WO2019093609A1 - Chuck plate, chuck structure having chuck plate, and bonding device having chuck structure - Google Patents

Chuck plate, chuck structure having chuck plate, and bonding device having chuck structure Download PDF

Info

Publication number
WO2019093609A1
WO2019093609A1 PCT/KR2018/006277 KR2018006277W WO2019093609A1 WO 2019093609 A1 WO2019093609 A1 WO 2019093609A1 KR 2018006277 W KR2018006277 W KR 2018006277W WO 2019093609 A1 WO2019093609 A1 WO 2019093609A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
vacuum
chuck
heating
wafer
Prior art date
Application number
PCT/KR2018/006277
Other languages
French (fr)
Korean (ko)
Inventor
남성용
정인영
Original Assignee
주식회사 미코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 미코 filed Critical 주식회사 미코
Priority to CN201880072948.4A priority Critical patent/CN111344855A/en
Priority to SG11202004112PA priority patent/SG11202004112PA/en
Publication of WO2019093609A1 publication Critical patent/WO2019093609A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6838Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping with gripping and holding devices using a vacuum; Bernoulli devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67103Apparatus for thermal treatment mainly by conduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68721Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by edge clamping, e.g. clamping ring

Definitions

  • the present invention relates to a bonding apparatus having a chuck plate, a chuck structure having the chuck plate and a chuck structure, and more particularly to a bonding apparatus having a chuck plate for holding a wafer, a chuck structure having the chuck plate, .
  • the stacked chip package is a semiconductor package in which chips are stacked on a package substrate, and can achieve high integration.
  • the stacked chip package is manufactured at a chip level or a wafer level.
  • bonding and bonding are performed by applying heat and pressure to chips, chips, wafers, wafers or chips and wafers.
  • the bonding apparatus is referred to as a bonding apparatus.
  • the bonding apparatus stacks the chip on the wafer with a bonding head while supporting the wafer with a chuck structure, and thermally compresses the wafer and the chip with a bonding head.
  • the chuck structure is composed of a heating plate incorporating a heating element and a chuck plate transmitting heat generated in the heating plate to the wafer.
  • the chuck plate is made of an aluminum nitride material having a high thermal conductivity, the wafer can be rapidly and easily heated.
  • the thermal conductivity of the chuck plate is high, when the wafer is always preheated during the bonding process, the soldering material between the wafer and the chip is crushed. Therefore, a bonding failure may occur between the wafer and the chip.
  • the chuck structure has vacuum holes to vacuum adsorb the wafer. Since the vacuum holes are formed radially with respect to the center of the chuck structure, the gap between the vacuum holes located at the outermost periphery is relatively wide. Therefore, the vacuum attraction force of the edge portion of the chuck structure is relatively low, so that the wafer may not completely come into close contact with the chuck structure.
  • the present invention provides a chuck plate having a relatively low thermal conductivity and having a relatively narrow gap between vacuum holes positioned at an outermost position.
  • the present invention provides a chuck structure having the chuck plate.
  • the present invention provides a bonding apparatus having the chuck structure.
  • a chuck plate according to the present invention is placed on a heating plate and supports a wafer on an upper surface and transfers heat generated in the heating plate to the wafer so as to heat the wafer, And a vacuum groove formed on the lower surface so as to be vacuum-adsorbed on the heating plate and defined by the upper surface of the heating plate to form a space.
  • the chuck plate may be made of a material to which titanium oxide is added to aluminum oxide so that the chuck plate has a thermal conductivity lower than a thermal conductivity of aluminum nitride.
  • 10 to 20 parts by weight of the titanium may be added to 100 parts by weight of the aluminum oxide in the chuck plate.
  • the thermal conductivity of the chuck plate may be 5 to 20 W / m ⁇ k.
  • the gap of the vacuum holes located at the outermost periphery of the chuck plate may be larger than the gap of the vacuum holes located inside the outermost periphery, Can be narrowly arranged.
  • the chuck structure according to the present invention includes a heating plate having a heating element for generating heat by an external power source and having a first vacuum line and a second vacuum line extending to an upper surface to provide a vacuum force, And a second vacuum line disposed on the heating plate for supporting the wafer on an upper surface thereof and transferring heat generated in the heating plate to the wafer so that the wafer is heated and for attracting the wafer by the vacuum force
  • the third vacuum line is connected to the first vacuum line on the lower surface of the chuck plate, and the lower surface of the chuck plate and the upper surface of the heating plate And a plurality of vacuum holes extending from the lower surface of the chuck plate through the vacuum groove to the upper surface of the chuck plate.
  • the first vacuum line is connected to the third vacuum line on the upper surface of the heating plate, and the lower surface of the chuck plate and the upper surface of the heating plate And a plurality of vacuum holes extending from the lower surface through the heating plate to the upper surface on which the vacuum groove is formed.
  • an alignment pin is provided on one surface of the upper surface of the heating plate and the lower surface of the chuck plate, and the other surface of the chuck plate receives the alignment pin, Receiving grooves for aligning the plates may be provided.
  • the chuck structure includes a guide ring which is hooked on a groove formed along a top edge of the heating plate and guides the periphery of the heating plate, and a guide ring which covers the top edge of the chuck plate, And a clamp fixed to the guide ring for fixing the chuck plate to the heating plate.
  • the clamp may be placed in a groove formed along the top edge of the chuck plate such that the top surface of the clamp and the top surface of the chuck plate are at the same height.
  • the guide ring and the clamp may be made of a material having a lower thermal conductivity than the chuck plate in order to prevent heat loss through the side surfaces of the heating plate and the chuck plate.
  • the bonding apparatus includes a heating plate having a heating element for generating heat by an external power source and having a first vacuum line and a second vacuum line extending to an upper surface to provide a vacuum force, And a second vacuum line disposed on the heating plate for supporting the wafer on an upper surface thereof and transferring heat generated in the heating plate to the wafer so that the wafer is heated and for attracting the wafer by the vacuum force
  • a chuck plate having a third vacuum line and a chuck plate connected to the second vacuum line on the lower surface so as to be vacuum-adsorbed on the heating plate and having a vacuum groove defined by the upper surface of the heating plate, And bonding and bonding the chip to the wafer by fixing and heating the chip,
  • the draw can be made.
  • the bonding head includes: a base block; and a heating element provided on the base block for generating heat by an external power source to heat the chip, A heating block having a fourth vacuum line and a fifth vacuum line extending to the top surface to provide a second vacuum line; And an adsorption plate fixed on the heating block by a vacuum force of the fourth vacuum line and having a vacuum hole connected to the fifth vacuum line for fixing the chip by a vacuum force.
  • the chuck plate according to the present invention is made of a material to which titanium oxide is added to aluminum oxide, the thermal conductivity of the chuck plate is lower than that of aluminum nitride. Therefore, even if the wafer is always preheated during the bonding process of the wafer and the chip, the soldering material between the wafer and the chip can be prevented from being crushed. Therefore, a bonding failure may occur between the wafer and the chip.
  • the chuck plate is narrower than the gap between the vacuum holes located at the outermost position and the vacuum holes located inside the outermost position. Therefore, the wafer can be completely brought into close contact with the chuck structure at the edge portion of the chuck structure.
  • the chuck plate can be brought into close contact with the heating plate with a vacuum force. Therefore, the chuck plate can be fixed to the heating plate without a separate fastening member.
  • the chuck structure transfers heat generated in the heating plate to the wafer through a chuck plate.
  • the wafer can always be heated to a constant temperature by the heat transmitted by the chuck plate.
  • the chip can be effectively bonded to the wafer.
  • the bonding apparatus according to the present invention can stably bond the chip to the wafer using the chuck structure.
  • FIG. 1 is a cross-sectional view illustrating a chuck structure according to an embodiment of the present invention.
  • FIG. 2 is a plan view of the chuck structure shown in FIG.
  • Fig. 3 is a plan view for explaining the chuck plate shown in Fig. 1. Fig.
  • FIG. 4 is a bottom view for explaining the chuck plate shown in Fig.
  • FIG. 5 is an enlarged cross-sectional view of the portion A shown in Fig. 1 enlarged.
  • FIG. 6 is a schematic cross-sectional view illustrating a bonding apparatus according to an embodiment of the present invention.
  • FIG. 7 is a schematic cross-sectional view illustrating the bonding head shown in FIG.
  • FIG. 8 is a plan view for explaining the opening of the heating block in the bonding head shown in Fig.
  • FIG. 9 is a cross-sectional view illustrating an opening of a heating block according to another embodiment of the present invention.
  • FIG. 10 is a plan view for explaining the opening of the heating block shown in Fig.
  • FIG. 11 is a cross-sectional view illustrating an opening of a heating block according to another embodiment of the present invention.
  • a chuck plate according to the present invention is placed on a heating plate and supports a wafer on an upper surface and transfers heat generated in the heating plate to the wafer so as to heat the wafer, And a vacuum groove formed on the lower surface so as to be vacuum-adsorbed on the heating plate and defined by the upper surface of the heating plate to form a space.
  • FIG. 1 The present invention is capable of various modifications and various forms, and specific embodiments are illustrated in the drawings and described in detail in the text. It should be understood, however, that the invention is not intended to be limited to the particular forms disclosed, but includes all modifications, equivalents, and alternatives falling within the spirit and scope of the invention.
  • Like reference numerals are used for like elements in describing each drawing. In the accompanying drawings, the dimensions of the structures are enlarged to illustrate the present invention in order to clarify the present invention.
  • first, second, etc. may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • first component may be referred to as a second component, and similarly, the second component may also be referred to as a first component.
  • FIG. 1 is a cross-sectional view illustrating a chuck structure according to an embodiment of the present invention
  • FIG. 2 is a plan view of the chuck structure shown in FIG. 1
  • FIG. 3 is a plan view for explaining the chuck plate shown in FIG. 1
  • Fig. 4 is a bottom view for explaining the chuck plate shown in Fig. 1
  • Fig. 5 is an enlarged cross-sectional view showing an enlarged view of a portion A shown in Fig.
  • the chuck structure 100 supports the wafer 10. At this time, a circuit pattern may be formed on the wafer 10.
  • the chuck structure 100 includes a heating plate 110, a chuck plate 120, a guide ring 130, a clamp 140, a power cable 150 and a temperature sensor 160.
  • the heating plate 110 has a substantially disc shape and incorporates a heating element 112 that generates heat by a power source applied from the outside.
  • the heating element 112 may be provided on the inner surface of the heating plate 110 to have a predetermined pattern.
  • Examples of the heating element 112 include an electrode layer, a heating coil, and the like.
  • the heating plate 110 has a first vacuum line 114 and a second vacuum line 115 extending to the upper surface.
  • the first vacuum line 114 and the second vacuum line 115 may extend from the bottom surface or side of the heating plate 110 to the top surface, respectively.
  • the first vacuum line 114 and the second vacuum line 115 are not connected to each other.
  • the first vacuum line 114 is connected to a vacuum pump (not shown) and provides a vacuum force for adsorbing the wafer 10.
  • the second vacuum line 115 is connected to a vacuum pump (not shown) and provides a vacuum force to adsorb the chuck plate 120.
  • the heating plate 110 has alignment pins 116 on its upper surface.
  • the alignment pins 116 are for aligning the heating plate 110 and the chuck plate 120, and a plurality of alignment pins 116 may be provided.
  • the alignment pins 116 may be disposed on the upper surface edge of the heating plate 110.
  • the heating plate 110 has a groove 118 formed along the upper surface edge.
  • the groove 118 may be used to secure the guide ring 130.
  • the chuck plate 120 has a substantially disc shape and is placed on the heating plate 110.
  • the chuck plate 120 supports the wafer 10 on its upper surface.
  • the chuck plate 120 has a third vacuum line 122 connected to the first vacuum line 114 to adsorb the wafer 10.
  • the third vacuum line 122 has a vacuum groove 122a and a plurality of vacuum holes 122b.
  • the vacuum groove 122a is formed on the lower surface of the chuck plate 120.
  • the vacuum groove 122a may have a shape in which concentric grooves and radially extending grooves are combined with each other with respect to the center of the lower surface of the chuck plate 120, or may have a circular groove shape. At this time, the vacuum groove 122a does not extend to the lower edge of the chuck plate 120 to prevent leakage of the vacuum force.
  • the chuck plate 120 is placed on the heating plate 110 while the vacuum groove 122a is defined by the upper surface of the heating plate 110 to form a space. Further, the vacuum groove 122a is connected to the first vacuum line 114.
  • the vacuum holes 122b extend through the chuck plate 120 to the upper surface of the chuck plate 120 at the lower surface where the vacuum groove 122a is formed.
  • the vacuum holes 122b are arranged to be spaced apart from each other.
  • the vacuum holes 122b may be arranged concentrically or radially.
  • the third vacuum line 122 is connected to the first vacuum line 114 and can adsorb the wafer 10 by the vacuum force provided through the first vacuum line 114.
  • the gap between the vacuum holes 122b located at the outermost position in the chuck plate 120 may be arranged to be relatively narrower than the gap of the vacuum holes 122b located inside the outermost position.
  • the angle between the outermost vacuum holes 122b may be half the angle between the vacuum holes 122b located inside the outermost periphery.
  • the angle between the outermost vacuum holes 122b may be about 15 degrees, and the angle between the vacuum holes 122b located inside the outermost corner may be about 30 degrees.
  • the vacuum force through the vacuum hole 112b can be stably provided. Therefore, even at the edge of the chuck plate 120, the wafer 10 can be brought into close contact with the chuck plate 120, and the wafer 10 can be prevented from being lifted.
  • the chuck plate 120 has a vacuum groove 123 connected to the second vacuum line 115 on the lower surface so as to be vacuum-adsorbed on the heating plate 110.
  • the vacuum groove 123 is formed on the lower surface of the chuck plate 120.
  • the vacuum groove 123 may have a shape in which concentric grooves and radially extending grooves are combined with each other with respect to the center of the lower surface of the chuck plate 120, or may have a circular groove shape. At this time, the vacuum groove 123 does not extend to the lower edge of the chuck plate 120 to prevent leakage of the vacuum force.
  • the vacuum groove 123 may be formed so as not to be connected to the third vacuum line 122.
  • the chuck plate 120 is placed on the heating plate 110 and the vacuum groove 123 is defined by the upper surface of the heating plate 110 to form a space. Further, the vacuum groove 123 is connected to the second vacuum line 115.
  • the vacuum groove 123 is connected to the second vacuum line 115 and the chuck plate 120 can be tightly fixed on the heating plate 110 by the vacuum force provided through the second vacuum line 115 . Therefore, warping or bending of the chuck plate 120 can be minimized, and the wafer 10 on the chuck plate 120 can be supported flat.
  • the heating plate 110 and the chuck plate 120 can be held in close contact by the vacuum force provided through the second vacuum line 115 and the vacuum groove 123. Therefore, a separate fastening member for fastening the heating plate 110 and the chuck plate 120 is unnecessary.
  • the vacuum force provided through the first vacuum line 114 and the second vacuum line 115 is released to separate and replace the heating plate 110 and the chuck plate 120. Therefore, maintenance of the chuck structure 100 can be performed quickly.
  • the upper surface of the heating plate 110 and the lower surface of the chuck plate 120 each have a flatness exceeding about 10 ⁇ , there is a slight gap between the heating plate 110 and the chuck plate 120 .
  • the vacuum force can leak through the gap between the heating plate 110 and the chuck plate 120.
  • the upper surface of the heating plate 110 and the lower surface of the chuck plate 120 each have a flatness of about 10 ⁇ ⁇ or less, preferably 7 ⁇ ⁇ or less.
  • the heating plate 110 and the chuck plate 120 can be in close contact with each other, and the vacuum force can be prevented from leaking through the space between the heating plate 110 and the chuck plate 120.
  • the chuck plate 120 transfers the heat generated in the heating plate 110 to the wafer 10.
  • the wafer 10 may be maintained at a temperature of about 140 to 150 ° C. so that bonding of the chip (not shown) and the wafer 10 is easily performed.
  • the heating plate 110 may be made of a ceramic material.
  • An example of the ceramic material is aluminum nitride (AlN). Since the aluminum nitride has a high thermal conductivity, the heat generated by the heating element 112 can be uniformly transmitted to the heating plate 110. Further, the heating plate 110 can uniformly heat the wafer 10 by making the temperature distribution of the chuck plate 120 uniform.
  • the chuck plate 120 may be formed by adding titanium to a ceramic material.
  • the chuck plate 120 may be doped with titanium to the aluminum oxide (Al 2 O 3).
  • Al2O3 aluminum oxide
  • the thermal conductivity of the chuck plate 120 can be further reduced.
  • the amount of titanium is less than about 10 parts by weight with respect to 100 parts by weight of the aluminum oxide on the chuck plate 120, the increase in porosity of the chuck plate 120 is insignificant and the thermal conductivity of the chuck plate 120 is less than that of pure aluminum oxide ≪ / RTI >
  • the porosity of the chuck plate 120 is excessively increased and the thermal conductivity is greatly lowered. Then, the sintered density of the chuck plate 120 is reduced, so that the strength of the chuck plate 120 is lowered and the vacuum force can be lost through the pores of the chuck plate 120.
  • the chuck plate 120 When about 10 to 20 parts by weight of the titanium is added to 100 parts by weight of the aluminum oxide on the chuck plate 120, the chuck plate 120 is pushed through the pores of the chuck plate 120 so that the vacuum force is hardly lost. The porosity is increased and the thermal conductivity of the chuck plate 120 is also lowered.
  • the sintered density of the chuck plate 120 is about 3.8 g / cm 3, which is slightly lower than the sintered density of pure aluminum oxide of about 3.9 g / cm 3, so that the strength of the chuck plate 120 is not lowered.
  • the chuck plate 120 may be formed by adding about 10 to 20 parts by weight of titanium to 100 parts by weight of the aluminum oxide.
  • the thermal conductivity of the chuck plate 120 is less than about 5 W / m ⁇ k, the thermal conductivity of the chuck plate 120 is relatively low. Therefore, the heat generated from the heating plate 110 may not be sufficiently transferred to the wafer 10, or it may take a long time to transfer the heat generated from the heating plate 110 to the wafer 10. FIG. However, it is possible to prevent rapid heating of the chuck plate 120 even if the bonding head thermally compresses the wafer 10 and the chip at a high temperature of about 450 degrees for bonding the chip.
  • the thermal conductivity of the chuck plate 120 exceeds about 20 W / m ⁇ k, the thermal conductivity of the chuck plate 120 is relatively high. Accordingly, the heat generated in the heating plate 110 may be excessively transferred to the wafer 10 so that the soldering material between the wafer 10 and the chip may be crushed. In addition, when the bonding head thermally compresses the wafer 10 and the chip at a high temperature of about 450 degrees, the chuck plate 120 is relatively rapidly heated, so that the soldering material between the wafer 10 and the chip is more likely to be crushed Can be.
  • the chuck plate 120 can heat the heat generated by the thermal plate 110 to the wafer 10 appropriately so that the soldering material does not crumble .
  • the bonding head can prevent rapid heating of the chuck plate 120 even when the bonding head thermocompresses the wafer 10 and the chip at a high temperature of about 450 degrees for bonding the chip. Therefore, the soldering material between the wafer 10 and the chip can be prevented from being crushed.
  • the chuck plate 120 may be made of aluminum oxide (Al2O3) having a thermal conductivity lower than that of the aluminum nitride.
  • the chuck plate (120) has a receiving groove (124) for receiving the alignment pin (116).
  • the receiving groove 124 may be formed at a position corresponding to the alignment pin 116 of the heating plate 110.
  • the receiving groove 124 may also be disposed at the edge of the chuck plate 120.
  • the alignment pins 116 of the heating plate 110 can be inserted into the receiving grooves 124 of the chuck plate 120 when the chuck plate 120 is seated on the upper surface of the heating plate 110.
  • the heating plate 110 and the chuck plate 120 can be accurately aligned.
  • the aligning pin 116 is provided in the heating plate 110 and the receiving groove 124 is formed in the chuck plate 120, the receiving groove is formed in the heating plate 110, 120 may be provided with alignment pins.
  • the chuck plate 120 has a groove 126 formed along the top edge.
  • the grooves 126 may be used to secure the clamp 140.
  • the guide ring 130 hits the groove 118 formed along the upper edge of the heating plate 110 and guides the periphery of the heating plate 110.
  • the guide ring 130 has a first engaging jaw 132, and the guide ring 130 is mounted on the heating plate 110 by engaging the first engaging jaw 132 with the groove 118.
  • the upper surface of the guide ring 130 and the upper surface of the heating plate 110 may be located at the same height. In this case, the chuck plate 120 can be easily placed on the upper surface of the heating plate 110 with the guide ring 130 mounted on the heating plate 110.
  • the clamp 140 is fixed to the guide ring so as to cover the top edge of the chuck plate 120.
  • the clamp 140 can be fixed to the guide ring 130 by a fastening screw 142.
  • a plurality of clamps 140 may be provided to partially cover the top edge of the chuck plate 120.
  • the clamp 140 may have a generally ring shape and may entirely cover the top edge of the chuck plate 120.
  • the clamp 140 Since the clamp 140 is fixed to the guide ring 130 while covering the upper surface edge of the chuck plate 120, the clamp 140 can press the chuck plate 120 downward. Therefore, the clamp 140 can bring the chuck plate 120 into close contact with the heating plate 110. Therefore, it is possible to further prevent the vacuum force from leaking through the space between the heating plate 110 and the chuck plate 120.
  • the clamp 140 has a second latching jaw 144 and the second latching jaw 144 can be placed in the groove 126 of the chuck plate 120. Therefore, the upper surface of the clamp 140 and the upper surface of the chuck plate 120 can be positioned at the same height. Therefore, the wafer 10 can be reliably transferred to the upper surface of the chuck plate 120 without interference of the clamp 140 and can be seated.
  • the guide ring 130 and the clamp 140 may be made of a material having a thermal conductivity lower than that of the heating plate 110.
  • the guide ring 130 and the clamp 140 may be made of aluminum oxide (Al 2 O 3).
  • the guide ring 130 and the clamp 140 may be made of the same material as the chuck plate 120.
  • the guide ring 130 and the clamp 140 can prevent heat loss through the side surface of the heating plate 110 because the thermal conductivity of the guide ring 130 and the clamp 140 is lower than the thermal conductivity of the heating plate 110 have.
  • the power cable 150 extends to the inside of the heating plate 110 and is connected to the heating element 112.
  • the heating element 112 provides power for generating heat.
  • the temperature sensor 160 extends from the outside to the inside of the heating plate 110 and measures the temperature of the heating plate 110 heated by the heating element 112.
  • the temperature of the heating element 112 can be controlled using the temperature measured by the temperature sensor 160.
  • the temperature of the heating plate 110 can be controlled by controlling the temperature of the heating element 112.
  • thermocouple An example of the temperature sensor 160 is a thermocouple.
  • the chuck structure 100 transfers the heat generated in the heating plate 110 to the wafer 10 through the chuck plate 120.
  • the wafer 10 can always be heated to a constant temperature by the heat transmitted by the chuck plate 120. [ Therefore, the chip can be bonded to the wafer 10 effectively.
  • FIG. 6 is a schematic cross-sectional view illustrating a bonding apparatus according to an embodiment of the present invention.
  • the bonding apparatus 300 includes a chuck structure 100 and a bonding head 200.
  • the chuck structure 100 includes a heating plate 110, a chuck plate 120, a guide ring 130, a clamp 140, a power cable 150 and a temperature sensor 160, 1 to 5 are substantially the same as those described with reference to Figs.
  • the chuck structure 100 transfers the heat generated in the heating plate 110 to the wafer 10 through the chuck plate 120 so that the wafer 10 supported by the chuck structure 100 can always be heated to a constant temperature have. Therefore, the bonding head 200 can quickly bond the chip 20 to the wafer 10.
  • FIG. 7 is a schematic cross-sectional view for explaining the bonding head shown in FIG. 6, and FIG. 8 is a plan view for explaining the opening of the heating block in the bonding head shown in FIG.
  • the bonding head 200 is for transferring the chip 20 to the wafer 10 supported by the chuck structure 100 and bonding the wafer 20 to the wafer 10.
  • the base block 210 A heating block 220, and an adsorption plate 230.
  • the bonding head 200 may be provided so as to be able to horizontally move, vertically move, rotate, invert, and the like in order to transport the chip 20.
  • the bonding head 200 may be disposed such that the attraction plate 230 faces downward for bonding the chip 20 and the wafer 10.
  • the base block 210 includes a first block 212 and a second block 214.
  • the first block 212 is made of a metal material.
  • An example of the metal material may be a stainless steel material.
  • the second block 214 is provided on the first block 212.
  • the second block 214 may be made of a ceramic material having a thermal conductivity lower than that of the heating block 220.
  • An example of the ceramic material is aluminum oxide (Al2O3).
  • the second block 214 may reduce the transfer of heat generated in the heating block 220 to the first block 212 since the thermal conductivity of the second block 214 is lower than the thermal conductivity of the heating block 220 .
  • the base block 210 further includes a third block 216.
  • a third block 216 is provided between the first block 212 and the second block 214.
  • the third block 216 acts as a buffer block to reduce the transfer of the rows of the second block 214 to the first block 212.
  • the third block 216 may be made of a ceramic material, and examples of the ceramic material include aluminum oxide.
  • the heating block 220 is provided on the base block 210, specifically the second block 214.
  • the heating block 220 incorporates a heating element 222.
  • the heating element 222 may be made of a metal material.
  • the heating element 222 generates heat by a power source applied from the outside, and uses the heat to heat the chip 20 adsorbed on the adsorption plate 230.
  • the bumps of the chip 20 can be melted using the heat. For example, to dissolve the bumps in the chip 20, the heating element 222 may instantaneously heat the chip 20 to about 450 ° C.
  • the heating block 220 may be formed of a ceramic material having excellent insulation and thermal conductivity.
  • the heating block 220 may be an aluminum nitride (AlN) material.
  • AlN aluminum nitride
  • the thermal conductivity may be about 170 W / m ⁇ k or more.
  • the chip 20 can be quickly heated by using the heat generated by the heating element 222 because the heat block 220 has a high thermal conductivity.
  • the heating block 220 has a fourth vacuum line 224 and a fifth vacuum line 226 that extend to the top surface to provide vacuum force.
  • the fourth vacuum line 224 and the fifth vacuum line 226 are not connected to each other, and the vacuum force is provided, respectively.
  • the fourth vacuum line 224 passes above and below the edge portion of the heating block 220
  • the fifth vacuum line 226 passes above and below the central portion of the heating block 221.
  • the fourth vacuum line 224 may be connected to the groove 225 formed on the upper surface of the heating block 220 to have a predetermined length.
  • the vacuum force provided through the fourth vacuum line 224 can act in a wider range.
  • the fourth vacuum line 224 and the fifth vacuum line 226 may extend to the base block 210.
  • the fourth vacuum line 224 and the fifth vacuum line 226 may be provided only in the heating block 220 without extending to the base block 210.
  • the adsorption plate 230 is provided on the heating block 220.
  • the suction plate 230 is fixed to the upper surface of the heating block 220 by the vacuum force of the fourth vacuum line 224.
  • the suction plate 230 can be replaced by providing vacuum force to the fourth vacuum line 224 or releasing the vacuum force. Therefore, when the suction plate 230 is damaged or the size of the chip 20 is changed, only the suction plate 230 is selectively replaced, so that the suction plate 230 can be easily damaged or the size of the chip 20 can be easily changed.
  • the attraction plate 230 has a vacuum hole 232.
  • the vacuum hole 232 is connected to the fifth vacuum line 226 of the heating block 220. Accordingly, the chip 20 to be placed on the attracting plate 230 can be fixed with the vacuum force provided through the fifth vacuum line 226.
  • the bonding head 200 moves while the chip 20 is fixed by the attracting plate 230 so that the chip 20 can be stacked on the wafer 10. [ Further, the chip 20 can be pressed toward the wafer 10 by the attracting plate 230.
  • the bonding head 200 further includes a cooling line 240.
  • the cooling line 240 cools the heating block 220 to cool the chip 20. As the chip 20 is cooled, the bumps of the chip 20 are cooled to form the solder. At this time, the chip 20 can be cooled to about 100 ⁇ by the cooling line 240.
  • the cooling line 240 includes a first cooling line 242 and a second cooling line 244.
  • the first cooling line 242 extends from the base block 210 to the upper surface of the second block 214. And provides the cooling fluid to the heating block 220 through the first cooling line 242. Examples of the cooling fluid include air, gas and the like. The cooling fluid directly contacts the heating block 220 to cool the heating block 220.
  • the second cooling line 244 is provided inside the first block 212 in the base block 210 and cools the first block 212. As the first block 212 is cooled, the third block 216, the second block 214, and the heating block 220 may be cooled through heat conduction. Accordingly, the second cooling line 244 can cooperatively cool the heating block 220.
  • the first cooling line 242 is used to primarily cool the heating block 220 and the second cooling line 244 to assist cooling.
  • the cooling block 240 can be used to quickly cool the heating block 220. As the heating block 220 is cooled, the bumps of the chip 20 fixed to the attracting plate 230 can be rapidly cooled to form the solder
  • the heating block 220 has an opening 227 partially exposing the cooling line 240, specifically, the first cooling line 242.
  • the opening 227 may be a groove extending through the heating block 220 up and down to the side.
  • the opening 227 may selectively expose a portion of the plurality of first cooling lines 242 extending to the top surface of the base block 210 or may partially expose each of the first cooling lines 242 .
  • the openings 227 are disposed on one side of the heating block 220 when the openings 227 selectively expose a part of the plurality of first cooling lines 242, 230 are not uniform. Therefore, the quality of the solder formed on the chip 20 may be deteriorated.
  • the openings 227 may be arranged to be symmetrical with respect to the center of the heating block 220 when the openings 227 selectively expose a portion of the plurality of first cooling lines 242.
  • the quality of the solder formed on the chip 20 can be improved by making the temperature distribution of the heating block 220 and the attracting plate 230 relatively uniform.
  • a portion of the cooling fluid provided through the first cooling line 242 is provided to the heating block 220 to cool the heating block 220 and the remainder of the cooling fluid is supplied to the adsorption plate 230 through the opening 227 Thereby directly cooling the adsorption 230. That is, the cooling fluid provided through the first cooling line 242 can directly cool the adsorption plate 230 while cooling the adsorption plate 230 by cooling the heating block 220.
  • the cooling fluid provided through the first cooling line 242 may be discharged to the outside through the opening 227 after cooling the heating block 220 and the adsorption plate 230.
  • the bumps of the chip 20 fixed to the suction plate 230 can be cooled more quickly. Therefore, the bumps of the chip 20 melted by the heating block 220 can be rapidly cooled to form a solder of a good shape.
  • the opening 227 has a groove shape extending through the upper and lower sides of the heating block 220 and extending to the side, it is easy to form the opening 227 by processing the heating block 220.
  • the opening 227 has a groove shape extending through the heating block 220 and extending to the side surface, the suction plate 230 can be relatively exposed by the opening 227. Accordingly, the cooling fluid provided through the first cooling line 242 can be discharged to the outside through the opening 227, and the contact area with the attracting plate 230 can be increased. Therefore, the effect of directly cooling the adsorption plate 230 by the cooling fluid provided through the first cooling line 242 can be further enhanced.
  • the opening 227 exposes less than about 30% of the area of the first cooling line 242, the effect of direct cooling of the adsorption plate 230 by the cooling fluid provided through the first cooling line 242 is relatively low . Therefore, it is difficult for the cooling fluid provided through the first cooling line 242 to rapidly cool the bumps of the chip 20.
  • the effect of cooling fluid provided through the first cooling line 242 to cool the heating block 220 may be relatively reduced.
  • the heat of the heating block 220 can be transferred to the sucking plate 230 even if the cooling fluid provided through the first cooling line 242 directly cools the sucking plate 230 so that the bumps of the chip 20 are cooled rapidly it's difficult.
  • the area of the opening 227 increases, the area of the heating block 220 decreases, so that the amount of heat generated by the heating block 220 can be reduced. Therefore, it is difficult to rapidly dissolve the bumps of the chip 20.
  • the opening 227 may expose about 30% to 70% of the area of the first cooling line 242.
  • FIG. 9 is a sectional view for explaining an opening of a heating block according to another embodiment of the present invention
  • FIG. 10 is a plan view for explaining an opening of the heating block shown in FIG.
  • the heating block 220 has an opening 228 that partially exposes the first cooling line 242.
  • the opening 228 may be a through hole passing through the top and bottom.
  • the cooling fluid provided through the first cooling line 242 may be circulated along the first cooling line 242 or may be circulated between the heating block 220 and the attracting plate 230 or between the heating block 220 and the base block 210,
  • the opening 228 may expose about 30% to 70% of the area of the first cooling line 242.
  • FIG. 11 is a cross-sectional view illustrating an opening of a heating block according to another embodiment of the present invention.
  • the heating block 220 has an opening 228 that partially exposes the first cooling line 242.
  • the opening 228 may be a through hole passing through the top and bottom.
  • connection groove 229 connected to the opening 228 may be further formed.
  • the connection groove 229 may be provided on at least one of the upper surface of the heating block 220 and the lower surface of the attracting plate 230.
  • connection groove 229 may be formed on the upper surface of the heating block 220 as shown in FIG.
  • connection groove 229 may be formed on the lower surface of the attraction plate 230.
  • connection groove 229 may be formed on the upper surface of the heating block 220 and the lower surface of the attraction plate 230, respectively.
  • the cooling fluid provided through the first cooling line 242 can be discharged to the outside through the connection groove 229.
  • connection groove 229 may be provided to be connected to the opening 228 on at least one of the lower surface of the heating block 220 and the upper surface of the base block 210.
  • the bonding head 200 may further include a temperature sensor.
  • the temperature sensor is provided inside the heating block 220 and senses the temperature of the heating block 220.
  • the ON / OFF of the power provided to the heating element 222 and the injection of the cooling fluid in the cooling line 240, the temperature of the refrigerant, and the circulation can be controlled according to the detection result of the temperature sensor.
  • the temperature sensor may be provided on the attracting plate 230.
  • the bonding head 200 heats the chip 20 with the heating block 220 to melt the bumps of the chip 20 in a state in which the chip 20 is transferred to the wafer 10, The chips 20 are bonded to the wafer 10 by cooling them.
  • the bonding head 200 rapidly heats and rapidly cools the chip 20, so that a good quality and good shape solder can be formed between the wafer 10 and the chip 20.
  • the bonding head 200 can quickly perform the heating and cooling of the chip 20, so that the efficiency of the process of bonding the chip 20 to the wafer 10 can be improved.
  • the bonding apparatus 300 fixes the wafer 10 using the chuck structure 100 and transfers the chip 10 to the wafer 10 while the chip 10 is heated to a predetermined temperature by the bonding head 100,
  • the chip 10 is bonded to the wafer 10 by melting the bump of the chip 10 by heating the chip 10 with the bonding head 100 and then cooling the chip 10. Therefore, it is possible to form a solder of good quality and good shape between the chip 10 and the wafer 10.
  • the heating and cooling of the chip 10 can be performed quickly, the efficiency of the process of bonding the chip 10 using the bonding apparatus 300 to the wafer 10 can be improved.
  • the bonding head 100 can transfer the chips 10 and stack them on the wafer 10. [ Accordingly, since the bonding apparatus 300 does not need to have a separate chip transfer means, the structure of the bonding apparatus 300 can be simplified.
  • the bonding apparatus having the chuck plate, the chuck structure having the chuck plate, and the chuck structure according to the present invention can bring the heating plate and the chuck plate into close contact with each other by vacuum force for adsorbing the wafer.
  • the heating plate and the chuck plate can be separated from each other by releasing only the vacuum force, so that maintenance or replacement of the chuck structure can be performed quickly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Mechanical Pencils And Projecting And Retracting Systems Therefor, And Multi-System Writing Instruments (AREA)
  • Adornments (AREA)

Abstract

A chuck plate of a chuck structure is placed on a heating plate, supports a wafer on the upper surface thereof, transfers, to the wafer, heat generated by the heating plate such that the wafer is heated, and can have: vacuum holes penetrating the top and the bottom thereof in order to adsorb the wafer by vacuum force; and a vacuum groove, which is provided on the lower surface thereof such that the chuck plate is vacuum-adsorbed to the heating plate, and forms a space by being limited by the upper surface of the heating plate.

Description

척 플레이트, 상기 척 플레이트를 갖는 척 구조물 및 척 구조물을 갖는 본딩 장치A chuck plate, a chuck structure having the chuck plate, and a bonding device having a chuck structure
본 발명은 척 플레이트, 상기 척 플레이트를 갖는 척 구조물 및 척 구조물을 갖는 본딩 장치에 관한 것으로, 보다 상세하게는 웨이퍼를 고정하기 위한 척 플레이트, 상기 척 플레이트를 갖는 척 구조물 및 척 구조물을 갖는 본딩 장치에 관한 것이다.The present invention relates to a bonding apparatus having a chuck plate, a chuck structure having the chuck plate and a chuck structure, and more particularly to a bonding apparatus having a chuck plate for holding a wafer, a chuck structure having the chuck plate, .
최근, 반도체 패키지를 비롯한 전자 부품의 소형화 요구에 대응하기 위해 복수의 전자 부품을 적층시켜 적층 칩 패키지를 형성하는 기술이 개발되었다. 2. Description of the Related Art Recently, a technique for forming a multilayer chip package by stacking a plurality of electronic parts in order to meet the demand for miniaturization of electronic parts including semiconductor packages has been developed.
상기 적층 칩 패키지는 패키지 기판 위에 칩들이 적층된 반도체 패키지로서, 고집적화를 이룰 수 있다. 상기 적층 칩 패키지는 칩 레벨(chip level) 또는 웨이퍼 레벨(wafer level)에서 제조가 이루어진다.The stacked chip package is a semiconductor package in which chips are stacked on a package substrate, and can achieve high integration. The stacked chip package is manufactured at a chip level or a wafer level.
상기 칩 레벨 또는 웨이퍼 레벨에서 적층 칩 패키지를 제조하기 위하여 칩과 칩, 웨이퍼와 웨이퍼 또는 칩과 웨이퍼에 열과 압력을 가하여 본딩 작업이 수행되는데, 상기 본딩 작업을 수행하는 장치를 본딩 장치라 한다. 상기 본딩 장치는 척 구조물로 상기 웨이퍼를 지지한 상태에서 본딩 헤드로 상기 칩을 상기 웨이퍼 상에 적층하여 상기 웨이퍼와 칩을 본딩 헤드로 열압착한다. In order to manufacture a multilayer chip package at the chip level or the wafer level, bonding and bonding are performed by applying heat and pressure to chips, chips, wafers, wafers or chips and wafers. The bonding apparatus is referred to as a bonding apparatus. The bonding apparatus stacks the chip on the wafer with a bonding head while supporting the wafer with a chuck structure, and thermally compresses the wafer and the chip with a bonding head.
상기 척 구조물은 발열체를 내장하는 가열 플레이트 및 상기 가열 플레이트에서 발생한 열을 상기 웨이퍼로 전달하는 척 플레이트로 이루어진다. The chuck structure is composed of a heating plate incorporating a heating element and a chuck plate transmitting heat generated in the heating plate to the wafer.
상기 척 플레이트는 열전도율이 높은 질화알루미늄 재질로 이루어지므로, 상기 웨이퍼를 급속으로 용이하게 가열할 수 있다. 그러나, 상기 척 플레이트의 열전도율이 높으므로, 상기 본딩 공정 중 상기 웨이퍼를 상시 예열시에는 상기 웨이퍼와 상기 칩 사이의 솔더링 물질이 뭉게지는 현상이 발생한다. 따라서, 상기 웨이퍼와 상기 칩 사이에 본딩 불량이 발생할 수 있다. Since the chuck plate is made of an aluminum nitride material having a high thermal conductivity, the wafer can be rapidly and easily heated. However, since the thermal conductivity of the chuck plate is high, when the wafer is always preheated during the bonding process, the soldering material between the wafer and the chip is crushed. Therefore, a bonding failure may occur between the wafer and the chip.
상기 척 구조물은 상기 웨이퍼를 진공 흡착하기 위해 진공홀들을 갖는다. 상기 진공홀들은 상기 척 구조물의 중심을 기준으로 방사상으로 형성되므로, 최외각에 위치하는 진공홀들 사이의 간격이 상대적으로 넓다. 따라서, 상기 척 구조물의 가장자리 부위의 진공 흡착력이 상대적으로 낮아 상기 웨이퍼가 상기 척 구조물에 완전히 밀착되지 않을 수 있다.The chuck structure has vacuum holes to vacuum adsorb the wafer. Since the vacuum holes are formed radially with respect to the center of the chuck structure, the gap between the vacuum holes located at the outermost periphery is relatively wide. Therefore, the vacuum attraction force of the edge portion of the chuck structure is relatively low, so that the wafer may not completely come into close contact with the chuck structure.
본 발명은 상대적으로 열 전도율이 낮으며, 최외각에 위치하는 진공홀들의 간격이 상대적으로 좁게 구비되는 척 플레이트를 제공한다. The present invention provides a chuck plate having a relatively low thermal conductivity and having a relatively narrow gap between vacuum holes positioned at an outermost position.
본 발명은 상기 척 플레이트를 갖는 척 구조물을 제공한다. The present invention provides a chuck structure having the chuck plate.
본 발명은 상기 척 구조물을 갖는 본딩 장치를 제공한다.The present invention provides a bonding apparatus having the chuck structure.
본 발명에 따른 척 플레이트는 가열 플레이트 상에 놓여지며, 상면에 웨이퍼를 지지하며, 상기 웨이퍼가 가열되도록 상기 가열 플레이트에서 발생한 열을 상기 웨이퍼로 전달하고, 진공력으로 상기 웨이퍼를 흡착하기 위해 상하를 관통하는 진공홀들 및 상기 가열 플레이트에 진공 흡착되도록 하부면에 구비되며 상기 가열 플레이트의 상부면에 의해 한정되어 공간을 형성하는 진공 홈을 가질 수 있다. A chuck plate according to the present invention is placed on a heating plate and supports a wafer on an upper surface and transfers heat generated in the heating plate to the wafer so as to heat the wafer, And a vacuum groove formed on the lower surface so as to be vacuum-adsorbed on the heating plate and defined by the upper surface of the heating plate to form a space.
본 발명의 일 실시예들에 따르면, 상기 척 플레이트가 질화알루미늄의 열전도율보다 낮은 열전도율을 갖도록 상기 척 플레이트는 산화알루미늄에 티타늄이 첨가된 재질로 이루어질 수 있다. According to an embodiment of the present invention, the chuck plate may be made of a material to which titanium oxide is added to aluminum oxide so that the chuck plate has a thermal conductivity lower than a thermal conductivity of aluminum nitride.
본 발명의 일 실시예들에 따르면, 상기 척 플레이트에서 상기 산화알루미늄 100 중량부에 대해 상기 티타늄 10 내지 20 중량부가 첨가될 수 있다. According to one embodiment of the present invention, 10 to 20 parts by weight of the titanium may be added to 100 parts by weight of the aluminum oxide in the chuck plate.
본 발명의 일 실시예들에 따르면, 상기 척 플레이트의 열전도율은 5 내지 20 W/m·k 일 수 있다. According to one embodiment of the present invention, the thermal conductivity of the chuck plate may be 5 to 20 W / m · k.
본 발명의 일 실시예들에 따르면, 상기 척 플레이트의 가장자리에서도 상기 웨이퍼가 밀착되도록 하기 위해 상기 척 플레이트의 최외각에 위치하는 진공홀들의 간격이 상기 최외각보다 내측에 위치하는 진공홀들의 간격보다 좁게 배치될 수 있다. According to an embodiment of the present invention, the gap of the vacuum holes located at the outermost periphery of the chuck plate may be larger than the gap of the vacuum holes located inside the outermost periphery, Can be narrowly arranged.
본 발명에 따른 척 구조물은, 외부로부터 인가되는 전원에 의해 열을 발생하는 발열체를 내장하며, 진공력을 제공하기 위해 상부면까지 연장하는 제1 진공 라인 및 제2 진공 라인을 갖는 가열 플레이트 및 상기 가열 플레이트 상에 놓여지며, 상면에 웨이퍼를 지지하며, 상기 웨이퍼가 가열되도록 상기 가열 플레이트에서 발생한 열을 상기 웨이퍼로 전달하고, 상기 진공력으로 상기 웨이퍼를 흡착하기 위해 상기 제1 진공 라인과 연결되는 제3 진공 라인 및 상기 가열 플레이트에 진공 흡착되도록 하부면에 상기 제2 진공 라인과 연결되도록 구비되며, 상기 가열 플레이트의 상부면에 의해 한정되어 공간을 형성하는 진공 홈을 갖는 척 플레이트를 포함할 수 있다. The chuck structure according to the present invention includes a heating plate having a heating element for generating heat by an external power source and having a first vacuum line and a second vacuum line extending to an upper surface to provide a vacuum force, And a second vacuum line disposed on the heating plate for supporting the wafer on an upper surface thereof and transferring heat generated in the heating plate to the wafer so that the wafer is heated and for attracting the wafer by the vacuum force A third vacuum line and a chuck plate connected to the second vacuum line on a lower surface so as to be vacuum-adsorbed on the heating plate and having a vacuum groove defined by the upper surface of the heating plate, have.
본 발명의 일 실시예들에 따르면, 상기 제3 진공 라인은, 상기 척 플레이트의 하부면에 상기 제1 진공 라인과 연결되도록 구비되며, 상기 척 플레이트의 하부면과 상기 가열 플레이트의 상부면에 의해 한정되어 공간을 형성하는 진공 홈 및 상기 척 플레이트를 관통하여 상기 진공 홈이 형성된 하부면에서부터 상기 척 플레이트의 상부면까지 연장하는 다수의 진공 홀들을 포함할 수 있다. According to an embodiment of the present invention, the third vacuum line is connected to the first vacuum line on the lower surface of the chuck plate, and the lower surface of the chuck plate and the upper surface of the heating plate And a plurality of vacuum holes extending from the lower surface of the chuck plate through the vacuum groove to the upper surface of the chuck plate.
본 발명의 일 실시예들에 따르면, 상기 제1 진공 라인은, 상기 가열 플레이트의 상부면에 상기 제3 진공 라인과 연결되도록 구비되며, 상기 척 플레이트의 하부면과 상기 가열 플레이트의 상부면에 의해 한정되어 공간을 형성하는 진공 홈 및 상기 가열 플레이트를 관통하여 하부면에서부터 상기 진공 홈이 형성된 상부면까지 연장하는 다수의 진공 홀들을 포함할 수 있다. According to one embodiment of the present invention, the first vacuum line is connected to the third vacuum line on the upper surface of the heating plate, and the lower surface of the chuck plate and the upper surface of the heating plate And a plurality of vacuum holes extending from the lower surface through the heating plate to the upper surface on which the vacuum groove is formed.
본 발명의 일 실시예들에 따르면, 상기 가열 플레이트의 상부면과 상기 척 플레이트의 하부면 중 어느 한 면에는 정렬 핀이 구비되고, 나머지 한 면에는 상기 정렬 핀을 수용하여 상기 가열 플레이트와 상기 척 플레이트를 정렬하기 위한 수용홈이 구비될 수 있다. According to an embodiment of the present invention, an alignment pin is provided on one surface of the upper surface of the heating plate and the lower surface of the chuck plate, and the other surface of the chuck plate receives the alignment pin, Receiving grooves for aligning the plates may be provided.
본 발명의 일 실시예들에 따르면, 상기 척 구조물은, 상기 가열 플레이트의 상면 가장자리를 따라 형성된 홈에 걸리며 상기 가열 플레이트의 둘레를 가이드하는 가이드 링 및 상기 척 플레이트의 상부면 가장자리를 덮은 상태로 상기 가이드 링에 고정되며, 상기 척 플레이트를 상기 가열 플레이트에 밀착시키는 고정시키는 클램프를 더 포함할 수 있다. According to one embodiment of the present invention, the chuck structure includes a guide ring which is hooked on a groove formed along a top edge of the heating plate and guides the periphery of the heating plate, and a guide ring which covers the top edge of the chuck plate, And a clamp fixed to the guide ring for fixing the chuck plate to the heating plate.
본 발명의 일 실시예들에 따르면, 상기 클램프의 상면과 상기 척 플레이트의 상면이 동일한 높이에 위치하도록 상기 클램프는 상기 척 플레이트의 상면 가장자리를 따라 형성된 홈에 놓여질 수 있다. According to one embodiment of the present invention, the clamp may be placed in a groove formed along the top edge of the chuck plate such that the top surface of the clamp and the top surface of the chuck plate are at the same height.
본 발명의 일 실시예들에 따르면, 상기 가열 플레이트 및 상기 척 플레이트의 측면을 통한 열손실을 방지하기 위해 상기 가이드 링 및 상기 클램프는 상기 척 플레이트보다 열전도율이 낮은 재질로 이루어질 수 있다. According to an embodiment of the present invention, the guide ring and the clamp may be made of a material having a lower thermal conductivity than the chuck plate in order to prevent heat loss through the side surfaces of the heating plate and the chuck plate.
본 발명에 따른 본딩 장치는, 외부로부터 인가되는 전원에 의해 열을 발생하는 발열체를 내장하며, 진공력을 제공하기 위해 상부면까지 연장하는 제1 진공 라인 및 제2 진공 라인을 갖는 가열 플레이트 및 상기 가열 플레이트 상에 놓여지며, 상면에 웨이퍼를 지지하며, 상기 웨이퍼가 가열되도록 상기 가열 플레이트에서 발생한 열을 상기 웨이퍼로 전달하고, 상기 진공력으로 상기 웨이퍼를 흡착하기 위해 상기 제1 진공 라인과 연결되는 제3 진공 라인 및 상기 가열 플레이트에 진공 흡착되도록 하부면에 상기 제2 진공 라인과 연결되도록 구비되며, 상기 가열 플레이트의 상부면에 의해 한정되어 공간을 형성하는 진공 홈을 갖는 척 플레이트를 포함하는 척 구조물 및 상기 척 구조물 상에 구비되며, 칩을 고정 및 가열하여 상기 웨이퍼에 본딩하는 본딩 헤드로 이루어질 수 있다. The bonding apparatus according to the present invention includes a heating plate having a heating element for generating heat by an external power source and having a first vacuum line and a second vacuum line extending to an upper surface to provide a vacuum force, And a second vacuum line disposed on the heating plate for supporting the wafer on an upper surface thereof and transferring heat generated in the heating plate to the wafer so that the wafer is heated and for attracting the wafer by the vacuum force A chuck plate having a third vacuum line and a chuck plate connected to the second vacuum line on the lower surface so as to be vacuum-adsorbed on the heating plate and having a vacuum groove defined by the upper surface of the heating plate, And bonding and bonding the chip to the wafer by fixing and heating the chip, The draw can be made.
본 발명의 일 실시예들에 따르면, 상기 본딩 헤드는, 베이스 블록과, 상기 베이스 블록 상에 구비되고, 외부로부터 인가되는 전원에 의해 열을 발생하여 칩을 가열하기 위한 발열체를 내장하며, 진공력을 제공하기 위해 상부면까지 연장하는 제4 진공 라인 및 제5 진공 라인을 갖는 가열 블록; 및 상기 가열 블록 상에 상기 제4 진공 라인의 진공력에 의해 고정되며, 상기 칩을 진공력으로 고정하기 위해 상기 제5 진공 라인과 연결되는 진공홀을 갖는 흡착판을 포함할 수 있다.According to an embodiment of the present invention, the bonding head includes: a base block; and a heating element provided on the base block for generating heat by an external power source to heat the chip, A heating block having a fourth vacuum line and a fifth vacuum line extending to the top surface to provide a second vacuum line; And an adsorption plate fixed on the heating block by a vacuum force of the fourth vacuum line and having a vacuum hole connected to the fifth vacuum line for fixing the chip by a vacuum force.
본 발명에 따른 척 플레이트는 산화알루미늄에 티타늄이 첨가된 재질로 이루어지므로, 상기 척 플레이트의 열전도율이 질화알루미늄보다 낮다. 따라서, 웨이퍼와 칩의 본딩 공정 중 상기 웨이퍼를 상시 예열하더라도 상기 웨이퍼와 상기 칩 사이의 솔더링 물질이 뭉게지는 현상이 방지할 수 있다. 그러므로, 상기 웨이퍼와 상기 칩 사이에 본딩 불량이 발생할 수 있다. Since the chuck plate according to the present invention is made of a material to which titanium oxide is added to aluminum oxide, the thermal conductivity of the chuck plate is lower than that of aluminum nitride. Therefore, even if the wafer is always preheated during the bonding process of the wafer and the chip, the soldering material between the wafer and the chip can be prevented from being crushed. Therefore, a bonding failure may occur between the wafer and the chip.
상기 척 플레이트는 최외각에 위치하는 진공홀들 사이의 간격이 상기 최외각 내측에 위치하는 진공홀들 사이의 간격보다 상대적으로 좁다. 따라서, 상기 척 구조물의 가장자리 부위에서도 상기 웨이퍼가 상기 척 구조물에 완전히 밀착될 수 있다. The chuck plate is narrower than the gap between the vacuum holes located at the outermost position and the vacuum holes located inside the outermost position. Therefore, the wafer can be completely brought into close contact with the chuck structure at the edge portion of the chuck structure.
상기 척 플레이트는 진공력으로 가열 플레이트와 밀착될 수 있다. 따라서, 상기 척 플레이트는 별도의 체결 부재 없이 상기 가열 플레이트에 고정될 수 있다. The chuck plate can be brought into close contact with the heating plate with a vacuum force. Therefore, the chuck plate can be fixed to the heating plate without a separate fastening member.
또한, 상기 진공력만을 해제하여 상기 가열 플레이트와 상기 척 플레이트를 분리하여 교체할 수 있다. 그러므로, 상기 척 구조물에 대한 유지 보수를 신속하게 수행할 수 있다. Further, only the vacuum force is released, so that the heating plate and the chuck plate can be separated and replaced. Therefore, maintenance for the chuck structure can be performed quickly.
상기 척 구조물은 상기 가열 플레이트에서 발생한 열을 척 플레이트를 통해 웨이퍼로 전달한다. 상기 척 플레이트가 전달하는 열에 의해 상기 웨이퍼가 항상 일정한 온도로 가열될 수 있다. 따라서, 상기 칩을 상기 웨이퍼에 효과적으로 본딩할 수 있다. The chuck structure transfers heat generated in the heating plate to the wafer through a chuck plate. The wafer can always be heated to a constant temperature by the heat transmitted by the chuck plate. Thus, the chip can be effectively bonded to the wafer.
본 발명에 따른 본딩 장치는 상기 척 구조물을 이용하여 상기 웨이퍼에 상기 칩을 안정적으로 본딩할 수 있다.The bonding apparatus according to the present invention can stably bond the chip to the wafer using the chuck structure.
도 1은 본 발명의 일 실시예에 따른 척 구조물을 설명하기 위한 단면도이다. 1 is a cross-sectional view illustrating a chuck structure according to an embodiment of the present invention.
도 2는 도 1에 도시된 척 구조물의 평면도이다. 2 is a plan view of the chuck structure shown in FIG.
도 3은 도 1에 도시된 척 플레이트를 설명하기 위한 평면도이다.Fig. 3 is a plan view for explaining the chuck plate shown in Fig. 1. Fig.
도 4는 도 1에 도시된 척 플레이트를 설명하기 위한 저면도이다. 4 is a bottom view for explaining the chuck plate shown in Fig.
도 5도 1에 도시된 A 부분을 확대한 확대 단면도이다. 5 is an enlarged cross-sectional view of the portion A shown in Fig. 1 enlarged.
도 6은 본 발명의 일 실시예에 따른 본딩 장치를 설명하기 위한 개략적인 단면도이다. 6 is a schematic cross-sectional view illustrating a bonding apparatus according to an embodiment of the present invention.
도 7은 도 6에 도시된 본딩 헤드를 설명하기 위한 개략적인 단면도이다. 7 is a schematic cross-sectional view illustrating the bonding head shown in FIG.
도 8은 도 7에 도시된 본딩 헤드에서 가열 블록의 개구를 설명하기 위한 평면도이다. 8 is a plan view for explaining the opening of the heating block in the bonding head shown in Fig.
도 9는 본 발명의 다른 실시예에 따른 가열 블록의 개구를 설명하기 위한 단면도이다. 9 is a cross-sectional view illustrating an opening of a heating block according to another embodiment of the present invention.
도 10은 도 9에 도시된 가열 블록의 개구를 설명하기 위한 평면도이다. 10 is a plan view for explaining the opening of the heating block shown in Fig.
도 11은 본 발명의 또 다른 실시예에 따른 가열 블록의 개구를 설명하기 위한 단면도이다. 11 is a cross-sectional view illustrating an opening of a heating block according to another embodiment of the present invention.
본 발명에 따른 척 플레이트는 가열 플레이트 상에 놓여지며, 상면에 웨이퍼를 지지하며, 상기 웨이퍼가 가열되도록 상기 가열 플레이트에서 발생한 열을 상기 웨이퍼로 전달하고, 진공력으로 상기 웨이퍼를 흡착하기 위해 상하를 관통하는 진공홀들 및 상기 가열 플레이트에 진공 흡착되도록 하부면에 구비되며 상기 가열 플레이트의 상부면에 의해 한정되어 공간을 형성하는 진공 홈을 가질 수 있다.A chuck plate according to the present invention is placed on a heating plate and supports a wafer on an upper surface and transfers heat generated in the heating plate to the wafer so as to heat the wafer, And a vacuum groove formed on the lower surface so as to be vacuum-adsorbed on the heating plate and defined by the upper surface of the heating plate to form a space.
이하, 첨부한 도면을 참조하여 본 발명의 실시예에 따른 척 플레이트, 상기 척 플레이트를 갖는 척 구조물 및 척 구조물을 갖는 본딩 장치에 대해 상세히 설명한다. 본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시 예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다. 첨부된 도면에 있어서, 구조물들의 치수는 본 발명의 명확성을 기하기 위하여 실제보다 확대하여 도시한 것이다. BRIEF DESCRIPTION OF THE DRAWINGS The above and other objects, features and advantages of the present invention will be more apparent from the following detailed description taken in conjunction with the accompanying drawings, in which: FIG. The present invention is capable of various modifications and various forms, and specific embodiments are illustrated in the drawings and described in detail in the text. It should be understood, however, that the invention is not intended to be limited to the particular forms disclosed, but includes all modifications, equivalents, and alternatives falling within the spirit and scope of the invention. Like reference numerals are used for like elements in describing each drawing. In the accompanying drawings, the dimensions of the structures are enlarged to illustrate the present invention in order to clarify the present invention.
제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. The terms first, second, etc. may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another. For example, without departing from the scope of the present invention, the first component may be referred to as a second component, and similarly, the second component may also be referred to as a first component.
본 출원에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terminology used in this application is used only to describe a specific embodiment and is not intended to limit the invention. The singular expressions include plural expressions unless the context clearly dictates otherwise. In this application, the terms "comprises", "having", and the like are used to specify that a feature, a number, a step, an operation, an element, a part or a combination thereof is described in the specification, But do not preclude the presence or addition of one or more other features, integers, steps, operations, components, parts, or combinations thereof.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다. Unless defined otherwise, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Terms such as those defined in commonly used dictionaries are to be interpreted as having a meaning consistent with the contextual meaning of the related art and are to be interpreted as either ideal or overly formal in the sense of the present application Do not.
도 1은 본 발명의 일 실시예에 따른 척 구조물을 설명하기 위한 단면도이고, 도 2는 도 1에 도시된 척 구조물의 평면도이며, 도 3은 도 1에 도시된 척 플레이트를 설명하기 위한 평면도이고, 도 4는 도 1에 도시된 척 플레이트를 설명하기 위한 저면도이고, 도 5도 1에 도시된 A 부분을 확대한 확대 단면도이다. 1 is a cross-sectional view illustrating a chuck structure according to an embodiment of the present invention, FIG. 2 is a plan view of the chuck structure shown in FIG. 1, FIG. 3 is a plan view for explaining the chuck plate shown in FIG. 1 Fig. 4 is a bottom view for explaining the chuck plate shown in Fig. 1, and Fig. 5 is an enlarged cross-sectional view showing an enlarged view of a portion A shown in Fig.
도 1 내지 도 5를 참조하면, 척 구조물(100)은 웨이퍼(10)를 지지한다. 이때, 웨이퍼(10)에는 회로 패턴이 형성될 수 있다. Referring to FIGS. 1-5, the chuck structure 100 supports the wafer 10. At this time, a circuit pattern may be formed on the wafer 10.
척 구조물(100)은 가열 플레이트(110), 척 플레이트(120), 가이드 링(130), 클램프(140), 전원케이블(150) 및 온도 센서(160)를 포함한다. The chuck structure 100 includes a heating plate 110, a chuck plate 120, a guide ring 130, a clamp 140, a power cable 150 and a temperature sensor 160.
가열 플레이트(110)는 대략 원판 형태를 가지며, 외부로부터 인가되는 전원에 의해 열을 발생하는 발열체(112)를 내장한다. The heating plate 110 has a substantially disc shape and incorporates a heating element 112 that generates heat by a power source applied from the outside.
발열체(112)는 가열 플레이트(110)의 내측면에 일정한 패턴을 이루도록 구비될 수 있다. 발열체(112)의 예로는 전극층, 발열 코일 등을 들 수 있다. The heating element 112 may be provided on the inner surface of the heating plate 110 to have a predetermined pattern. Examples of the heating element 112 include an electrode layer, a heating coil, and the like.
가열 플레이트(110)는 상부면까지 연장하는 제1 진공 라인(114) 및 제2 진공 라인(115)을 갖는다. 제1 진공 라인(114)과 제2 진공 라인(115)은 각각 가열 플레이트(110)의 하부면 또는 측면에서 상기 상부면까지 연장할 수 있다. 제1 진공 라인(114)과 제2 진공 라인(115)은 각각 서로 연결되지 않는다. 제1 진공 라인(114)은 진공 펌프(미도시)와 연결되며, 웨이퍼(10)를 흡착하기 위한 진공력을 제공한다. 제2 진공 라인(115)은 진공 펌프(미도시)와 연결되며, 척 플레이트(120)를 흡착하기 위한 진공력을 제공한다. The heating plate 110 has a first vacuum line 114 and a second vacuum line 115 extending to the upper surface. The first vacuum line 114 and the second vacuum line 115 may extend from the bottom surface or side of the heating plate 110 to the top surface, respectively. The first vacuum line 114 and the second vacuum line 115 are not connected to each other. The first vacuum line 114 is connected to a vacuum pump (not shown) and provides a vacuum force for adsorbing the wafer 10. The second vacuum line 115 is connected to a vacuum pump (not shown) and provides a vacuum force to adsorb the chuck plate 120.
가열 플레이트(110)는 상부면에 정렬 핀(116)을 갖는다. 정렬 핀(116)은 가열 플레이트(110)와 척 플레이트(120)를 정렬하기 위한 것으로, 복수 개가 구비될 수 있다. 정렬 핀(116)은 가열 플레이트(110)의 상부면 가장자리에 배치될 수 있다. The heating plate 110 has alignment pins 116 on its upper surface. The alignment pins 116 are for aligning the heating plate 110 and the chuck plate 120, and a plurality of alignment pins 116 may be provided. The alignment pins 116 may be disposed on the upper surface edge of the heating plate 110.
또한, 가열 플레이트(110)는 상부면 가장자리를 따라 형성된 홈(118)을 갖는다. 홈(118)은 가이드 링(130)을 고정하는데 이용될 수 있다. Further, the heating plate 110 has a groove 118 formed along the upper surface edge. The groove 118 may be used to secure the guide ring 130.
척 플레이트(120)는 대략 원판 형태를 가지며, 가열 플레이트(110) 상에 놓여진다. 척 플레이트(120)는 상부면에 웨이퍼(10)를 지지한다. The chuck plate 120 has a substantially disc shape and is placed on the heating plate 110. The chuck plate 120 supports the wafer 10 on its upper surface.
척 플레이트(120)는 웨이퍼(10)를 흡착하기 위해 제1 진공 라인(114)과 연결되는 제3 진공 라인(122)을 갖는다. The chuck plate 120 has a third vacuum line 122 connected to the first vacuum line 114 to adsorb the wafer 10.
제3 진공 라인(122)은 진공 홈(122a) 및 다수의 진공 홀(122b)들을 갖는다. The third vacuum line 122 has a vacuum groove 122a and a plurality of vacuum holes 122b.
진공 홈(122a)은 척 플레이트(120)의 하부면에 형성된다. 예를 들면, 진공 홈(122a)은 척 플레이트(120)의 하부면 중심을 기준으로 동심원 형태를 갖는 홈들과 방사상으로 연장하는 홈들이 결합된 형상을 갖거나, 원형 홈 형상을 가질 수 있다. 이때, 진공 홈(122a)은 상기 진공력의 누설을 방지하기 위해 척 플레이트(120)의 하부면 가장자리까지 연장하지 않는다. The vacuum groove 122a is formed on the lower surface of the chuck plate 120. [ For example, the vacuum groove 122a may have a shape in which concentric grooves and radially extending grooves are combined with each other with respect to the center of the lower surface of the chuck plate 120, or may have a circular groove shape. At this time, the vacuum groove 122a does not extend to the lower edge of the chuck plate 120 to prevent leakage of the vacuum force.
척 플레이트(120)는 가열 플레이트(110) 상에 놓여지면서 진공 홈(122a)은 가열 플레이트(110)의 상부면에 의해 한정되어 공간을 형성한다. 또한, 진공 홈(122a)은 제1 진공 라인(114)과 연결된다. The chuck plate 120 is placed on the heating plate 110 while the vacuum groove 122a is defined by the upper surface of the heating plate 110 to form a space. Further, the vacuum groove 122a is connected to the first vacuum line 114.
진공 홀(122b)들은 척 플레이트(120)를 관통하여 진공 홈(122a)이 형성된 하부면에서 척 플레이트(120)의 상부면까지 연장한다. 진공 홀(122b)은 서로 이격되도록 배열된다. 예를 들면, 진공 홀(122b)들은 동심원 형상 또는 방사 형상으로 배열될 수 있다. The vacuum holes 122b extend through the chuck plate 120 to the upper surface of the chuck plate 120 at the lower surface where the vacuum groove 122a is formed. The vacuum holes 122b are arranged to be spaced apart from each other. For example, the vacuum holes 122b may be arranged concentrically or radially.
따라서, 제3 진공 라인(122)은 제1 진공 라인(114)과 연결되며, 제1 진공 라인(114)을 통해 제공되는 진공력으로 웨이퍼(10)를 흡착할 수 있다. Accordingly, the third vacuum line 122 is connected to the first vacuum line 114 and can adsorb the wafer 10 by the vacuum force provided through the first vacuum line 114.
한편, 척 플레이트(120)에서 최외각에 위치하는 진공 홀(122b)들 사이의 간격은 상기 최외각보다 내측에 위치하는 진공 홀(122b)들의 간격보다 상대적으로 좁게 배치될 수 있다. 구체적으로, 상기 최외각에 위치하는 진공 홀(122b)들 사이의 각도는 상기 최외각보다 내측에 위치하는 진공 홀(122b)들 사이의 각도의 절반일 수 있다. 예를 들면, 상기 최외각에 위치하는 진공 홀(122b)들 사이의 각도는 약 15도이고, 상기 최외각보다 내측에 위치하는 진공 홀(122b)들 사이의 각도는 약 30도 일 수 있다. On the other hand, the gap between the vacuum holes 122b located at the outermost position in the chuck plate 120 may be arranged to be relatively narrower than the gap of the vacuum holes 122b located inside the outermost position. Specifically, the angle between the outermost vacuum holes 122b may be half the angle between the vacuum holes 122b located inside the outermost periphery. For example, the angle between the outermost vacuum holes 122b may be about 15 degrees, and the angle between the vacuum holes 122b located inside the outermost corner may be about 30 degrees.
따라서, 척 플레이트(120)의 가장자리에서도 진공 홀(112b)을 통한 진공력이 안정적으로 제공될 수 있다. 그러므로, 척 플레이트(120)의 가장자리에서도 웨이퍼(10)가 척 플레이트(120)에 밀착될 수 있으며, 웨이퍼(10)가 들뜨는 것을 방지할 수 있다. Therefore, even at the edge of the chuck plate 120, the vacuum force through the vacuum hole 112b can be stably provided. Therefore, even at the edge of the chuck plate 120, the wafer 10 can be brought into close contact with the chuck plate 120, and the wafer 10 can be prevented from being lifted.
또한, 척 플레이트(120)는 가열 플레이트(110)에 진공 흡착되도록 하부면에 제2 진공 라인(115)과 연결되도록 구비되는 진공 홈(123)을 갖는다. The chuck plate 120 has a vacuum groove 123 connected to the second vacuum line 115 on the lower surface so as to be vacuum-adsorbed on the heating plate 110.
진공 홈(123)은 척 플레이트(120)의 하부면에 형성된다. 예를 들면, 진공 홈(123)은 척 플레이트(120)의 하부면 중심을 기준으로 동심원 형태를 갖는 홈들과 방사상으로 연장하는 홈들이 결합된 형상을 갖거나, 원형 홈 형상을 가질 수 있다. 이때, 진공 홈(123)은 상기 진공력의 누설을 방지하기 위해 척 플레이트(120)의 하부면 가장자리까지 연장하지 않는다. 또한, 도 4에 도시된 바와 같이 진공 홈(123)은 제3 진공 라인(122)과 서로 연결되지 않도록 형성될 수 있다. The vacuum groove 123 is formed on the lower surface of the chuck plate 120. For example, the vacuum groove 123 may have a shape in which concentric grooves and radially extending grooves are combined with each other with respect to the center of the lower surface of the chuck plate 120, or may have a circular groove shape. At this time, the vacuum groove 123 does not extend to the lower edge of the chuck plate 120 to prevent leakage of the vacuum force. In addition, as shown in FIG. 4, the vacuum groove 123 may be formed so as not to be connected to the third vacuum line 122.
척 플레이트(120)는 가열 플레이트(110) 상에 놓여지면서 진공 홈(123)은 가열 플레이트(110)의 상부면에 의해 한정되어 공간을 형성한다. 또한, 진공 홈(123)은 제2 진공 라인(115)과 연결된다. The chuck plate 120 is placed on the heating plate 110 and the vacuum groove 123 is defined by the upper surface of the heating plate 110 to form a space. Further, the vacuum groove 123 is connected to the second vacuum line 115.
진공 홈(123)은 제2 진공 라인(115)과 연결되며, 제2 진공 라인(115)을 통해 제공되는 진공력으로 척 플레이트(120)가 가열 플레이트(110) 상에 밀착되어 고정될 수 있다. 그러므로, 척 플레이트(120)의 뒤틀림이나 벤딩을 최소화하여 척 플레이트(120) 상의 웨이퍼(10)를 평탄하게 지지할 수 있다. The vacuum groove 123 is connected to the second vacuum line 115 and the chuck plate 120 can be tightly fixed on the heating plate 110 by the vacuum force provided through the second vacuum line 115 . Therefore, warping or bending of the chuck plate 120 can be minimized, and the wafer 10 on the chuck plate 120 can be supported flat.
가열 플레이트(110)와 척 플레이트(120)는 제2 진공 라인(115) 및 진공 홈(123)을 통해 제공되는 상기 진공력에 의해 밀착된 상태를 유지할 수 있다. 그러므로, 가열 플레이트(110)와 척 플레이트(120)를 체결하기 위한 별도의 체결 부재가 불필요하다. The heating plate 110 and the chuck plate 120 can be held in close contact by the vacuum force provided through the second vacuum line 115 and the vacuum groove 123. Therefore, a separate fastening member for fastening the heating plate 110 and the chuck plate 120 is unnecessary.
또한, 제1 진공 라인(114)과 제2 진공 라인(115)을 통해 제공되는 상기 진공력을 해제하여 가열 플레이트(110)와 척 플레이트(120)를 분리하여 교체할 수 있다. 그러므로, 척 구조물(100)의 유지 보수를 신속하게 수행할 수 있다. In addition, the vacuum force provided through the first vacuum line 114 and the second vacuum line 115 is released to separate and replace the heating plate 110 and the chuck plate 120. Therefore, maintenance of the chuck structure 100 can be performed quickly.
한편, 가열 플레이트(110)의 상부면과 척 플레이트(120)의 하부면은 각각 약 10 ㎛를 초과하는 평탄도를 갖는 경우, 가열 플레이트(110)와 척 플레이트(120) 사이에 미세한 간격이 존재할 수 있다. 따라서, 가열 플레이트(110)와 척 플레이트(120) 사이를 통해 상기 진공력이 누설될 수 있다. On the other hand, if the upper surface of the heating plate 110 and the lower surface of the chuck plate 120 each have a flatness exceeding about 10 탆, there is a slight gap between the heating plate 110 and the chuck plate 120 . Thus, the vacuum force can leak through the gap between the heating plate 110 and the chuck plate 120.
가열 플레이트(110)의 상부면과 척 플레이트(120)의 하부면은 각각 약 10 ㎛ 이하, 바람직하게는 7 ㎛ 이하의 평탄도를 갖는다. 이 경우, 가열 플레이트(110)와 척 플레이트(120)가 밀착될 수 있고, 가열 플레이트(110)와 척 플레이트(120) 사이를 통해 상기 진공력이 누설되는 것을 방지할 수 있다. The upper surface of the heating plate 110 and the lower surface of the chuck plate 120 each have a flatness of about 10 占 퐉 or less, preferably 7 占 퐉 or less. In this case, the heating plate 110 and the chuck plate 120 can be in close contact with each other, and the vacuum force can be prevented from leaking through the space between the heating plate 110 and the chuck plate 120.
척 플레이트(120)는 가열 플레이트(110)에서 발생한 열을 웨이퍼(10)로 전달한다. 이때, 칩(미도시)과 웨이퍼(10)의 본딩이 용이하게 이루어지도록 웨이퍼(10)는 약 140 내지 150 ℃의 온도로 유지될 수 있다. The chuck plate 120 transfers the heat generated in the heating plate 110 to the wafer 10. At this time, the wafer 10 may be maintained at a temperature of about 140 to 150 ° C. so that bonding of the chip (not shown) and the wafer 10 is easily performed.
가열 플레이트(110)는 세라믹 재질로 이루어질 수 있다. 상기 세라믹 재질의 예로는 질화알루미늄(AlN)을 들 수 있다. 상기 질화알루미늄은 높은 열전도율을 가지므로, 가열 플레이트(110)는 발열체(112)에서 발생한 열을 균일하게 전달될 수 있다. 또한, 가열 플레이트(110)는 척 플레이트(120)의 온도 분포를 균일하게 하여 웨이퍼(10)를 균일하게 가열할 수 있다. The heating plate 110 may be made of a ceramic material. An example of the ceramic material is aluminum nitride (AlN). Since the aluminum nitride has a high thermal conductivity, the heat generated by the heating element 112 can be uniformly transmitted to the heating plate 110. Further, the heating plate 110 can uniformly heat the wafer 10 by making the temperature distribution of the chuck plate 120 uniform.
척 플레이트(120)는 세라믹 재질에 티타늄이 첨가되어 이루어질 수 있다. 예를 들면, 척 플레이트(120)는 상기 산화알루미늄(Al2O3)에 티타늄이 첨가될 수 있다. 상기 산화알루미늄(Al2O3)에 티타늄이 첨가되는 경우, 척 플레이트(120)의 열 전도율을 더욱 낮출 수 있다. The chuck plate 120 may be formed by adding titanium to a ceramic material. For example, the chuck plate 120 may be doped with titanium to the aluminum oxide (Al 2 O 3). When titanium is added to the aluminum oxide (Al2O3), the thermal conductivity of the chuck plate 120 can be further reduced.
척 플레이트(120)에서 상기 산화알루미늄 100 중량부에 대해 상기 티타늄이 약 10 중량부 미만으로 첨가되는 경우, 척 플레이트(120)의 기공율 증가가 미미하고 척 플레이트(120)의 열 전도율이 순수 산화알루미늄과 유사할 수 있다.When the amount of titanium is less than about 10 parts by weight with respect to 100 parts by weight of the aluminum oxide on the chuck plate 120, the increase in porosity of the chuck plate 120 is insignificant and the thermal conductivity of the chuck plate 120 is less than that of pure aluminum oxide ≪ / RTI >
척 플레이트(120)에서 상기 산화알루미늄 100 중량부에 대해 상기 티타늄이 약 20 중량부를 초과하여 첨가되는 경우, 척 플레이트(120)의 기공율이 과도하게 증가하여 열전도율이 크게 낮아진다. 그리고, 척 플레이트(120)의 소결 밀도가 감소하여 척 플레이트(120)의 강도가 낮아지고 척 플레이트(120)의 기공을 통해 진공력이 손실될 수 있다. In the case where titanium is added in an amount exceeding about 20 parts by weight with respect to 100 parts by weight of the aluminum oxide in the chuck plate 120, the porosity of the chuck plate 120 is excessively increased and the thermal conductivity is greatly lowered. Then, the sintered density of the chuck plate 120 is reduced, so that the strength of the chuck plate 120 is lowered and the vacuum force can be lost through the pores of the chuck plate 120.
척 플레이트(120)에서 상기 산화알루미늄 100 중량부에 대해 상기 티타늄이 약 10 내지 20 중량부가 첨가되는 경우, 척 플레이트(120)의 기공을 통해 진공력이 거의 손실되지 않을 정도로 척 플레이트(120)의 기공율이 증가하고 척 플레이트(120)의 열전도율도 낮아진다. 또한, 척 플레이트(120)의 소결 밀도가 약 3.8g/㎤로 순수 산화알루미늄의 소결 밀도인 약 3.9g/㎤ 보다 약간 낮아 척 플레이트(120)의 강도가 낮아지지 않는다.When about 10 to 20 parts by weight of the titanium is added to 100 parts by weight of the aluminum oxide on the chuck plate 120, the chuck plate 120 is pushed through the pores of the chuck plate 120 so that the vacuum force is hardly lost. The porosity is increased and the thermal conductivity of the chuck plate 120 is also lowered. In addition, the sintered density of the chuck plate 120 is about 3.8 g / cm 3, which is slightly lower than the sintered density of pure aluminum oxide of about 3.9 g / cm 3, so that the strength of the chuck plate 120 is not lowered.
따라서, 척 플레이트(120)는 상기 산화알루미늄 100 중량부에 대해 약 10 내지 20 중량부의 티타늄이 첨가되어 이루어질 수 있다. Accordingly, the chuck plate 120 may be formed by adding about 10 to 20 parts by weight of titanium to 100 parts by weight of the aluminum oxide.
척 플레이트(120)의 열전도율이 약 5 W/m·k 미만인 경우, 척 플레이트(120)의 열전도율이 상대적으로 낮다. 따라서, 가열 플레이트(110)에서 발생된 열을 웨이퍼(10)로 충분히 전달하지 못하거나, 가열 플레이트(110)에서 발생된 열을 웨이퍼(10)로 전달하는데 많은 시간이 소요될 수 있다. 다만, 상기 칩의 본딩을 위해 본딩 헤드가 웨이퍼(10)와 상기 칩을 약 450도의 고온으로 열압착하더라도 척 플레이트(120)가 급속하게 가열되는 것을 막을 수 있다.When the thermal conductivity of the chuck plate 120 is less than about 5 W / m · k, the thermal conductivity of the chuck plate 120 is relatively low. Therefore, the heat generated from the heating plate 110 may not be sufficiently transferred to the wafer 10, or it may take a long time to transfer the heat generated from the heating plate 110 to the wafer 10. FIG. However, it is possible to prevent rapid heating of the chuck plate 120 even if the bonding head thermally compresses the wafer 10 and the chip at a high temperature of about 450 degrees for bonding the chip.
척 플레이트(120)의 열전도율이 약 20 W/m·k를 초과하는 경우, 척 플레이트(120)의 열전도율이 상대적으로 높다. 따라서, 가열 플레이트(110)에서 발생된 열을 웨이퍼(10)로 과도하게 전달되어 웨이퍼(10)와 상기 칩 사이의 솔더링 물질이 뭉개질 수 있다. 또한, 상기 본딩 헤드가 웨이퍼(10)와 상기 칩을 약 450도의 고온으로 열압착하는 경우, 척 플레이트(120)가 비교적 급속하게 가열되어 웨이퍼(10)와 상기 칩 사이의 솔더링 물질이 더 잘 뭉개질 수 있다. When the thermal conductivity of the chuck plate 120 exceeds about 20 W / m · k, the thermal conductivity of the chuck plate 120 is relatively high. Accordingly, the heat generated in the heating plate 110 may be excessively transferred to the wafer 10 so that the soldering material between the wafer 10 and the chip may be crushed. In addition, when the bonding head thermally compresses the wafer 10 and the chip at a high temperature of about 450 degrees, the chuck plate 120 is relatively rapidly heated, so that the soldering material between the wafer 10 and the chip is more likely to be crushed Can be.
척 플레이트(120)의 열전도율은 약 5 내지 20 W/m·k 인 경우, 척 플레이트(120)는 열 플레이트(110)에서 발생된 열을 웨이퍼(10)로 상기 솔더링 물질이 뭉개지지 않을 정도로 적절히 전달할 수 있다. 또한, 상기 칩의 본딩을 위해 본딩 헤드가 웨이퍼(10)와 상기 칩을 약 450도의 고온으로 열압착하더라도 척 플레이트(120)가 급속하게 가열되는 것을 막을 수 있다. 따라서, 웨이퍼(10)와 상기 칩 사이의 솔더링 물질이 뭉개지는 것을 방지할 수 있다. If the thermal conductivity of the chuck plate 120 is about 5 to 20 W / m · k, the chuck plate 120 can heat the heat generated by the thermal plate 110 to the wafer 10 appropriately so that the soldering material does not crumble . In addition, the bonding head can prevent rapid heating of the chuck plate 120 even when the bonding head thermocompresses the wafer 10 and the chip at a high temperature of about 450 degrees for bonding the chip. Therefore, the soldering material between the wafer 10 and the chip can be prevented from being crushed.
따라서, 웨이퍼(10)와 상기 칩의 본딩을 위해 웨이퍼(10)를 상시 예열하더라도 웨이퍼(10)와 상기 칩 사이의 솔더링 물질이 뭉게지는 현상을 방지할 수 있다. 그러므로, 웨이퍼(10)와 상기 칩 사이에 본딩 불량을 방지할 수 있다 .Therefore, even if the wafer 10 is always preheated for bonding the wafer 10 and the chip, it is possible to prevent the soldering material from being crushed between the wafer 10 and the chip. Therefore, defective bonding between the wafer 10 and the chip can be prevented.
한편, 척 플레이트(120)는 상기 질화알루미늄보다 열전도율이 낮은 산화알루미늄(Al2O3)으로만 이루어질 수도 있다. Meanwhile, the chuck plate 120 may be made of aluminum oxide (Al2O3) having a thermal conductivity lower than that of the aluminum nitride.
척 플레이트(120)는 정렬 핀(116)을 수용하기 위한 수용홈(124)을 갖는다. 수용홈(124)은 가열 플레이트(110)의 정렬 핀(116)과 대응하는 위치에 형성될 수 있다. 예를 들면 수용홈(124)도 척 플레이트(120)의 가장자리에 배치될 수 있다. The chuck plate (120) has a receiving groove (124) for receiving the alignment pin (116). The receiving groove 124 may be formed at a position corresponding to the alignment pin 116 of the heating plate 110. For example, the receiving groove 124 may also be disposed at the edge of the chuck plate 120.
척 플레이트(120)가 가열 플레이트(110)의 상부면에 안착될 때, 가열 플레이트(110)의 정렬 핀(116)이 척 플레이트(120)의 수용홈(124)에 삽입될 수 있다. 따라서, 가열 플레이트(110)와 척 플레이트(120)가 정확하게 정렬될 수 있다. The alignment pins 116 of the heating plate 110 can be inserted into the receiving grooves 124 of the chuck plate 120 when the chuck plate 120 is seated on the upper surface of the heating plate 110. Thus, the heating plate 110 and the chuck plate 120 can be accurately aligned.
상기에서 가열 플레이트(110)에 정렬 핀(116)이 구비되고, 척 플레이트(120)에 수용홈(124)이 형성되는 것으로 설명되었지만, 가열 플레이트(110)에 수용홈이 형성되고, 척 플레이트(120)에 정렬 핀이 구비될 수도 있다. Although the aligning pin 116 is provided in the heating plate 110 and the receiving groove 124 is formed in the chuck plate 120, the receiving groove is formed in the heating plate 110, 120 may be provided with alignment pins.
또한, 척 플레이트(120)는 상부면 가장자리를 따라 형성된 홈(126)을 갖는다. 홈(126)은 클램프(140)가 안착되는데 이용될 수 있다. In addition, the chuck plate 120 has a groove 126 formed along the top edge. The grooves 126 may be used to secure the clamp 140.
가이드 링(130)은 가열 플레이트(110)의 상면 가장자리를 따라 형성된 홈(118)에 걸리며 가열 플레이트(110)의 둘레를 가이드한다.The guide ring 130 hits the groove 118 formed along the upper edge of the heating plate 110 and guides the periphery of the heating plate 110.
구체적으로, 가이드 링(130)은 제1 걸림턱(132)을 가지며, 제1 걸림턱(132)이 홈(118)에 걸림으로서 가이드 링(130)이 가열 플레이트(110)에 장착된다. Specifically, the guide ring 130 has a first engaging jaw 132, and the guide ring 130 is mounted on the heating plate 110 by engaging the first engaging jaw 132 with the groove 118.
한편, 가이드 링(130)의 상면과 가열 플레이트(110)의 상면은 동일한 높이에 위치할 수 있다. 이 경우, 가열 플레이트(110)에 가이드 링(130)을 장착한 상태에서 척 플레이트(120)를 가열 플레이트(110)의 상부면에 용이하게 안착시킬 수 있다. The upper surface of the guide ring 130 and the upper surface of the heating plate 110 may be located at the same height. In this case, the chuck plate 120 can be easily placed on the upper surface of the heating plate 110 with the guide ring 130 mounted on the heating plate 110.
또한, 가이드 링(130)의 상면이 가열 플레이트(110)의 상면보다 높게 위치하는 경우, 척 플레이트(120)를 가열 플레이트(110)의 상부면에 안착할 때 가이드 링(130)을 정렬 기준으로 이용할 수 있다. When the upper surface of the guide ring 130 is positioned higher than the upper surface of the heating plate 110, when the chuck plate 120 is placed on the upper surface of the heating plate 110, Can be used.
클램프(140)는 척 플레이트(120)의 상부면 가장자리를 덮은 상태로 가이드 링에 고정된다. 클램프(140)는 체결 나사(142)에 의해 가이드 링(130)에 고정될 수 있다. The clamp 140 is fixed to the guide ring so as to cover the top edge of the chuck plate 120. The clamp 140 can be fixed to the guide ring 130 by a fastening screw 142.
일 예로, 클램프(140)는 다수개가 구비되어 척 플레이트(120)의 상부면 가장자리를 부분적으로 덮을 수 있다. 다른 예로, 클램프(140)가 대략 링 형태를 가지며, 척 플레이트(120)의 상부면 가장자리를 전체적으로 덮을 수도 있다. For example, a plurality of clamps 140 may be provided to partially cover the top edge of the chuck plate 120. As another example, the clamp 140 may have a generally ring shape and may entirely cover the top edge of the chuck plate 120.
클램프(140)가 척 플레이트(120)의 상부면 가장자리를 덮은 상태로 가이드 링(130)에 고정되므로, 클램프(140)가 척 플레이트(120)를 하방으로 가압할 수 있다. 따라서, 클램프(140)는 척 플레이트(120)를 가열 플레이트(110)에 밀착시킬 수 있다. 그러므로 가열 플레이트(110)와 척 플레이트(120) 사이를 통해 상기 진공력이 누설되는 것을 추가적으로 방지할 수 있다.Since the clamp 140 is fixed to the guide ring 130 while covering the upper surface edge of the chuck plate 120, the clamp 140 can press the chuck plate 120 downward. Therefore, the clamp 140 can bring the chuck plate 120 into close contact with the heating plate 110. Therefore, it is possible to further prevent the vacuum force from leaking through the space between the heating plate 110 and the chuck plate 120.
클램프(140)는 제2 걸림턱(144)을 가지며, 제2 걸림턱(144)이 척 플레이트(120)의 홈(126)에 놓여질 수 있다. 따라서, 클램프(140)의 상면과 척 플레이트(120)의 상면을 동일한 높이에 위치시킬 수 있다. 그러므로, 클램프(140)의 방해없이 웨이퍼(10)를 척 플레이트(120)의 상부면으로 안정적으로 이송하여 안착할 수 있다. The clamp 140 has a second latching jaw 144 and the second latching jaw 144 can be placed in the groove 126 of the chuck plate 120. Therefore, the upper surface of the clamp 140 and the upper surface of the chuck plate 120 can be positioned at the same height. Therefore, the wafer 10 can be reliably transferred to the upper surface of the chuck plate 120 without interference of the clamp 140 and can be seated.
가이드 링(130) 및 클램프(140)는 가열 플레이트(110)보다 낮은 열전도율을 갖는 재질로 이루어질 수 있다. 예를 들면, 가이드 링(130) 및 클램프(140)는 산화알루미늄(Al2O3) 재질로 이루어질 수 있다. 또한, 가이드 링(130) 및 클램프(140)는 척 플레이트(120)와 동일한 재질로 이루어질 수 있다. The guide ring 130 and the clamp 140 may be made of a material having a thermal conductivity lower than that of the heating plate 110. For example, the guide ring 130 and the clamp 140 may be made of aluminum oxide (Al 2 O 3). The guide ring 130 and the clamp 140 may be made of the same material as the chuck plate 120.
가이드 링(130) 및 클램프(140)의 열전도율이 가열 플레이트(110)의 열전도율보다 낮으므로, 가이드 링(130) 및 클램프(140)는 가열 플레이트(110)의 측면을 통한 열손실을 방지할 수 있다. The guide ring 130 and the clamp 140 can prevent heat loss through the side surface of the heating plate 110 because the thermal conductivity of the guide ring 130 and the clamp 140 is lower than the thermal conductivity of the heating plate 110 have.
전원케이블(150)은 가열 플레이트(110)의 내부까지 연장하여 발열체(112)와 연결되며, 발열체(112)가 열을 발생시키기 위한 전원을 제공한다. The power cable 150 extends to the inside of the heating plate 110 and is connected to the heating element 112. The heating element 112 provides power for generating heat.
온도 센서(160)는 외부에서 가열 플레이트(110)의 내부까지 연장하며, 발열체(112)에 의해 가열되는 가열 플레이트(110)의 온도를 측정한다. 온도 센서(160)에서 측정된 온도를 이용하여 발열체(112)의 온도를 제어할 수 있다. 발열체(112)의 온도를 제어함으로써 가열 플레이트(110)의 온도를 조절할 수 있다. The temperature sensor 160 extends from the outside to the inside of the heating plate 110 and measures the temperature of the heating plate 110 heated by the heating element 112. The temperature of the heating element 112 can be controlled using the temperature measured by the temperature sensor 160. [ The temperature of the heating plate 110 can be controlled by controlling the temperature of the heating element 112. [
온도 센서(160)의 예로는 열전대를 들 수 있다. An example of the temperature sensor 160 is a thermocouple.
척 구조물(100)은 가열 플레이트(110)에서 발생한 열을 척 플레이트(120)를 통해 웨이퍼(10)로 전달한다. 척 플레이트(120)가 전달하는 열에 의해 웨이퍼(10)가 항상 일정한 온도로 가열될 수 있다. 따라서, 상기 칩을 웨이퍼(10)에 효과적으로 본딩할 수 있다. The chuck structure 100 transfers the heat generated in the heating plate 110 to the wafer 10 through the chuck plate 120. The wafer 10 can always be heated to a constant temperature by the heat transmitted by the chuck plate 120. [ Therefore, the chip can be bonded to the wafer 10 effectively.
도 6은 본 발명의 일 실시예에 따른 본딩 장치를 설명하기 위한 개략적인 단면도이다. 6 is a schematic cross-sectional view illustrating a bonding apparatus according to an embodiment of the present invention.
도 6을 참조하면, 본딩 장치(300)는 척 구조물(100) 및 본딩 헤드(200)를 포함한다. Referring to FIG. 6, the bonding apparatus 300 includes a chuck structure 100 and a bonding head 200.
척 구조물(100)은 가열 플레이트(110), 척 플레이트(120), 가이드 링(130), 클램프(140), 전원케이블(150) 및 온도 센서(160)를 포함하며, 척 구조물(100)에 대한 구체적인 설명은 도 1 내지 도 5를 참조한 설명과 실질적으로 동일하므로 생략한다. The chuck structure 100 includes a heating plate 110, a chuck plate 120, a guide ring 130, a clamp 140, a power cable 150 and a temperature sensor 160, 1 to 5 are substantially the same as those described with reference to Figs.
척 구조물(100)은 가열 플레이트(110)에서 발생한 열을 척 플레이트(120)를 통해 웨이퍼(10)로 전달하므로, 척 구조물(100)에 지지된 웨이퍼(10)가 항상 일정한 온도로 가열될 수 있다. 따라서, 본딩 헤드(200)가 칩(20)을 웨이퍼(10)에 신속하게 본딩할 수 있다. The chuck structure 100 transfers the heat generated in the heating plate 110 to the wafer 10 through the chuck plate 120 so that the wafer 10 supported by the chuck structure 100 can always be heated to a constant temperature have. Therefore, the bonding head 200 can quickly bond the chip 20 to the wafer 10. [
도 7은 도 6에 도시된 본딩 헤드를 설명하기 위한 개략적인 단면도이고, 도 8은 도 7에 도시된 본딩 헤드에서 가열 블록의 개구를 설명하기 위한 평면도이다. FIG. 7 is a schematic cross-sectional view for explaining the bonding head shown in FIG. 6, and FIG. 8 is a plan view for explaining the opening of the heating block in the bonding head shown in FIG.
도 7 및 도 8을 참조하면, 본딩 헤드(200)는 칩(20)을 척 구조물(100)에 의해 지지된 웨이퍼(10)로 이송하여 웨이퍼(10)에 본딩하기 위한 것으로, 베이스 블록(210), 가열 블록(220) 및 흡착판(230)을 포함한다. 도시되지는 않았지만, 본딩 헤드(200)는 칩(20)의 이송을 위해 수평 이동, 상하 이동, 회전, 반전 등이 가능하도록 구비될 수 있다. 7 and 8, the bonding head 200 is for transferring the chip 20 to the wafer 10 supported by the chuck structure 100 and bonding the wafer 20 to the wafer 10. The base block 210 A heating block 220, and an adsorption plate 230. Although not shown, the bonding head 200 may be provided so as to be able to horizontally move, vertically move, rotate, invert, and the like in order to transport the chip 20.
또한, 본딩 헤드(200)는 칩(20)과 웨이퍼(10)의 본딩을 위해 흡착판(230)이 하방을 향하도록 배치될 수 있다. In addition, the bonding head 200 may be disposed such that the attraction plate 230 faces downward for bonding the chip 20 and the wafer 10.
베이스 블록(210)은 제1 블록(212) 및 제2 블록(214)을 포함한다.The base block 210 includes a first block 212 and a second block 214.
제1 블록(212)은 금속 재질로 이루어진다. 상기 금속 재질의 예로는 스테인리스 스틸 재질일 수 있다. The first block 212 is made of a metal material. An example of the metal material may be a stainless steel material.
제2 블록(214)은 제1 블록(212) 상에 구비된다. 제2 블록(214)은 가열 블록(220)보다 낮은 열전도율을 갖는 세라믹 재질로 이루어질 수 있다. 상기 세라믹 재질의 예로는 산화알루미늄(Al2O3)을 들 수 있다. 제2 블록(214)의 열전도율이 가열 블록(220)의 열전도율보다 낮으므로, 제2 블록(214)은 가열 블록(220)에서 발생한 열이 제1 블록(212)으로 전달되는 것을 감소시킬 수 있다. The second block 214 is provided on the first block 212. The second block 214 may be made of a ceramic material having a thermal conductivity lower than that of the heating block 220. An example of the ceramic material is aluminum oxide (Al2O3). The second block 214 may reduce the transfer of heat generated in the heating block 220 to the first block 212 since the thermal conductivity of the second block 214 is lower than the thermal conductivity of the heating block 220 .
또한, 베이스 블록(210)은 제3 블록(216)을 더 포함한다.In addition, the base block 210 further includes a third block 216.
제3 블록(216)은 제1 블록(212)과 제2 블록(214) 사이에 구비된다. 제3 블록(216)은 버퍼 블록으로 작용하여 제2 블록(214)의 열이 제1 블록(212)으로 전달되는 것을 감소시킨다. 제3 블록(216)은 세라믹 재질로 이루어질 수 있으며, 상기 세라믹 재질의 예로는 산화알루미늄을 들 수 있다.A third block 216 is provided between the first block 212 and the second block 214. The third block 216 acts as a buffer block to reduce the transfer of the rows of the second block 214 to the first block 212. The third block 216 may be made of a ceramic material, and examples of the ceramic material include aluminum oxide.
가열 블록(220)은 베이스 블록(210), 구체적으로 제2 블록(214) 상에 구비된다. 가열 블록(220)은 발열체(222)를 내장한다. 발열체(222)는 금속 재질로 이루어질 수 있다. 발열체(222)는 외부로부터 인가되는 전원에 의해 열을 발생하고, 상기 열을 이용하여 흡착판(230)에 흡착되는 칩(20)을 가열한다. 상기 열을 이용하여 칩(20)의 범프를 녹일 수 있다. 예를 들면, 칩(20)의 범프를 녹이기 위해 발열체(222)는 칩(20)을 순간적으로 약 450 ℃까지 가열할 수 있다. The heating block 220 is provided on the base block 210, specifically the second block 214. The heating block 220 incorporates a heating element 222. The heating element 222 may be made of a metal material. The heating element 222 generates heat by a power source applied from the outside, and uses the heat to heat the chip 20 adsorbed on the adsorption plate 230. The bumps of the chip 20 can be melted using the heat. For example, to dissolve the bumps in the chip 20, the heating element 222 may instantaneously heat the chip 20 to about 450 ° C.
가열 블록(220)을 절연성과 열전도율이 우수한 세라믹 재질로 이루어질 수 있다. 예를 들면, 가열 블록(220)은 질화알루미늄(AlN) 재질일 수 있다. 이때, 상기 열전도율은 약 170 W/m·k 이상일 수 있다. The heating block 220 may be formed of a ceramic material having excellent insulation and thermal conductivity. For example, the heating block 220 may be an aluminum nitride (AlN) material. At this time, the thermal conductivity may be about 170 W / m · k or more.
가열 블록(220)의 열전도율이 우수하므로, 발열체(222)에서 발생된 열을 이용하여 칩(20)을 신속하게 가열시킬 수 있다. The chip 20 can be quickly heated by using the heat generated by the heating element 222 because the heat block 220 has a high thermal conductivity.
가열 블록(220)은 진공력을 제공하기 위해 상부면까지 연장하는 제4 진공 라인(224) 및 제5 진공 라인(226)을 갖는다. The heating block 220 has a fourth vacuum line 224 and a fifth vacuum line 226 that extend to the top surface to provide vacuum force.
제4 진공 라인(224)과 제5 진공 라인(226)은 서로 연결되지 않으며, 상기 진공력이 각각 제공된다. 예를 들면, 제4 진공 라인(224)은 가열 블록(220)의 가장자리 부위의 상하를 관통하고, 제5 진공 라인(226)은 가열 블록(221)의 중앙 부위의 상하를 관통한다. 특히 제4 진공 라인(224)은 가열 블록(220)의 상부면에 일정 길이로 형성된 홈(225)과 연결될 수 있다. 따라서, 제4 진공 라인(224)을 통해 제공된 진공력이 보다 넓은 범위에서 작용할 수 있다. The fourth vacuum line 224 and the fifth vacuum line 226 are not connected to each other, and the vacuum force is provided, respectively. For example, the fourth vacuum line 224 passes above and below the edge portion of the heating block 220, and the fifth vacuum line 226 passes above and below the central portion of the heating block 221. In particular, the fourth vacuum line 224 may be connected to the groove 225 formed on the upper surface of the heating block 220 to have a predetermined length. Thus, the vacuum force provided through the fourth vacuum line 224 can act in a wider range.
일 예로, 도 7 및 도 8에 도시된 바와 같이 제4 진공 라인(224)과 제5 진공 라인(226)은 베이스 블록(210)까지 연장되어 구비될 수 있다. 다른 예로, 도시되지는 않았지만, 제4 진공 라인(224)과 제5 진공 라인(226)은 베이스 블록(210)까지 연장되지 않고 가열 블록(220)에만 구비될 수도 있다. For example, as shown in FIGS. 7 and 8, the fourth vacuum line 224 and the fifth vacuum line 226 may extend to the base block 210. As another example, although not shown, the fourth vacuum line 224 and the fifth vacuum line 226 may be provided only in the heating block 220 without extending to the base block 210.
흡착판(230)은 가열 블록(220) 상에 구비된다. 흡착판(230)은 제4 진공 라인(224)의 진공력에 의해 가열 블록(220)의 상부면에 고정된다. 제4 진공 라인(224)으로 진공력을 제공하거나 상기 진공력을 해제함으로써 흡착판(230)을 교체할 수 있다. 따라서, 흡착판(230)이 손상되거나 칩(20)의 사이즈가 변경되는 경우, 흡착판(230)만을 선택적으로 교체함으로써 흡착판(230)의 손상이나 칩(20)의 사이즈 변경에 용이하게 대응할 수 있다. The adsorption plate 230 is provided on the heating block 220. The suction plate 230 is fixed to the upper surface of the heating block 220 by the vacuum force of the fourth vacuum line 224. The suction plate 230 can be replaced by providing vacuum force to the fourth vacuum line 224 or releasing the vacuum force. Therefore, when the suction plate 230 is damaged or the size of the chip 20 is changed, only the suction plate 230 is selectively replaced, so that the suction plate 230 can be easily damaged or the size of the chip 20 can be easily changed.
또한, 흡착판(230)은 진공홀(232)을 갖는다. 진공홀(232)은 가열 블록(220)의 제5 진공 라인(226)과 연결된다. 따라서, 제5 진공 라인(226)을 통해 제공되는 진공력으로 흡착판(230) 상에 놓여지는 칩(20)을 고정할 수 있다.Further, the attraction plate 230 has a vacuum hole 232. The vacuum hole 232 is connected to the fifth vacuum line 226 of the heating block 220. Accordingly, the chip 20 to be placed on the attracting plate 230 can be fixed with the vacuum force provided through the fifth vacuum line 226.
흡착판(230)으로 칩(20)을 고정한 상태에서 본딩 헤드(200)가 이동하여 칩(20)을 웨이퍼(10) 상에 적층할 수 있다. 또한, 흡착판(230)으로 웨이퍼(10)를 향해 칩(20)을 가압할 수 있다. The bonding head 200 moves while the chip 20 is fixed by the attracting plate 230 so that the chip 20 can be stacked on the wafer 10. [ Further, the chip 20 can be pressed toward the wafer 10 by the attracting plate 230.
본딩 헤드(200)는 냉각 라인(240)을 더 포함한다. The bonding head 200 further includes a cooling line 240.
냉각 라인(240)은 가열 블록(220)을 냉각하여 칩(20)을 냉각시킨다. 칩(20)이 냉각됨에 따라 칩(20)의 범프가 냉각되어 솔더를 형성할 수 있다. 이때, 냉각 라인(240)에 의해 칩(20)은 약 100℃로 냉각될 수 있다. The cooling line 240 cools the heating block 220 to cool the chip 20. As the chip 20 is cooled, the bumps of the chip 20 are cooled to form the solder. At this time, the chip 20 can be cooled to about 100 캜 by the cooling line 240.
구체적으로, 냉각 라인(240)은 제1 냉각 라인(242)과 제2 냉각 라인(244)을 포함한다.Specifically, the cooling line 240 includes a first cooling line 242 and a second cooling line 244.
제1 냉각 라인(242)은 베이스 블록(210)에서 제2 블록(214)의 상부면까지 연장한다. 제1 냉각 라인(242)을 통해 냉각 유체를 가열 블록(220)으로 제공한다. 상기 냉각 유체의 예로는 공기, 가스 등을 들 수 있다. 상기 냉각 유체는 가열 블록(220)과 직접 접촉하여 가열 블록(220)을 냉각한다.The first cooling line 242 extends from the base block 210 to the upper surface of the second block 214. And provides the cooling fluid to the heating block 220 through the first cooling line 242. Examples of the cooling fluid include air, gas and the like. The cooling fluid directly contacts the heating block 220 to cool the heating block 220.
제2 냉각 라인(244)은 베이스 블록(210)에서 제1 블록(212)의 내부에 구비되며, 제1 블록(212)을 냉각한다. 제1 블록(212)이 냉각됨에 따라 열전도를 통해 제3 블록(216), 제2 블록(214) 및 가열 블록(220)이 냉각될 수 있다. 따라서, 제2 냉각 라인(244)은 보조적으로 가열 블록(220)을 냉각할 수 있다. The second cooling line 244 is provided inside the first block 212 in the base block 210 and cools the first block 212. As the first block 212 is cooled, the third block 216, the second block 214, and the heating block 220 may be cooled through heat conduction. Accordingly, the second cooling line 244 can cooperatively cool the heating block 220. [
제1 냉각 라인(242)을 이용하여 가열 블록(220)을 주로 냉각하고, 제2 냉각 라인(244)을 이용하여 보조적으로 냉각한다. 따라서, 냉각 라인(240)을 이용하여 가열 블록(220)을 신속하게 냉각할 수 있다. 가열 블록(220)이 냉각됨에 따라 흡착판(230)에 고정된 칩(20)의 범프를 신속하게 냉각하여 상기 솔더를 형성할 수 있다The first cooling line 242 is used to primarily cool the heating block 220 and the second cooling line 244 to assist cooling. Thus, the cooling block 240 can be used to quickly cool the heating block 220. As the heating block 220 is cooled, the bumps of the chip 20 fixed to the attracting plate 230 can be rapidly cooled to form the solder
한편, 가열 블록(220)은 냉각 라인(240), 구체적으로, 제1 냉각 라인(242)을 부분적으로 노출하는 개구(227)를 갖는다. 예를 들면 개구(227)는 가열 블록(220)의 상하를 관통하면서 측면까지 연장하는 홈일 수 있다. On the other hand, the heating block 220 has an opening 227 partially exposing the cooling line 240, specifically, the first cooling line 242. For example, the opening 227 may be a groove extending through the heating block 220 up and down to the side.
개구(227)는 베이스 블록(210)의 상부면까지 연장한 다수의 제1 냉각 라인(242)들 중에서 일부를 선택적으로 노출하거나, 제1 냉각 라인(242)들 각각을 부분적으로 노출할 수 있다. The opening 227 may selectively expose a portion of the plurality of first cooling lines 242 extending to the top surface of the base block 210 or may partially expose each of the first cooling lines 242 .
특히, 개구(227)가 다수의 제1 냉각 라인(242)들 중에서 일부를 선택적으로 노출하는 경우, 개구(227)들이 가열 블록(220)의 일측에 배치되면, 가열 블록(220)과 흡착판(230)의 온도 분포가 불균일하게 된다. 따라서, 칩(20)에 형성되는 솔더의 품질이 저하될 수 있다. Particularly when the openings 227 are disposed on one side of the heating block 220 when the openings 227 selectively expose a part of the plurality of first cooling lines 242, 230 are not uniform. Therefore, the quality of the solder formed on the chip 20 may be deteriorated.
그러므로, 개구(227)가 다수의 제1 냉각 라인(242)들 중에서 일부를 선택적으로 노출하는 경우, 개구(227)들은 가열 블록(220)의 중심을 기준으로 대칭되도록 배치될 수 있다. 이 경우, 가열 블록(220)과 흡착판(230)의 온도 분포를 상대적으로 균일하게 함으로써 칩(20)에 형성되는 솔더의 품질이 향상시킬 수 있다. The openings 227 may be arranged to be symmetrical with respect to the center of the heating block 220 when the openings 227 selectively expose a portion of the plurality of first cooling lines 242. In this case, the quality of the solder formed on the chip 20 can be improved by making the temperature distribution of the heating block 220 and the attracting plate 230 relatively uniform.
제1 냉각 라인(242)을 통해 제공된 냉각 유체 중 일부는 가열 블록(220)으로 제공되어 가열 블록(220)을 냉각하고, 상기 냉각 유체 중 나머지는 개구(227)를 통해 흡착판(230)으로 제공되어 흡착(230)을 직접 냉각한다. 즉, 제1 냉각 라인(242)을 통해 제공된 냉각 유체는 가열 블록(220)을 냉각하여 흡착판(230)을 냉각하면서 흡착판(230)을 직접 냉각할 수 있다. 또한, 제1 냉각 라인(242)을 통해 제공된 냉각 유체는 가열 블록(220)과 흡착판(230)을 냉각한 후 개구(227)를 통해 외부로 배출될 수 있다. A portion of the cooling fluid provided through the first cooling line 242 is provided to the heating block 220 to cool the heating block 220 and the remainder of the cooling fluid is supplied to the adsorption plate 230 through the opening 227 Thereby directly cooling the adsorption 230. That is, the cooling fluid provided through the first cooling line 242 can directly cool the adsorption plate 230 while cooling the adsorption plate 230 by cooling the heating block 220. The cooling fluid provided through the first cooling line 242 may be discharged to the outside through the opening 227 after cooling the heating block 220 and the adsorption plate 230.
따라서, 흡착판(230)에 고정된 칩(20)의 범프를 보다 신속하게 냉각할 수 있다. 그러므로, 가열 블록(220)에 의해 녹은 칩(20)의 범프를 급속으로 냉각하여 양호한 형상의 솔더를 형성할 수 있다. Therefore, the bumps of the chip 20 fixed to the suction plate 230 can be cooled more quickly. Therefore, the bumps of the chip 20 melted by the heating block 220 can be rapidly cooled to form a solder of a good shape.
한편, 개구(227)가 가열 블록(220)의 상하를 관통하면서 측면까지 연장하는 홈 형태를 가지므로, 가열 블록(220)을 가공하여 개구(227)를 형성하기가 용이하다. On the other hand, since the opening 227 has a groove shape extending through the upper and lower sides of the heating block 220 and extending to the side, it is easy to form the opening 227 by processing the heating block 220.
또한, 개구(227)가 가열 블록(220)의 상하를 관통하면서 측면까지 연장하는 홈 형태를 가지므로, 개구(227)에 의해 흡착판(230)이 상대적으로 많이 노출될 수 있다. 따라서, 제1 냉각 라인(242)을 통해 제공된 냉각 유체가 개구(227)를 통해 외부로 배출되면서 흡착판(230)과 접촉하는 면적이 늘어날 수 있다. 그러므로, 제1 냉각 라인(242)을 통해 제공된 냉각 유체에 의해 흡착판(230)이 직접 냉각되는 효과를 보다 높일 수 있다. Also, since the opening 227 has a groove shape extending through the heating block 220 and extending to the side surface, the suction plate 230 can be relatively exposed by the opening 227. Accordingly, the cooling fluid provided through the first cooling line 242 can be discharged to the outside through the opening 227, and the contact area with the attracting plate 230 can be increased. Therefore, the effect of directly cooling the adsorption plate 230 by the cooling fluid provided through the first cooling line 242 can be further enhanced.
개구(227)가 제1 냉각 라인(242)의 영역 중 약 30% 미만을 노출하는 경우, 제1 냉각 라인(242)을 통해 제공된 냉각 유체가 흡착판(230)을 직접 냉각하는 효과가 상대적으로 저하될 수 있다. 따라서, 제1 냉각 라인(242)을 통해 제공된 냉각 유체가 칩(20)의 범프를 급속으로 냉각하기 어렵다.If the opening 227 exposes less than about 30% of the area of the first cooling line 242, the effect of direct cooling of the adsorption plate 230 by the cooling fluid provided through the first cooling line 242 is relatively low . Therefore, it is difficult for the cooling fluid provided through the first cooling line 242 to rapidly cool the bumps of the chip 20. [
개구(227)가 제1 냉각 라인(242)의 영역 중 약 70%를 초과하여 노출하는 경우, 제1 냉각 라인(242)을 통해 제공된 냉각 유체가 흡착판(230)을 직접 냉각하는 효과는 상대적으로 높아지지만 제1 냉각 라인(242)을 통해 제공된 냉각 유체가 가열 블록(220)을 냉각하는 효과가 상대적으로 저하될 수 있다. 제1 냉각 라인(242)을 통해 제공된 냉각 유체가 흡착판(230)을 직접 냉각하더라도 가열 블록(220)의 열이 흡착판(230)으로 전달될 수 있으므로, 칩(20)의 범프를 급속으로 냉각하기 어렵다. 또한, 개구(227)의 영역이 증가할수록 가열 블록(220)의 영역이 감소하므로, 가열 블록(220)의 발열량이 감소할 수 있다. 따라서, 칩(20)의 범프를 급속으로 녹이기 어렵다. The effect of direct cooling of the adsorption plate 230 by the cooling fluid provided through the first cooling line 242 when the opening 227 exposes greater than about 70% of the area of the first cooling line 242, The effect of cooling fluid provided through the first cooling line 242 to cool the heating block 220 may be relatively reduced. The heat of the heating block 220 can be transferred to the sucking plate 230 even if the cooling fluid provided through the first cooling line 242 directly cools the sucking plate 230 so that the bumps of the chip 20 are cooled rapidly it's difficult. In addition, as the area of the opening 227 increases, the area of the heating block 220 decreases, so that the amount of heat generated by the heating block 220 can be reduced. Therefore, it is difficult to rapidly dissolve the bumps of the chip 20.
그러므로, 개구(227)는 제1 냉각 라인(242)의 영역 중 약 30% 내지 70%를 노출할 수 있다.Therefore, the opening 227 may expose about 30% to 70% of the area of the first cooling line 242.
도 9는 본 발명의 다른 실시예에 따른 가열 블록의 개구를 설명하기 위한 단면도이고, 도 10은 도 9에 도시된 가열 블록의 개구를 설명하기 위한 평면도이다. FIG. 9 is a sectional view for explaining an opening of a heating block according to another embodiment of the present invention, and FIG. 10 is a plan view for explaining an opening of the heating block shown in FIG.
도 9 및 도 10을 참조하면, 가열 블록(220)은 제1 냉각 라인(242)을 부분적으로 노출하는 개구(228)를 갖는다. 예를 들면, 개구(228)는 상하를 관통하는 관통홀일 수 있다. 이때, 제1 냉각 라인(242)을 통해 제공된 냉각 유체는 제1 냉각 라인(242)을 따라 순환하거나, 가열 블록(220)과 흡착판(230) 사이 또는 가열 블록(220)과 베이스 블록(210)의 제2 블록(214) 사이를 통해 외부로 배출될 수 있다. Referring to FIGS. 9 and 10, the heating block 220 has an opening 228 that partially exposes the first cooling line 242. For example, the opening 228 may be a through hole passing through the top and bottom. The cooling fluid provided through the first cooling line 242 may be circulated along the first cooling line 242 or may be circulated between the heating block 220 and the attracting plate 230 or between the heating block 220 and the base block 210, The second block 214 of FIG.
개구(228)는 제1 냉각 라인(242)의 영역 중 약 30% 내지 70%를 노출할 수 있다.The opening 228 may expose about 30% to 70% of the area of the first cooling line 242.
도 11은 본 발명의 또 다른 실시예에 따른 가열 블록의 개구를 설명하기 위한 단면도이다.11 is a cross-sectional view illustrating an opening of a heating block according to another embodiment of the present invention.
도 11을 참조하면, 가열 블록(220)은 제1 냉각 라인(242)을 부분적으로 노출하는 개구(228)를 갖는다. 예를 들면, 개구(228)는 상하를 관통하는 관통홀일 수 있다. Referring to FIG. 11, the heating block 220 has an opening 228 that partially exposes the first cooling line 242. For example, the opening 228 may be a through hole passing through the top and bottom.
또한, 개구(228)와 연결되는 연결홈(229)이 더 형성될 수 있다. 연결홈(229)은 가열 블록(220)의 상부면과 흡착판(230)의 하부면 중 적어도 하나에 구비될 수 있다. Further, a connection groove 229 connected to the opening 228 may be further formed. The connection groove 229 may be provided on at least one of the upper surface of the heating block 220 and the lower surface of the attracting plate 230.
일 예로, 연결홈(229)은 도 5에 도시된 바와 같이 가열 블록(220)의 상부면에 형성될 수 있다. 다른 예로, 연결홈(229)은 흡착판(230)의 하부면에 형성될 수도 있다. 또 다른 예로, 연결홈(229)은 가열 블록(220)의 상부면과 흡착판(230)의 하부면에 각각 형성될 수도 있다. For example, the connection groove 229 may be formed on the upper surface of the heating block 220 as shown in FIG. As another example, the connection groove 229 may be formed on the lower surface of the attraction plate 230. As another example, the connection groove 229 may be formed on the upper surface of the heating block 220 and the lower surface of the attraction plate 230, respectively.
제1 냉각 라인(242)을 통해 제공된 냉각 유체는 연결홈(229)을 통해 외부로 배출될 수 있다. The cooling fluid provided through the first cooling line 242 can be discharged to the outside through the connection groove 229. [
한편, 도시되지는 않았지만, 연결홈(229)은 가열 블록(220)의 하부면과 베이스 블록(210)의 상부면 중 적어도 하나에 개구(228)와 연결되도록 구비될 수도 있다. The connection groove 229 may be provided to be connected to the opening 228 on at least one of the lower surface of the heating block 220 and the upper surface of the base block 210. [
본딩 헤드(200)는 온도 센서를 더 포함할 수 있다. 상기 온도 센서는 가열 블록(220)의 내부에 구비되며, 가열 블록(220)의 온도를 감지한다. 상기 온도 센서의 감지 결과에 따라 발열체(222)에 제공되는 전원의 온오프 및 냉각 라인(240)의 냉각 유체의 분사, 냉매 온도 및 순환을 제어할 수 있다. The bonding head 200 may further include a temperature sensor. The temperature sensor is provided inside the heating block 220 and senses the temperature of the heating block 220. The ON / OFF of the power provided to the heating element 222 and the injection of the cooling fluid in the cooling line 240, the temperature of the refrigerant, and the circulation can be controlled according to the detection result of the temperature sensor.
한편, 상기 온도 센서는 흡착판(230)에 구비될 수도 있다. Meanwhile, the temperature sensor may be provided on the attracting plate 230.
본딩 헤드(200)는 칩(20)을 이송하여 웨이퍼(10)에 밀착시킨 상태에서 가열 블록(220)으로 칩(20)의 가열하여 칩(20)의 범프를 녹인 후 냉각 라인(240)을 이용하여 상기 칩(20)을 냉각시킴으로써 칩(20)을 웨이퍼(10)에 본딩한다. 본딩 헤드(200)가 칩(20)을 급속으로 가열하고 급속으로 냉각하므로, 웨이퍼(10)와 칩(20) 사이에 우수한 품질과 양호한 형상의 솔더를 형성할 수 있다. The bonding head 200 heats the chip 20 with the heating block 220 to melt the bumps of the chip 20 in a state in which the chip 20 is transferred to the wafer 10, The chips 20 are bonded to the wafer 10 by cooling them. The bonding head 200 rapidly heats and rapidly cools the chip 20, so that a good quality and good shape solder can be formed between the wafer 10 and the chip 20. [
본딩 헤드(200)는 상기 칩(20)의 가열과 냉각을 신속하게 수행할 수 있으므로, 칩(20)을 웨이퍼(10)에 본딩하는 공정의 효율성을 향상시킬 수 있다. The bonding head 200 can quickly perform the heating and cooling of the chip 20, so that the efficiency of the process of bonding the chip 20 to the wafer 10 can be improved.
본딩 장치(300)는 척 구조물(100)을 이용하여 웨이퍼(10)를 고정하여 일정 온도로 가열한 상태에서 본딩 헤드(100)로 칩(10)을 이송하여 웨이퍼(10)에 밀착시킨 후, 본딩 헤드(100)로 칩(10)의 가열하여 칩(10)의 범프를 녹인 후 칩(10)을 냉각시킴으로써 칩(10)을 웨이퍼(10)에 본딩한다. 따라서, 칩(10)과 웨이퍼(10) 사이에 우수한 품질과 양호한 형상의 솔더를 형성할 수 있다. 또한, 칩(10)의 가열과 냉각을 신속하게 수행할 수 있으므로, 본딩 장치(300)를 이용한 칩(10)을 웨이퍼(10)에 본딩하는 공정의 효율성을 향상시킬 수 있다. The bonding apparatus 300 fixes the wafer 10 using the chuck structure 100 and transfers the chip 10 to the wafer 10 while the chip 10 is heated to a predetermined temperature by the bonding head 100, The chip 10 is bonded to the wafer 10 by melting the bump of the chip 10 by heating the chip 10 with the bonding head 100 and then cooling the chip 10. Therefore, it is possible to form a solder of good quality and good shape between the chip 10 and the wafer 10. [ In addition, since the heating and cooling of the chip 10 can be performed quickly, the efficiency of the process of bonding the chip 10 using the bonding apparatus 300 to the wafer 10 can be improved.
본딩 헤드(100)는 칩(10)을 이송하여 웨이퍼(10) 상에 적층시킬 수 있다. 따라서, 본딩 장치(300)가 별도의 칩 이송 수단을 구비할 필요가 없으므로, 본딩 장치(300)의 구조를 단순화할 수 있다.The bonding head 100 can transfer the chips 10 and stack them on the wafer 10. [ Accordingly, since the bonding apparatus 300 does not need to have a separate chip transfer means, the structure of the bonding apparatus 300 can be simplified.
상술한 바와 같이, 본 발명에 따른 척 플레이트, 상기 척 플레이트를 갖는 척 구조물 및 척 구조물을 갖는 본딩 장치는 웨이퍼를 흡착하기 위한 진공력으로 가열 플레이트와 척 플레이트를 밀착시킬 수 있다. 상기 진공력만을 해제하여 상기 가열 플레이트와 상기 척 플레이트를 분리할 수 수리 또는 교체가 가능하므로, 상기 척 구조물에 대한 유지 보수를 신속하게 수행할 수 있다.As described above, the bonding apparatus having the chuck plate, the chuck structure having the chuck plate, and the chuck structure according to the present invention can bring the heating plate and the chuck plate into close contact with each other by vacuum force for adsorbing the wafer. The heating plate and the chuck plate can be separated from each other by releasing only the vacuum force, so that maintenance or replacement of the chuck structure can be performed quickly.
상기에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit or scope of the present invention as defined by the following claims. It can be understood that it is possible.

Claims (14)

  1. 가열 플레이트 상에 놓여지며, 상면에 웨이퍼를 지지하며, 상기 웨이퍼가 가열되도록 상기 가열 플레이트에서 발생한 열을 상기 웨이퍼로 전달하고, 진공력으로 상기 웨이퍼를 흡착하기 위해 상하를 관통하는 진공홀들 및 상기 가열 플레이트에 진공 흡착되도록 하부면에 구비되며 상기 가열 플레이트의 상부면에 의해 한정되어 공간을 형성하는 진공 홈을 갖는 것을 특징으로 하는 척 플레이트.Vacuum holes for passing the heat generated by the heating plate to the wafer to support the wafer on the upper surface and penetrating the wafer to adsorb the wafer by a vacuum force, And a vacuum groove formed on the lower surface so as to be vacuum-adsorbed on the heating plate and defined by the upper surface of the heating plate to form a space.
  2. 제1항에 있어서, 상기 척 플레이트가 질화알루미늄의 열전도율보다 낮은 열전도율을 갖도록 상기 척 플레이트는 산화알루미늄에 티타늄이 첨가된 재질로 이루어지는 것을 특징으로 하는 척 플레이트.The chuck plate according to claim 1, wherein the chuck plate is made of a material to which titanium oxide is added to aluminum oxide so that the chuck plate has a thermal conductivity lower than a thermal conductivity of aluminum nitride.
  3. 제2항에 있어서, 상기 척 플레이트에서 상기 산화알루미늄 100 중량부에 대해 상기 티타늄 10 내지 20 중량부가 첨가되는 것을 특징으로 하는 척 플레이트.The chuck plate according to claim 2, wherein 10 to 20 parts by weight of the titanium is added to 100 parts by weight of the aluminum oxide in the chuck plate.
  4. 제2항에 있어서, 상기 척 플레이트의 열전도율은 5 내지 20 W/m·k 인 것을 특징으로 하는 척 플레이트.The chuck plate according to claim 2, wherein the chuck plate has a thermal conductivity of 5 to 20 W / m · k.
  5. 제1항에 있어서, 상기 척 플레이트의 가장자리에서도 상기 웨이퍼가 밀착되도록 하기 위해 상기 척 플레이트의 최외각에 위치하는 진공홀들의 간격이 상기 최외각보다 내측에 위치하는 진공홀들의 간격보다 좁게 배치되는 것을 특징으로 하는 척 플레이트. The chuck plate according to claim 1, wherein a distance between the vacuum holes located at the outermost periphery of the chuck plate is narrower than an interval between the vacuum holes located inside the outermost periphery so that the wafer is closely attached to the edge of the chuck plate Features a chuck plate.
  6. 외부로부터 인가되는 전원에 의해 열을 발생하는 발열체를 내장하며, 진공력을 제공하기 위해 상부면까지 연장하는 제1 진공 라인 및 제2 진공 라인을 갖는 가열 플레이트; 및A heating plate having a heating element which generates heat by an external power source and has a first vacuum line and a second vacuum line extending to the upper surface to provide a vacuum force; And
    상기 가열 플레이트 상에 놓여지며, 상면에 웨이퍼를 지지하며, 상기 웨이퍼가 가열되도록 상기 가열 플레이트에서 발생한 열을 상기 웨이퍼로 전달하고, 상기 진공력으로 상기 웨이퍼를 흡착하기 위해 상기 제1 진공 라인과 연결되는 제3 진공 라인 및 상기 가열 플레이트에 진공 흡착되도록 하부면에 상기 제2 진공 라인과 연결되도록 구비되며, 상기 가열 플레이트의 상부면에 의해 한정되어 공간을 형성하는 진공 홈을 갖는 척 플레이트를 포함하는 것을 특징으로 하는 척 구조물. And a second vacuum line connected to the first vacuum line for adsorbing the wafer with the vacuum force, the vacuum plate being disposed on the heating plate, supporting the wafer on the upper surface, transferring heat generated in the heating plate to heat the wafer, And a chuck plate connected to the second vacuum line on a lower surface so as to be vacuum-adsorbed on the heating plate and having a vacuum groove defined by the upper surface of the heating plate and forming a space, Wherein the chuck structure comprises:
  7. 제6항에 있어서, 상기 제3 진공 라인은, 7. The apparatus of claim 6, wherein the third vacuum line comprises:
    상기 척 플레이트의 하부면에 상기 제1 진공 라인과 연결되도록 구비되며, 상기 척 플레이트의 하부면과 상기 가열 플레이트의 상부면에 의해 한정되어 공간을 형성하는 진공 홈; 및A vacuum groove connected to the first vacuum line on a lower surface of the chuck plate and defining a space defined by a lower surface of the chuck plate and an upper surface of the heating plate; And
    상기 척 플레이트를 관통하여 상기 진공 홈이 형성된 하부면에서부터 상기 척 플레이트의 상부면까지 연장하는 다수의 진공 홀들을 포함하는 것을 특징으로 하는 척 구조물. And a plurality of vacuum holes extending from the lower surface of the chuck plate through which the vacuum groove is formed to the upper surface of the chuck plate.
  8. 제6항에 있어서, 상기 제1 진공 라인은, The method of claim 6, wherein the first vacuum line comprises:
    상기 가열 플레이트의 상부면에 상기 제3 진공 라인과 연결되도록 구비되며, 상기 척 플레이트의 하부면과 상기 가열 플레이트의 상부면에 의해 한정되어 공간을 형성하는 진공 홈; 및A vacuum groove connected to the third vacuum line on an upper surface of the heating plate and defining a space defined by a lower surface of the chuck plate and an upper surface of the heating plate; And
    상기 가열 플레이트를 관통하여 하부면에서부터 상기 진공 홈이 형성된 상부면까지 연장하는 다수의 진공 홀들을 포함하는 것을 특징으로 하는 척 구조물. And a plurality of vacuum holes extending through the heating plate from the lower surface to the upper surface on which the vacuum groove is formed.
  9. 제6항에 있어서, 상기 가열 플레이트의 상부면과 상기 척 플레이트의 하부면 중 어느 한 면에는 정렬 핀이 구비되고, 나머지 한 면에는 상기 정렬 핀을 수용하여 상기 가열 플레이트와 상기 척 플레이트를 정렬하기 위한 수용홈이 구비되는 것을 특징으로 하는 척 구조물. [7] The apparatus of claim 6, wherein the heating plate has an alignment pin on one of the upper surface and the lower surface of the chuck plate, Wherein the chuck structure is provided with a receiving groove for receiving the chuck.
  10. 제6항에 있어서, 상기 가열 플레이트의 상면 가장자리를 따라 형성된 홈에 걸리며 상기 가열 플레이트의 둘레를 가이드하는 가이드 링: 및[7] The apparatus of claim 6, further comprising: a guide ring which is hooked on a groove formed along an upper edge of the heating plate and guides the periphery of the heating plate;
    상기 척 플레이트의 상부면 가장자리를 덮은 상태로 상기 가이드 링에 고정되며, 상기 척 플레이트를 상기 가열 플레이트에 밀착시키는 고정시키는 클램프를 더 포함하는 것을 특징으로 하는 척 구조물. Further comprising a clamp fixed to the guide ring so as to cover the upper surface edge of the chuck plate and fixing the chuck plate to the heating plate.
  11. 제10항에 있어서, 상기 클램프의 상면과 상기 척 플레이트의 상면이 동일한 높이에 위치하도록 상기 클램프는 상기 척 플레이트의 상면 가장자리를 따라 형성된 홈에 놓여지는 것을 특징으로 하는 척 구조물. 11. The chuck structure of claim 10, wherein the clamp is placed in a groove formed along the top edge of the chuck plate such that the top surface of the clamp and the top surface of the chuck plate are at the same height.
  12. 제10항에 있어서, 상기 가열 플레이트 및 상기 척 플레이트의 측면을 통한 열손실을 방지하기 위해 상기 가이드 링 및 상기 클램프는 상기 척 플레이트보다 열전도율이 낮은 재질로 이루어지는 것을 특징으로 하는 척 구조물. The chuck structure according to claim 10, wherein the guide ring and the clamp are made of a material having a thermal conductivity lower than that of the chuck plate to prevent heat loss through the side surfaces of the heating plate and the chuck plate.
  13. 외부로부터 인가되는 전원에 의해 열을 발생하는 발열체를 내장하며, 진공력을 제공하기 위해 상부면까지 연장하는 제1 진공 라인 및 제2 진공 라인을 갖는 가열 플레이트 및 상기 가열 플레이트 상에 놓여지며, 상면에 웨이퍼를 지지하며, 상기 웨이퍼가 가열되도록 상기 가열 플레이트에서 발생한 열을 상기 웨이퍼로 전달하고, 상기 진공력으로 상기 웨이퍼를 흡착하기 위해 상기 제1 진공 라인과 연결되는 제3 진공 라인 및 상기 가열 플레이트에 진공 흡착되도록 하부면에 상기 제2 진공 라인과 연결되도록 구비되며, 상기 가열 플레이트의 상부면에 의해 한정되어 공간을 형성하는 진공 홈을 갖는 척 플레이트를 포함하는 척 구조물; 및A heating plate having a heating element which generates heat by an external power source and has a first vacuum line and a second vacuum line extending to an upper surface to provide a vacuum force, And a third vacuum line coupled to the first vacuum line for transferring heat generated at the heating plate to the wafer so as to heat the wafer and for adsorbing the wafer with the vacuum force, A chuck plate connected to the second vacuum line on the lower surface so as to be vacuum-adsorbed on the chuck plate, the chuck plate having a vacuum groove defined by an upper surface of the heating plate and forming a space; And
    상기 척 구조물 상에 구비되며, 칩을 고정 및 가열하여 상기 웨이퍼에 본딩하는 본딩 헤드로 이루어지는 것을 특징으로 하는 본딩 장치. And a bonding head which is provided on the chuck structure and which fixes and heats the chip and bonds the wafer to the wafer.
  14. 제13항에 있어서, 상기 본딩 헤드는, 14. The bonding head according to claim 13,
    베이스 블록;Base block;
    상기 베이스 블록 상에 구비되고, 외부로부터 인가되는 전원에 의해 열을 발생하여 칩을 가열하기 위한 발열체를 내장하며, 진공력을 제공하기 위해 상부면까지 연장하는 제4 진공 라인 및 제5 진공 라인을 갖는 가열 블록; 및A fourth vacuum line and a fifth vacuum line, which are provided on the base block and extend to the upper surface to generate heat by generating heat by a power source applied from the outside and incorporate a heating element for heating the chip, A heating block having; And
    상기 가열 블록 상에 상기 제4 진공 라인의 진공력에 의해 고정되며, 상기 칩을 진공력으로 고정하기 위해 상기 제5 진공 라인과 연결되는 진공홀을 갖는 흡착판을 포함하는 것을 특징으로 하는 본딩 장치. And a suction plate fixed on the heating block by a vacuum force of the fourth vacuum line and having a vacuum hole connected to the fifth vacuum line for fixing the chip by a vacuum force.
PCT/KR2018/006277 2017-11-09 2018-06-01 Chuck plate, chuck structure having chuck plate, and bonding device having chuck structure WO2019093609A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880072948.4A CN111344855A (en) 2017-11-09 2018-06-01 Chuck plate, chuck structure having the chuck plate, and welding device having the chuck structure
SG11202004112PA SG11202004112PA (en) 2017-11-09 2018-06-01 Chuck plate, chuck structure having chuck plate, and bonding device having chuck structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0148537 2017-11-09
KR1020170148537A KR102454462B1 (en) 2017-11-09 2017-11-09 Chuck plate, chuck structure having the chuck plate, and bonding apparatus having the chuck structure

Publications (1)

Publication Number Publication Date
WO2019093609A1 true WO2019093609A1 (en) 2019-05-16

Family

ID=66437854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/006277 WO2019093609A1 (en) 2017-11-09 2018-06-01 Chuck plate, chuck structure having chuck plate, and bonding device having chuck structure

Country Status (5)

Country Link
KR (1) KR102454462B1 (en)
CN (1) CN111344855A (en)
SG (1) SG11202004112PA (en)
TW (1) TWI796335B (en)
WO (1) WO2019093609A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114393468A (en) * 2021-12-29 2022-04-26 江苏威森美微电子有限公司 Edge grinding machine for edge grinding processing of semiconductor wafer
CN115332129A (en) * 2022-10-17 2022-11-11 宁波润华全芯微电子设备有限公司 Wafer tackifying device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102498914B1 (en) * 2020-12-08 2023-02-13 주식회사 미코세라믹스 Bonding head and apparatus for bonding chips having the bonding head
CN112563185B (en) * 2021-02-20 2021-06-08 北京中硅泰克精密技术有限公司 Electrostatic chuck and semiconductor processing equipment
CN116666321B (en) * 2023-07-25 2023-10-27 天津中科晶禾电子科技有限责任公司 Temperature maintaining device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090019273A (en) * 2007-08-20 2009-02-25 세크론 주식회사 Apparatus for heating a substrate
US20140065553A1 (en) * 2012-08-31 2014-03-06 United Microelectronics Corporation Chuck and semiconductor process using the same
KR20140094458A (en) * 2013-01-21 2014-07-30 베시 스위처랜드 아게 Bonding head with a heatable and coolable suction member
KR20150111147A (en) * 2014-03-25 2015-10-05 한국생산기술연구원 The hybrid ESC and method of fabricating the same
KR101593833B1 (en) * 2014-10-17 2016-02-12 세메스 주식회사 Unit for heating a printed circuit board and apparatus for bonding dies including the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6108189A (en) * 1996-04-26 2000-08-22 Applied Materials, Inc. Electrostatic chuck having improved gas conduits
US6529362B2 (en) * 1997-03-06 2003-03-04 Applied Materials Inc. Monocrystalline ceramic electrostatic chuck
JP2001267403A (en) * 2000-03-21 2001-09-28 Nhk Spring Co Ltd Semiconductor wafer heating/cooling device
JP2005279788A (en) * 2004-03-26 2005-10-13 Ibiden Co Ltd Vacuum chuck for grinding/polishing
JP4497103B2 (en) * 2006-02-21 2010-07-07 住友電気工業株式会社 Wafer holder, heater unit on which it is mounted, and wafer prober
KR101057118B1 (en) * 2009-03-31 2011-08-16 피에스케이 주식회사 Substrate Processing Apparatus and Method
KR101543864B1 (en) * 2013-11-13 2015-08-11 세메스 주식회사 Bonding head and die bonding apparatus including the same
JP6373811B2 (en) * 2015-09-08 2018-08-15 東芝メモリ株式会社 Semiconductor device manufacturing method and manufacturing apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090019273A (en) * 2007-08-20 2009-02-25 세크론 주식회사 Apparatus for heating a substrate
US20140065553A1 (en) * 2012-08-31 2014-03-06 United Microelectronics Corporation Chuck and semiconductor process using the same
KR20140094458A (en) * 2013-01-21 2014-07-30 베시 스위처랜드 아게 Bonding head with a heatable and coolable suction member
KR20150111147A (en) * 2014-03-25 2015-10-05 한국생산기술연구원 The hybrid ESC and method of fabricating the same
KR101593833B1 (en) * 2014-10-17 2016-02-12 세메스 주식회사 Unit for heating a printed circuit board and apparatus for bonding dies including the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114393468A (en) * 2021-12-29 2022-04-26 江苏威森美微电子有限公司 Edge grinding machine for edge grinding processing of semiconductor wafer
CN114393468B (en) * 2021-12-29 2023-03-10 江苏威森美微电子有限公司 Edge grinding machine for edge grinding processing of semiconductor wafer
CN115332129A (en) * 2022-10-17 2022-11-11 宁波润华全芯微电子设备有限公司 Wafer tackifying device

Also Published As

Publication number Publication date
KR102454462B1 (en) 2022-10-14
CN111344855A (en) 2020-06-26
KR20190052802A (en) 2019-05-17
SG11202004112PA (en) 2020-06-29
TWI796335B (en) 2023-03-21
TW201919146A (en) 2019-05-16

Similar Documents

Publication Publication Date Title
WO2019093609A1 (en) Chuck plate, chuck structure having chuck plate, and bonding device having chuck structure
WO2019004620A1 (en) Bonding head and bonding device including same
WO2022124780A1 (en) Bonding head and bonding device having same
WO2014109526A1 (en) Apparatus and method for continuous processing of semiconductor wafer
WO2014109528A1 (en) Method for continuous processing of semiconductor wafer
WO2021100960A1 (en) Laser reflow device and laser reflow method
WO2021215741A1 (en) Photosensitive transfer resin for transferring led chip, method for transferring led chip using photosensitive transfer resin, and method for manufacturing display device using same
WO2020080779A1 (en) Light emitting diode and manufacturing method of light emitting diode
US20080179378A1 (en) Method of forming bumps on a wafer utilizing a post-heating operation, and an apparatus therefore
WO2018174355A1 (en) Bonding head and bonding device having same
WO2019177337A1 (en) Transfer apparatus and method for transferring light-emitting diode chip
WO2018012783A1 (en) Chuck plate for semiconductor post-processing, chuck structure having same chuck plate and chip separating apparatus having same chuck structure
WO2016204424A1 (en) Hybrid substrate processing system for dry and wet process and substrate processing method thereof
WO2020204394A1 (en) Microelement adsorption picker
WO2015064953A1 (en) Method for manufacturing electronic component
WO2019022345A1 (en) Device and method for bonding thermoelectric element
WO2020184859A1 (en) Transfer device and method for transferring semiconductor chip
WO2020032511A1 (en) Mask-transfer system, and method for manufacturing mask having integrated frame
WO2019203510A1 (en) Apparatus for manufacturing frame-integrated mask
WO2014115929A1 (en) Sealing package of semiconductor chip and processing method therefor
WO2023113287A1 (en) Clad heat sink having vertical mesh structure and method for manufacturing same
WO2021221460A1 (en) Adhesive transfer film and method for manufacturing power module substrate by using same
WO2022235005A1 (en) Probe array gripper and probe array bonding equipment comprising same
WO2020032513A1 (en) Mask supporting template, method for manufacturing same, and method for manufacturing frame-integrated mask
WO2019117657A1 (en) Light sintering device and cooling method for light sintering device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18877098

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18877098

Country of ref document: EP

Kind code of ref document: A1