WO2014109526A1 - Apparatus and method for continuous processing of semiconductor wafer - Google Patents

Apparatus and method for continuous processing of semiconductor wafer Download PDF

Info

Publication number
WO2014109526A1
WO2014109526A1 PCT/KR2014/000143 KR2014000143W WO2014109526A1 WO 2014109526 A1 WO2014109526 A1 WO 2014109526A1 KR 2014000143 W KR2014000143 W KR 2014000143W WO 2014109526 A1 WO2014109526 A1 WO 2014109526A1
Authority
WO
WIPO (PCT)
Prior art keywords
wafer
chamber
turntable
chambers
susceptor
Prior art date
Application number
PCT/KR2014/000143
Other languages
French (fr)
Korean (ko)
Inventor
이원구
서현모
안현환
류수렬
최우진
Original Assignee
(주)에스티아이
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)에스티아이 filed Critical (주)에스티아이
Priority to CN201480004276.5A priority Critical patent/CN104919583A/en
Publication of WO2014109526A1 publication Critical patent/WO2014109526A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67161Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers
    • H01L21/67173Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers in-line arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/6719Apparatus for manufacturing or treating in a plurality of work-stations characterized by the construction of the processing chambers, e.g. modular processing chambers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68764Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a movable susceptor, stage or support, others than those only rotating on their own vertical axis, e.g. susceptors on a rotating caroussel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68771Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by supporting more than one semiconductor substrate

Definitions

  • the present invention relates to a continuous processing apparatus and method for a semiconductor wafer, and more particularly, to a continuous processing apparatus and method for a semiconductor wafer that can reduce the number of chambers and simplify the structure for isolation of each chamber.
  • a device that performs reflow in a post-semiconductor process has a plurality of separate chambers so as to differentiate between atmosphere and temperature at each process step, and semiconductor wafers are used to enable continuous processing between the chambers.
  • Means for conveying are provided.
  • equipment using turntables passing through each chamber has been developed to arrange a plurality of chambers in a circle and to sequentially transfer loaded semiconductor wafers to each chamber.
  • FIG. 1 of US Pat. No. 6,827,789 which includes a loading chamber and an unloading chamber.
  • a turntable is used to sequentially move the loaded wafer to the next process chamber and finally free the wafer. It is configured to transfer to the loading chamber and unload the processed wafer by the robot.
  • the process plate and the lower isolation chamber are configured to be movable up and down to isolate the wafer transferred by the turntable and proceed with the process.
  • the treatment plate is generally referred to as a susceptor, and includes a heater therein, and a structure for vacuum adsorption of the wafer is formed, which is a relatively heavy material, which requires a large amount of energy to move the device up and down, and increases the volume of the device. There was this.
  • US Pat. No. 6,827,789 uses the bellows to separate the outside of the drive unit for moving the treatment plate and the lower isolation chamber up and down, but the bellows is damaged or exhausted due to the stress caused by frequent vertical movement. There is a problem that can be corroded by being exposed to the gas, the gas used in the process can be re-introduced into the apparatus without being exhausted by the damage of the bellows, the defect may occur in the process.
  • the diameter of the turntable for rotating the wafers increases as the size of the wafer increases, causing the rotating plate to bend or partially sag, and thus fail to transfer the wafer to the correct position, thereby causing a process defect.
  • the wafer can no longer remain isolated and the wafer is exposed to the space outside the isolated chamber. Therefore, when the wafer is processed by a heating process and exposed to an external space until the process proceeds in the next chamber, there is a problem that a process defect may occur due to a drop in wafer temperature.
  • An object of the present invention for solving the above problems is to isolate the wafer in each chamber and to allow movement between the chambers, but to minimize the consumption of power and to simplify the structure of the semiconductor wafer continuous processing apparatus and In providing a method.
  • another object of the present invention is to provide a continuous processing apparatus and method for a semiconductor wafer that can reduce the maintenance and repair cost by increasing the durability of the device.
  • another object of the present invention is to provide a continuous processing apparatus and method for a semiconductor wafer capable of preventing the occurrence of partial deflection or warpage of the turntable that sequentially moves the wafer into each chamber.
  • another object of the present invention is to provide a continuous processing apparatus and method for a semiconductor wafer capable of maintaining a state in which the wafer in a specific chamber in which the process is completed is separated from the susceptor until the process in another chamber is completed. In providing.
  • the continuous processing apparatus of the semiconductor wafer of the present invention for achieving the above object is a continuous processing apparatus of a semiconductor wafer comprising a plurality of chambers for processing the wafer by a plurality of processes, at least one of the plurality of chambers
  • the chamber includes a susceptor fixedly installed to support the wafer during the process; A lower housing fixedly installed at an outer side of the susceptor to form an isolated process space under the wafer; An upper housing moving up and down to form an isolated process space on top of the wafer; A hole provided between the upper housing and the lower housing, the hole exposing the upper portion of the susceptor is formed, rotates to transfer the wafer between the plurality of chambers, and moves the wafer up and down on the susceptor. turntable; And a seating ring inserted into the hole so as to be detached upwardly to seat the wafer.
  • One of the plurality of chambers may include a loading and unloading chamber in which a wafer is loaded from the outside and the unloaded wafer is processed to the outside.
  • the lower housing provides a lower side of an isolated process space with the turntable in contact with an upper end thereof;
  • the upper housing may have a lower end portion moving downward to provide an upper side of an isolated process space in contact with an upper portion of the turntable.
  • the lower housing provides a lower side of the isolated process space with the seating ring in contact with the upper end;
  • the upper housing may have a lower end portion moved downward to provide an upper side of the isolated process space in contact with the upper portion of the seating ring.
  • the susceptor may be heated to a set process temperature in a state in which the wafer transferred by the turntable is positioned above by the downward movement of the turntable.
  • the chamber may be provided with a lift pin for supporting the bottom surface of the wafer to seat the wafer on the seating ring.
  • a process head in which a wafer is processed by a process gas among the plurality of chambers includes a shower head at an upper side of the process space;
  • the shower head may be formed of a buffer space into which gas is introduced and a plurality of injection holes uniformly downward from the buffer space toward the wafer.
  • the seating ring may be formed in a stepped shape so that the wafer is seated inside.
  • the seating ring may have a plurality of gas through-holes through which the process gas passes along the outer circumference.
  • the process chamber in which the wafer is processed by the process gas among the plurality of chambers is movable up and down from the outside of the susceptor, and supports the bottom surface of the seating ring on which the wafer is seated so that the seating ring is removed from the hole. It may be provided with a lift pin for leaving upward.
  • a plurality of support pins protruding toward the center of the seating ring are formed inside the seating ring to support a bottom surface of the wafer;
  • the upper surface of the susceptor may be a groove formed in a slot shape so that the support pin is inserted and movable up and down.
  • the seating ring may be made of a non-metallic material or made of a ceramic material.
  • the upper side of the process chamber of the process chamber may be provided with an upper heater for applying heat to the upper portion of the wafer during the process.
  • a lower portion of the upper heater includes a buffer space into which a process gas flows and a shower head having a plurality of injection holes uniformly downward from the buffer space toward the wafer;
  • the upper heater may be to heat the process gas introduced into the buffer space.
  • the turntable When the turntable is rotated, it may further include a plurality of rollers in contact with the bottom edge portion of the turntable.
  • a bottom surface of the turntable may be formed with a receiving groove for receiving a portion of the roller when the turntable is moved downward.
  • a lower portion of the seating ring is provided with a ring-shaped baffle plate having a hole for uniformly passing the process gas along a circumference thereof; Process gas passing through the hole of the baffle plate may be exhausted through the exhaust port provided in the lower portion of the process chamber.
  • the upper housing may include a fixed part fixed to the upper plate and a moving part moved up and down under the fixing part to be in contact with the top surface of the turntable.
  • the upper housing may be formed in a bellows shape so that the lower end thereof is vertically moved by the driving unit to form the isolated process space.
  • a wafer continuous processing method of the present invention includes a semiconductor wafer continuous processing method using the semiconductor wafer continuous processing apparatus of claim 1, comprising: a first step of loading a wafer into a first chamber of the plurality of chambers; Process the wafer by sequentially transferring the wafer to the second to fifth chambers arranged in a circular shape together with the first chamber, wherein the second to fifth chambers are downward from the upper side of the wafer when processing the wafer.
  • the third step may be performed by transferring the wafer processed in the fifth chamber to the first chamber to cool the wafer, and then unloading the wafer from the first chamber to the outside.
  • the wafer of the chamber in which the process is completed in the second to fourth chambers is performed in a process space in which the wafer is spaced apart from the top of the susceptor in a process space isolated by the upper housing. It may consist of waiting until the process of is completed.
  • the second step may include heating the process gas injected to the wafer by a heater provided above the process space in one or two or more chambers selected from the second to fifth chambers.
  • the present invention is configured to seal the process space by using an upper housing moving up and down from the upper side of the chamber without moving the susceptor, which is a heavy object, up and down, thereby simplifying the configuration of the apparatus and reducing power consumption. There is an effect that can be reduced.
  • the present invention has the effect of reducing the time and cost required for maintenance and repair by excluding the use of low-durability parts, such as conventional bellows.
  • the present invention is to prevent the sag of the turntable and the large diameter of the rotary body, to prevent the occurrence of process defects, it is possible to reduce the cost and to extend the maintenance and repair period of the device.
  • the present invention separates the wafer in the chamber where the process is completed from the susceptor and waits until the process of the other chamber is completed, thereby preventing the wafer from being further heated in the standby state, thereby improving process reliability. It has an effect.
  • FIG. 1 is a schematic plan view of a continuous processing apparatus for a semiconductor wafer according to a preferred embodiment of the present invention
  • FIG. 2 is a schematic cross-sectional view of the A-A direction in FIG.
  • Figure 3 is a detailed cross-sectional configuration of the seating ring applied to the present invention
  • 4 to 13 is a schematic cross-sectional configuration of the present invention shown in accordance with the movement and processing of the wafer
  • FIG. 15 is a cross-sectional configuration diagram of a turntable according to another embodiment of the present invention.
  • 16 is a cross-sectional view illustrating an apparatus for continuously processing a semiconductor wafer according to another embodiment of the present invention.
  • 17 is a cross-sectional view illustrating a state in which the upper housing is raised in the state of FIG. 16.
  • FIG. 18 is a cross-sectional view illustrating a state in which the turntable and the seating ring are raised in the state of FIG. 17.
  • FIG. 19 is a plan view illustrating a wafer in a susceptor and a mounting ring provided in the continuous processing apparatus of FIG. 16.
  • FIG. 19 is a plan view illustrating a wafer in a susceptor and a mounting ring provided in the continuous processing apparatus of FIG. 16.
  • first chamber 110, 210, 310 susceptor
  • the outer body 610 lower plate
  • roller 1100 susceptor
  • FIG. 1 is a schematic plan view of a semiconductor wafer continuous processing apparatus according to a preferred embodiment of the present invention
  • Figure 2 is a schematic cross-sectional view of the AA direction in Figure 1
  • Figure 3 is a detailed cross-sectional configuration of the seating ring 720. .
  • the semiconductor wafer continuous processing apparatus according to the preferred embodiment of the present invention, the first to fifth chambers (100, 200, 300) arranged in a circle with respect to the center of the outer body 600 , 400, 500).
  • the outer body 600 is a disk-shaped lower plate 610, the disk-shaped upper plate 620 provided on the upper side of the lower plate 610, the edge and the upper plate of the lower plate (610) ( The upper and lower sides of the edge of the 620 is composed of a side housing 630 connected.
  • the upper plate 620 includes components such as piping for supplying a process gas at an upper position of each chamber 100, 200, 300, 400, 500, and a side housing 630 in which the first chamber 100 is located. Openings may be formed in the robot arm to allow entry / retraction of the robot arm for loading or unloading the wafer.
  • the first to fifth chambers 100, 200, 300, 400, and 500 are connected to the connection space 800, which is an inner space surrounded by the lower plate 610, the upper plate 620, and the side housing 630.
  • a turntable 700 having a rotation axis in the center is provided.
  • the turntable 700 is formed with the same number of openings 710 of the chamber (100, 200, 300, 400, 500).
  • the hole 710 is provided with a seating ring 720 on which a wafer is seated.
  • the seating ring 720 may be separated from the turntable 700 together with the wafer in a state where the wafer is seated by the vertical movement of the lift pin 240 to be described later.
  • the seating ring 720 is a stepped shape, as shown in Figure 3, the inner seating end 722 formed around the inner diameter portion so that the wafer (W) is seated, and the seating ring 720 is the turntable 700 It consists of an outer seating end 723 formed around the outer diameter portion so as to be seated in the hole 710 of the through, and through the up and down to allow gas to pass between the inner seating end 722 and the outer seating end 723 A gas through hole 721 is formed.
  • the gas evenly injected from the shower heads 160 and 260 described later to the upper front surface of the wafer W is exhausted to the exhaust ports 150 and 250 through the gas through hole 721. As such, since the exhaust flow of the process gas flows from the top to the bottom of the wafer W, less residue of the process gas is generated in the chamber.
  • the seating ring 720 is in contact with the wafer (W), the seating ring 720 is in contact with the turntable 700.
  • the turntable 700 is exposed to the connection space portion 800 outside the chamber, so that the temperature of the connection space portion 800 is transferred to the wafer W through the turntable 700 and the seating ring 720, and at a process temperature. Will be affected. Therefore, in order to block heat from being transferred to the wafer W, the seating ring 720 preferably uses a non-metallic material.
  • the seating ring 720 may be a ceramic having heat resistance because it is exposed to a high process temperature, and any other non-metallic material having low heat resistance and low conductivity may be applied.
  • the first to fifth chambers 100, 200, 300, 400, and 500 define an isolated space in which the wafer is processed, and components for setting a temperature and pressure for processing the wafer are provided for each chamber.
  • Each chamber may be isolated from the connection space 800 during the process so that the wafer may be processed under different conditions for each chamber.
  • the first chamber 100 is for loading the wafer by an external robot, and unloading the wafer to the external robot from the wafer which has been processed in the fifth chamber 500.
  • the detailed configuration will be described with reference to 2.
  • the first chamber 100 includes a susceptor 110 for supporting a bottom surface of the wafer, and a lower housing installed outside the susceptor 110 and fixed to the lower plate 610. 120, an upper housing 130 provided on the upper side of the lower housing 120 and fixed to the upper plate 620, a lift pin 140 that moves up and down to support a bottom surface of the wafer, and the lower plate.
  • An exhaust port 150 formed at 610 and communicating with an inner space of the lower housing 120, and a shower head 160 provided inside the upper housing 130 to process gas by spraying the wafer. It is configured to include.
  • the susceptor 110 is provided with a configuration for vacuum adsorption in order to fix the wafer on its upper surface, and cooling means for cooling the wafer before unloading the wafer having been processed in the fifth chamber 500 to the outside ( Not shown) may be provided.
  • cooling means for cooling the wafer before unloading the wafer having been processed in the fifth chamber 500 to the outside ( Not shown) may be provided.
  • the susceptor 110 is fixed on the lower plate 610 instead of being moved up and down, the structure is simplified since the connection line for vacuum suction and the connection line for wafer cooling means are fixed. .
  • the lower housing 120 has a cylindrical shape, and the inner space 120a is insulated from the connection space 800 during the process to form a lower side of the isolated process space, and the inner space 120a is
  • the exhaust port 150 is connected to an exhaust passage (not shown).
  • the upper housing 130 has an inner space (130a) is insulated from the connection space portion 800 during the process to form an upper side of the isolated process space, the gas through hole of the seating ring (720) It communicates with the inner space 120a of the lower housing 130 through 721.
  • the upper housing 130 is formed in a cylindrical shape in order to maintain the isolated state of the wafer during the process and to communicate with the connection space 800 when moving to the next chamber, the upper plate 620 It is composed of a fixed part 131 fixed to the moving part 132 provided on the lower side of the fixing part 131 to move up and down.
  • the moving part 132 moves the moving part 132 downward by the driving part 133 so that the lower end of the moving part 132 is in contact with the upper part of the turntable 700.
  • a lower end of the moving part 132 may be provided with an airtight member (not shown) made of a material such as rubber, silicon.
  • an airtight member (not shown) may be provided to maintain airtightness on a surface where the fixing part 131 and the moving part 132 contact each other.
  • the lift pin 140 is provided to penetrate the susceptor 710 up and down, and supports a bottom surface of the wafer loaded by the robot to mount the wafer on the top surface of the susceptor 110. Vertical movement is possible.
  • the bottom surface of the wafer seated on the seating ring 720 is supported and separated from the seating ring 720, and then moved up and down to take over to the robot.
  • the shower head 160 uniformly injects gas for cooling or heated nitrogen gas onto the upper surface of the wafer, and includes a buffer space 161 in which the inflowed gas is collected, and the wafer in the buffer space 161.
  • a plurality of injection holes are formed on the bottom of the shower head 160 at regular intervals so that the gas is injected downward in the direction of W).
  • connection space 800 is a space surrounding the outside of each of the chambers 100, 200, 300, 400, and 500, and an exhaust port 810 for exhausting gas remaining in the connection space 800 is provided.
  • the second chamber 200 is the same configuration as the first chamber 100, the susceptor 210, the lower housing 220, the upper housing 230, the lift pin 240, the exhaust port 250 and the shower head And 260.
  • the susceptor 210 is provided with a heater (not shown) for applying heat to the wafer, and the wafer is vacuum adsorbed on the upper surface of the susceptor 210 to be fixed.
  • the lift pin 140 of the first chamber 100 directly supports the bottom of the wafer, but the lift pin 240 of the second chamber 200 supports the bottom of the seating ring 720 to seat the seat 720. ) And the wafer seated on the seating ring 720 can be moved up and down together. To this end, the lift pin 140 is positioned to move up and down on the outside of the susceptor 210.
  • this configuration is the same configuration of the third to fifth chamber (300, 400, 500) of the other chamber.
  • 4 to 13 is a schematic cross-sectional configuration of the present invention shown in accordance with the movement and processing of the wafer.
  • FIG. 4 a process in which the wafer W is loaded into the first chamber 100 by the robot 2 is shown.
  • the turntable 700 moves downward, so that the bottom surface of the turntable 700 is moved.
  • the upper surface of the susceptor 110 is exposed to an upper portion of the lower housing 120 through the hole 710 of the turntable 700.
  • the lift pin 140 moves upward to support the bottom surface of the wafer W while the wafer W is placed on the upper surface of the arm Arm.
  • the lift pin 140 moves upward in the state in which the robot 2 moves the wafer W in the correct position.
  • the robot 2 moves in the standby state. It is also possible to transfer the wafer (W) to load the wafer (W) on the lift pin (140).
  • the first chamber 100 is a chamber in which the wafer W is loaded from the outside. As described later, the first chamber 100 moves the wafer W moved from the fifth chamber 500 to the outside. Used as an unloading chamber. That is, the first chamber 100 becomes a loading and unloading chamber in which the wafer W is loaded and unloaded.
  • the robot 2 retreats with the wafer W mounted on the lift pin 140 to move out of the loading and unloading chamber 100. At this time, the robot 2 moves downward to retreat while the wafer W is completely placed on the lift pin 140. On the contrary, the robot 2 may retreat in a state in which the lift pin 140 moves upward while the wafer W is seated without moving downward.
  • the turntable 700 moves upward while the robot 2 is completely moved to move the bottom edge of the bottom surface of the wafer W into an inner seating end 722 of the seating ring 720. Settle on
  • the turntable 700 is rotated while the turntable 700 moves upward, and the rotation angle is determined according to the number of chambers.
  • the turntable 700 moves downward to seat the wafer W on the susceptor 210 of the second chamber 200, and the turntable 700 moves further downward.
  • the bottom surface is in contact with the upper end of the lower housing 220.
  • the driving unit 233 is driven to move the moving unit 232 downward so that the lower end of the moving unit 232 contacts the upper surface of the turntable 700.
  • the inner space 230a surrounded by the upper housing 230 and the turntable 700 forms an upper side of an isolated process space, and the inner space 220a surrounded by the lower housing 220 and the turntable 700 is formed.
  • the lower side of the isolated process space is formed, and necessary processing of the wafer W is performed in the isolated process space.
  • Process gas is supplied to the inner space 230a of the upper housing 230 through the shower head 260 to process the wafer W, and the susceptor 210 is vacuum-adsorbed on the wafer W. Heating to a specific temperature.
  • the internal space 220a of the lower housing 220 After the process gas is processed on the wafer W, the internal space 220a of the lower housing 220 through the gas through hole 721 of the seating ring 720 inserted into the hole 710 of the turntable 700. After moving to the exhaust through the exhaust port 250.
  • the lift pin 240 since the lift pin 240 does not penetrate the susceptor 210, there is no need to form a separate groove or hole for vertical movement of the lift pin 240 in the susceptor 210, Since the area of the susceptor 210 in contact with the wafer W is formed wide, the wafer W can be uniformly heated.
  • FIG. 10 is a cross-sectional configuration diagram of a state in which the wafer W waits when the process is not completed in the other chambers 300, 400, and 500 while the process is completed in the second chamber 200.
  • the wafer is waited for 100 seconds after the process in the second chamber 200 is completed. W) must be transferred to the third chamber 300.
  • the third chamber 300 may not be moved immediately to the third chamber 300. It may be understood that the process waits at 300 until the turntable 700 is in a rotatable state.
  • the lift pin 240 is moved upward to move the lift ring 240 upward.
  • the wafer W seated on the seating ring 720 is lifted up, and the wafer W is separated from the susceptor 210 upward.
  • the temperature inside the isolated process space becomes higher than the temperature of the connection space 800 outside the chamber.
  • the connection space portion having a low temperature The thermal shock may be applied to the wafer W by being exposed to the 800.
  • the process space surrounded by the upper housing 230, the turntable 700, and the lower housing 220 may be isolated from the connection space 800 even in the standby state of the wafer W. Therefore, the heated state of the wafer W can be maintained and the process quality of the wafer W can be improved.
  • the moving part 232 of the upper housing 230 moves upward to transfer the wafer W from the second chamber 200 to the third chamber 300.
  • the turntable 700 is moved upward so that the seat ring 720 is inserted into the hole 710 of the turntable 700 together with the wafer W so that the outer seat end 723 of the seat ring 720 is moved. It is to be seated on the upper surface of the turntable (700).
  • the lift pin 240 moves downward to space the bottom surface of the seating ring 720 from the top of the lift pin 240, and then the turntable 700 rotates to transfer the wafer to the third chamber 300. Done.
  • each of the second chamber 200, the third chamber 300, the fourth chamber 400, and the fifth chamber 500 is configured in the same manner so that the turntable 700 may be used to process the wafer W.
  • the moving part 232 of the upper housing 230 is moved downward along the fixing part 231 to form an isolated process space, and the upper housing 230 is moved when the wafer W is moved.
  • the turntable 700 Moves upward to its original position, the turntable 700 has a structure that moves upward and rotate, omit the operation of the third to fifth chamber (300 to 500) to avoid repeated description, It will be described that the wafer W moves to the first chamber 100 in the state.
  • a non-reactive gas such as heated nitrogen for maintaining the temperature of the wafer may also be connected to the connection space 800 in which the wafer W moves.
  • the process gas may be supplied, and the introduced process gas including the non-reactive gas may be exhausted through the exhaust unit 810.
  • FIG. 12 illustrates that the turntable 700 rotates in the state shown in FIG. 11 to transfer the wafer W to the first chamber 100, and then the turntable 700 moves downward to susceptor the wafer W.
  • the state seated at 110 is shown.
  • the actual operation is moved to the first chamber 100 in order to unload the wafer W, which has been processed in the fifth chamber 500, out of the continuous processing apparatus.
  • the wafer W may be naturally cooled in the state moved to the first chamber 100 without any processing, and then unloaded to the outside by the robot 2 to be described later. W) may be forced to cool.
  • Such a cooling process is also performed in an isolated state of the process spaces 120a and 130a.
  • the turntable 700 first moves downward so that the bottom thereof is in contact with the upper end of the lower housing 120.
  • the shower head 160 sprays cooling gas onto the wafer W to form the wafer W.
  • the wafer W is placed on the susceptor 110 in which the coolant is circulated, and left in the other chambers until the process is completed.
  • the lift pin 140 moves upward to release the wafer W from the susceptor 110, and then the robot 2 enters and supports the bottom surface of the wafer W. As shown in FIG. In this state, the wafer W is unloaded. Then, as described above, a new wafer is loaded into the first chamber 100 to perform the same process.
  • the present invention is fixed without having to move the lower housing 120 to form a lower side of the process space, which is separated from the plurality of susceptors, which are heavy materials provided in each chamber, and move the turntable 700 up and down.
  • the mechanical configuration can be simplified and the load of the driving part can be reduced, thereby reducing the power consumption.
  • FIG. 14 is a cross-sectional view of a third chamber 300 according to another embodiment of the present invention.
  • the upper heater 370 is further provided on the upper side of the upper plate 620 in order to effectively control the process temperature.
  • the upper heater 370 When the upper heater 370 is provided on the upper side of the wafer W as described above, the lower surface of the wafer W is heated by the heat transferred from the susceptor 310, and the heat is transferred to the heat transferred through the upper heater 370. Since the upper surface of the wafer W is also heated at the same time, the upper and lower surfaces of the wafer W can be heated to a uniform temperature.
  • the shape of the solder ball is very important, and the upper and lower parts of the solder ball can be uniformly heated by the heater provided in the susceptor 310 and the upper heater 370 of the upper side, thereby maintaining the shape of the solder ball. To be advantageous.
  • the upper heater 370 may be selectively added to the second to fifth chambers 200 to 500, and may be variably installed according to the type of wafer processing process to which the present invention is applied.
  • the residue of the process gas is stuck to the inner wall surface of the upper housing 230 in the inner space 230a of the upper housing 230.
  • the residue of the process gas is the upper housing ( 230) It can be prevented to stick to the inner wall surface can reduce the generation of particles.
  • the process gas introduced into the buffer space 361 is heated by the heat of the upper heater 370, so that the shower The temperature of the process gas supplied through the head 360 may be quickly increased, and the stability of the process may be further improved.
  • the present invention can be used as equipment for performing a reflow, formic acid vapor used in the reflow process is heated to a high temperature and then supplied into the chamber.
  • formic acid vapor used in the reflow process is heated to a high temperature and then supplied into the chamber.
  • the formic acid vapor when it is preheated and introduced into the chamber, the formic acid vaporizes when it reaches the wafer, resulting in a loss, thereby lowering uniformity of the process.
  • the heating jacket on the outer surface of the pipe provided on the outside of the reflow equipment to make the formic acid vapor at a high temperature, there is a problem that the formic acid vapor is stuck to the inner surface of the pipe.
  • the formic acid vapor is heated to the upper heater 370 while the formic acid is introduced into the buffer space 361 as in the present embodiment, it is heated just before being injected onto the wafer W, thereby preventing a loss due to vaporization of the formic acid.
  • the problem that the formic acid vapor is stuck to the inner surface of the pipe can be prevented.
  • the upper heater 370 is illustrated as being positioned above the shower head 360 in the drawing, the upper heater 370 may be inserted into the shower head 360.
  • FIG. 15 is a cross-sectional view of a turntable 700 according to another embodiment of the present invention.
  • an accommodation groove 730 is provided at a bottom of the turntable 700, and the roller 740 is accommodated when the turntable 700 moves downward for the process.
  • the roller 740 is separated from the receiving groove 730 in the state in which the turntable 700 moves upward for the transfer of the wafer, and the receiving groove 730 is not formed when the turntable 700 rotates.
  • the bottom surface of the turntable 700 is supported.
  • the roller 740 allows the turntable 700 to rotate smoothly, and prevents deflection or bending from occurring due to the weight of the turntable 700. Do it.
  • the replacement of the turntable 700 or the maintenance cycle may be further extended to reduce the cost and improve the reliability of the apparatus.
  • the upper housings 130 and 230 are configured as the moving parts 132 and 232 that slide while contacting the fixing parts 131 and 231 and the fixing parts 131 and 231, but instead of the moving parts 132 and 232, the fixing parts 131 and 231 are provided.
  • the bellows shape may be modified to be integrally coupled in a state of being coupled to the lower end of the bellows, and instead of the fixing parts 131 and 231 and the moving parts 132 and 232, the upper end of the bellows is fixed to the upper plate 620 and the lower end of the bellows is fixed. It can also be modified in the configuration to move up and down.
  • the wafer W is loaded in the first chamber 100 and then moved to the second chamber 200 without any further processing.
  • the wafer W is lifted in the first chamber 100.
  • Lift pin 140 is lowered in the state loaded on the pin 140 to seat the wafer (W) on the susceptor 110, and then lower the moving part 132 of the upper housing 130, the upper housing 130 )
  • the internal space consisting of the turntable 700 and the lower housing 120 may be isolated and then purged with nitrogen to remove particles.
  • FIG. 16 is a cross-sectional view showing a continuous processing apparatus of a semiconductor wafer according to another embodiment of the present invention
  • FIG. 17 is a cross-sectional view showing an upper housing raised in the state of FIG. 16
  • FIG. 18 is a turntable and seating ring in the state of FIG. 19 is a plan view showing a state in which a wafer is seated in a susceptor and a mounting ring provided in the continuous processing apparatus of FIG. 16.
  • the susceptor 1100 is fixedly installed to support the wafer W while the process is in progress, and is fixed to the outside of the susceptor 1100 so that the lower portion of the wafer W is fixed.
  • a lower housing 1200 forming a process space 1200a isolated from the upper housing, an upper housing 1300 moving up and down to form an isolated process space 1300a on the upper portion of the wafer W, and the upper housing 1300.
  • the turntable 7000 is provided between the lower housing 1200 and rotates to transfer the wafer W between a plurality of chambers and simultaneously moves the wafer W up and down on the susceptor 1100. It is composed of a seating ring 7200 is inserted into the hole 7100 of the turntable 7000 to be detached upwards to seat the wafer (W).
  • the upper housing 1300 is formed in a bellows shape, and the lower portion 1301 of the upper housing 1300 and the upper portion of the seating ring 7200 are simultaneously in contact with each other.
  • the upper portion 1201 and the lower portion of the seating ring 7200 are in contact with each other, and there is a difference in that a support pin 7210 is formed inside the seating ring 7200 to support the bottom surface of the wafer W. .
  • the outer end 7201 of the seating ring 7200 is formed in a stepped shape with an upper part protruding, and the inner end 7001 of the turntable 7000 is formed in a stepped shape with a lower part protruding in the center direction.
  • the outer end 7201 is engaged with the inner end 7001 and is seated to allow upward detachment.
  • the upper side of the upper plate 6200 is provided with a driving unit 1330 for providing a driving force to move the lower end 1301 of the upper housing 1300 up and down.
  • a shaft 1335 that moves up and down is connected to the driving unit 1330, and a lower end 1301 of the upper housing 1300 is connected to a lower end of the shaft 1335.
  • the driving unit 1330 may be configured as a cylinder, and when the cylinder is driven, the lower end 1301 of the shaft 1335 and the upper housing 1300 may be moved up and down, and the lower end 1301 may be seated when moved downward.
  • the upper side of the isolated process space 1300a can be formed by contacting the top of the ring 7200.
  • the airtight member 1302 is interposed between the bottom surface of the lower end portion 1301 and the top surface of the seating ring 7200 to maintain airtightness.
  • the upper end 1201 of the lower housing 1200 may contact the lower portion of the seating ring 7200 to form a lower side of the isolated process space 1200a.
  • the airtight member 1202 is interposed between the top surface of the upper end portion 1201 and the bottom surface of the seating ring 7200 to maintain airtightness.
  • a plurality of support pins 7210 protruding toward the center of the seating ring 7200 to support the bottom surface of the wafer W.
  • the number of the support pins 7210 is illustrated as three, but may be modified.
  • a groove 1110 having a slot shape is formed on the upper surface of the susceptor 1100 so that the support pin 7210 is inserted into the upper surface of the susceptor 1100, and the support pin 7210 is positioned inside the groove 1110.
  • the bottom surface of the wafer W is supported by the support pins 7210 so that the wafers W move upward together.
  • the lower portion of the seating ring 7200 is provided with a ring-shaped baffle plate 6500 having holes 6510 uniformly formed along the circumference of the hole 6510 to uniformly pass the process gas, and the holes of the baffle plate 6500.
  • the process gas passed through the 6510 is exhausted through the exhaust port 1500 provided in the lower portion of the process chamber.
  • the baffle plate 6500 is positioned at an outer circumference of the susceptor 1100, and an outer edge thereof is locked to the lower housing 1200.
  • the turntable 7000 When the turntable 7000 is rotated in the state of FIG. 18, the wafer W is transferred to the next chamber, and then the necessary wafer W is processed.
  • the present invention simplifies an apparatus for continuous processing of a semiconductor wafer, reduces the power consumption, and improves the durability of the apparatus.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

The present invention relates to an apparatus and a method for continuous processing of a semiconductor wafer, in which the apparatus comprises a plurality of chambers to process a wafer through multiple steps, one or more chambers from among the plurality of chambers comprising: a susceptor fixedly disposed to support the water during the execution of the steps; a lower housing fixedly disposed outside of the susceptor so as to form a segregated processing space on the lower part of the wafer; an upper housing moving vertically so as to create a segregated processing space on the upper part of the wafer; a turn-table provided between the upper and lower housings and having a hole for exposing the upper part of the susceptor, and rotating to transport the wafer from in between the plurality of chambers and to vertically move the wafer from the upper part of the susceptor; and a seating ring on which the wafer is seated by being inserted into the hole so as to allow a vertical removal thereof, and thus the present invention simplifies the structure of the apparatus and can reduce energy consumption.

Description

반도체 웨이퍼의 연속 처리 장치 및 방법Continuous processing apparatus and method of semiconductor wafer
본 발명은 반도체 웨이퍼의 연속 처리장치 및 방법에 관한 것으로, 보다 상세하게는 챔버의 수를 줄이며, 각 챔버의 격리를 위한 구조를 단순화할 수 있는 반도체 웨이퍼의 연속 처리장치 및 방법에 관한 것이다.The present invention relates to a continuous processing apparatus and method for a semiconductor wafer, and more particularly, to a continuous processing apparatus and method for a semiconductor wafer that can reduce the number of chambers and simplify the structure for isolation of each chamber.
일반적으로 반도체 후공정으로 리플로우(reflow)를 수행하는 장비는, 공정단계마다 분위기와 온도에 차등을 둘 수 있도록 다수의 격리된 챔버를 두고 있으며, 그 챔버들의 사이에서 연속공정이 가능하도록 반도체 웨이퍼를 이송하는 수단이 마련되어 있다.In general, a device that performs reflow in a post-semiconductor process has a plurality of separate chambers so as to differentiate between atmosphere and temperature at each process step, and semiconductor wafers are used to enable continuous processing between the chambers. Means for conveying are provided.
특히 다수의 챔버를 원형으로 배치하고, 로딩된 반도체 웨이퍼를 각 챔버로 순차 이송시키기 위하여 각 챔버를 경유하는 턴테이블을 사용한 장비가 개발되었다.In particular, equipment using turntables passing through each chamber has been developed to arrange a plurality of chambers in a circle and to sequentially transfer loaded semiconductor wafers to each chamber.
이와 같은 장비는 미국특허 US6,827,789호에 상세히 기재되어 있다.Such equipment is described in detail in US Pat. No. 6,827,789.
상기 미국특허 US6,827,789호의 도면 1에는 로딩챔버와 언로딩챔버를 포함하는 총 6개의 챔버가 도시되어 있으며, 턴테이블을 사용하여 로딩된 웨이퍼를 다음의 공정챔버로 순차 이동시키며, 최종적으로 웨이퍼를 언로딩챔버로 이송하여, 처리가 완료된 웨이퍼를 로봇에 의해 언로딩 시키도록 구성되어 있다.A total of six chambers are shown in FIG. 1 of US Pat. No. 6,827,789, which includes a loading chamber and an unloading chamber. A turntable is used to sequentially move the loaded wafer to the next process chamber and finally free the wafer. It is configured to transfer to the loading chamber and unload the processed wafer by the robot.
상기 미국특허 US6,827,789호에는 처리플레이트와 하부격리챔버를 상하로 이동 가능하게 구성하여, 턴테이블에 의해 이송되어진 웨이퍼를 격리시켜 공정을 진행하게 된다.In US Pat. No. 6,827,789, the process plate and the lower isolation chamber are configured to be movable up and down to isolate the wafer transferred by the turntable and proceed with the process.
상기 처리플레이트는 통상 서셉터로 통칭되며, 내부에 히터를 포함하고, 웨이퍼를 진공 흡착시키는 구조가 형성되어 있어 상대적으로 중량물이며, 이를 상하로 이동시키기 위하여 에너지 소모량이 많고, 장치의 부피가 커지는 문제점이 있었다.The treatment plate is generally referred to as a susceptor, and includes a heater therein, and a structure for vacuum adsorption of the wafer is formed, which is a relatively heavy material, which requires a large amount of energy to move the device up and down, and increases the volume of the device. There was this.
아울러 처리플레이트와 하부격리챔버를 상하 이동시키기 위한 구동부와 동력전달구조가 복잡하여 제조원가가 증가하게 되는 문제점이 있었다. In addition, there is a problem that the manufacturing cost is increased because the drive unit and the power transmission structure for moving the processing plate and the lower isolation chamber up and down are complicated.
또한 상기 미국특허 US6,827,789호는 상기 처리플레이트와 하부격리챔버를 상하 이동시키는 구동부의 외측을 벨로우즈를 사용하여 공정 구간과 분리하고 있으나, 잦은 상하 이동에 의한 응력의 발생으로 벨로우즈가 손상되거나, 배기 되는 가스에 노출되어 부식될 수 있으며, 이러한 벨로우즈의 손상에 의하여 공정에 사용된 가스가 배기 되지 않고 장치 내부로 재유입될 수 있어, 공정에 불량이 발생할 수 있는 문제점이 있었다.In addition, US Pat. No. 6,827,789 uses the bellows to separate the outside of the drive unit for moving the treatment plate and the lower isolation chamber up and down, but the bellows is damaged or exhausted due to the stress caused by frequent vertical movement. There is a problem that can be corroded by being exposed to the gas, the gas used in the process can be re-introduced into the apparatus without being exhausted by the damage of the bellows, the defect may occur in the process.
아울러 웨이퍼들을 회전시키는 턴테이블의 직경이 웨이퍼의 크기가 커짐에 따라 증가하게 되어, 회전판이 휘거나 일부 처짐이 발생하게 되어 정확한 위치로 웨이퍼를 이송할 수 없게 되어 공정 불량이 발생하는 문제점이 있었다.In addition, the diameter of the turntable for rotating the wafers increases as the size of the wafer increases, causing the rotating plate to bend or partially sag, and thus fail to transfer the wafer to the correct position, thereby causing a process defect.
그리고 다수의 챔버 각각이 밀폐된 상태에서는 항상 웨이퍼가 처리플레이트에 안착 되는 구조이기 때문에 다른 챔버에서 공정이 진행되고 있는 상태에서 특정 챔버에서 공정이 완료된 경우에도 웨이퍼가 처리플레이트에 안착 되어 있어 지속적으로 가열되어 공정 불량이 발생할 수 있는 문제점이 있다.In addition, since the wafer is always seated on the processing plate in the closed state of each chamber, even if the process is completed in a specific chamber while the process is being performed in another chamber, the wafer is seated on the processing plate and continuously heated. There is a problem that can cause a process failure.
미국특허 US6,827,789호의 경우 처리플레이트와 하부격리챔버를 함께 하향이동하면 웨이퍼와 함께 웨이퍼 안착링이 하강하여 턴테이블에 안착됨으로써 웨이퍼는 처리플레이트로부터 이격되어, 다른 챔버에서 공정이 진행되고 있는 동안 공정이 완료된 웨이퍼를 처리플레이트에 접촉하지 않도록 할 수 있어 처리플레이트로부터의 지속적인 가열에 의해 공정 불량이 발생하는 문제점은 방지할 수 있다. In the case of US Pat. No. 6,827,789, when the processing plate and the lower isolation chamber are moved downward together, the wafer seating ring is lowered together with the wafer and seated on the turntable so that the wafer is separated from the processing plate and the process is performed while the process is being performed in another chamber. It is possible to prevent the finished wafer from contacting the processing plate, thereby preventing the problem of process defects caused by continuous heating from the processing plate.
그러나 이 경우 웨이퍼는 더 이상 격리된 상태를 유지할 수 없고, 웨이퍼는 격리된 챔버 외부 공간에 노출된다. 따라서 웨이퍼가 가열 공정에 의해 처리가 된 후 다음 챔버에서 공정이 진행되기까지 외부 공간에 노출되면 웨이퍼 온도가 떨어져 공정불량이 발생할 수 있는 문제점이 있다.In this case, however, the wafer can no longer remain isolated and the wafer is exposed to the space outside the isolated chamber. Therefore, when the wafer is processed by a heating process and exposed to an external space until the process proceeds in the next chamber, there is a problem that a process defect may occur due to a drop in wafer temperature.
상기와 같은 문제점을 해결하기 위한 본 발명의 과제는, 웨이퍼를 각 챔버에서 격리시킴과 아울러 챔버 간의 이동이 가능하도록 하되, 전력의 소모를 최소화하고 구조를 단순화할 수 있는 반도체 웨이퍼의 연속 처리장치 및 방법을 제공함에 있다.An object of the present invention for solving the above problems is to isolate the wafer in each chamber and to allow movement between the chambers, but to minimize the consumption of power and to simplify the structure of the semiconductor wafer continuous processing apparatus and In providing a method.
또한 본 발명이 해결하고자 하는 다른 과제는, 장치의 내구성을 높여 유지 및 보수 비용을 줄일 수 있는 반도체 웨이퍼의 연속 처리장치 및 방법을 제공함에 있다.In addition, another object of the present invention is to provide a continuous processing apparatus and method for a semiconductor wafer that can reduce the maintenance and repair cost by increasing the durability of the device.
아울러 본 발명이 해결하고자 하는 다른 과제는, 웨이퍼를 각 챔버로 순차 이동시키는 턴테이블의 일부 처짐 또는 휨의 발생을 방지할 수 있는 반도체 웨이퍼의 연속 처리장치 및 방법을 제공함에 있다.In addition, another object of the present invention is to provide a continuous processing apparatus and method for a semiconductor wafer capable of preventing the occurrence of partial deflection or warpage of the turntable that sequentially moves the wafer into each chamber.
그리고 본 발명이 해결하고자 하는 다른 과제는, 공정이 완료된 특정 챔버내의 웨이퍼를 다른 챔버의 공정이 완료될 때까지 서셉터로부터 이격시킴과 동시에 격리된 상태를 유지할 수 있는 반도체 웨이퍼의 연속 처리장치 및 방법을 제공함에 있다.In addition, another object of the present invention is to provide a continuous processing apparatus and method for a semiconductor wafer capable of maintaining a state in which the wafer in a specific chamber in which the process is completed is separated from the susceptor until the process in another chamber is completed. In providing.
상기와 같은 과제를 달성하기 위한 본 발명 반도체 웨이퍼의 연속 처리장치는, 웨이퍼를 복수의 공정에 의해 처리하기 위한 다수의 챔버를 포함하는 반도체 웨이퍼의 연속 처리장치에 있어서, 상기 다수의 챔버 중 하나 이상의 챔버는, 공정이 진행되는 동안 웨이퍼를 지지하기 위해 고정 설치된 서셉터; 상기 서셉터의 외측에 고정 설치되어, 상기 웨이퍼의 하부에 격리된 공정 공간을 형성하는 하부하우징; 상기 웨이퍼의 상부에 격리된 공정 공간을 형성하기 위해 상하 이동하는 상부하우징; 상기 상부하우징과 하부하우징 사이에 구비되고, 상기 서셉터의 상부를 노출시키는 홀이 형성되고, 상기 다수의 챔버 사이에서 상기 웨이퍼를 이송하기 위해 회전하며, 상기 서셉터 상부에서 상기 웨이퍼를 상하 이동시키는 턴테이블; 상기 홀에 상향으로 이탈이 가능하도록 삽입되어 상기 웨이퍼가 안착되는 안착링을 포함한다.The continuous processing apparatus of the semiconductor wafer of the present invention for achieving the above object is a continuous processing apparatus of a semiconductor wafer comprising a plurality of chambers for processing the wafer by a plurality of processes, at least one of the plurality of chambers The chamber includes a susceptor fixedly installed to support the wafer during the process; A lower housing fixedly installed at an outer side of the susceptor to form an isolated process space under the wafer; An upper housing moving up and down to form an isolated process space on top of the wafer; A hole provided between the upper housing and the lower housing, the hole exposing the upper portion of the susceptor is formed, rotates to transfer the wafer between the plurality of chambers, and moves the wafer up and down on the susceptor. turntable; And a seating ring inserted into the hole so as to be detached upwardly to seat the wafer.
상기 다수의 챔버 중 하나는, 외부로부터 웨이퍼가 로딩되고, 처리가 완료된 웨이퍼를 외부로 언로딩하는 로딩 및 언로딩 챔버로 구성될 수 있다.One of the plurality of chambers may include a loading and unloading chamber in which a wafer is loaded from the outside and the unloaded wafer is processed to the outside.
상기 하부하우징은, 상기 턴테이블이 상단에 접한 상태에서 격리된 공정공간의 하부측을 제공하며; 상기 상부하우징은, 그 하단부가 하향 이동하여 상기 턴테이블의 상부에 접하여 격리된 공정 공간의 상부측을 제공하는 것일 수 있다.The lower housing provides a lower side of an isolated process space with the turntable in contact with an upper end thereof; The upper housing may have a lower end portion moving downward to provide an upper side of an isolated process space in contact with an upper portion of the turntable.
상기 하부하우징은, 상기 안착링이 상단에 접한 상태에서 격리된 공정공간의 하부측을 제공하며; 상기 상부하우징은, 그 하단부가 하향 이동하여 상기 안착링의 상부에 접하여 격리된 공정 공간의 상부측을 제공하는 것일 수 있다.The lower housing provides a lower side of the isolated process space with the seating ring in contact with the upper end; The upper housing may have a lower end portion moved downward to provide an upper side of the isolated process space in contact with the upper portion of the seating ring.
상기 서셉터는, 상기 턴테이블에 의해 이송된 상기 웨이퍼가 상기 턴테이블의 하향 이동에 의해 상부에 위치된 상태에서 설정된 공정온도로 가열되는 것일 수 있다.The susceptor may be heated to a set process temperature in a state in which the wafer transferred by the turntable is positioned above by the downward movement of the turntable.
상기 챔버에는, 상기 웨이퍼의 저면을 지지하여 상기 안착링에 웨이퍼를 안착시키는 리프트핀이 구비된 것일 수 있다.The chamber may be provided with a lift pin for supporting the bottom surface of the wafer to seat the wafer on the seating ring.
상기 다수의 챔버 중 공정가스에 의해 웨이퍼의 처리가 이루어지는 공정챔버에는, 상기 공정 공간의 상부 측에 샤워헤드가 구비되고; 상기 샤워헤드는, 가스가 유입되는 버퍼공간과 상기 버퍼공간에서 웨이퍼를 향해 하향으로 다수의 분사구가 균일하게 형성된 것일 수 있다.A process head in which a wafer is processed by a process gas among the plurality of chambers includes a shower head at an upper side of the process space; The shower head may be formed of a buffer space into which gas is introduced and a plurality of injection holes uniformly downward from the buffer space toward the wafer.
상기 안착링은 상기 웨이퍼가 내측에 안착되도록 단차진 형상으로 이루어진 것일 수 있다.The seating ring may be formed in a stepped shape so that the wafer is seated inside.
상기 안착링에는 상기 공정가스가 통과하는 가스통공이 외주 둘레를 따라 복수개 형성된 것일 수 있다.The seating ring may have a plurality of gas through-holes through which the process gas passes along the outer circumference.
상기 다수의 챔버 중 공정가스에 의해 웨이퍼의 처리가 이루어지는 공정챔버에는, 상기 서셉터의 외측에서 상하로 이동이 가능하여, 상기 웨이퍼가 안착된 안착링의 저면을 지지하여 상기 안착링을 상기 홀에서 상향으로 이탈시키는 리프트핀이 구비된 것일 수 있다.The process chamber in which the wafer is processed by the process gas among the plurality of chambers is movable up and down from the outside of the susceptor, and supports the bottom surface of the seating ring on which the wafer is seated so that the seating ring is removed from the hole. It may be provided with a lift pin for leaving upward.
상기 안착링의 내측에는 상기 웨이퍼의 저면을 지지하기 위한 다수의 지지핀이 상기 안착링의 중심방향으로 돌출 형성되고; 상기 서셉터의 상면에는 상기 지지핀이 삽입되어 상하 이동가능하도록 슬롯 형상으로 이루어진 홈이 형성된 것일 수 있다.A plurality of support pins protruding toward the center of the seating ring are formed inside the seating ring to support a bottom surface of the wafer; The upper surface of the susceptor may be a groove formed in a slot shape so that the support pin is inserted and movable up and down.
상기 안착링은 비금속재질로 이루어지거나, 세라믹 재질로 이루어진 것일 수 있다.The seating ring may be made of a non-metallic material or made of a ceramic material.
상기 공정챔버의 공정 공간의 상부 측에는 공정 중 상기 웨이퍼의 상부에 열을 가하기 위한 상부히터가 구비된 것일 수 있다.The upper side of the process chamber of the process chamber may be provided with an upper heater for applying heat to the upper portion of the wafer during the process.
상기 상부히터의 하부에는, 공정가스가 유입되는 버퍼공간과 상기 버퍼공간에서 웨이퍼를 향해 하향으로 다수의 분사구가 균일하게 형성된 샤워헤드가 구비되고; 상기 상부히터는 상기 버퍼공간으로 유입된 공정 가스를 가열하는 것일 수 있다.A lower portion of the upper heater includes a buffer space into which a process gas flows and a shower head having a plurality of injection holes uniformly downward from the buffer space toward the wafer; The upper heater may be to heat the process gas introduced into the buffer space.
상기 턴테이블이 회전할 때, 상기 턴테이블의 저면 가장자리 부분에 접촉되는 다수의 롤러를 더 포함하는 것일 수 있다.When the turntable is rotated, it may further include a plurality of rollers in contact with the bottom edge portion of the turntable.
상기 턴테이블의 저면에는 상기 턴테이블이 하향 이동할 때 상기 롤러의 일부가 수용되는 수용홈이 형성된 것일 수 있다.A bottom surface of the turntable may be formed with a receiving groove for receiving a portion of the roller when the turntable is moved downward.
상기 안착링의 하부에는, 공정가스를 균일하게 통과시키기 위한 홀이 원주 둘레를 따라 균일하게 형성된 링 형상의 배플플레이트가 구비되고; 상기 배플플레이트의 홀을 통과한 공정가스는 상기 공정챔버의 하부에 구비된 배기구를 통해 배기되는 것일 수 있다.A lower portion of the seating ring is provided with a ring-shaped baffle plate having a hole for uniformly passing the process gas along a circumference thereof; Process gas passing through the hole of the baffle plate may be exhausted through the exhaust port provided in the lower portion of the process chamber.
상기 상부하우징은, 상부플레이트에 고정된 고정부와, 상기 고정부의 하측에서 상하 이동되어 상기 턴테이블의 상면에 접촉되는 이동부로 이루어질 수 있다.The upper housing may include a fixed part fixed to the upper plate and a moving part moved up and down under the fixing part to be in contact with the top surface of the turntable.
상기 상부하우징은 벨로우즈 형상으로 이루어져 그 하단부가 구동부에 의해 상하 이동됨으로써 상기 격리된 공정 공간을 형성할 수 있다.The upper housing may be formed in a bellows shape so that the lower end thereof is vertically moved by the driving unit to form the isolated process space.
본 발명의 웨이퍼 연속 처리방법은, 제1항의 반도체 웨이퍼의 연속 처리장치를 이용하는 반도체 웨이퍼의 연속처리방법으로서, 상기 다수의 챔버 중 제1챔버에 웨이퍼가 로딩되는 제1단계; 상기 웨이퍼를 상기 제1챔버와 함께 원형으로 배치되는 제2 내지 제5챔버로 순차 이송하며 상기 웨이퍼를 처리하되, 상기 제2 내지 제5챔버는 상기 웨이퍼를 처리할 때 상기 웨이퍼의 상부측에서 하향으로 이동하는 상기 상부하우징에 의해 격리된 공정공간에서 처리하는 제2단계; 상기 제5챔버에서 상기 웨이퍼를 처리하고, 다음 챔버로 상기 웨이퍼를 이송하여 외부로 언로딩시키는 제3단계로 이루어지고, 상기 웨이퍼는 상기 안착링에 안착된 상태에서 상기 턴테이블의 상하 이동 및 회전에 의해 상기 제1 내지 제5챔버 사이에서 이송이 이루어지는 것일 수 있다.A wafer continuous processing method of the present invention includes a semiconductor wafer continuous processing method using the semiconductor wafer continuous processing apparatus of claim 1, comprising: a first step of loading a wafer into a first chamber of the plurality of chambers; Process the wafer by sequentially transferring the wafer to the second to fifth chambers arranged in a circular shape together with the first chamber, wherein the second to fifth chambers are downward from the upper side of the wafer when processing the wafer. A second step of treating in a process space isolated by the upper housing moving to the upper surface; Processing the wafer in the fifth chamber and transferring the wafer to the next chamber and unloading the wafer outward; the wafer is moved up and down and rotates in the turntable in a state where it is seated on the seating ring. The transfer may be made between the first to fifth chambers.
상기 제3단계는, 상기 제5챔버에서 처리된 상기 웨이퍼를 상기 제1챔버로 이송하여 냉각시킨 후, 상기 웨이퍼를 상기 제1챔버에서 외부로 언로딩시키는 것으로 이루어질 수 있다.The third step may be performed by transferring the wafer processed in the fifth chamber to the first chamber to cool the wafer, and then unloading the wafer from the first chamber to the outside.
상기 제2단계는, 제2 내지 제4챔버 중 공정이 완료된 챔버의 상기 웨이퍼는, 상기 상부하우징에 의해 격리된 공정공간 내에서, 상기 웨이퍼를 서셉터의 상부로부터 이격시킨 상태로 공정이 진행중인 챔버의 공정이 완료될 때까지 대기하는 것으로 이루어질 수 있다.In the second step, the wafer of the chamber in which the process is completed in the second to fourth chambers is performed in a process space in which the wafer is spaced apart from the top of the susceptor in a process space isolated by the upper housing. It may consist of waiting until the process of is completed.
상기 제2단계는, 제2챔버 내지 제5챔버 중 선택된 하나 또는 둘 이상의 챔버에는, 상기 공정공간의 상측에 구비된 히터로 상기 웨이퍼에 분사되는 공정가스를 가열하는 것으로 이루어질 수 있다.The second step may include heating the process gas injected to the wafer by a heater provided above the process space in one or two or more chambers selected from the second to fifth chambers.
본 발명은, 중량물인 서셉터를 상하 이동시키지 않고, 챔버의 상부측에서 상하로 이동하는 상부하우징을 이용하여 공정공간을 밀폐할 수 있도록 구성함으로써, 장치의 구성을 보다 단순화하고, 전력의 소비를 줄일 수 있는 효과가 있다.The present invention is configured to seal the process space by using an upper housing moving up and down from the upper side of the chamber without moving the susceptor, which is a heavy object, up and down, thereby simplifying the configuration of the apparatus and reducing power consumption. There is an effect that can be reduced.
또한 본 발명은 종래의 벨로우즈와 같이 내구성이 낮은 부품의 사용을 배제하여 유지 및 보수에 필요한 시간과 비용을 절감할 수 있는 효과가 있다.In addition, the present invention has the effect of reducing the time and cost required for maintenance and repair by excluding the use of low-durability parts, such as conventional bellows.
아울러 본 발명은 회전체이며 그 직경이 큰 턴테이블의 처짐을 방지하여, 공정불량이 발생하는 것을 방지하고, 장치의 유지 및 보수 주기를 연장함과 아울러 비용을 절감할 수 있는 효과가 있다.In addition, the present invention is to prevent the sag of the turntable and the large diameter of the rotary body, to prevent the occurrence of process defects, it is possible to reduce the cost and to extend the maintenance and repair period of the device.
그리고 본 발명은 공정이 완료된 챔버 내의 웨이퍼를 서셉터로부터 분리시켜, 다른 챔버의 공정이 완료될 때까지 대기함으로써, 웨이퍼가 대기상태에서 추가로 가열되는 것을 방지하여, 공정의 신뢰성을 보다 향상시킬 수 있는 효과가 있다.In addition, the present invention separates the wafer in the chamber where the process is completed from the susceptor and waits until the process of the other chamber is completed, thereby preventing the wafer from being further heated in the standby state, thereby improving process reliability. It has an effect.
또한 이와 같이 다른 챔버의 공정이 완료될 때까지 대기하는 경우 웨이퍼가 격리된 상태를 유지할 수 있어 공정의 신뢰성을 더욱 향상시킬 수 있다.In addition, when waiting until the process of the other chamber is completed as described above can keep the wafer in an isolated state can further improve the reliability of the process.
도 1은 본 발명의 바람직한 실시예에 따른 반도체 웨이퍼의 연속 처리장치의 개략적인 평면도1 is a schematic plan view of a continuous processing apparatus for a semiconductor wafer according to a preferred embodiment of the present invention
도 2는 도 1에서 A-A 방향의 개략적인 단면도FIG. 2 is a schematic cross-sectional view of the A-A direction in FIG.
도 3은 본 발명에 적용되는 안착링의 상세 단면 구성도Figure 3 is a detailed cross-sectional configuration of the seating ring applied to the present invention
도 4 내지 도 13은 웨이퍼의 이동과 처리 과정에 따라 도시한 본 발명의 개략적인 단면 구성도4 to 13 is a schematic cross-sectional configuration of the present invention shown in accordance with the movement and processing of the wafer
도 14는 본 발명의 다른 실시예에 따른 제1공정챔버의 단면 구성도14 is a cross-sectional configuration of a first process chamber according to another embodiment of the present invention
도 15는 본 발명의 다른 실시예에 따른 턴테이블의 단면 구성도15 is a cross-sectional configuration diagram of a turntable according to another embodiment of the present invention
도 16은 본 발명의 다른 실시예에 의한 반도체 웨이퍼의 연속 처리장치를 보여주는 단면도16 is a cross-sectional view illustrating an apparatus for continuously processing a semiconductor wafer according to another embodiment of the present invention.
도 17은 도 16의 상태에서 상부하우징이 상승한 상태를 보여주는 단면도17 is a cross-sectional view illustrating a state in which the upper housing is raised in the state of FIG. 16.
도 18은 도 17의 상태에서 턴테이블과 안착링이 상승한 상태를 보여주는 단면도18 is a cross-sectional view illustrating a state in which the turntable and the seating ring are raised in the state of FIG. 17.
도 19는 도 16의 연속 처리장치에 구비된 서셉터 및 안착링에 웨이퍼가 안착된 상태를 보여주는 평면도FIG. 19 is a plan view illustrating a wafer in a susceptor and a mounting ring provided in the continuous processing apparatus of FIG. 16. FIG.
- 부호의 설명 -Description of the sign
100:제1챔버 110,210,310:서셉터100: first chamber 110, 210, 310: susceptor
120,220,330:하부하우징 130,230,330:상부하우징120,220,330: lower housing 130,230,330: upper housing
140,240,340:리프트핀 150,250,350:배기구140,240,340: Lift pin 150,250,350: Exhaust vent
160,260,360:샤워헤드 200:제2챔버160,260,360: Showerhead 200: Second chamber
370:상부히터 300:제3챔버370: upper heater 300: third chamber
400:제4챔버 500:제5챔버400: fourth chamber 500: fifth chamber
600:외부몸체 610:하부플레이트600: the outer body 610: lower plate
620:상부플레이트 700:턴테이블620: upper plate 700: turntable
710:홀 720:안착링710: Hole 720: seat ring
721:가스통공 722:상부안착단721: gas through hole 722: upper seat
723:하부안착단 730:수용홈723: lower seating stage 730: receiving groove
740:롤러 1100:서셉터740: roller 1100: susceptor
1200:하부하우징 1300:상부하우징1200: lower housing 1300: upper housing
1202,1302:기밀부재 1330:구동부1202,1302: airtight member 1330: drive unit
1335:샤프트 7000:턴테이블1335: shaft 7000: turntable
7100;홀 7200:안착링7100; hole 7200: seating ring
7210:지지핀7210: support pin
이하, 본 발명의 바람직한 실시예에 따른 반도체 웨이퍼 연속 처리장치에 대하여 첨부한 도면을 참조하여 상세히 설명한다.Hereinafter, a semiconductor wafer continuous processing apparatus according to a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명의 바람직한 실시예에 따른 반도체 웨이퍼 연속 처리장치의 개략적인 평면도이고, 도 2는 도 1에서 A-A 방향의 개략적인 단면도, 도 3은 상기 안착링(720)의 상세 단면 구성도이다. 1 is a schematic plan view of a semiconductor wafer continuous processing apparatus according to a preferred embodiment of the present invention, Figure 2 is a schematic cross-sectional view of the AA direction in Figure 1, Figure 3 is a detailed cross-sectional configuration of the seating ring 720. .
도 1과 도 2를 각각 참조하면 본 발명의 바람직한 실시예에 따른 반도체 웨이퍼 연속 처리장치는, 외부몸체(600)의 중앙을 기준으로 원형으로 배치되는 제1 내지 제5챔버(100, 200, 300, 400, 500)를 포함하여 구성된다.1 and 2, the semiconductor wafer continuous processing apparatus according to the preferred embodiment of the present invention, the first to fifth chambers (100, 200, 300) arranged in a circle with respect to the center of the outer body 600 , 400, 500).
상기 외부몸체(600)는 원판형의 하부플레이트(610)와, 상기 하부플레이트(610)의 상측에 구비된 원판형의 상부플레이트(620)와, 상기 하부플레이트(610)의 가장자리와 상부플레이트(620)의 가장자리에 상단과 하단이 연결된 측면하우징(630)으로 구성된다. The outer body 600 is a disk-shaped lower plate 610, the disk-shaped upper plate 620 provided on the upper side of the lower plate 610, the edge and the upper plate of the lower plate (610) ( The upper and lower sides of the edge of the 620 is composed of a side housing 630 connected.
도면에는 도시되어 있지 않지만 상기 상부플레이트(620)에는 공정가스를 공급하기 위한 배관 등의 부품들이 각 챔버(100,200,300,400,500)의 상부 위치에 구비되고, 상기 제1챔버(100)가 위치한 측면하우징(630)에는 웨이퍼를 로딩 또는 언로딩을 위해 로봇 아암(Arm)의 진입/후퇴가 가능하도록 개구부가 형성될 수 있다.Although not shown in the drawing, the upper plate 620 includes components such as piping for supplying a process gas at an upper position of each chamber 100, 200, 300, 400, 500, and a side housing 630 in which the first chamber 100 is located. Openings may be formed in the robot arm to allow entry / retraction of the robot arm for loading or unloading the wafer.
상기 하부플레이트(610)와 상부플레이트(620) 및 측면하우징(630)으로 둘러싸인 내부공간인 연결공간부(800)에는 상기 제1 내지 제5챔버(100, 200, 300, 400, 500)와, 중앙에 회전축을 가지는 턴테이블(700)이 구비되어 있다. The first to fifth chambers 100, 200, 300, 400, and 500 are connected to the connection space 800, which is an inner space surrounded by the lower plate 610, the upper plate 620, and the side housing 630. A turntable 700 having a rotation axis in the center is provided.
상기 턴테이블(700)에는 개구된 형상의 홀(710)이 챔버(100,200,300,400,500)의 수와 동수로 형성되어 있다. The turntable 700 is formed with the same number of openings 710 of the chamber (100, 200, 300, 400, 500).
상기 홀(710)에는 웨이퍼가 안착되는 안착링(720)이 구비된다. 상기 안착링(720)은 후술하는 리프트핀(240)의 상하 운동에 의해 웨이퍼가 안착된 상태에서 웨이퍼와 함께 턴테이블(700)로부터 분리 가능하다.The hole 710 is provided with a seating ring 720 on which a wafer is seated. The seating ring 720 may be separated from the turntable 700 together with the wafer in a state where the wafer is seated by the vertical movement of the lift pin 240 to be described later.
또한 상기 안착링(720)은 도 3에 도시한 바와 같이 단차진 형상으로서, 웨이퍼(W)가 안착되도록 내경부 주변에 형성된 내부 안착단(722)과, 안착링(720)이 턴테이블(700)의 홀(710)에 안착될 수 있도록 외경부 주변에 형성된 외부 안착단(723)으로 이루어지고, 상기 내부 안착단(722)과 외부 안착단(723) 사이에는 가스가 통과할 수 있도록 상하로 관통된 가스통공(721)이 형성되어 있다. In addition, the seating ring 720 is a stepped shape, as shown in Figure 3, the inner seating end 722 formed around the inner diameter portion so that the wafer (W) is seated, and the seating ring 720 is the turntable 700 It consists of an outer seating end 723 formed around the outer diameter portion so as to be seated in the hole 710 of the through, and through the up and down to allow gas to pass between the inner seating end 722 and the outer seating end 723 A gas through hole 721 is formed.
따라서 후술하는 샤워헤드(160,260)에서 웨이퍼(W)의 상부 전면으로 고르게 분사된 가스는 상기 가스통공(721)을 통해서 배기구(150,250) 측으로 배기된다. 이와 같이 공정 가스의 배기 흐름이 웨이퍼(W)를 기준으로 상부에서 하부로 흐름이 형성되므로, 챔버 내부에 공정 가스의 잔유물이 적게 발생한다.Therefore, the gas evenly injected from the shower heads 160 and 260 described later to the upper front surface of the wafer W is exhausted to the exhaust ports 150 and 250 through the gas through hole 721. As such, since the exhaust flow of the process gas flows from the top to the bottom of the wafer W, less residue of the process gas is generated in the chamber.
상기 안착링(720)은 웨이퍼(W)가 접촉하게 되고, 상기 안착링(720)은 턴테이블(700)과 접촉하게 된다. 상기 턴테이블(700)은 챔버 외부의 연결공간부(800)에 노출되어 있어 연결공간부(800)의 온도가 턴테이블(700)과 안착링(720)을 통해 웨이퍼(W)에 전달되어 공정온도에 영향을 미치게 된다. 따라서 웨이퍼(W)에 열이 전달되는 것을 차단하기 위해 상기 안착링(720)은 비금속재질을 사용하는 것이 바람직하다. The seating ring 720 is in contact with the wafer (W), the seating ring 720 is in contact with the turntable 700. The turntable 700 is exposed to the connection space portion 800 outside the chamber, so that the temperature of the connection space portion 800 is transferred to the wafer W through the turntable 700 and the seating ring 720, and at a process temperature. Will be affected. Therefore, in order to block heat from being transferred to the wafer W, the seating ring 720 preferably uses a non-metallic material.
또한 안착링(720)은 고온의 공정온도에 노출되므로 내열성을 갖춘 세라믹(Ceramic)이 될 수 있고, 그 이외에도 내열성과 열의 전도성이 낮은 비금속재질이면 무엇이든 적용 가능하다.In addition, the seating ring 720 may be a ceramic having heat resistance because it is exposed to a high process temperature, and any other non-metallic material having low heat resistance and low conductivity may be applied.
상기 제1 내지 제5챔버(100, 200, 300, 400, 500)는 웨이퍼가 처리되는 격리된 공간을 규정하는 것으로서, 웨이퍼를 처리하기 위한 온도, 압력을 설정하기 위한 구성들이 각각의 챔버마다 구비되며, 각 챔버마다 서로 다른 조건으로 웨이퍼를 처리할 수 있도록 각 챔버는 공정 진행 중 연결공간부(800)에 대하여 격리된 상태를 유지할 수 있다.The first to fifth chambers 100, 200, 300, 400, and 500 define an isolated space in which the wafer is processed, and components for setting a temperature and pressure for processing the wafer are provided for each chamber. Each chamber may be isolated from the connection space 800 during the process so that the wafer may be processed under different conditions for each chamber.
상기 제1 챔버(100)는 외부의 로봇에 의해 웨이퍼가 로딩(Loading)되는 한편, 제5챔버(500)에서 처리가 완료된 웨이퍼를 외부의 로봇에 웨이퍼를 언로딩(Unloading)하기 위한 것으로서, 도 2를 참조하여 상세한 구성을 설명한다.The first chamber 100 is for loading the wafer by an external robot, and unloading the wafer to the external robot from the wafer which has been processed in the fifth chamber 500. The detailed configuration will be described with reference to 2.
도 2에 도시한 바와 같이 제1챔버(100)는, 웨이퍼의 저면을 지지하는 서셉터(110)와, 상기 서셉터(110)의 외측에 설치되어 하부플레이트(610) 상에 고정 설치된 하부하우징(120)과, 상기 하부하우징(120)의 상측에 구비되어 상부플레이트(620)에 고정설치된 상부하우징(130)과, 상하 이동되어 웨이퍼의 저면을 지지하는 리프트핀(140)과, 상기 하부플레이트(610)에 형성되어 상기 하부하우징(120)의 내측 공간과 연통 되는 배기구(150)와, 웨이퍼에 가스를 분사하여 처리하기 위하여 상기 상부하우징(130)의 내측에 구비된 샤워헤드(160)를 포함하여 구성된다.As shown in FIG. 2, the first chamber 100 includes a susceptor 110 for supporting a bottom surface of the wafer, and a lower housing installed outside the susceptor 110 and fixed to the lower plate 610. 120, an upper housing 130 provided on the upper side of the lower housing 120 and fixed to the upper plate 620, a lift pin 140 that moves up and down to support a bottom surface of the wafer, and the lower plate. An exhaust port 150 formed at 610 and communicating with an inner space of the lower housing 120, and a shower head 160 provided inside the upper housing 130 to process gas by spraying the wafer. It is configured to include.
상기 서셉터(110)는 웨이퍼를 그 상면에 고정시키기 위해 진공 흡착을 위한 구성이 구비되고, 제5챔버(500)에서 공정이 완료된 웨이퍼를 외부로 언로딩하기 전에 웨이퍼를 냉각하기 위한 냉각수단(미도시)이 구비될 수 있다. 또한 서셉터(110)는 상하 이동되는 것이 아니라 하부플레이트(610) 상에 고정된 상태로 있으므로, 상기 진공 흡착을 위한 연결라인 및 웨이퍼 냉각수단을 위한 연결라인 등이 고정된 있으면 되므로 구조가 간단해진다.The susceptor 110 is provided with a configuration for vacuum adsorption in order to fix the wafer on its upper surface, and cooling means for cooling the wafer before unloading the wafer having been processed in the fifth chamber 500 to the outside ( Not shown) may be provided. In addition, since the susceptor 110 is fixed on the lower plate 610 instead of being moved up and down, the structure is simplified since the connection line for vacuum suction and the connection line for wafer cooling means are fixed. .
상기 하부하우징(120)은 원통 형상으로 이루어져 내부공간(120a)이 공정 진행 중 연결공간부(800)에 대하여 격리된 상태가 되어 격리된 공정공간의 하측을 형성하고, 상기 내측공간(120a)은 배기구(150)를 통해 배기통로(미도시)로 연결되어 있다.The lower housing 120 has a cylindrical shape, and the inner space 120a is insulated from the connection space 800 during the process to form a lower side of the isolated process space, and the inner space 120a is The exhaust port 150 is connected to an exhaust passage (not shown).
상기 상부하우징(130)은 그 내부공간(130a)이 공정 진행 중 연결공간부(800)에 대하여 격리된 상태가 되어 격리된 공정공간의 상측을 형성하고, 상기 안착링(720)의 가스통공(721)을 통해 하부하우징(130)의 내측공간(120a)과 연통하도록 되어 있다.The upper housing 130 has an inner space (130a) is insulated from the connection space portion 800 during the process to form an upper side of the isolated process space, the gas through hole of the seating ring (720) It communicates with the inner space 120a of the lower housing 130 through 721.
상기 상부하우징(130)은 공정 진행 중 웨이퍼의 격리된 상태를 유지하고 다음 챔버로 이동하는 경우에는 연결공간부(800)와 연통하는 상태를 구현하기 위해, 원통 형상으로 이루어져 상기 상부플레이트(620)에 고정된 고정부(131)와, 상기 고정부(131)의 하측에 구비되어 상하로 이동할 수 있는 이동부(132)로 구성된다. The upper housing 130 is formed in a cylindrical shape in order to maintain the isolated state of the wafer during the process and to communicate with the connection space 800 when moving to the next chamber, the upper plate 620 It is composed of a fixed part 131 fixed to the moving part 132 provided on the lower side of the fixing part 131 to move up and down.
상기 이동부(132)는 구동부(133)에 의해 상기 이동부(132)가 하향으로 이동되어 상기 이동부(132)의 하단이 상기 턴테이블(700)의 상부에 접하게 된다. 상기 이동부(132)와 턴테이블(700)이 접하는 면의 기밀을 유지하기 위해 상기 이동부(132)의 하단에는 고무, 실리콘 등의 재질로 이루어진 기밀부재(미도시)가 구비될 수 있다. 또한 상기 고정부(131)와 이동부(132)가 접하는 면에도 기밀을 유지하기 위한 기밀부재(미도시)가 구비될 수 있다.The moving part 132 moves the moving part 132 downward by the driving part 133 so that the lower end of the moving part 132 is in contact with the upper part of the turntable 700. In order to maintain the airtightness of the surface in contact with the moving part 132 and the turntable 700, a lower end of the moving part 132 may be provided with an airtight member (not shown) made of a material such as rubber, silicon. In addition, an airtight member (not shown) may be provided to maintain airtightness on a surface where the fixing part 131 and the moving part 132 contact each other.
상기 리프트핀(140)은, 서셉터(710)를 상하로 관통하도록 구비되어, 로봇에 의해 로딩된 웨이퍼의 저면을 지지하여 그 웨이퍼를 서셉터(110)의 상면에 안착시키기 위해 구동부(미도시)에 의해 상하 이동이 가능하도록 되어 있다. The lift pin 140 is provided to penetrate the susceptor 710 up and down, and supports a bottom surface of the wafer loaded by the robot to mount the wafer on the top surface of the susceptor 110. Vertical movement is possible.
또한 웨이퍼를 언로딩하는 경우에는 안착링(720)에 안착된 웨이퍼의 저면을 지지하여 안착링(720)으로부터 분리시킨 후 로봇에 인계하기 위해 상하 이동된다.In addition, when the wafer is unloaded, the bottom surface of the wafer seated on the seating ring 720 is supported and separated from the seating ring 720, and then moved up and down to take over to the robot.
상기 샤워헤드(160)는 냉각을 위한 가스 또는 가열된 질소가스를 웨이퍼의 상면에 균일하게 분사하기 위한 것으로, 유입된 가스가 모이는 버퍼공간(161)과, 그 버퍼공간(161)에서 상기 웨이퍼(W)의 방향인 하향으로 가스가 분사되도록 샤워헤드(160)의 저면에 다수의 분사구가 일정 간격으로 형성된다.The shower head 160 uniformly injects gas for cooling or heated nitrogen gas onto the upper surface of the wafer, and includes a buffer space 161 in which the inflowed gas is collected, and the wafer in the buffer space 161. A plurality of injection holes are formed on the bottom of the shower head 160 at regular intervals so that the gas is injected downward in the direction of W).
상기 연결공간부(800)는 각 챔버(100,200,300,400,500)의 외측을 둘러싸는 공간이고, 상기 연결공간부(800) 내부에 잔존하는 가스의 배기를 위한 배기구(810)가 구비된다. The connection space 800 is a space surrounding the outside of each of the chambers 100, 200, 300, 400, and 500, and an exhaust port 810 for exhausting gas remaining in the connection space 800 is provided.
이와 같은 구성에 의하면 격리된 공정공간을 형성하기 위해 서셉터(110)와 하부하우징(120)을 상하 이동시키기 위해 벨로우즈와 같은 구성을 구비할 필요가 없어 장치의 내구성을 향상시키고, 보수비용을 절감할 수 있다.According to this configuration, it is not necessary to have a bellows-like configuration to move the susceptor 110 and the lower housing 120 up and down to form an isolated process space, thereby improving durability of the apparatus and reducing maintenance costs. can do.
제2챔버(200)는 상기 제1챔버(100)와 동일한 구성으로, 서셉터(210), 하부하우징(220), 상부하우징(230), 리프트핀(240), 배기구(250) 및 샤워헤드(260)을 포함하여 구성된다. The second chamber 200 is the same configuration as the first chamber 100, the susceptor 210, the lower housing 220, the upper housing 230, the lift pin 240, the exhaust port 250 and the shower head And 260.
상기 서셉터(210)에는 웨이퍼에 열을 가하기 위한 히터(미도시)가 구비되고, 웨이퍼는 서셉터(210)의 상면에 진공 흡착되어 고정된 상태에서 공정이 진행된다.The susceptor 210 is provided with a heater (not shown) for applying heat to the wafer, and the wafer is vacuum adsorbed on the upper surface of the susceptor 210 to be fixed.
단 제1챔버(100)의 리프트핀(140)은 웨이퍼의 저면을 직접 지지하는 것이나, 제2챔버(200)의 리프트핀(240)은 안착링(720)의 저면을 지지하여 안착링(720)과 안착링(720)에 안착된 웨이퍼를 함께 상하로 이동시킬 수 있는 것에 차이가 있다. 이를 위해 상기 리프트핀(140)은 서셉트(210)의 외측에서 상하 이동할 수 있도록 위치시킨다.However, the lift pin 140 of the first chamber 100 directly supports the bottom of the wafer, but the lift pin 240 of the second chamber 200 supports the bottom of the seating ring 720 to seat the seat 720. ) And the wafer seated on the seating ring 720 can be moved up and down together. To this end, the lift pin 140 is positioned to move up and down on the outside of the susceptor 210.
나머지 하부하우징(220)과 상부하우징(230) 및 샤워헤드(260)의 상세 구성은 제1챔버(100)의 구성과 동일하므로 자세한 설명은 생략한다. Detailed configurations of the remaining lower housing 220, the upper housing 230, and the shower head 260 are the same as those of the first chamber 100, and thus detailed description thereof will be omitted.
또한 이와 같은 구성은 다른 챔버인 제3 내지 제5챔버(300,400,500) 역시 동일한 구성이다.In addition, this configuration is the same configuration of the third to fifth chamber (300, 400, 500) of the other chamber.
이하에서는 상기와 같이 구성되는 본 발명의 바람직한 실시예에 따른 반도체 웨이퍼 연속 처리장치의 구성과 작용을 웨이퍼의 이동과 처리 과정에 맞춰 상세히 설명한다.Hereinafter, the configuration and operation of the semiconductor wafer continuous processing apparatus according to the preferred embodiment of the present invention configured as described above will be described in detail according to the movement and processing of the wafer.
도 4 내지 도 13은 웨이퍼의 이동과 처리 과정에 따라 도시한 본 발명의 개략적인 단면 구성도이다. 4 to 13 is a schematic cross-sectional configuration of the present invention shown in accordance with the movement and processing of the wafer.
먼저, 도 4를 참조하면 로봇(2)에 의하여 웨이퍼(W)가 제1챔버(100) 내로 로딩되는 과정을 도시한 것으로, 턴테이블(700)이 하향으로 이동하여, 턴테이블(700)의 저면이 상기 하부하우징(120)의 상부에 접하며, 서셉터(110)의 상면이 상기 턴테이블(700)의 홀(710)을 통해 상부에 노출되어 있다.First, referring to FIG. 4, a process in which the wafer W is loaded into the first chamber 100 by the robot 2 is shown. The turntable 700 moves downward, so that the bottom surface of the turntable 700 is moved. The upper surface of the susceptor 110 is exposed to an upper portion of the lower housing 120 through the hole 710 of the turntable 700.
로봇(2)의 아암(Arm) 상면에 웨이퍼(W)가 올려진 상태에서 리프트핀(140)이 상향으로 이동하여 웨이퍼(W)의 저면을 지지하게 된다.The lift pin 140 moves upward to support the bottom surface of the wafer W while the wafer W is placed on the upper surface of the arm Arm.
위에서는 로봇(2)이 웨이퍼(W)를 정위치에 위치시킨 상태에서 리프트핀(140)이 상향으로 이동하는 것으로 설명하였으나, 리프트핀(140)이 상향으로 이동하여 대기하는 상태에서 로봇(2)이 웨이퍼(W)를 이송하여 리프트핀(140) 상에 웨이퍼(W)를 로딩하는 것도 가능하다.In the above description, the lift pin 140 moves upward in the state in which the robot 2 moves the wafer W in the correct position. However, the robot 2 moves in the standby state. It is also possible to transfer the wafer (W) to load the wafer (W) on the lift pin (140).
이처럼 상기 제1챔버(100)는 웨이퍼(W)가 외부로부터 로딩되는 챔버이며, 이후에 설명되는 바와 같이 제1챔버(100)는 제5챔버(500)로부터 이동된 웨이퍼(W)를 외부로 언로딩하는 챔버로 사용된다. 즉, 제1챔버(100)는 웨이퍼(W)가 로딩 및 언로딩되는 로딩 및 언로딩 챔버가 된다.As described above, the first chamber 100 is a chamber in which the wafer W is loaded from the outside. As described later, the first chamber 100 moves the wafer W moved from the fifth chamber 500 to the outside. Used as an unloading chamber. That is, the first chamber 100 becomes a loading and unloading chamber in which the wafer W is loaded and unloaded.
그 다음, 도 5에 도시한 바와 같이 리프트핀(140)에 웨이퍼(W)가 올려진 상태로 로봇(2)이 후퇴하여 로딩 및 언로딩챔버(100)의 밖으로 이동한다. 이때 로봇(2)은 하향 이동하여 웨이퍼(W)가 리프트핀(140) 상에 완전히 올려진 상태에서 후퇴한다. 반대로 로봇(2)은 하향 이동하지 않고 리프트핀(140)이 웨이퍼(W)가 안착된 상태에서 상향으로 이동한 상태에서 로봇(2)이 후퇴할 수 있다.Next, as shown in FIG. 5, the robot 2 retreats with the wafer W mounted on the lift pin 140 to move out of the loading and unloading chamber 100. At this time, the robot 2 moves downward to retreat while the wafer W is completely placed on the lift pin 140. On the contrary, the robot 2 may retreat in a state in which the lift pin 140 moves upward while the wafer W is seated without moving downward.
이는 로봇(2)과 리프트핀(140)의 상대운동으로 로봇(2)이 후퇴할 때 웨이퍼(W)에 마찰 되어 웨이퍼(W)가 변위되는 것을 방지할 수 있는 방법이면 그 방법에 무관하게 적용될 수 있음을 보여준다.If the robot 2 and the lift pin 140 is a relative motion of the robot (2) when the retreat back to the wafer (W) to prevent the displacement of the wafer (W) as long as it is applicable regardless of the method Shows that it can.
그 다음, 도 6에 도시한 바와 같이 로봇(2)이 완전히 이동된 상태에서 상기 턴테이블(700)이 상향으로 이동하여 웨이퍼(W)의 저면 가장자리를 안착링(720)의 내부 안착단(722)에 안착시킨다. Next, as shown in FIG. 6, the turntable 700 moves upward while the robot 2 is completely moved to move the bottom edge of the bottom surface of the wafer W into an inner seating end 722 of the seating ring 720. Settle on
이와 같은 상태에서 리프트핀(140)이 하향 이동하여 웨이퍼(W)의 저면과 리프트핀(140)의 상단이 이격되면, 턴테이블(700)이 회전하여 도 7과 같이 안착링(720)에 안착된 상태에서 웨이퍼(W)를 제2챔버(200)로 이동시킨다.In this state, when the lift pin 140 moves downward so that the bottom surface of the wafer W and the upper end of the lift pin 140 are spaced apart, the turntable 700 rotates and is seated on the seating ring 720 as shown in FIG. 7. In the state, the wafer W is moved to the second chamber 200.
즉, 상기 턴테이블(700)의 회전은 그 턴테이블(700)이 상향으로 이동한 상태에서 이루어지며, 그 회전 각도는 챔버의 수에 따라 결정된다.That is, the turntable 700 is rotated while the turntable 700 moves upward, and the rotation angle is determined according to the number of chambers.
그 다음, 도 8에 도시한 바와 같이 턴테이블(700)이 하향으로 이동하여 웨이퍼(W)를 제2챔버(200)의 서셉터(210) 상에 안착시키고, 턴테이블(700)은 더 하향으로 이동하여 그 저면이 하부하우징(220)의 상단에 접하게 된다.Then, as shown in FIG. 8, the turntable 700 moves downward to seat the wafer W on the susceptor 210 of the second chamber 200, and the turntable 700 moves further downward. The bottom surface is in contact with the upper end of the lower housing 220.
그 다음, 도 9에 도시한 바와 같이 구동부(233)를 구동시켜 이동부(232)가 하향으로 이동되어 이동부(232)의 하단이 상기 턴테이블(700)의 상면에 접하게 된다. Next, as shown in FIG. 9, the driving unit 233 is driven to move the moving unit 232 downward so that the lower end of the moving unit 232 contacts the upper surface of the turntable 700.
따라서 상기 상부하우징(230)과 턴테이블(700)에 의해 둘러싸인 내부공간(230a)이 격리된 공정공간의 상측을 형성하고, 하부하우징(220)과 턴테이블(700)에 의해 둘러싸인 내부공간(220a)이 격리된 공정공간의 하측을 형성하게 되며, 상기 격리된 공정공간에서 웨이퍼(W)의 필요한 처리가 이루어진다.Therefore, the inner space 230a surrounded by the upper housing 230 and the turntable 700 forms an upper side of an isolated process space, and the inner space 220a surrounded by the lower housing 220 and the turntable 700 is formed. The lower side of the isolated process space is formed, and necessary processing of the wafer W is performed in the isolated process space.
이러한 웨이퍼(W)의 처리를 위해 샤워헤드(260)를 통해 공정 가스가 상부하우징(230)의 내부공간(230a)으로 공급되고, 서셉터(210)는 웨이퍼(W)를 진공흡착한 상태에서 특정한 온도로 가열하게 된다. 상기 공정 가스는 웨이퍼(W)를 처리한 후, 상기 턴테이블(700)의 홀(710)에 삽입된 안착링(720)의 가스통공(721)을 통해 하부하우징(220)의 내부공간(220a)으로 이동한 후 배기구(250)를 통해 배기된다.Process gas is supplied to the inner space 230a of the upper housing 230 through the shower head 260 to process the wafer W, and the susceptor 210 is vacuum-adsorbed on the wafer W. Heating to a specific temperature. After the process gas is processed on the wafer W, the internal space 220a of the lower housing 220 through the gas through hole 721 of the seating ring 720 inserted into the hole 710 of the turntable 700. After moving to the exhaust through the exhaust port 250.
또한 본 발명의 경우 리프트핀(240)은 서셉터(210)를 관통하지 않는 구조이므로 서셉터(210)에 리프트핀(240)의 상하 이동을 위한 별도의 홈이나 구멍을 형성시킬 필요가 없어, 웨이퍼(W)와 접촉하는 서셉터(210)의 면적이 넓게 형성되므로, 웨이퍼(W)를 균일하게 가열할 수 있다. In addition, in the case of the present invention, since the lift pin 240 does not penetrate the susceptor 210, there is no need to form a separate groove or hole for vertical movement of the lift pin 240 in the susceptor 210, Since the area of the susceptor 210 in contact with the wafer W is formed wide, the wafer W can be uniformly heated.
도 10은 제2챔버(200) 내에서 웨이퍼(W)가 공정이 완료된 상태에서 다른 챔버(300,400,500)에서 공정이 완료되지 않았을 때 대기하는 상태의 단면 구성도이다. 예를 들어 제2챔버(200)의 공정시간이 200초이고, 제3챔버(300)의 공정시간이 300초인 경우 제2챔버(200)에서의 공정이 완료된 후 100초 동안 대기한 후 웨이퍼(W)를 제3챔버(300)로 이송해야 한다.FIG. 10 is a cross-sectional configuration diagram of a state in which the wafer W waits when the process is not completed in the other chambers 300, 400, and 500 while the process is completed in the second chamber 200. For example, when the process time of the second chamber 200 is 200 seconds and the process time of the third chamber 300 is 300 seconds, the wafer is waited for 100 seconds after the process in the second chamber 200 is completed. W) must be transferred to the third chamber 300.
즉, 제2챔버(200)에서 이루어지는 공정시간에 비하여 제3챔버(300)에서 이루어지는 공정시간이 더 긴 경우, 웨이퍼(W)를 즉시 제3챔버(300)로 이동시킬 수 없기 때문에 제3챔버(300)에서의 공정이 완료되어 턴테이블(700)이 회전할 수 있는 상태가 될 때까지 대기하는 상태로 이해될 수 있다.That is, when the process time made in the third chamber 300 is longer than the process time made in the second chamber 200, the third chamber 300 may not be moved immediately to the third chamber 300. It may be understood that the process waits at 300 until the turntable 700 is in a rotatable state.
상기 웨이퍼(W)가 서셉터(210)에 안착된 상태로 대기하는 경우 필요 이상으로 웨이퍼(W)를 가열하게 되기 때문에, 리프트핀(240)을 상향으로 이동시켜, 상기 안착링(720)과 안착링(720)에 안착된 웨이퍼(W)를 동시에 들어올려 상향으로 서셉터(210)로부터 웨이퍼(W)를 이탈시킨 후 필요한 시간만큼 대기하게 된다.Since the wafer W is heated more than necessary when the wafer W is seated on the susceptor 210, the lift pin 240 is moved upward to move the lift ring 240 upward. At the same time, the wafer W seated on the seating ring 720 is lifted up, and the wafer W is separated from the susceptor 210 upward.
또한 웨이퍼(W)에 대한 공정 처리가 이루어지는 공정챔버(200,300,400,500)에서는 고온으로 공정이 이루어지기 때문에 격리된 공정공간 내부의 온도는 각 챔버의 외부의 연결공간부(800)의 온도보다 높은 상태가 되고, 제2챔버(200)에서 높은 온도로 공정이 완료된 웨이퍼(W)가 대기할 때 상부하우징(230)의 내부공간(230a)이 연결공간부(800)와 연통하게 되면 낮은 온도의 연결공간부(800)에 노출되어 웨이퍼(W)에 열충격이 가해질 수 있다.In addition, since the process is performed at a high temperature in the process chambers 200, 300, 400, and 500 where the process is performed on the wafer W, the temperature inside the isolated process space becomes higher than the temperature of the connection space 800 outside the chamber. When the wafer W, which has been processed at a high temperature in the second chamber 200, is waiting, when the internal space 230a of the upper housing 230 communicates with the connection space 800, the connection space portion having a low temperature The thermal shock may be applied to the wafer W by being exposed to the 800.
따라서 본 발명에서는 이와 같은 웨이퍼(W)의 대기 상태에서도 상기 상부하우징(230), 턴테이블(700) 및 하부하우징(220)에 의해 둘러싸인 공정 공간은 연결공간부(800)에 대하여 격리된 상태를 유지하기 때문에, 웨이퍼(W)의 가열된 상태를 유지할 수 있어 웨이퍼(W)의 공정 품질을 향상시킬 수 있다.Therefore, in the present invention, the process space surrounded by the upper housing 230, the turntable 700, and the lower housing 220 may be isolated from the connection space 800 even in the standby state of the wafer W. Therefore, the heated state of the wafer W can be maintained and the process quality of the wafer W can be improved.
그 다음, 도 11에 도시한 바와 같이 제2챔버(200)에서 웨이퍼(W)를 제3챔버(300)로 이송하기 위해서 상기 상부하우징(230)의 이동부(232)가 상향으로 이동한다.Next, as illustrated in FIG. 11, the moving part 232 of the upper housing 230 moves upward to transfer the wafer W from the second chamber 200 to the third chamber 300.
그 다음, 상기 턴테이블(700)이 상향으로 이동하여 웨이퍼(W)와 함께 안착링(720)이 턴테이블(700)의 홀(710)에 삽입되어 안착링(720)의 외부 안착단(723)이 턴테이블(700)의 상면에 안착되도록 한다.Then, the turntable 700 is moved upward so that the seat ring 720 is inserted into the hole 710 of the turntable 700 together with the wafer W so that the outer seat end 723 of the seat ring 720 is moved. It is to be seated on the upper surface of the turntable (700).
그 다음, 상기 리프트핀(240)이 하향 이동하여 리프트핀(240)의 상단으로부터 안착링(720)의 저면을 이격시킨 후, 턴테이블(700)이 회전하여 웨이퍼를 제3챔버(300)로 이송하게 된다.Next, the lift pin 240 moves downward to space the bottom surface of the seating ring 720 from the top of the lift pin 240, and then the turntable 700 rotates to transfer the wafer to the third chamber 300. Done.
그 다음의 기계적인 과정은 상기 제1챔버(100)로부터 제2챔버(200)로 웨이퍼(W)가 이송된 이후의 동작인 도 7 이후의 동작과 동일하게 반복된다. 앞서 설명한 바와 같이 제2챔버(200), 제3챔버(300), 제4챔버(400) 및 제5챔버(500) 각각은 모두 동일하게 구성되어 웨이퍼(W)를 처리할 때는 턴테이블(700)이 하향으로 이동된 상태에서 상부하우징(230)의 이동부(232)가 고정부(231)를 따라 하향으로 이동되어 격리된 공정공간을 형성하고, 웨이퍼(W)를 이동시킬 때는 상부하우징(230)이 원위치로 상향 이동하고, 턴테이블(700)이 상향 이동 및 회전하는 구조를 가지고 있으며, 반복 설명을 피하기 위하여 상기 제3 내지 제5챔버(300~500)의 동작을 생략하고, 상기 도 11의 상태에서 제1챔버(100)로 웨이퍼(W)가 이동하는 것으로 설명한다.The subsequent mechanical process is repeated in the same manner as the operation after FIG. 7, which is an operation after the wafer W is transferred from the first chamber 100 to the second chamber 200. As described above, each of the second chamber 200, the third chamber 300, the fourth chamber 400, and the fifth chamber 500 is configured in the same manner so that the turntable 700 may be used to process the wafer W. In the downwardly moved state, the moving part 232 of the upper housing 230 is moved downward along the fixing part 231 to form an isolated process space, and the upper housing 230 is moved when the wafer W is moved. ) Moves upward to its original position, the turntable 700 has a structure that moves upward and rotate, omit the operation of the third to fifth chamber (300 to 500) to avoid repeated description, It will be described that the wafer W moves to the first chamber 100 in the state.
상기 제2 내지 제5챔버(200~500)에서는 각각 다른 공정이 진행될 수 있으며, 웨이퍼(W)가 이동하는 연결공간부(800)에도 웨이퍼의 온도 유지를 위한 가열된 질소 등의 비반응성 가스가 공급될 수 있으며, 그 비반응성 가스를 포함하여 유입된 공정가스는 배기부(810)를 통해 배기 될 수 있다.Different processes may be performed in each of the second to fifth chambers 200 to 500, and a non-reactive gas such as heated nitrogen for maintaining the temperature of the wafer may also be connected to the connection space 800 in which the wafer W moves. The process gas may be supplied, and the introduced process gas including the non-reactive gas may be exhausted through the exhaust unit 810.
도 12는 상기 도 11에 도시한 상태에서 턴테이블(700)이 회전하여 웨이퍼(W)가 제1챔버(100)로 이송된 후, 턴테이블(700)이 하향으로 이동하여 웨이퍼(W)를 서셉터(110)에 안착한 상태를 나타낸다. 실제 동작과정은 상기 제5챔버(500)에서 공정이 완료된 웨이퍼(W)를 연속 처리장치의 외부로 언로딩하기 위하여, 상기 제1챔버(100)로 이동된다.12 illustrates that the turntable 700 rotates in the state shown in FIG. 11 to transfer the wafer W to the first chamber 100, and then the turntable 700 moves downward to susceptor the wafer W. The state seated at 110 is shown. The actual operation is moved to the first chamber 100 in order to unload the wafer W, which has been processed in the fifth chamber 500, out of the continuous processing apparatus.
상기 웨이퍼(W)는 제1챔버(100)로 이동된 상태에서 별다른 처리 없이 자연냉각되도록 한 후 이후에 설명될 로봇(2)에 의해 외부로 언로딩 될 수도 있고, 냉각가스를 사용하여 웨이퍼(W)를 강제 냉각시킬 수도 있다. The wafer W may be naturally cooled in the state moved to the first chamber 100 without any processing, and then unloaded to the outside by the robot 2 to be described later. W) may be forced to cool.
이와 같은 냉각과정도 공정공간(120a,130a)의 격리 상태에서 이루어지는데, 이를 위해 먼저 상기 턴테이블(700)이 하향으로 이동하여 그 저면이 하부하우징(120)의 상단에 접하게 된다. Such a cooling process is also performed in an isolated state of the process spaces 120a and 130a. To this end, the turntable 700 first moves downward so that the bottom thereof is in contact with the upper end of the lower housing 120.
그 다음, 상기 상부하우징(130)의 이동부(132)가 하향으로 이동하여 격리된 공정 공간을 형성한 후, 샤워헤드(160)에서는 냉각가스를 웨이퍼(W)에 분사하여 웨이퍼(W)를 냉각시키거나, 아니면 웨이퍼(W)를 냉각수가 순환되는 서셉터(110) 상에 안착시킨 상태로 다른 챔버들에서 공정이 완료될 때까지 두어 냉각시킨다.Next, after the moving part 132 of the upper housing 130 moves downward to form an isolated process space, the shower head 160 sprays cooling gas onto the wafer W to form the wafer W. Alternatively, the wafer W is placed on the susceptor 110 in which the coolant is circulated, and left in the other chambers until the process is completed.
그 다음, 도 13에 도시한 바와 같이 리프트핀(140)이 상향으로 이동하여 웨이퍼(W)를 서셉터(110)로부터 이탈시킨 후, 로봇(2)이 진입하여 웨이퍼(W)의 저면을 지지한 상태로 웨이퍼(W)를 언로딩하게 되고, 그 후 앞서 설명한 바와 같이 제1챔버(100)에는 새로운 웨이퍼가 로딩되어 동일한 공정이 이루어지게 된다.Then, as shown in FIG. 13, the lift pin 140 moves upward to release the wafer W from the susceptor 110, and then the robot 2 enters and supports the bottom surface of the wafer W. As shown in FIG. In this state, the wafer W is unloaded. Then, as described above, a new wafer is loaded into the first chamber 100 to perform the same process.
앞서 설명한 웨이퍼(W)의 로딩 과정과 동일하게 로봇(2)과 리프트핀(140) 사이에는 간섭이 발생하지 않도록 상대 운동을 하게 된다. 즉, 로봇(2)이 이탈하기 전에 리프트핀(140)이 하향으로 이동하거나, 로봇(2)이 상향으로 이동하여 웨이퍼(W)의 저면을 지지한 상태에서 외부로 언로딩하게 된다.In the same manner as the loading process of the wafer W described above, relative movement is performed so that no interference occurs between the robot 2 and the lift pin 140. That is, the lift pin 140 moves downward or the robot 2 moves upward before the robot 2 detaches, and unloads to the outside in a state in which the bottom surface of the wafer W is supported.
이처럼 본 발명은 각 챔버마다 마련된 중량물인 다수의 서셉터와 격리된 공정공간의 하측을 형성하기 위한 하부하우징(120)을 상하로 이동시킬 필요 없이 고정시키고, 턴테이블(700)을 회전 및 상하로 이동할 수 있도록 구성함으로써, 기구적인 구성을 단순화하고 구동부의 부하를 줄여 소비전력을 낮출 수 있는 효과가 있다.As described above, the present invention is fixed without having to move the lower housing 120 to form a lower side of the process space, which is separated from the plurality of susceptors, which are heavy materials provided in each chamber, and move the turntable 700 up and down. By configuring it so that the mechanical configuration can be simplified and the load of the driving part can be reduced, thereby reducing the power consumption.
도 14는 본 발명의 다른 실시예에 따른 제3챔버(300)의 단면 구성도이다.14 is a cross-sectional view of a third chamber 300 according to another embodiment of the present invention.
도 14를 참조하면 공정온도의 효과적인 조절을 위하여 상부플레이트(620)의 상부측에 상부히터(370)를 더 구비한 것이다.Referring to FIG. 14, the upper heater 370 is further provided on the upper side of the upper plate 620 in order to effectively control the process temperature.
이와 같이 웨이퍼(W)의 상부측에 상부히터(370)를 구비하게 되면, 웨이퍼(W)는 서셉터(310)로부터 전달된 열에 의해 하면이 가열되고, 상부히터(370)를 통해 전달된 열에 의해 웨이퍼(W)의 상면도 동시에 가열되므로, 웨이퍼(W)의 상하면이 균일한 온도로 가열될 수 있다.When the upper heater 370 is provided on the upper side of the wafer W as described above, the lower surface of the wafer W is heated by the heat transferred from the susceptor 310, and the heat is transferred to the heat transferred through the upper heater 370. Since the upper surface of the wafer W is also heated at the same time, the upper and lower surfaces of the wafer W can be heated to a uniform temperature.
특히 리플로우 공정에서는 솔더볼의 형상이 매우 중요하며, 서셉터(310)에 마련된 히터와 상기 상부측의 상부히터(370)에 의해 솔더볼의 상부와 하부를 균일하게 가열할 수 있어, 솔더볼의 형상 유지에 유리하게 된다.In particular, in the reflow process, the shape of the solder ball is very important, and the upper and lower parts of the solder ball can be uniformly heated by the heater provided in the susceptor 310 and the upper heater 370 of the upper side, thereby maintaining the shape of the solder ball. To be advantageous.
상기 상부히터(370)는 제2챔버 내지 제5챔버(200~500)에 선택적으로 부가될 수 있는 것으로, 본 발명이 적용되는 웨이퍼 처리 공정의 종류에 따라 가변적으로 설치될 수 있다.The upper heater 370 may be selectively added to the second to fifth chambers 200 to 500, and may be variably installed according to the type of wafer processing process to which the present invention is applied.
또한 상부하우징(230)의 내부공간(230a)에는 공정가스의 잔유물이 상부하우징(230) 내측 벽면에 들러붙게 되는데, 상기 상부히터(370)를 이용하여 가열하게 되면 공정가스의 잔유물이 상부하우징(230) 내측 벽면에 들러붙는 것을 방지할 수 있어 파티클의 발생을 줄일 수 있다.In addition, the residue of the process gas is stuck to the inner wall surface of the upper housing 230 in the inner space 230a of the upper housing 230. When the heating is performed using the upper heater 370, the residue of the process gas is the upper housing ( 230) It can be prevented to stick to the inner wall surface can reduce the generation of particles.
또한 버퍼공간(361)이 형성된 샤워헤드(360)를 상부히터(370)의 하부에 구비하게 되면, 상부히터(370)의 열에 의해 버퍼공간(361)에 유입된 공정가스를 가열하게 되므로, 샤워헤드(360)를 통해 공급되는 공정 가스의 온도를 신속하게 상승시킬 수 있으며, 공정의 안정성을 보다 향상시킬 수 있게 된다.In addition, when the shower head 360 having the buffer space 361 is formed below the upper heater 370, the process gas introduced into the buffer space 361 is heated by the heat of the upper heater 370, so that the shower The temperature of the process gas supplied through the head 360 may be quickly increased, and the stability of the process may be further improved.
본 발명은 리플로우(reflow)를 수행하는 장비로 사용될 수 있으며, 리플로우 공정에 사용되는 포름산 증기는 고온으로 가열된 후 챔버 내부로 공급된다. 이 경우 포름산 증기를 미리 가열시킨 후 챔버로 유입시키면 포름산이 웨이퍼에 도달할 때 기화되어 손실이 발생하게 되어 공정 처리의 균일성이 저하된다. 또한 포름산 증기를 고온으로 하기 위해 리플로우 장비의 외부에 구비된 배관 외면에 히팅 자켓을 감싸는 것으로 하여 미리 가열하게 되면 배관 내면에 포름산 증기가 들러붙게 되는 문제점도 있다. The present invention can be used as equipment for performing a reflow, formic acid vapor used in the reflow process is heated to a high temperature and then supplied into the chamber. In this case, when the formic acid vapor is preheated and introduced into the chamber, the formic acid vaporizes when it reaches the wafer, resulting in a loss, thereby lowering uniformity of the process. In addition, by heating the heating jacket on the outer surface of the pipe provided on the outside of the reflow equipment to make the formic acid vapor at a high temperature, there is a problem that the formic acid vapor is stuck to the inner surface of the pipe.
따라서 본 실시예와 같이 포름산 증기가 버퍼공간(361)에 유입되는 과정에서 상부히터(370)로 가열하게 되면, 웨이퍼(W)에 분사되기 직전에 가열되므로 포름산의 기화로 인한 손실을 방지하게 되고, 포름산 증기가 배관 내면에 들러붙게 되는 문제점도 방지할 수 있다.Therefore, when the formic acid vapor is heated to the upper heater 370 while the formic acid is introduced into the buffer space 361 as in the present embodiment, it is heated just before being injected onto the wafer W, thereby preventing a loss due to vaporization of the formic acid. In addition, the problem that the formic acid vapor is stuck to the inner surface of the pipe can be prevented.
한편 도면에서는 상부히터(370)를 샤워헤드(360)의 상부에 위치하는 것으로 도시하였으나, 샤워헤드(360) 내에 상부히터(370)가 삽입될 수 있다.Meanwhile, although the upper heater 370 is illustrated as being positioned above the shower head 360 in the drawing, the upper heater 370 may be inserted into the shower head 360.
도 15는 본 발명의 다른 실시예에 따른 턴테이블(700)의 단면 구성도이다. 15 is a cross-sectional view of a turntable 700 according to another embodiment of the present invention.
도 15를 참조하면 턴테이블(700)의 저면에는 수용홈(730)이 마련되어 있으며, 상기 턴테이블(700)이 공정을 위하여 하향으로 이동하였을 때 롤러(740)가 수용된다.Referring to FIG. 15, an accommodation groove 730 is provided at a bottom of the turntable 700, and the roller 740 is accommodated when the turntable 700 moves downward for the process.
상기 턴테이블(700)이 웨이퍼의 이송을 위하여 상향으로 이동한 상태에서 상기 롤러(740)는 수용홈(730)으로부터 이탈되며, 턴테이블(700)이 회전할 때 상기 수용홈(730)이 형성되지 않은 턴테이블(700)의 저면을 지지하게 된다.The roller 740 is separated from the receiving groove 730 in the state in which the turntable 700 moves upward for the transfer of the wafer, and the receiving groove 730 is not formed when the turntable 700 rotates. The bottom surface of the turntable 700 is supported.
상기 턴테이블(700)이 회전할 때 롤러(740)는 턴테이블(700)이 원활한 회전이 가능하도록 하며, 그 턴테이블(700)의 중량에 의하여 처짐이 발생하거나, 일부에서 휨이 발생하는 것을 방지하는 역할을 한다.When the turntable 700 rotates, the roller 740 allows the turntable 700 to rotate smoothly, and prevents deflection or bending from occurring due to the weight of the turntable 700. Do it.
따라서 턴테이블(700)의 교체나, 유지 보수 주기를 보다 연장시켜 비용을 줄이며, 장치의 신뢰성을 향상시킬 수 있게 된다. Accordingly, the replacement of the turntable 700 or the maintenance cycle may be further extended to reduce the cost and improve the reliability of the apparatus.
한편, 상기 실시예에서는 상부하우징(130,230)을 고정부(131,231)와 상기 고정부(131,231)에 접촉하면서 슬라이딩되는 이동부(132,232)로 구성하였으나, 상기 이동부(132,232) 대신 고정부(131,231)의 하단에 결합시킨 상태에서 벨로우즈 형상을 일체로 결합된 것으로 변형 실시할 수도 있고, 상기 고정부(131,231)와 이동부(132,232) 대신 벨로우즈의 상단을 상부플레이트(620)에 고정시키고 벨로우즈의 하단을 상하 이동시키는 구성으로 변형 실시할 수도 있다. Meanwhile, in the above embodiment, the upper housings 130 and 230 are configured as the moving parts 132 and 232 that slide while contacting the fixing parts 131 and 231 and the fixing parts 131 and 231, but instead of the moving parts 132 and 232, the fixing parts 131 and 231 are provided. The bellows shape may be modified to be integrally coupled in a state of being coupled to the lower end of the bellows, and instead of the fixing parts 131 and 231 and the moving parts 132 and 232, the upper end of the bellows is fixed to the upper plate 620 and the lower end of the bellows is fixed. It can also be modified in the configuration to move up and down.
또한 상기 실시예에서는 제1챔버(100)에 웨이퍼(W)가 로딩된 후 별도의 처리 없이 제2챔버(200)로 이동시키는 것으로 설명하였으나, 제1챔버(100)에서 웨이퍼(W)가 리프트핀(140) 상에 로딩된 상태에서 리프트핀(140)이 하강하여 웨이퍼(W)를 서셉터(110) 위에 안착시킨 후 상부하우징(130)의 이동부(132)를 하강시켜 상부하우징(130)과 턴테이블(700) 및 하부하우징(120)으로 이루어지는 내부공간을 격리시킨 다음 질소를 주입시켜 파티클을 제거하는 퍼지(Purge) 과정을 수행하는 것으로 구성할 수도 있다.In addition, in the above embodiment, the wafer W is loaded in the first chamber 100 and then moved to the second chamber 200 without any further processing. However, the wafer W is lifted in the first chamber 100. Lift pin 140 is lowered in the state loaded on the pin 140 to seat the wafer (W) on the susceptor 110, and then lower the moving part 132 of the upper housing 130, the upper housing 130 ) And the internal space consisting of the turntable 700 and the lower housing 120 may be isolated and then purged with nitrogen to remove particles.
도 16은 본 발명의 다른 실시예에 의한 반도체 웨이퍼의 연속 처리장치를 보여주는 단면도, 도 17은 도 16의 상태에서 상부하우징이 상승한 상태를 보여주는 단면도, 도 18은 도 17의 상태에서 턴테이블과 안착링이 상승한 상태를 보여주는 단면도, 도 19는 도 16의 연속 처리장치에 구비된 서셉터 및 안착링에 웨이퍼가 안착된 상태를 보여주는 평면도이다.16 is a cross-sectional view showing a continuous processing apparatus of a semiconductor wafer according to another embodiment of the present invention, FIG. 17 is a cross-sectional view showing an upper housing raised in the state of FIG. 16, FIG. 18 is a turntable and seating ring in the state of FIG. 19 is a plan view showing a state in which a wafer is seated in a susceptor and a mounting ring provided in the continuous processing apparatus of FIG. 16.
본 실시예의 반도체 웨이퍼 연속 처리장치는, 공정이 진행되는 동안 웨이퍼(W)를 지지하기 위해 고정 설치된 서셉터(1100), 상기 서셉터(1100)의 외측에 고정 설치되어 상기 웨이퍼(W)의 하부에 격리된 공정 공간(1200a)을 형성하는 하부하우징(1200), 상기 웨이퍼(W)의 상부에 격리된 공정 공간(1300a)을 형성하기 위해 상하 이동하는 상부하우징(1300), 상기 상부하우징(1300)과 하부하우징(1200) 사이에 구비되어 다수의 챔버 사이에서 상기 웨이퍼(W)를 이송하기 위해 회전하는 동시에 상기 서셉터(1100) 상부에서 상기 웨이퍼(W)를 상하 이동시키는 턴테이블(7000), 상기 턴테이블(7000)의 홀(7100)에 상향으로 이탈이 가능하도록 삽입되어 상기 웨이퍼(W)가 안착되는 안착링(7200)으로 이루어져 있다.In the semiconductor wafer continuous processing apparatus of the present embodiment, the susceptor 1100 is fixedly installed to support the wafer W while the process is in progress, and is fixed to the outside of the susceptor 1100 so that the lower portion of the wafer W is fixed. A lower housing 1200 forming a process space 1200a isolated from the upper housing, an upper housing 1300 moving up and down to form an isolated process space 1300a on the upper portion of the wafer W, and the upper housing 1300. The turntable 7000 is provided between the lower housing 1200 and rotates to transfer the wafer W between a plurality of chambers and simultaneously moves the wafer W up and down on the susceptor 1100. It is composed of a seating ring 7200 is inserted into the hole 7100 of the turntable 7000 to be detached upwards to seat the wafer (W).
본 실시예는 앞서 설명한 실시예와 달리, 상부하우징(1300)이 벨로우즈 형상으로 이루어지고, 상부하우징(1300)의 하단부(1301)와 안착링(7200)의 상부가 접하는 동시에 하부하우징(1200)의 상단부(1201)와 안착링(7200)의 하부가 접하도록 되어 있으며, 안착링(7200)의 내측에는 웨이퍼(W)의 저면을 지지하기 위한 지지핀(7210)이 형성되어 있다는 점에서 차이가 있다.In the present embodiment, unlike the above-described embodiment, the upper housing 1300 is formed in a bellows shape, and the lower portion 1301 of the upper housing 1300 and the upper portion of the seating ring 7200 are simultaneously in contact with each other. The upper portion 1201 and the lower portion of the seating ring 7200 are in contact with each other, and there is a difference in that a support pin 7210 is formed inside the seating ring 7200 to support the bottom surface of the wafer W. .
상기 안착링(7200)의 외측단(7201)은 상부가 돌출된 단차진 형상으로 이루어지고, 상기 턴테이블(7000)의 내측단(7001)은 하부가 중심방향으로 돌출되어 단차진 형상으로 이루어져, 상기 외측단(7201)이 내측단(7001)에 걸림되어 상향 이탈이 가능하도록 안착되어 있다.The outer end 7201 of the seating ring 7200 is formed in a stepped shape with an upper part protruding, and the inner end 7001 of the turntable 7000 is formed in a stepped shape with a lower part protruding in the center direction. The outer end 7201 is engaged with the inner end 7001 and is seated to allow upward detachment.
상부플레이트(6200)의 상측에는 상기 상부하우징(1300)의 하단부(1301)가 상하 이동될 수 있도록 구동력을 제공하는 구동부(1330)가 구비된다. 상기 구동부(1330)에는 상하 이동하는 샤프트(1335)가 연결되고, 상기 샤프트(1335)의 하단부에는 상기 상부하우징(1300)의 하단부(1301)가 연결된다.The upper side of the upper plate 6200 is provided with a driving unit 1330 for providing a driving force to move the lower end 1301 of the upper housing 1300 up and down. A shaft 1335 that moves up and down is connected to the driving unit 1330, and a lower end 1301 of the upper housing 1300 is connected to a lower end of the shaft 1335.
상기 구동부(1330)는 실린더로 구성될 수 있고, 상기 실린더를 구동시키면 상기 샤프트(1335) 및 상부하우징(1300)의 하단부(1301)가 상하 이동될 수 있고, 하향 이동시 상기 하단부(1301)가 안착링(7200)의 상부에 접함으로써 격리된 공정 공간(1300a)의 상부측을 형성할 수 있다. 이 경우 상기 하단부(1301)의 하면과 상기 안착링(7200)의 상면 사이에는 기밀부재(1302)가 개재되어 기밀이 유지된다.The driving unit 1330 may be configured as a cylinder, and when the cylinder is driven, the lower end 1301 of the shaft 1335 and the upper housing 1300 may be moved up and down, and the lower end 1301 may be seated when moved downward. The upper side of the isolated process space 1300a can be formed by contacting the top of the ring 7200. In this case, the airtight member 1302 is interposed between the bottom surface of the lower end portion 1301 and the top surface of the seating ring 7200 to maintain airtightness.
한편, 상기 턴테이블(7000)의 하향 이동시 상기 하부하우징(1200)의 상단부(1201)가 상기 안착링(7200)의 하부에 접함으로써 격리된 공정 공간(1200a)의 하부측을 형성할 수 있다. 이 경우 상기 상단부(1201)의 상면과 상기 안착링(7200)의 하면 사이에는 기밀부재(1202)가 개재되어 기밀이 유지된다.Meanwhile, when the turntable 7000 moves downward, the upper end 1201 of the lower housing 1200 may contact the lower portion of the seating ring 7200 to form a lower side of the isolated process space 1200a. In this case, the airtight member 1202 is interposed between the top surface of the upper end portion 1201 and the bottom surface of the seating ring 7200 to maintain airtightness.
상기 안착링(7200)의 내측에는 상기 웨이퍼(W)의 저면을 지지하기 위한 다수의 지지핀(7210)이 안착링(7200)의 중심 방향으로 돌출 형성되어 있다. 도 19에서는 상기 지지핀(7210)의 개수를 3개로 예시하였으나, 변형 실시 가능하다.Inside the seating ring 7200, a plurality of support pins 7210 protruding toward the center of the seating ring 7200 to support the bottom surface of the wafer W. In FIG. 19, the number of the support pins 7210 is illustrated as three, but may be modified.
상기 서셉터(1100)의 상면에는 상기 지지핀(7210)이 삽입되도록 슬롯 형상으로 이루어진 홈(1110)이 형성되어 있고, 상기 지지핀(7210)이 상기 홈(1110)의 내부에 위치한 상태에서 상방향으로 이동하면 상기 지지핀(7210)에 의해 웨이퍼(W)의 저면이 지지되어 웨이퍼(W)가 함께 상방향으로 이동하게 된다.A groove 1110 having a slot shape is formed on the upper surface of the susceptor 1100 so that the support pin 7210 is inserted into the upper surface of the susceptor 1100, and the support pin 7210 is positioned inside the groove 1110. When moved in the direction, the bottom surface of the wafer W is supported by the support pins 7210 so that the wafers W move upward together.
상기 안착링(7200)의 하부에는, 공정가스를 균일하게 통과시키기 위한 홀(6510)이 원주 둘레를 따라 균일하게 형성된 링 형상의 배플플레이트(6500)가 구비되고, 상기 배플플레이트(6500)의 홀(6510)을 통과한 공정가스는 상기 공정챔버의 하부에 구비된 배기구(1500)를 통해 배기된다.The lower portion of the seating ring 7200 is provided with a ring-shaped baffle plate 6500 having holes 6510 uniformly formed along the circumference of the hole 6510 to uniformly pass the process gas, and the holes of the baffle plate 6500. The process gas passed through the 6510 is exhausted through the exhaust port 1500 provided in the lower portion of the process chamber.
상기 배플플레이트(6500)는 서셉터(1100)의 외측 둘레에 위치하고, 상기 하부하우징(1200)에 외측 가장자리가 걸림된다.The baffle plate 6500 is positioned at an outer circumference of the susceptor 1100, and an outer edge thereof is locked to the lower housing 1200.
공정이 진행되는 동안에는 도 16에 나타난 바와 같이, 상부하우징(1300)과 안착링(7200) 및 하부하우징(1200)이 서로 접하도록 되어 있어 웨이퍼(W)의 상부 공간(1300a)과 하부 공간(1200a)이 격리된 상태가 된다.While the process is in progress, as shown in FIG. 16, the upper housing 1300, the seating ring 7200, and the lower housing 1200 are in contact with each other, such that the upper space 1300a and the lower space 1200a of the wafer W are in contact with each other. ) Becomes isolated.
이 상태에서 도 17에 나타난 바와 같이, 구동부(1330)를 구동시키면 샤프트(1335)와 함께 벨로우즈 형상으로 이루어진 상부하우징(1300)은 압축되고 그 하단부(1301)가 상방향으로 이동하게 된다. In this state, as shown in FIG. 17, when the driving unit 1330 is driven, the upper housing 1300 having a bellows shape together with the shaft 1335 is compressed and the lower end 1301 is moved upward.
그 후 도 18에 나타난 바와 같이, 턴테이블(7000)을 상방향으로 이동시키면 턴테이블(7000)과 함께 안착링(7200) 및 웨이퍼(W)가 상방향으로 이동되어, 서셉터(1100) 상면으로부터 웨이퍼(W)가 이격된다.Then, as shown in FIG. 18, when the turntable 7000 is moved upward, the seating ring 7200 and the wafer W move upward with the turntable 7000, and the wafer is moved from the upper surface of the susceptor 1100. (W) is spaced apart.
도 18의 상태에서 턴테이블(7000)을 회전시키면 웨이퍼(W)는 다음 챔버로 이송된 후 필요한 웨이퍼(W)의 처리가 이루어진다.When the turntable 7000 is rotated in the state of FIG. 18, the wafer W is transferred to the next chamber, and then the necessary wafer W is processed.
전술한 바와 같이 본 발명에 대하여 바람직한 실시예를 들어 상세히 설명하였지만, 본 발명은 전술한 실시예들에 한정되는 것이 아니고, 특허청구범위와 발명의 상세한 설명 및 첨부한 도면의 범위 안에서 여러 가지로 변형하여 실시하는 것이 가능하고 이 또한 본 발명에 속한다.As described above, the present invention has been described in detail with reference to preferred embodiments, but the present invention is not limited to the above-described embodiments, and various modifications are made within the scope of the claims and the detailed description of the invention and the accompanying drawings. It is possible to carry out by this and this also belongs to the present invention.
본 발명은 반도체 웨이퍼를 연속 처리하는 장치를 단순화하며, 전력의 소비를 줄임과 아울러 장치의 내구성을 향상시킬 수 있는 것으로 산업상 이용 가능성이 있다.INDUSTRIAL APPLICABILITY The present invention simplifies an apparatus for continuous processing of a semiconductor wafer, reduces the power consumption, and improves the durability of the apparatus.

Claims (24)

  1. 웨이퍼를 복수의 공정에 의해 처리하기 위한 다수의 챔버를 포함하는 반도체 웨이퍼의 연속 처리장치에 있어서,In the continuous processing apparatus for a semiconductor wafer comprising a plurality of chambers for processing the wafer by a plurality of processes,
    상기 다수의 챔버 중 하나 이상의 챔버는, At least one of the plurality of chambers,
    공정이 진행되는 동안 웨이퍼를 지지하기 위해 고정 설치된 서셉터;A susceptor fixedly installed to support the wafer during the process;
    상기 서셉터의 외측에 고정 설치되어, 상기 웨이퍼의 하부에 격리된 공정 공간을 형성하는 하부하우징; A lower housing fixedly installed at an outer side of the susceptor to form an isolated process space under the wafer;
    상기 웨이퍼의 상부에 격리된 공정 공간을 형성하기 위해 상하 이동하는 상부하우징;An upper housing moving up and down to form an isolated process space on top of the wafer;
    상기 상부하우징과 하부하우징 사이에 구비되고, 상기 서셉터의 상부를 노출시키는 홀이 형성되고, 상기 다수의 챔버 사이에서 상기 웨이퍼를 이송하기 위해 회전하며, 상기 서셉터 상부에서 상기 웨이퍼를 상하 이동시키는 턴테이블;A hole provided between the upper housing and the lower housing, the hole exposing the upper portion of the susceptor is formed, rotates to transfer the wafer between the plurality of chambers, and moves the wafer up and down on the susceptor. turntable;
    상기 홀에 상향으로 이탈이 가능하도록 삽입되어 상기 웨이퍼가 안착되는 안착링;을 포함하는 반도체 웨이퍼의 연속 처리장치.And a seating ring inserted into the hole so that the wafer is seated upwardly to allow the wafer to be seated therein.
  2. 제1항에 있어서, The method of claim 1,
    상기 다수의 챔버 중 하나는,One of the plurality of chambers,
    외부로부터 웨이퍼가 로딩되고, 처리가 완료된 웨이퍼를 외부로 언로딩하는 로딩 및 언로딩 챔버인 것을 특징으로 하는 반도체 웨이퍼의 연속 처리장치.And a loading and unloading chamber for loading a wafer from the outside and unloading the finished wafer to the outside.
  3. 제1항에 있어서,The method of claim 1,
    상기 하부하우징은, 상기 턴테이블이 상단에 접한 상태에서 격리된 공정공간의 하부측을 제공하며; The lower housing provides a lower side of an isolated process space with the turntable in contact with an upper end thereof;
    상기 상부하우징은, 그 하단부가 하향 이동하여 상기 턴테이블의 상부에 접하여 격리된 공정 공간의 상부측을 제공하는 것을 특징으로 하는 반도체 웨이퍼의 연속 처리장치.And the upper housing has a lower end portion moving downward to provide an upper side of an isolated process space in contact with an upper portion of the turntable.
  4. 제1항에 있어서,The method of claim 1,
    상기 하부하우징은, 상기 안착링이 상단에 접한 상태에서 격리된 공정공간의 하부측을 제공하며; The lower housing provides a lower side of the isolated process space with the seating ring in contact with the upper end;
    상기 상부하우징은, 그 하단부가 하향 이동하여 상기 안착링의 상부에 접하여 격리된 공정 공간의 상부측을 제공하는 것을 특징으로 하는 반도체 웨이퍼의 연속 처리장치.And the upper housing has a lower end portion moving downward to provide an upper side of an isolated process space in contact with an upper portion of the seating ring.
  5. 제1항에 있어서,The method of claim 1,
    상기 서셉터는, 상기 턴테이블에 의해 이송된 상기 웨이퍼가 상기 턴테이블의 하향 이동에 의해 상부에 위치된 상태에서 설정된 공정온도로 가열되는 것을 특징으로 하는 반도체 웨이퍼의 연속 처리장치.And the susceptor is heated to a set process temperature in a state where the wafer transferred by the turntable is positioned above by the downward movement of the turntable.
  6. 제5항에 있어서,The method of claim 5,
    상기 챔버에는, 상기 웨이퍼의 저면을 지지하여 상기 안착링에 웨이퍼를 안착시키는 리프트핀이 구비된 것을 특징으로 하는 반도체 웨이퍼의 연속 처리장치.The chamber is a continuous processing apparatus for a semiconductor wafer, characterized in that the lift pin for supporting the bottom surface of the wafer to seat the wafer on the seating ring.
  7. 제5항에 있어서,The method of claim 5,
    상기 다수의 챔버 중 공정가스에 의해 웨이퍼의 처리가 이루어지는 공정챔버에는, 상기 공정 공간의 상부 측에 샤워헤드가 구비되고;A process head in which a wafer is processed by a process gas among the plurality of chambers includes a shower head at an upper side of the process space;
    상기 샤워헤드는, 가스가 유입되는 버퍼공간과 상기 버퍼공간에서 웨이퍼를 향해 하향으로 다수의 분사구가 균일하게 형성된 것을 특징으로 하는 반도체 웨이퍼의 연속 처리장치.The shower head is a continuous processing apparatus of a semiconductor wafer, characterized in that a plurality of injection holes are formed uniformly downward toward the wafer in the buffer space and the gas flows.
  8. 제1항에 있어서,The method of claim 1,
    상기 안착링은 상기 웨이퍼가 내측에 안착되도록 단차진 형상으로 이루어진 것을 특징으로 하는 반도체 웨이퍼의 연속 처리장치. The seating ring is a continuous processing apparatus of the semiconductor wafer, characterized in that formed in the stepped shape so that the wafer is seated on the inside.
  9. 제8항에 있어서,The method of claim 8,
    상기 안착링에는 상기 공정가스가 통과하는 가스통공이 외주 둘레를 따라 복수개 형성된 것을 특징으로 하는 반도체 웨이퍼의 연속 처리장치.And a plurality of gas through-holes through which the process gas passes in the seating ring along an outer circumference thereof.
  10. 제8항에 있어서,The method of claim 8,
    상기 다수의 챔버 중 공정가스에 의해 웨이퍼의 처리가 이루어지는 공정챔버에는, 상기 서셉터의 외측에서 상하로 이동이 가능하여, 상기 웨이퍼가 안착된 안착링의 저면을 지지하여 상기 안착링을 상기 홀에서 상향으로 이탈시키는 리프트핀이 구비된 것을 특징으로 하는 반도체 웨이퍼의 연속 처리장치.The process chamber in which the wafer is processed by the process gas among the plurality of chambers is movable up and down from the outside of the susceptor, and supports the bottom surface of the seating ring on which the wafer is seated so that the seating ring is removed from the hole. A continuous processing apparatus for a semiconductor wafer, characterized in that it is provided with a lift pin to move upward.
  11. 제1항에 있어서,The method of claim 1,
    상기 안착링의 내측에는 상기 웨이퍼의 저면을 지지하기 위한 다수의 지지핀이 상기 안착링의 중심방향으로 돌출 형성되고;A plurality of support pins protruding toward the center of the seating ring are formed inside the seating ring to support a bottom surface of the wafer;
    상기 서셉터의 상면에는 상기 지지핀이 삽입되어 상하 이동가능하도록 슬롯 형상으로 이루어진 홈이 형성된 것을 특징으로 하는 반도체 웨이퍼의 연속 처리장치.The upper surface of the susceptor is a continuous processing apparatus of the semiconductor wafer, characterized in that the groove is formed in the slot shape so that the support pin is inserted and movable up and down.
  12. 제1항에 있어서,The method of claim 1,
    상기 안착링은 비금속재질로 이루어진 것을 특징으로 하는 반도체 웨이퍼의 연속 처리장치.The seating ring is a continuous processing apparatus of a semiconductor wafer, characterized in that made of a non-metal material.
  13. 제12항에 있어서,The method of claim 12,
    상기 안착링은 세라믹 재질로 이루어진 것을 특징으로 하는 반도체 웨이퍼의 연속 처리장치.The seating ring is a continuous processing apparatus of a semiconductor wafer, characterized in that made of a ceramic material.
  14. 제5항에 있어서,The method of claim 5,
    상기 공정챔버의 공정 공간의 상부 측에는 공정 중 상기 웨이퍼의 상부에 열을 가하기 위한 상부히터가 구비된 것을 특징으로 하는 반도체 웨이퍼의 연속 처리장치.And an upper heater on the upper side of the process space of the process chamber for applying heat to the upper portion of the wafer during the process.
  15. 제14항에 있어서,The method of claim 14,
    상기 상부히터의 하부에는, 공정가스가 유입되는 버퍼공간과 상기 버퍼공간에서 웨이퍼를 향해 하향으로 다수의 분사구가 균일하게 형성된 샤워헤드가 구비되고;A lower portion of the upper heater includes a buffer space into which a process gas flows and a shower head having a plurality of injection holes uniformly downward from the buffer space toward the wafer;
    상기 상부히터는 상기 버퍼공간으로 유입된 공정 가스를 가열하는 것을 특징으로 하는 반도체 웨이퍼의 연속 처리장치.And the upper heater heats the process gas introduced into the buffer space.
  16. 제1항에 있어서,The method of claim 1,
    상기 턴테이블이 회전할 때, 상기 턴테이블의 저면 가장자리 부분에 접촉되는 다수의 롤러를 더 포함하는 반도체 웨이퍼의 연속 처리장치.And a plurality of rollers in contact with the bottom edge portion of the turntable when the turntable is rotated.
  17. 제16항에 있어서,The method of claim 16,
    상기 턴테이블의 저면에는 상기 턴테이블이 하향 이동할 때 상기 롤러의 일부가 수용되는 수용홈이 형성된 것을 특징으로 하는 반도체 웨이퍼의 연속 처리장치.And a receiving groove in the bottom surface of the turntable for receiving a portion of the roller when the turntable moves downward.
  18. 제1항에 있어서,The method of claim 1,
    상기 안착링의 하부에는, 공정가스를 균일하게 통과시키기 위한 홀이 원주 둘레를 따라 균일하게 형성된 링 형상의 배플플레이트가 구비되고;A lower portion of the seating ring is provided with a ring-shaped baffle plate having a hole for uniformly passing the process gas along a circumference thereof;
    상기 배플플레이트의 홀을 통과한 공정가스는 상기 공정챔버의 하부에 구비된 배기구를 통해 배기되는 것을 특징으로 하는 반도체 웨이퍼의 연속 처리장치.The process gas passing through the hole of the baffle plate is exhausted through the exhaust port provided in the lower portion of the process chamber.
  19. 제1항에 있어서,The method of claim 1,
    상기 상부하우징은, 상부플레이트에 고정된 고정부와, 상기 고정부의 하측에서 상하 이동되어 상기 턴테이블의 상면에 접촉되는 이동부로 이루어진 것을 특징으로 하는 반도체 웨이퍼의 연속 처리장치.The upper housing may include a fixing part fixed to an upper plate, and a moving part moving up and down under the fixing part to be in contact with an upper surface of the turntable.
  20. 제1항에 있어서,The method of claim 1,
    상기 상부하우징은 벨로우즈 형상으로 이루어져 그 하단부가 구동부에 의해 상하 이동됨으로써 상기 격리된 공정 공간을 형성하는 것을 특징으로 하는 반도체 웨이퍼의 연속 처리장치.The upper housing has a bellows shape, and a lower end thereof is moved up and down by a driving unit to form the isolated process space.
  21. 제1항의 반도체 웨이퍼의 연속 처리장치를 이용하는 반도체 웨이퍼의 연속처리방법으로서,A semiconductor wafer continuous processing method using the semiconductor wafer continuous processing apparatus according to claim 1,
    상기 다수의 챔버 중 제1챔버에 웨이퍼가 로딩되는 제1단계;A first step of loading a wafer into a first chamber of the plurality of chambers;
    상기 웨이퍼를 상기 제1챔버와 함께 원형으로 배치되는 제2 내지 제5챔버로 순차 이송하며 상기 웨이퍼를 처리하되, 상기 제2 내지 제5챔버는 상기 웨이퍼를 처리할 때 상기 웨이퍼의 상부측에서 하향으로 이동하는 상기 상부하우징에 의해 격리된 공정공간에서 처리하는 제2단계; Process the wafer by sequentially transferring the wafer to the second to fifth chambers arranged in a circular shape together with the first chamber, wherein the second to fifth chambers are downward from the upper side of the wafer when processing the wafer. A second step of treating in a process space isolated by the upper housing moving to the upper surface;
    상기 제5챔버에서 상기 웨이퍼를 처리하고, 다음 챔버로 상기 웨이퍼를 이송하여 외부로 언로딩시키는 제3단계로 이루어지고, A third step of processing the wafer in the fifth chamber, transferring the wafer to the next chamber, and unloading it to the outside;
    상기 웨이퍼는 상기 안착링에 안착된 상태에서 상기 턴테이블의 상하 이동 및 회전에 의해 상기 제1 내지 제5챔버 사이에서 이송이 이루어지는 반도체 웨이퍼의 연속 처리방법.And the wafer is transferred between the first to fifth chambers by vertical movement and rotation of the turntable in a state seated on the seating ring.
  22. 제21항에 있어서,The method of claim 21,
    상기 제3단계는, 상기 제5챔버에서 처리된 상기 웨이퍼를 상기 제1챔버로 이송하여 냉각시킨 후, 상기 웨이퍼를 상기 제1챔버에서 외부로 언로딩시키는 것을 특징으로 하는 반도체 웨이퍼의 연속 처리방법.In the third step, the wafer processed in the fifth chamber is transferred to the first chamber and cooled, and then the wafer is unloaded from the first chamber to the outside. .
  23. 제21항에 있어서,The method of claim 21,
    상기 제2단계는,The second step,
    제2 내지 제4챔버 중 공정이 완료된 챔버의 상기 웨이퍼는,The wafer of the chamber in which the process of the second to fourth chamber is completed,
    상기 상부하우징에 의해 격리된 공정공간 내에서, 상기 웨이퍼를 서셉터의 상부로부터 이격시킨 상태로 공정이 진행중인 챔버의 공정이 완료될 때까지 대기하는 것을 특징으로 하는 반도체 웨이퍼의 연속 처리방법.In the process space isolated by the upper housing, the wafer is spaced apart from the top of the susceptor, the process of the semiconductor wafer, characterized in that waiting for the completion of the process of the chamber in progress.
  24. 제21항에 있어서,The method of claim 21,
    상기 제2단계는,The second step,
    제2챔버 내지 제5챔버 중 선택된 하나 또는 둘 이상의 챔버에는, 상기 공정공간의 상측에 구비된 히터로 상기 웨이퍼에 분사되는 공정가스를 가열하는 것을 특징으로 하는 반도체 웨이퍼의 연속 처리방법.And a process gas injected to the wafer is heated in one or two or more chambers selected from the second to fifth chambers by a heater provided above the process space.
PCT/KR2014/000143 2013-01-08 2014-01-07 Apparatus and method for continuous processing of semiconductor wafer WO2014109526A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201480004276.5A CN104919583A (en) 2013-01-08 2014-01-07 Apparatus and method for continuous processing of semiconductor wafer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130002207A KR101406172B1 (en) 2013-01-08 2013-01-08 Continuous treatment apparatus and method of semiconductor wafer
KR10-2013-0002207 2013-01-08

Publications (1)

Publication Number Publication Date
WO2014109526A1 true WO2014109526A1 (en) 2014-07-17

Family

ID=51132499

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/000143 WO2014109526A1 (en) 2013-01-08 2014-01-07 Apparatus and method for continuous processing of semiconductor wafer

Country Status (4)

Country Link
KR (1) KR101406172B1 (en)
CN (1) CN104919583A (en)
TW (1) TWI555114B (en)
WO (1) WO2014109526A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017098823A1 (en) * 2015-12-07 2017-06-15 東京エレクトロン株式会社 Substrate cleaning apparatus
TW201740466A (en) * 2016-05-03 2017-11-16 系統科技公司 Substrate processing apparatus and substrate processing method processing two substrates at the same time by the same process, so as to simplify the heat treatment step and improve the productivity
KR102125512B1 (en) * 2016-10-18 2020-06-23 주식회사 원익아이피에스 Substrate processing device and method
KR101921597B1 (en) * 2016-12-16 2018-11-26 (주)에스티아이 Continuous treatment apparatus and method of substrate
KR101987576B1 (en) * 2018-01-24 2019-06-10 주식회사 기가레인 Substrate processing apparatus including an interlocking part linked with an elevating inducing part
CN109355710A (en) * 2018-09-19 2019-02-19 上海迈铸半导体科技有限公司 The controllable rapid cooling system and method for semiconductor crystal wafer in vacuum chamber
KR102166269B1 (en) * 2019-04-03 2020-10-15 (주)에스티아이 Substrate processing apparatus and substrate processing method
CN110125694A (en) * 2019-06-10 2019-08-16 格力电器(芜湖)有限公司 The integrated processing warehouse of one kind and sheet metal component process equipment
KR102288733B1 (en) * 2019-09-25 2021-08-11 (주)에스티아이 Substrate processing apparatus
KR102259121B1 (en) * 2019-12-23 2021-06-01 (주)에스티아이 Substrate processing apparatus
CN114464519B (en) * 2021-12-27 2024-03-29 拓荆科技股份有限公司 Gas pumping ring and semiconductor processing device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09213770A (en) * 1996-01-29 1997-08-15 Toshiba Corp Semiconductor wafer processor and alignment method in semiconductor wafer processor
KR100679269B1 (en) * 2006-01-04 2007-02-06 삼성전자주식회사 Semiconductor manufacturing device of multi-chamber type
KR20080101317A (en) * 2007-05-17 2008-11-21 위순임 Method and system for substrate processing
KR101175266B1 (en) * 2010-04-19 2012-08-21 주성엔지니어링(주) Substrate processing apparatus

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000021946A (en) * 1998-06-29 2000-01-21 C Bui Res:Kk Apparatus for manufacturing semiconductor
KR100666764B1 (en) * 2001-10-16 2007-01-09 동경 엘렉트론 주식회사 Treatment subject elevating mechanism, and treating device using the same
US6827789B2 (en) * 2002-07-01 2004-12-07 Semigear, Inc. Isolation chamber arrangement for serial processing of semiconductor wafers for the electronic industry
WO2005123549A2 (en) * 2004-06-10 2005-12-29 Semigear, Inc. Serial thermal processor arrangement
KR100814238B1 (en) * 2006-05-03 2008-03-17 위순임 Substrate transfer equipment and substrate processing system using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09213770A (en) * 1996-01-29 1997-08-15 Toshiba Corp Semiconductor wafer processor and alignment method in semiconductor wafer processor
KR100679269B1 (en) * 2006-01-04 2007-02-06 삼성전자주식회사 Semiconductor manufacturing device of multi-chamber type
KR20080101317A (en) * 2007-05-17 2008-11-21 위순임 Method and system for substrate processing
KR101175266B1 (en) * 2010-04-19 2012-08-21 주성엔지니어링(주) Substrate processing apparatus

Also Published As

Publication number Publication date
CN104919583A (en) 2015-09-16
TWI555114B (en) 2016-10-21
KR101406172B1 (en) 2014-06-12
TW201428882A (en) 2014-07-16

Similar Documents

Publication Publication Date Title
WO2014109526A1 (en) Apparatus and method for continuous processing of semiconductor wafer
WO2014109528A1 (en) Method for continuous processing of semiconductor wafer
KR100297285B1 (en) Heat treatment method and heat treatment device
WO2010011013A1 (en) Multi-workpiece processing chamber and workpiece processing system including the same
WO2011132885A2 (en) Substrate processing apparatus
WO2017073845A1 (en) Dressing apparatus and wafer polishing apparatus comprising same
WO2014073831A1 (en) Substrate tray and substrate processing apparatus including same
WO2014148857A1 (en) Device and method for transferring substrate and substrate-transferring tray
WO2016204424A1 (en) Hybrid substrate processing system for dry and wet process and substrate processing method thereof
WO2013191421A1 (en) Substrate-treating apparatus
WO2016056748A1 (en) Substrate processing heater device and substrate solution processing device having same
WO2014123310A1 (en) Substrate support and substrate treating apparatus having the same
WO2014157827A1 (en) Chamber-type high-speed atomic layer deposition device
WO2016148327A1 (en) In-line sputtering system having plurality of rotatable tray holders, and package shielding manufacturing method using same
WO2020218813A1 (en) Etching device
WO2019004620A1 (en) Bonding head and bonding device including same
WO2014084472A1 (en) Wafer etching system and wafer etching process using same
WO2018128332A2 (en) Glass molding apparatus
WO2022124780A1 (en) Bonding head and bonding device having same
KR20180069991A (en) Separable wafer susceptor and semiconductor process chamber apparatus including the same
WO2019093609A1 (en) Chuck plate, chuck structure having chuck plate, and bonding device having chuck structure
WO2017119786A1 (en) Transfer tool module and device handler having same
WO2022181927A1 (en) Load lock chamber, and substrate treatment apparatus
WO2015130140A1 (en) Atomic layer deposition apparatus and atomic layer deposition system
WO2020116771A1 (en) Substrate treatment device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14738336

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14738336

Country of ref document: EP

Kind code of ref document: A1