별로 요금이 정산되는 있어 종래에는 엘리베이터의 요금 정산이 합리적으로 이루어지지 못하고 있는 문제점이 있다.
본 발명은 상기한 바와 같은 제반 문제점을 해결하기 위하여 제안된 것으로, 그 목적은 엘리베이터의 승강과 하강 조건으로 구분하여 각각 정상적인 상태의 구동부 구동정보(시간에 따른 전류 값의 변화정보)와 고장이 발생하기 전에 나타난 구동부의 구동정보를 수집하고, 그 수집된 정보를 기반으로 임계 레벨을 설정한 후, 실시간 수집되는 구동부의 구동정보를 설정된 임계 레벨과 대비하여 실시간으로 구동부의 이상징후를 검출하여 엘리베이터 구동부의 안정적인 예지 보전을 수행함으로 엘리베이터 구동부의 고장으로 인한 엘리베이터의 안전사고를 효율적으로 방지할 수 있을 뿐만 아니라, 실시간으로 구동부의 구동정보를 분석하여 엘리베이터의 운행정보를 추출하고, 그 추출된 운행정보를 기반으로 엘리베이터의 층별 운행 횟수, 시간대 및 탑승자 수를 수치화(통계화)하고, 그 수치화된 정보를 기반으로 층별 엘리베이터의 문 닫힘 시간을 제어하여 엘리베이터의 경제적인 운행을 유도하는 엘리베이터 분석을 통한 예지 보전 및 고효율 운행방법을 제공함에 있다.
또한, 구동부가 엘리베이터에 적용되는 특성상 수집되는 구동부의 시간에 따라 변화되는 전류 값(구동정보)을 잠금 해제구간과, 기동구간과, 정속구간과, 정지구간과, 잠금 수행구간으로 구분하여 수집하여 실시간으로 수집되는 구동부의 구동정보를 각각 구간에 해당하는 임계 레벨의 상한값과 하한값과 대비하여 구동부의 이상징후를 검출함으로, 구동부에서 이상징후가 의심되는 부위(기기)를 용이하게 검출할 수 있어 엘리베이터의 구동부의 정밀한 예지 보전을 수행할 수 있을 뿐만 아니라, 엘리베이터 구동부의 검출결과에 대한 우수한 신뢰도를 확보할 수 있는 엘리베이터 분석을 통한 예지 보전 및 고효율 운행방법을 제공함에 있다.
또한, 수치화된 층별 엘리베이터의 운행횟수에 비례하여 엘리베이터 운행에 대한 전기요금을 명확하게 분산할 수 있어 매우 합리적인 요금 정산을 유도할 수 있는 엘리베이터 분석을 통한 예지 보전 및 고효율 운행방법을 제공함에 있다.
상기와 같은 목적을 달성하기 위한 본 발명에 따른 엘리베이터 분석을 통한 예지 보전 및 고효율 운행방법은 엘리베이터의 구동부가 정상적인 상태에서 구동부의 구동정보와, 고장이 발생하기 전에 나타나는 구동부의 구동정보를 수집하고, 그 수집된 구동정보를 기반으로 실시간 구동되는 구동부의 이상징후를 검출하여 엘리베이터 구동부의 안정적인 예지 보전을 유도하는 예지 보전과정(S10);과, 상기 예지 보전과정(S10)에서 수집되는 정상적인 상태의 구동부의 구동정보를 기반으로 실시간 엘리베이터 구동부의 구동정보를 분석하여 엘리베이터의 운행정보를 추출하고, 그 추출된 운행정보를 기반으로 엘리베이터의 문 닫힘 시간을 제어하여 엘리베이터의 효율적인 운행을 유도하는 고효율 운행과정(S20);으로 이루어지는 것을 특징으로 한다.
또한, 상기 예지 보전과정(S10)은 엘리베이터 구동부가 정상적인 상태에서 엘리베이터를 승강시 상기 구동부의 시간에 따른 전류 값의 크기 변화 정보를 측정하고, 상기 구동부가 정상적인 상태에서 엘리베이터를 하강시 상기 구동부의 시간에 따른 전류 값의 크기 변화 정보를 측정하며, 그 측정된 구동정보는 엘리베이터 승강시의 상기 구동부 구동정보와 엘리베이터 하강시의 상기 구동부 구동정보로 구분하여 각각 상기 구동부의 베이스 정보로 저장하는 제1베이스 정보 수집단계(S11)와, 엘리베이터 승강시 상기 구동부의 고장이 발생하기 전 상기 구동부의 구동 상태에서 측정한 시간에 따른 전류 값의 크기 변화 정보를 측정하고, 엘리베이터 하강시 상기 구동부의 고장이 발생하기 전 상기 구동부의 구동 상태에서 측정한 시간에 따른 전류 값의 크기 변화 정보를 측정하며, 그 측정된 정보는 엘리베이터 승강시의 상기 구동부 정보와 엘리베이터 하강시의 상기 구동부 정보로 구분하여 각각 상기 구동부의 베이스 정보로 저장하는 제2베이스 정보 수집단계(S12)와, 상기 베이스 정보 수집단계(S11,S12)에서 수집된 정보를 기반으로 엘리베이터 승강시의 구동부와 엘리베이터 하강시의 상기 구동부의 시간에 따른 전류 값의 임계 레벨을 각각 설정하는 설정단계(S13)와, 상기 구동부가 구동되면 실시간으로 상기 구동부의 구동 상태에서 측정한 시간에 따른 전류 값의 크기 변화 정보를 측정 수집하는 제1과정(S141), 상기 제1과정(S141)에서 수집된 측정정보를 상기 제1베이스 정보 수집단계(S11)에서 수집된 베이스 정보와 비교하여 엘리베이터의 승강 또는 하강을 판별하는 제2과정(S142)과, 상기 제2과정(S142)에서 판별된 판별정보에 해당하는 상기 설정단계(S13)의 임계 레벨과 상기 제1과정(S141)에서 수집된 측정정보를 비교하여 상기 구동부의 이상징후를 검출하는 제3과정(S143)을 포함하는 검출단계(S14)로 이루어지는 것을 특징으로 한다.
또한, 상기 베이스 정보 수집단계(S11,S12)에서 수집되는 상기 구동부의 시간에 따른 전류 값의 크기 변화 정보를 엘리베이터의 승강 또는 하강을 위해 엘리베이터의 브레이크 잠금을 해제하는 잠금 해제구간과, 엘리베이터의 승강 또는 하강을 위해 상기 구동부의 구동이 시작되는 기동구간과, 엘리베이터가 승강 또는 하강하는 과정으로 상기 구동부의 전류 값이 일정한 범위로 안정화되어 유지되는 정속구간과, 엘리베이터의 정지를 위해 상기 구동부의 구동이 정지되는 정지구간과, 엘리베이터의 브레이크 잠금이 수행되는 잠금 수행구간으로 구분하며,
상기 설정단계(S13)에서는 상기 잠금 해제구간과 기동구간과 정속구간과 정지구간 및 잠금 수행구간 각각에 대한 임계 레벨의 상한값과 하한값이 설정되며,
상기 검출단계(S14)의 제3과정(S143)은 실시간으로 구동되는 상기 구동부의 시간에 따른 전류 값을 구간별로 임계 레벨의 상한값과 하한값을 비교하여 이상징후를 검출하되, 실시간 상기 구동부의 전류 값이 하나의 구간에서 임계 레벨의 상한값을 초과하거나 하한값 미만으로 형성되면 상기 구동부의 상태를 주의상태로 검출하고, 두 개의 구간에서 임계 레벨의 상한값을 초과하거나 하한값 미만으로 형성되면 상기 구동부의 상태를 경보상태로 검출하고, 셋 이상의 구간에서 임계 레벨의 상한값을 초과하거나 하한값 미만으로 형성되면 상기 구동부의 상태를 위험상태로 검출하도록 하는 것을 특징으로 한다.
또한, 상기 고효율 운행과정(S20)은 엘리베이터의 구동부가 구동되면 실시간으로 상기 구동부의 구동정보를 측정하고, 그 측정정보는 상기 제1베이스 정보 수집단계(S11)에서 수집된 상기 구동부의 베이스 정보를 기반으로 분석하여 엘리베이터의 운행정보를 추출 저장하는 운행정보 저장단계(S21)와, 상기 운행정보 저장단계(S21)에서 장기간 저장된 엘리베이터 운행정보를 분석하여 수치화하고, 그 수치화된 정보를 기반으로 층별 엘리베이터의 문의 닫힘 시간을 제어하는 운행 제어단계(S22)로 이루어지는 것을 특징으로 한다.
또한, 상기 운행정보 저장단계(S21)는 실시간으로 수집되는 상기 구동부의 구동정보를 상기 제1베이스 정보 수집단계(S11)에서 포함되는 기동구간과 정속구간 및 정지구간으로 구분 수집하며, 그 수집된 정속구간이 유지된 시간 및 전류 값 정보를 기반으로 상기 베이스 정보 수집단계(S11)에서 수집된 베이스 정보를 대비하여 엘리베이터의 운행구간을 추적하여 최종적으로 엘리베이터의 층별 운행횟수를 추출 저장하도록 하며,
상기 운행 제어단계(S22)는 상기 운행정보 저장단계(S21)에서 장기간 수집된 정보를 기반으로 엘리베이터의 층별 운행횟수를 수치화하고, 그 수치화된 정보를 기반으로 운행이 잦은 층에서는 엘리베이터의 문 닫힘 시간을 연장하여 엘리베이터에 탑승자가 최대한 탑승할 수 있도록 유도하여 자연적으로 엘리베이터의 운행횟수가 감소되도록 하는 것을 특징으로 한다.
또한, 상기 운행정보 저장단계(S21)에서 엘리베이터 구동부가 구동되는 시간대 및 탑승자 수 정보를 추출 저장하며,
상기 운행 제어단계(S22)는 엘리베이터의 층별 운행횟수와 함께 수치화되는 상기 구동부가 구동되는 시간대 및 탑승자 정보를 기반으로 엘리베이터의 문 닫힘 시간을 제어하도록 하는 것을 특징으로 한다.
또한, 상기 운행 제어단계(S22)에서 수치화되는 엘리베이터의 층별 운행횟수를 기반으로 층별 엘리베이터 전기요금을 층별 운행횟수와 비례하게 분리 정산하도록 하는 정산단계(S23);를 더 포함하여 이루어지는 것을 특징으로 한다.
이상에서와 같이 본 발명에 따른 엘리베이터 분석을 통한 예지 보전 및 고효율 운행방법에 의하면, 엘리베이터의 승강과 하강 조건으로 구분하여 각각 정상적인 상태의 구동부 구동정보(시간에 따른 전류 값의 변화정보)와 고장이 발생하기 전에 나타난 구동부의 구동정보를 수집하고, 그 수집된 정보를 기반으로 임계 레벨을 설정한 후, 실시간 수집되는 구동부의 구동정보를 설정된 임계 레벨과 대비하여 실시간으로 구동부의 이상징후를 검출하여 엘리베이터 구동부의 안정적인 예지 보전을 수행함으로 엘리베이터 구동부의 고장으로 인한 엘리베이터의 안전사고를 효율적으로 방지할 수 있을 뿐만 아니라, 실시간으로 구동부의 구동정보를 분석하여 엘리베이터의 운행정보를 추출하고, 그 추출된 운행정보를 기반으로 엘리베이터의 층별 운행 횟수, 시간대 및 탑승자 수를 수치화(통계화)하고, 그 수치화된 정보를 기반으로 층별 엘리베이터의 문 닫힘 시간을 제어하여 엘리베이터의 경제적인 운행을 유도하는 효과가 있다.
또한, 구동부가 엘리베이터에 적용되는 특성상 수집되는 구동부의 시간에 따라 변화되는 전류 값(구동정보)을 잠금 해제구간과, 기동구간과, 정속구간과, 정지구간과, 잠금 수행구간으로 구분하여 수집하여 실시간으로 수집되는 구동부의 구동정보를 각각 구간에 해당하는 임계 레벨의 상한값과 하한값과 대비하여 구동부의 이상징후를 검출함으로, 구동부에서 이상징후가 의심되는 부위(기기)를 용이하게 검출할 수 있어 엘리베이터의 구동부의 정밀한 예지 보전을 수행할 수 있을 뿐만 아니라, 엘리베이터 구동부의 검출결과에 대한 우수한 신뢰도를 확보할 수 있는 효과가 있다.
또한, 수치화된 층별 엘리베이터의 운행횟수에 비례하여 엘리베이터 운행에 대한 전기요금을 명확하게 분산할 수 있어 매우 합리적인 요금 정산을 유도할 수 있는 효과가 있다.
도 1은 본 발명의 실시예에 따른 엘리베이터 분석을 통한 예지 보전 및 고효율 운행방법의 블럭도
본 발명의 바람직한 실시예에 따른 엘리베이터 분석을 통한 예지 보전 및 고효율 운행방법을 첨부된 도면에 의거하여 상세히 설명한다. 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 공지 기능 및 구성에 대한 상세한 기술은 생략한다.
도 1은 본 발명의 실시예에 따른 엘리베이터 분석을 통한 예지 보전 및 고효율 운행방법를 도시한 것이다.
도 1에 도시한 바와 같이, 본 발명의 실시예에 따른 엘리베이터 분석을 통한 예지 보전 및 고효율 운행방법(100)은 예지 보전과정(S10)과, 고효율 운행과정(S20)을 포함하고 있다.
상기 예지 보전과정(S10)은 엘리베이터의 구동부가 정상적인 상태에서 구동부의 구동정보와, 고장이 발생하기 전에 나타나는 구동부의 구동정보를 수집하고, 그 수집된 구동정보를 기반으로 실시간 구동되는 구동부의 이상징후를 검출하여 엘리베이터 구동부의 안정적인 예지 보전을 유도하는 것으로,
제1베이스 정보 수집단계(S11)와, 제2베이스 정보 수집단계(S12)와, 설정단계(S13)와, 검출단계(S14)를 포함하여 이루어진다.
상기 제1베이스 정보 수집단계(S11)는 엘리베이터 구동부가 정상적인 상태에서 엘리베이터를 승강시 상기 구동부의 시간에 따른 전류 값의 크기 변화 정보를 측정하고, 상기 구동부가 정상적인 상태에서 엘리베이터를 하강시 상기 구동부의 시간에 따른 전류 값의 크기 변화 정보를 측정하며, 그 측정된 구동정보는 엘리베이터 승강시의 상기 구동부 구동정보와 엘리베이터 하강시의 상기 구동부 구동정보로 구분하여 각각 상기 구동부의 베이스 정보로 저장하는 단계이다.
여기서, 엘리베이터는 저층과 고층을 연속적으로 승강 또는 하강하는 구조물로 상기 구동부의 동력을 통해 엘리베이터가 승강 또는 하강하는 특성상, 상기 제1베이스 정보 수집단계(S11)에서 수집되는 상기 구동부의 구동정보(시간에 따른 전류 값의 크기 변화정보)는 엘리베이터가 승강시 상기 구동부의 구동정보와 엘리베이터가 하강시 상기 구동부의 구동정보를 각각 구분하여 수집함이 바람직하다.
그 이유를 설명하기 위해 엘리베이터 승강시 상기 구동부의 구동정보와 하강시 상기 구동부의 구동정보를 그래프(파형)로 도시한 아래의 [그림 1]과 [그림 2]를 보면, 엘리베이터 하강시 상기 구동부에서 소요되는 전류 값이 엘리베이터 승강시 상기 구동부에서 소요되는 전류 값에 대비하여 다소 높게 형성되는 것과 함께 파형의 형상이 서로 다소 상이함을 알 수 있다.
[그림 1] 엘리베이터 승강시 구동부의 시간에 따른 전류 값
Figure PCTKR2018013169-appb-I000001
[그림 2] 엘리베이터 하강시 구동부의 시간에 따른 전류 값
Figure PCTKR2018013169-appb-I000002
즉, 엘리베이터가 승강시 상기 구동부의 구동정보와 하강시 상기 구동부의 구동정보가 서로 상이함으로, 후설될 상기 검출단계(S14)에서 실시간으로 상기 구동부의 이상징후를 명확하게 검출하기 위해서는 엘리베이터가 승강하는 조건과 하강하는 조건을 구분하여 상기 구동부의 구동정보를 수집하고 비교해야 하는 것이다.
따라서 상기 제1베이스 정보 수집단계(S11)에서는 정상적인 상태의 상기 구동부의 구동정보를 수집하되, 엘리베이터 승강시 상기 구동부의 구동정보와 하강시 상기 구동부의 구동정보를 각각 구분하여 수집한다.
한편, 엘리베이터가 층과 다른 층 사이를 운행을 시작하고 정지하는 과정을 단계별로 살펴보면, 엘리베이터의 브레이크 잠금이 해제되는 제1단계와, 엘리베이터를 승강 또는 하강시키기 위해 상기 구동부가 최초 구동되는 제2단계와, 상기 구동부를 통해 엘리베이터를 다른 층으로 이송시키는 제3단계와, 엘리베이터의 이송이 완료되어 상기 구동부가 정지되는 단계와, 엘리베이터의 브레이크 잠금을 수행하는 제5단계로 구분할 수 있다.
따라서 본 발명의 엘리베이터 분석을 통한 예지 보전 및 고효율 운행방법(100)이 엘리베이터의 구동부의 이상징후를 검출하는 특성상, 상기 구동부의 이상징후를 명확하게 검출하기 위해, 아래의 [그림 3]과 [그림 4]와 같이 상기 제1베이스 정보 수집단계(S11)에서 수집되는 상기 구동부의 시간에 따른 전류 값의 크기 변화 정보를 엘리베이터의 승강 또는 하강을 위해 엘리베이터의 브레이크 잠금을 해제하는 잠금 해제구간과, 엘리베이터의 승강 또는 하강을 위해 상기 구동부의 구동이 시작되는 기동구간과, 엘리베이터가 승강 또는 하강하는 과정으로 상기 구동부의 전류 값이 일정한 범위로 안정화되어 유지되는 정속구간과, 엘리베이터의 정지를 위해 상기 구동부의 구동이 정지되는 정지구간과, 엘리베이터의 브레이크 잠금이 수행되는 잠금 수행구간으로 구분하여 구동정보를 수집하도록 한다.
[그림 3] 엘리베이터 승강시 구동부의 시간에 따른 전류 값
Figure PCTKR2018013169-appb-I000003
[그림 4] 엘리베이터 하강시 구동부의 시간에 따른 전류 값
Figure PCTKR2018013169-appb-I000004
한편, 상기 정속구간으로 인지되는 전류 값의 범위는 엘리베이터의 크기, 용량 등의 조건을 고려하여 다양한 범위로 설정될 수 있음은 물론이다.
상기와 같이 수집되는 정보는 후설될 상기 설정단계(S13) 및 검출단계(S14)에서 엘리베이터 구동부의 이상징후를 검출하기 위해 설정되는 임계 레벨 기준 값(상·하한값)의 기반이 된다.
상기 제2베이스 정보 수집단계(S12)는 엘리베이터 승강시 상기 구동부의 고장이 발생하기 전 상기 구동부의 구동 상태에서 측정한 시간에 따른 전류 값의 크기 변화 정보를 측정하고, 엘리베이터 하강시 상기 구동부의 고장이 발생하기 전 상기 구동부의 구동 상태에서 측정한 시간에 따른 전류 값의 크기 변화 정보를 측정하며, 그 측정된 정보는 엘리베이터 승강시의 상기 구동부 정보와 엘리베이터 하강시의 상기 구동부 정보로 구분하여 각각 상기 구동부의 베이스 정보로 저장하는 단계이다.
여기서, 상기 제2베이스 정보 수집단계(S12)에서 수집되는 상기 구동부의 시간에 따른 전류 값 역시 상기 제1베이스 정보 수집단계(S11)와 같이 잠금 해제구간, 기동구간, 정속구간, 정지구간 및 잠금 수행구간으로 구분하여 구동정보가 수집되도록 함은 물론이다.
이렇게 수집되는 정보 역시 상기 설정단계(S13) 및 검출단계(S14)에서 엘리베이터 구동부의 이상징후를 검출하기 위해 설정되는 임계 레벨 기준 값(상·하한값)의 기반이 된다.
상기 설정단계(S13)는 상기 베이스 정보 수집단계(S11,S12)에서 수집된 정보를 기반으로 엘리베이터 승강시의 구동부와 엘리베이터 하강시의 상기 구동부의 시간에 따른 전류 값의 임계 레벨을 각각 설정하는 단계이다.
즉, 상기 설정단계(S13)에서는 아래의 [그림 5]와 [그림 6]과 같이 엘리베이터가 승강하는 경우와 하강하는 경우의 상기 구동부의 잠금 해제구간과 기동구간과 정속구간과 정지구간 및 잠금 수행구간 각각에 대한 임계 레벨의 상한값과 하한값이 설정되도록 한다.
[그림 5] 엘리베이터 승강시 구동부의 임계 레벨
Figure PCTKR2018013169-appb-I000005
[그림 6] 엘리베이터 승강시 구동부의 임계 레벨
Figure PCTKR2018013169-appb-I000006
상기 검출단계(S14)는 제1과정(S141)과 제2과정(S142)과 제3과정(S143)을 통해 실시간으로 구동되는 상기 구동부의 이상징후를 검출한다.
상기 제1과정(S141)은 엘리베이터의 운행을 위해 상기 구동부가 구동되면 상기 구동부의 이상징후를 검사하기 위해 실시간으로 상기 구동부의 구동정보를 수집하는 과정이다.
상기 제2과정(S142)은 상기 제1과정(S141)에서 수집된 측정정보를 상기 제1베이스 정보 수집단계(S11)에서 수집된 베이스 정보와 비교하여 엘리베이터의 승강 또는 하강을 판별하는 과정이다.
즉, 상기에서 설명한 바와 같이 엘리베이터가 승강하는 경우와 하강하는 경우에 상기 구동부의 전류 값 차이가 발생함으로, 상기 제1베이스 정보 수집단계(S11)에서 엘리베이터 승강하는 경우와 하강하는 경우로 구분되어 수집된 정보를 기반으로 실시간으로 수집되는 상기 구동부의 전류 값을 통해 간편히 엘리베이터의 승강 또는 하강을 판별하게 된다.
상기 제3과정(S143)은 상기 제2과정(S142)에서 판별된 판별정보에 해당하는 상기 설정단계(S13)의 임계 레벨과 상기 제1과정(S141)에서 수집된 측정정보를 비교하여 상기 구동부의 이상징후를 검출하는 과정이다.
일 예로, 상기 제2과정(S142)을 통해 상기 구동부의 구동이 엘리베이터를 승강을 위해 구동되었음이 판별되면 상기 제3과정(S143)에서는 실시간으로 수집되는 상기 구동부의 구동정보와 상기 설정단계(S13)에서 엘리베이터 승강시 조건으로 설정된 상기 구동부의 임계 레벨을 대비하여 실시간 구동되는 상기 구동부의 이상징후를 검출하게 된다.
즉, 상기 검출단계(S14)의 제3과정(S143)은 실시간으로 구동되는 상기 구동부의 시간에 따른 전류 값을 아래의 [그림 7] 및 [그림 8]과 같이 구간별로 설정된 임계 레벨의 상한값과 하한값을 비교하여 상기 구동부의 이상징후를 정밀하고 명확하게 검출하도록 한다.
[그림 7] 구동부의 잠금 해제구간과 기동구간의 이상징후 검출 과정
Figure PCTKR2018013169-appb-I000007
[그림 8] 구동부의 정속구간과 정지구간 및 잠금 수행구간의 이상징후 검출 과정
Figure PCTKR2018013169-appb-I000008
따라서 실시간 구동되는 상기 구동부의 구동정보를 기반으로 각각의 구간별로 이상징후를 검출함으로, 아래의 [그림 9]와 같이 이상징후가 검출되는 경우에는 그 검출된 구간을 명확하게 인지할 수 있어 그 검출정보를 통해 상기 구동부에서 이상징후가 의심되는 기기(부분)를 용이하게 검출하여 엘리베이터 구동부의 정확하고 정밀한 예지 보전을 통한 안정적인 관리를 유도할 수 있다.
[그림 9] 구동부의 이상징후 검출
Figure PCTKR2018013169-appb-I000009
한편, 실시간 상기 구동부의 전류 값이 하나의 구간에서 임계 레벨의 상한값을 초과하거나 하한값 미만으로 형성되면 상기 구동부의 상태를 주의상태로 검출하고, 두 개의 구간에서 임계 레벨의 상한값을 초과하거나 하한값 미만으로 형성되면 상기 구동부의 상태를 경보상태로 검출하고, 셋 이상의 구간에서 임계 레벨의 상한값을 초과하거나 하한값 미만으로 형성되면 상기 구동부의 상태를 위험상태로 검출하도록 하는 방식으로 단계별 위험 수위를 설정하여 상기 구동부의 효과적인 관리가 수행되도록 유도할 수 있다.
여기서, 상기와 같이 검출되는 정보는 유·무선 통신방식을 통해 엘리베이터 관리자에게 송출하여 엘리베이터에 이상징후가 검출시 신속한 대처가 이루어지도록 함은 물론이다.
상기 고효율 운행과정(S20)은 상기 예지 보전과정(S10)에서 수집되는 정상적인 상태의 구동부의 구동정보를 기반으로 실시간 엘리베이터 구동부의 구동정보를 분석하여 엘리베이터의 운행정보를 추출하고, 그 추출된 운행정보를 기반으로 엘리베이터의 문 닫힘 시간을 제어하여 엘리베이터의 효율적인 운행을 유도하는 것으로,
운행정보 저장단계(S21)와, 운행 제어단계(S22)를 포함하고 있다.
한편, 상기 제1베이스 정보 수집단계(S11)에서 수집되는 상기 구동부의 구동정보는 상기 [그림 3]과 [그림 4]에 나타난 바와 같이 상기 구동부의 구동이 시작되는 기동구간과, 엘리베이터가 승강 또는 하강하는 과정으로 상기 구동부의 전류 값이 일정한 범위로 안정화되어 유지되는 정속구간과, 엘리베이터의 정지를 위해 상기 구동부의 구동이 정지되는 정지구간으로 구분하여 수집되며,
상기 기동구간과 정지구간은 상기 구동부에 순간적으로 피크전류(과전류)가 형성되는 구간으로, 이러한 구간을 통해 정속구간의 시작과 끝을 명확하게 설정(구분)할 수 있으며, 이를 통해 엘리베이터가 운행되는 운행구간(운행거리)에 대해 정속구간이 유지되는 시간정보를 명확하게 추출할 수 있다.
일 예로, 아래의 [그림 10]과 같이 엘리베이터가 층과 층 사이를 운행시 운행구간에 따라 상기 구동부의 정속구간이 유지되는 시간이 차이가 발생함을 알 수 있다.
[그림 10] 엘리베이터 운행구간에 따라 정속구간이 유지되는 시간
Figure PCTKR2018013169-appb-I000010
따라서 상기 제1베이스 정보 수집단계(S11)에서 수집되는 베이스 정보를 기반으로 실시간 구동되는 상기 구동부의 구동정보를 통해 엘리베이터의 승강 또는 하강의 판별과 함께 엘리베이터의 운행구간에 대한 정보를 용이하게 추출할 수 있다.
즉, 본 발명의 엘리베이터 분석을 통한 예지 보전 및 고효율 운행방법(100)은 엘리베이터를 구동하는 상기 구동부의 전류 값을 추적 비교하는 방식을 통해 간편히 엘리베이터의 운행구간 및 위치를 명확하게 추적할 수 있다.
상기 운행정보 저장단계(S21)는 엘리베이터의 구동부가 구동되면 실시간으로 상기 구동부의 구동정보를 측정하고, 그 측정정보는 상기 제1베이스 정보 수집단계(S11)에서 수집된 상기 구동부의 베이스 정보를 기반으로 분석하여 엘리베이터의 운행정보를 추출 저장하는 단계이다.
여기서, 상기 운행정보 저장단계(S21)는 실시간으로 수집되는 상기 구동부의 구동정보를 상기 제1베이스 정보 수집단계(S11)에 포함되는 기동구간과 정속구간 및 정지구간으로 구분 수집하며, 그 수집된 정속구간이 유지된 시간 및 전류 값 정보를 기반으로 상기 제1베이스 정보 수집단계(S11)에서 수집된 베이스 정보를 대비하여 엘리베이터의 운행구간을 추적하여 최종적으로 엘리베이터의 층별 운행횟수를 추출 저장하도록 한다.
그 과정을 살펴보면, 엘리베이터의 운행을 위해 상기 구동부가 구동되면, 그 구동정보를 실시간으로 수집하고, 그 수집된 구동정보는 상기 제1베이스 정보 수집단계(S11)에서 수집된 구동부의 구동정보와 비교하는데, 1차로 실시간으로 수집된 구동정보의 전류 값과 상기 제1베이스 정보 수집단계(S11)에서 수집된 구동정보를 비교하여 엘리베이터의 승강 및 하강을 판별하고, 2차로 실시간 수집된 구동정보에서 정속구간이 유지되는 시간을 상기 제1베이스 정보 수집단계(S11)에 수집된 구동정보와 대비하여 운행구간을 추적하게 된다.
즉, 상기와 같이 엘리베이터의 실시간 운행정보를 연속적으로 수집함으로 후설될 상기 운행 제어단계(S22)에서 엘리베이터의 운행정보를 용이하게 수치화할 수 있다.
상기 운행 제어단계(S22)는 상기 운행정보 저장단계(S21)에서 장기간 저장된 엘리베이터 운행정보를 분석하여 수치화하고, 그 수치화된 정보를 기반으로 층별 엘리베이터의 문의 닫힘 시간을 제어하는 단계이다.
즉, 상기 운행 제어단계(S22)는 아래의 [그림 11]과 같이 상기 운행정보 저장단계(S21)에서 장기간 수집된 정보를 기반으로 엘리베이터의 층별 운행횟수를 수치화하고, 그 수치화된 정보를 기반으로 운행이 잦은 층에서는 엘리베이터의 문 닫힘 시간을 연장하여 엘리베이터에 탑승자가 최대한 탑승할 수 있도록 유도하여 자연적으로 엘리베이터의 운행횟수가 감소되도록 한다.
[그림 11] 엘리베이터의 층별 운행횟수
Figure PCTKR2018013169-appb-I000011
또한, 상기 운행정보 저장단계(S21)에서 엘리베이터 구동부가 구동되는 시간대 및 탑승자 수 정보를 추출 저장하며,
상기 운행 제어단계(S22)는 아래의 [그림 12]와 같이 엘리베이터의 층별 운행횟수와 함께 수치화되는 상기 구동부가 구동되는 시간대 및 탑승자 정보를 기반으로 엘리베이터의 문 닫힘 시간을 제어하도록 한다.
여기서, 엘리베이터 탑승자 수는 무게센서를 이용한 탑승자의 무게를 측정하는 방식으로 대략적인 탑승자 수를 산출하도록 한다.
[그림 12] 엘리베이터 운행 시간대 및 탑승자 수
Figure PCTKR2018013169-appb-I000012
즉, 엘리베이터의 층별 운행횟수와 함께 층별 엘리베이터의 운행 시간대 및 층별 탑승자 수에 대한 정보를 수치화함으로 엘리베이터의 문 닫힘 시간의 제어를 더욱 효과적으로 수행할 수 있는데, 일 예로 전체적인 운행횟수는 적은 층이라도 특정 시간대에 운행횟수가 많은 층의 경우에는 특성 시간대에 엘리베이터의 문 닫힘 시간을 연장하고, 반대로 전체적인 운행횟수가 많은 층이라도 특정 시간대에 운행횟수가 적은 층의 경우에는 특정 시간대에 엘리베이터의 문 닫힘이 정상적으로 수행되도록 제어하여 효율적으로 엘리베이터의 문 닫힘 시간이 제어되도록 한다. 또한, 탑승자 수가 많이 집중되는 시간대 역시 엘리베이터의 문 닫힘 시간을 연장하여 효율적인 엘리베이터의 문 닫힘이 제어되도록 함은 물론이다.
한편, 상기 운행 제어단계(S22)에서 수치화되는 엘리베이터의 층별 운행횟수를 기반으로 층별 엘리베이터 전기요금을 층별 운행횟수와 비례하게 분리 정산하도록 하는 정산단계(S23);를 더 포함하여 이루어진다.
즉, 엘리베이터의 층별 운행횟수를 수치화함으로 아래의 [그림 13]과 같이 엘리베이터에 대한 월별 요금을 층별 전체적인 운행횟수를 기반으로 명확하게 분리하여 책정할 수 있으므로 매우 합리적인 요금 정산을 유도할 수 있다.
[그림 13] 엘리베이터 운행횟수에 따른 층별 전기요금
Figure PCTKR2018013169-appb-I000013
상기와 같은 과정으로 이루어지는 본 발명의 엘리베이터 분석을 통한 예지 보전 및 고효율 운행방법(100)은 엘리베이터의 승강과 하강 조건으로 구분하여 각각 정상적인 상태의 구동부 구동정보(시간에 따른 전류 값의 변화정보)와 고장이 발생하기 전에 나타난 구동부의 구동정보를 수집하고, 그 수집된 정보를 기반으로 임계 레벨을 설정한 후, 실시간 수집되는 구동부의 구동정보를 설정된 임계 레벨과 대비하여 실시간으로 구동부의 이상징후를 검출하여 엘리베이터 구동부의 안정적인 예지 보전을 수행함으로 엘리베이터 구동부의 고장으로 인한 엘리베이터의 안전사고를 효율적으로 방지할 수 있을 뿐만 아니라, 실시간으로 구동부의 구동정보를 분석하여 엘리베이터의 운행정보를 추출하고, 그 추출된 운행정보를 기반으로 엘리베이터의 층별 운행 횟수, 시간대 및 탑승자 수를 수치화(통계화)하고, 그 수치화된 정보를 기반으로 층별 엘리베이터의 문 닫힘 시간을 제어하여 엘리베이터의 경제적인 운행을 유도하는 효과가 있다.
또한, 구동부가 엘리베이터에 적용되는 특성상 수집되는 구동부의 시간에 따라 변화되는 전류 값(구동정보)을 잠금 해제구간과, 기동구간과, 정속구간과, 정지구간과, 잠금 수행구간으로 구분하여 수집하여 실시간으로 수집되는 구동부의 구동정보를 각각 구간에 해당하는 임계 레벨의 상한값과 하한값과 대비하여 구동부의 이상징후를 검출함으로, 구동부에서 이상징후가 의심되는 부위(기기)를 용이하게 검출할 수 있어 엘리베이터의 구동부의 정밀한 예지 보전을 수행할 수 있을 뿐만 아니라, 엘리베이터 구동부의 검출결과에 대한 우수한 신뢰도를 확보할 수 있는 효과가 있다.
또한, 수치화된 층별 엘리베이터의 운행횟수에 비례하여 엘리베이터 운행에 대한 전기요금을 명확하게 분산할 수 있어 매우 합리적인 요금 정산을 유도할 수 있는 효과가 있다.
본 발명은 첨부된 도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것으로 상술한 실시예에 한정되지 않으며, 당해 분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 실시예가 가능하다는 점을 이해할 수 있을 것이다. 또한, 본 발명의 사상을 해치지 않는 범위 내에서 당업자에 의한 변형이 가능함은 물론이다. 따라서, 본 발명에서 권리를 청구하는 범위는 상세한 설명의 범위 내로 정해지는 것이 아니라 후술되는 청구범위와 이의 기술적 사상에 의해 한정될 것이다.
[부호의 설명]
S10. 예지 보전과정 S11. 제1베이스 정보 수집단계
S12. 제2베이스 정보 수집단계 S13. 설정단계
S14. 검출단계 S141. 제1과정
S142. 제2과정 S143. 제3과정
S20. 고효율 운행과정 S21. 운행정보 저장단계
S22. 운행 제어단계 S23. 정산단계
100. 엘리베이터 분석을 통한 예지 보전 및 고효율 운행방법

Claims (7)

  1. 엘리베이터의 구동부가 정상적인 상태에서 구동부의 구동정보와, 고장이 발생하기 전에 나타나는 구동부의 구동정보를 수집하고, 그 수집된 구동정보를 기반으로 실시간 구동되는 구동부의 이상징후를 검출하여 엘리베이터 구동부의 안정적인 예지 보전을 유도하는 예지 보전과정(S10); 및
    상기 예지 보전과정(S10)에서 수집되는 정상적인 상태의 구동부의 구동정보를 기반으로 실시간 엘리베이터 구동부의 구동정보를 분석하여 엘리베이터의 운행정보를 추출하고, 그 추출된 운행정보를 기반으로 엘리베이터의 문 닫힘 시간을 제어하여 엘리베이터의 효율적인 운행을 유도하는 고효율 운행과정(S20);으로 이루어지는 것을 특징으로 하는 엘리베이터 분석을 통한 예지 보전 및 고효율 운행방법.
  2. 제 1 항에 있어서,
    상기 예지 보전과정(S10)은,
    엘리베이터 구동부가 정상적인 상태에서 엘리베이터를 승강시 상기 구동부의 시간에 따른 전류 값의 크기 변화 정보를 측정하고, 상기 구동부가 정상적인 상태에서 엘리베이터를 하강시 상기 구동부의 시간에 따른 전류 값의 크기 변화 정보를 측정하며, 그 측정된 구동정보는 엘리베이터 승강시의 상기 구동부 구동정보와 엘리베이터 하강시의 상기 구동부 구동정보로 구분하여 각각 상기 구동부의 베이스 정보로 저장하는 제1베이스 정보 수집단계(S11)와,
    엘리베이터 승강시 상기 구동부의 고장이 발생하기 전 상기 구동부의 구동 상태에서 측정한 시간에 따른 전류 값의 크기 변화 정보를 측정하고, 엘리베이터 하강시 상기 구동부의 고장이 발생하기 전 상기 구동부의 구동 상태에서 측정한 시간에 따른 전류 값의 크기 변화 정보를 측정하며, 그 측정된 정보는 엘리베이터 승강시의 상기 구동부 정보와 엘리베이터 하강시의 상기 구동부 정보로 구분하여 각각 상기 구동부의 베이스 정보로 저장하는 제2베이스 정보 수집단계(S12)와,
    상기 베이스 정보 수집단계(S11,S12)에서 수집된 정보를 기반으로 엘리베이터 승강시의 구동부와 엘리베이터 하강시의 상기 구동부의 시간에 따른 전류 값의 임계 레벨을 각각 설정하는 설정단계(S13)와,
    상기 구동부가 구동되면 실시간으로 상기 구동부의 구동 상태에서 측정한 시간에 따른 전류 값의 크기 변화 정보를 측정 수집하는 제1과정(S141), 상기 제1과정(S141)에서 수집된 측정정보를 상기 제1베이스 정보 수집단계(S11)에서 수집된 베이스 정보와 비교하여 엘리베이터의 승강 또는 하강을 판별하는 제2과정(S142)과, 상기 제2과정(S142)에서 판별된 판별정보에 해당하는 상기 설정단계(S13)의 임계 레벨과 상기 제1과정(S141)에서 수집된 측정정보를 비교하여 상기 구동부의 이상징후를 검출하는 제3과정(S143)을 포함하는 검출단계(S14)로 이루어지는 것을 특징으로 하는 엘리베이터 분석을 통한 예지 보전 및 고효율 운행방법.
  3. 제 2 항에 있어서,
    상기 베이스 정보 수집단계(S11,S12)에서 수집되는 상기 구동부의 시간에 따른 전류 값의 크기 변화 정보를 엘리베이터의 승강 또는 하강을 위해 엘리베이터의 브레이크 잠금을 해제하는 잠금 해제구간과, 엘리베이터의 승강 또는 하강을 위해 상기 구동부의 구동이 시작되는 기동구간과, 엘리베이터가 승강 또는 하강하는 과정으로 상기 구동부의 전류 값이 일정한 범위로 안정화되어 유지되는 정속구간과, 엘리베이터의 정지를 위해 상기 구동부의 구동이 정지되는 정지구간과, 엘리베이터의 브레이크 잠금이 수행되는 잠금 수행구간으로 구분하며,
    상기 설정단계(S13)에서는 상기 잠금 해제구간과 기동구간과 정속구간과 정지구간 및 잠금 수행구간 각각에 대한 임계 레벨의 상한값과 하한값이 설정되며,
    상기 검출단계(S14)의 제3과정(S143)은 실시간으로 구동되는 상기 구동부의 시간에 따른 전류 값을 구간별로 임계 레벨의 상한값과 하한값을 비교하여 이상징후를 검출하되, 실시간 상기 구동부의 전류 값이 하나의 구간에서 임계 레벨의 상한값을 초과하거나 하한값 미만으로 형성되면 상기 구동부의 상태를 주의상태로 검출하고, 두 개의 구간에서 임계 레벨의 상한값을 초과하거나 하한값 미만으로 형성되면 상기 구동부의 상태를 경보상태로 검출하고, 셋 이상의 구간에서 임계 레벨의 상한값을 초과하거나 하한값 미만으로 형성되면 상기 구동부의 상태를 위험상태로 검출하도록 하는 것을 특징으로 하는 엘리베이터 분석을 통한 예지 보전 및 고효율 운행방법.
  4. 제 3 항에 있어서,
    상기 고효율 운행과정(S20)은,
    엘리베이터의 구동부가 구동되면 실시간으로 상기 구동부의 구동정보를 측정하고, 그 측정정보는 상기 제1베이스 정보 수집단계(S11)에서 수집된 상기 구동부의 베이스 정보를 기반으로 분석하여 엘리베이터의 운행정보를 추출 저장하는 운행정보 저장단계(S21)와,
    상기 운행정보 저장단계(S21)에서 장기간 저장된 엘리베이터 운행정보를 분석하여 수치화하고, 그 수치화된 정보를 기반으로 층별 엘리베이터의 문의 닫힘 시간을 제어하는 운행 제어단계(S22)로 이루어지는 것을 특징으로 하는 엘리베이터 분석을 통한 예지 보전 및 고효율 운행방법.
  5. 제 4 항에 있어서,
    상기 운행정보 저장단계(S21)는 실시간으로 수집되는 상기 구동부의 구동정보를 상기 제1베이스 정보 수집단계(S11)에서 포함되는 기동구간과 정속구간 및 정지구간으로 구분 수집하며, 그 수집된 정속구간이 유지된 시간 및 전류 값 정보를 기반으로 상기 베이스 정보 수집단계(S11)에서 수집된 베이스 정보를 대비하여 엘리베이터의 운행구간을 추적하여 최종적으로 엘리베이터의 층별 운행횟수를 추출 저장하도록 하며,
    상기 운행 제어단계(S22)는 상기 운행정보 저장단계(S21)에서 장기간 수집된 정보를 기반으로 엘리베이터의 층별 운행횟수를 수치화하고, 그 수치화된 정보를 기반으로 운행이 잦은 층에서는 엘리베이터의 문 닫힘 시간을 연장하여 엘리베이터에 탑승자가 최대한 탑승할 수 있도록 유도하여 자연적으로 엘리베이터의 운행횟수가 감소되도록 하는 것을 특징으로 하는 엘리베이터 분석을 통한 예지 보전 및 고효율 운행방법.
  6. 제 5 항에 있어서,
    상기 운행정보 저장단계(S21)에서 엘리베이터 구동부가 구동되는 시간대 및 탑승자 수 정보를 추출 저장하며,
    상기 운행 제어단계(S22)는 엘리베이터의 층별 운행횟수와 함께 수치화되는 상기 구동부가 구동되는 시간대 및 탑승자 정보를 기반으로 엘리베이터의 문 닫힘 시간을 제어하도록 하는 것을 특징으로 하는 엘리베이터 분석을 통한 예지 보전 및 고효율 운행방법.
  7. 제 5 항에 있어서,
    상기 운행 제어단계(S22)에서 수치화되는 엘리베이터의 층별 운행횟수를 기반으로 층별 엘리베이터 전기요금을 층별 운행횟수와 비례하게 분리 정산하도록 하는 정산단계(S23);를 더 포함하여 이루어지는 것을 특징으로 하는 엘리베이터 분석을 통한 예지 보전 및 고효율 운행방법.
PCT/KR2018/013169 2017-11-13 2018-11-01 엘리베이터 분석을 통한 예지 보전 및 고효율 운행방법 WO2019093715A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112018004643.5T DE112018004643B4 (de) 2017-11-13 2018-11-01 Verfahren zur vorbeugenden Wartung und zum hocheffizienten Betrieb durch Aufzugsanalyse
JP2020520046A JP6775098B1 (ja) 2017-11-13 2018-11-01 エレベーター分析を通じた予知保全及び高効率運行の方法
CN201880065408.3A CN111491882B (zh) 2017-11-13 2018-11-01 一种基于电梯运行分析的电梯预维护及高效运行方法
US16/836,868 US10843898B2 (en) 2017-11-13 2020-03-31 Method for predictive maintenance and high efficiency operation through elevator analysis

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0150481 2017-11-13
KR1020170150481A KR101867605B1 (ko) 2017-11-13 2017-11-13 엘리베이터 분석을 통한 예지 보전 및 고효율 운행방법

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/836,868 Continuation US10843898B2 (en) 2017-11-13 2020-03-31 Method for predictive maintenance and high efficiency operation through elevator analysis

Publications (1)

Publication Number Publication Date
WO2019093715A1 true WO2019093715A1 (ko) 2019-05-16

Family

ID=63048986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/013169 WO2019093715A1 (ko) 2017-11-13 2018-11-01 엘리베이터 분석을 통한 예지 보전 및 고효율 운행방법

Country Status (6)

Country Link
US (1) US10843898B2 (ko)
JP (1) JP6775098B1 (ko)
KR (1) KR101867605B1 (ko)
CN (1) CN111491882B (ko)
DE (1) DE112018004643B4 (ko)
WO (1) WO2019093715A1 (ko)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101867605B1 (ko) * 2017-11-13 2018-07-18 (주)아이티공간 엘리베이터 분석을 통한 예지 보전 및 고효율 운행방법
US11597629B2 (en) 2018-12-27 2023-03-07 Otis Elevator Company Elevator system operation adjustment based on component monitoring
CN112209194B (zh) * 2020-09-03 2022-03-08 日立楼宇技术(广州)有限公司 电梯维保监控方法、装置、维保监控平台和存储介质
CN112114993A (zh) * 2020-09-28 2020-12-22 中国建设银行股份有限公司 一种应用系统的配置信息处理方法及装置
CN112830357B (zh) * 2020-12-30 2022-05-17 重庆厚齐科技有限公司 一种基于物联网和大数据的电梯健康值的测算系统及方法
CN112811275B (zh) * 2020-12-30 2022-05-20 重庆厚齐科技有限公司 一种基于物联网的电梯按需维保周期测算系统及方法
CN112830358B (zh) * 2020-12-30 2022-05-20 重庆厚齐科技有限公司 一种利用机器学习预测电梯按需维保周期的系统及方法
KR102545137B1 (ko) * 2021-07-09 2023-06-20 (주)대륜엘리스 에스컬레이터용 안전 제어 보드 및 이를 포함하는 원격 통합 제어 시스템
CN114715752B (zh) * 2022-06-08 2022-08-23 凯尔菱电(山东)电梯有限公司 用于电梯的异常检测方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970026881A (ko) * 1995-11-14 1997-06-24 이종수 엘리베이터 도어 개폐장치 및 방법
KR20000020216A (ko) * 1998-09-18 2000-04-15 이종수 전력 검침이 가능한 엘리베이터 원격 감시 시스템
KR100365325B1 (ko) * 1999-12-17 2002-12-18 엘지 오티스 엘리베이터 유한회사 엘리베이터 제어 장치 및 방법
JP2006502933A (ja) * 2002-10-15 2006-01-26 オーチス エレベータ カンパニー 過大抵抗および有効制動動作の点検方法
KR101387305B1 (ko) * 2010-04-20 2014-04-18 미쓰비시덴키 가부시키가이샤 엘리베이터의 호출 등록 장치

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3025421B2 (ja) * 1995-06-14 2000-03-27 三菱電機株式会社 制御システムの異常検知装置
KR970026881U (ko) * 1995-12-22 1997-07-24 전기밥솥용 내통
KR100498552B1 (ko) * 1998-06-12 2006-02-13 오티스엘지엘리베이터 유한회사 엘리베이터의군관리제어장치
US7194415B2 (en) * 2001-03-09 2007-03-20 Hitachi, Ltd. Support system for maintenance contract of elevator
JP2003146548A (ja) * 2001-11-06 2003-05-21 Hitachi Building Systems Co Ltd エレベーター使用頻度計測装置
KR100904946B1 (ko) * 2005-04-14 2009-06-29 오티스 엘리베이터 컴파니 모터 전류 관찰에 의해 엘리베이터의 브레이크 및 기타드래그를 감지하기 위한 방법
JP4844165B2 (ja) * 2006-02-24 2011-12-28 三菱電機ビルテクノサービス株式会社 エレベータの異常検出装置
KR100901228B1 (ko) * 2007-04-30 2009-06-08 미쓰비시덴키 가부시키가이샤 엘리베이터 운행 제어 장치
WO2012000170A1 (en) * 2010-06-29 2012-01-05 Empire Technology Development Llc Method and system for determining safety of elevator
JP6157924B2 (ja) * 2013-05-20 2017-07-05 株式会社日立製作所 安全装置付きエレベータ
CN104843555B (zh) * 2014-04-16 2017-08-04 北汽福田汽车股份有限公司 一种提升斗防坠控制方法及提升斗防坠控制装置
WO2018146768A1 (ja) * 2017-02-09 2018-08-16 三菱電機株式会社 不良要因推定装置および不良要因推定方法
SG11202000430WA (en) * 2017-07-18 2020-02-27 Chun Ming Lau System and method for managing and monitoring lifting systems and building facilities
KR101867605B1 (ko) * 2017-11-13 2018-07-18 (주)아이티공간 엘리베이터 분석을 통한 예지 보전 및 고효율 운행방법
KR101830036B1 (ko) * 2017-11-13 2018-02-19 (주)아이티공간 엘리베이터 구동부의 예지 보전방법
JP6994366B2 (ja) * 2017-11-28 2022-01-14 株式会社日立製作所 故障モード特定システム、故障モード特定方法、及びプログラム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970026881A (ko) * 1995-11-14 1997-06-24 이종수 엘리베이터 도어 개폐장치 및 방법
KR20000020216A (ko) * 1998-09-18 2000-04-15 이종수 전력 검침이 가능한 엘리베이터 원격 감시 시스템
KR100365325B1 (ko) * 1999-12-17 2002-12-18 엘지 오티스 엘리베이터 유한회사 엘리베이터 제어 장치 및 방법
JP2006502933A (ja) * 2002-10-15 2006-01-26 オーチス エレベータ カンパニー 過大抵抗および有効制動動作の点検方法
KR101387305B1 (ko) * 2010-04-20 2014-04-18 미쓰비시덴키 가부시키가이샤 엘리베이터의 호출 등록 장치

Also Published As

Publication number Publication date
JP2020536821A (ja) 2020-12-17
US10843898B2 (en) 2020-11-24
CN111491882B (zh) 2021-10-26
CN111491882A (zh) 2020-08-04
DE112018004643B4 (de) 2021-09-02
DE112018004643T5 (de) 2020-07-09
KR101867605B1 (ko) 2018-07-18
US20200223661A1 (en) 2020-07-16
JP6775098B1 (ja) 2020-10-28

Similar Documents

Publication Publication Date Title
WO2019093715A1 (ko) 엘리베이터 분석을 통한 예지 보전 및 고효율 운행방법
WO2019093613A1 (ko) 엘리베이터 구동부의 예지 보전방법
CN1240605C (zh) 电梯系统以及用于改进现有电梯中的竖井监视装置的方法
CN102020149B (zh) 电梯系统
CN112384462B (zh) 电梯诊断系统
JP2020117350A (ja) エレベータ装置、エレベータシステム及び診断方法
CN113264430B (zh) 融合多传感器数据的开门走梯实时检测方法
CN113874310B (zh) 电梯设备
JP2871927B2 (ja) エレベーターの診断運転装置
WO2019093714A1 (ko) 엘리베이터 운전 분석을 통한 고효율 운행방법{high efficiency driving method of elevator}
EP3950556A1 (en) Elevator system
CN113998553A (zh) 一种电梯运行故障检测系统及其检测方法
AU2019351613B2 (en) Method and monitoring device for inferring a health status of call devices in an elevator arrangement
CN105223014B (zh) 一种便携式电梯轿厢制停距离检测仪及其检测方法
JP2016055960A (ja) エレベータの地震自動復旧運転装置
CN210795554U (zh) 一种施工电梯安全监控装置
CN116812697A (zh) 电梯的门开闭检测系统
CN117550449A (zh) 一种电梯困人自动救援安全监控方法及系统
JP2020070183A (ja) エレベーターの自動診断方法及びエレベーターの自動運転システム
CN116374760A (zh) 一种检测电梯抱闸安全隐患的方法及系统
CN116395519A (zh) 电梯轿厢内强行扒门报警方法、装置、设备及存储介质
CN115583556A (zh) 一种家用电梯轿厢内检测人晕倒的方法及装置
CN117623041A (zh) 一种家用梯故障自动救援方法
CN114604704A (zh) 一种基于厅外检测的电梯派梯系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18876818

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020520046

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18876818

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18876818

Country of ref document: EP

Kind code of ref document: A1