WO2019093183A1 - シリカスケールの成長抑制方法 - Google Patents

シリカスケールの成長抑制方法 Download PDF

Info

Publication number
WO2019093183A1
WO2019093183A1 PCT/JP2018/040175 JP2018040175W WO2019093183A1 WO 2019093183 A1 WO2019093183 A1 WO 2019093183A1 JP 2018040175 W JP2018040175 W JP 2018040175W WO 2019093183 A1 WO2019093183 A1 WO 2019093183A1
Authority
WO
WIPO (PCT)
Prior art keywords
silica scale
silica
growth
concentration
scale
Prior art date
Application number
PCT/JP2018/040175
Other languages
English (en)
French (fr)
Inventor
西田 育子
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Publication of WO2019093183A1 publication Critical patent/WO2019093183A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • C02F5/08Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents
    • C02F5/10Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents using organic substances

Definitions

  • the present invention relates to a method for suppressing the growth of silica scale in a water system to which silica scales such as a cooling water system, a boiler water system, a water system related to film processing, and a water system related to reduction wells of a geothermal power plant are attached.
  • silica scales such as a cooling water system, a boiler water system, a water system related to film processing, and a water system related to reduction wells of a geothermal power plant are attached.
  • a scale failure occurs on a heat transfer surface, piping, and film surface in contact with water.
  • salts to be dissolved are concentrated and scaled as poorly soluble salts.
  • the scale formed on the heat transfer surface causes heat transfer inhibition, and the scale formed on the piping causes a decrease in flow rate.
  • the generated scale exfoliates and circulates in the system, causing clogging of the pump, the piping, and the heat exchange portion and promoting the scaling of the piping and heat transfer surface accompanying the clogging.
  • this phenomenon also occurs in the water system of the reduction wells of a geothermal power plant.
  • the scale adheres to the membrane to cause a decrease in flux.
  • scale species generated in these aqueous systems include calcium carbonate, calcium sulfate, calcium sulfite, calcium phosphate, calcium silicate, magnesium silicate, magnesium hydroxide, zinc phosphate, zinc hydroxide, basic zinc carbonate and the like.
  • compounds having a carboxyl group such as maleic acid, acrylic acid and itaconic acid are effective.
  • Compounds having a carboxyl group vinyl monomers having a sulfonic acid group such as vinyl sulfonic acid, allyl sulfonic acid, 2-acrylamido 2-methylpropane sulfonic acid, nonionic vinyl monomers such as acrylamide, etc.
  • Correspondingly combined copolymers are generally used as scale inhibitors.
  • Inorganic polyphosphates such as sodium hexametaphosphate and sodium tripolyphosphate, and phosphonic acids such as hydroxyethylidene diphosphonic acid and phosphonobutane tricarboxylic acid are also generally used.
  • Patent Document 1 proposes a scale inhibitor containing polyacrylamide, which is particularly excellent in the effect of preventing silica scale. Further, according to Patent Document 2, in a cooling water system in which both calcium scale and silica scale are deposited, generation of scale can be sufficiently prevented even if calcium ion and silicate ion are maintained at high concentration, and high concentration operation is possible. Polyethylene glycol is proposed as a drug to be used.
  • the acrylamide polymer described in Patent Document 1 is effective when the concentration of silicic acid in water is low, the effect is poor when the concentration of silicic acid is high.
  • the polyethylene glycol described in Patent Document 2 has an effect of preventing adhesion of scale when the concentration of silicic acid in water is low, but the effect is not stable because it is easily influenced by coexisting other species ions. There's a problem.
  • the polyvinyl formamide described in Patent Document 3 has a cationic property, and therefore, there is a problem that those having a high composition ratio are easily adsorbed by the metal constituting the water system such as piping.
  • the polyvinyl pyrrolidone described in Patent Document 4 is effective for preventing the silica-based scale formed in the high temperature portion, it is difficult to prevent the generation of the silica-based scale generated in the low temperature portion.
  • the combined use of the nonionic polymer and the phosphorus compound described in Patent Document 5 is excellent in a clean RO film, a heat transfer portion and the like when the concentration of silica is high, but solid precipitates due to a thirst such as a cooling tower. In the case where the scale is generated by the overconcentration operation or in the case where the scale is formed, the scale can not be prevented from growing from the adhered scale, and it is difficult to exhibit a sufficient effect.
  • silica scale adheres, if it is washed with hydrofluoric acid, it is possible to remove the silica scale, but since hydrofluoric acid is a poison, care must be taken in handling. In addition, it is possible to remove the silica scale also by washing with sodium hydroxide or potassium hydroxide, but since it becomes highly alkaline, care must be taken in handling. In general, physical cleaning methods such as jet cleaning and brushes are widely used, but it is difficult to completely remove the deposits, and when the silica scale remains in the system, the deposited silica scale is the starting point. Scale grows, resulting in a decrease in heat transfer efficiency and sludge deposition in the cooling tower.
  • the present invention has been made in view of the above situation, and in the water system to which the silica scale is attached, the silica scale can effectively suppress the growth of the silica scale and can greatly contribute to the stable and safe operation of the water system. Aims to provide a method for suppressing the growth of
  • the inventor of the present invention has found that in the aqueous system to which the silica scale is attached, the concentration of the nonionic polymer in the circulating water circulating in the aqueous system is 500 mg / L or more. It has been found that a silica scale growth suppression effect can be obtained by performing the silica scale growth suppression operation of adding the nonionic polymer and circulating the circulating water in the water system. The present invention has been completed based on such findings.
  • the present invention provides the following [1] to [13].
  • the nonionic polymer is added such that the concentration of the nonionic polymer in the circulating water circulating in the aqueous system is 500 mg / L or more, and the circulating water is added to the aqueous system
  • a method for suppressing the growth of silica scale which comprises the silica scale growth suppression operation to be circulated.
  • the nonionic polymer is 1 or more types selected from cyclic carboxylic acid amide type polymers, oxazoline type polymers, polyalkylene oxides, alkylene oxide adducts of alkyl alcohols, polyoxyalkylene fatty acid esters, poly (meth) acrylic acid polyalkylene oxides, polyvinyl ether polyalkylene oxides.
  • the nonionic polymer is The method for suppressing the growth of silica scale according to any one of the above [1] to [5], which is at least one selected from cyclic carboxylic acid amide polymers, oxazoline polymers, and polyalkylene oxides.
  • M is 1 or more, and the sum of m, n and 1 is 1 or more and 50 or less, wherein ethylene oxide and propylene oxide are block-added or random-added, In the case of block addition, it is binary block or ternary block.
  • Supplemental water silica concentration ⁇ concentration multiple-silica concentration of water system 20 20 mg / L By replacing part or all of the circulating water in the aqueous system with makeup water, from the start of the operation to reduce the concentration multiple of circulating water in the aqueous system, the operation to reduce the concentration multiple in the previous period ends, and In any of the above-mentioned [1] to [11], the silica scale growth suppression operation is carried out for the entire period or a part of the period until the concentration of circulating water increases to a predetermined value. Method of controlling the growth of silica scale. [13] The method for suppressing the growth of silica scale according to any one of the above [1] to [12], wherein the nonionic polymer present in blow water blown from the water system is recovered by UF membrane and reused. .
  • the present invention it is possible to effectively suppress the growth of silica scale in a water system to which the silica scale is attached. Therefore, the method for suppressing the growth of silica scale of the present invention can greatly contribute to the stable and safe operation of the water system.
  • the concentration of the nonionic polymer in the circulating water circulating in the aqueous system is not particularly limited as long as it is 500 mg / L or more, and can be appropriately selected according to the scale amount adhering to the aqueous system.
  • the concentration of the nonionic polymer is 500 mg / L or more, preferably 2000 mg / L or more, more preferably 4000 mg / L or more, still more preferably 5000 mg / L or more, from the viewpoint of further improving the growth suppression effect of silica scale. Also, from the viewpoint of resource saving, it is preferably 20000 mg / L or less, more preferably 15000 mg / L or less, and still more preferably 12000 mg / L or less.
  • the method of adding the nonionic polymer is not particularly limited, and after carrying out continuous operation in which circulating water is circulated in the water system, the continuous operation is stopped to perform jet washing, brush washing, alkali washing, and then the nonionic polymer is It may be added to perform a silica scale growth suppression operation, or a nonionic polymer may be added to perform a silica scale growth suppression operation without stopping the continuous operation.
  • the nonionic polymer may be added at once or may be added continuously.
  • nonionic polymer disappears due to blow or the like, even if the amount of the nonionic polymer is added so that the concentration of the nonionic polymer in the circulating water after blow becomes a concentration of 500 mg / L or more, the nonionic polymer is added Well, nonionic polymer may be additionally added during and / or after blowing.
  • the silica scale growth suppression operation time is not particularly limited, and can be appropriately selected according to the concentration of the nonionic polymer to be used and the scale amount adhering to the water system.
  • the silica scale growth suppression operation time is preferably 1 hour or more, more preferably 2 hours or more, from the viewpoint of further improving the growth suppression effect of silica scale, and from the viewpoint of energy saving, preferably 30 hours or less, more Preferably it is 20 hours or less.
  • the concentration of the nonionic polymer at the time of the silica scale growth inhibition operation may be carried out for at least 2 hours with the nonionic polymer concentration in the circulating water being 500 mg / L or more from the viewpoint of further improving the growth inhibition effect of the silica scale.
  • the nonionic polymer concentration in the circulating water is 500 mg / L or more from the viewpoint of further improving the growth inhibition effect of the silica scale.
  • the time to perform the silica scale growth suppression operation is not particularly limited and can be appropriately selected.
  • the water system can be obtained by replacing part or all of the circulating water in the water system with makeup water.
  • the silica scale growth suppression operation is preferably performed repeatedly when the following formula is satisfied.
  • the formula (1) it is possible to maintain the effect by repeating the process.
  • the silica scale growth suppressing method of the present invention is suitably used in a water system, and adhesion of a silica-based scale generated in a cooling water system, a boiler water system, a water system related to film treatment, and a water system related to a reduction well of a geothermal power plant. And effective in preventing deposition.
  • the target water system to which the method of the present invention is applied is not limited to these, and can be suitably applied to a water system in which a silica scale tends to be generated.
  • various water treatment devices such as a filter having an MF (microfiltration) membrane, a UF (ultrafiltration) membrane, an ion exchange membrane, an RO (reverse osmosis) membrane or the like may be used, for example. From the viewpoint of resource saving, it is preferable to recover the nonionic polymer present in the blow water blown from the water system with a UF membrane and reuse it.
  • MF microfiltration
  • UF ultrafiltration
  • RO reverse osmosis
  • Nonionic polymer means a polymer having no charge in an aqueous solution.
  • the nonionic polymer is a monomer having no charge, that is, a polymer derived from the nonionic monomer.
  • the use of the nonionic polymer as an agent for suppressing the growth of silica scale can suppress the growth of silica scale.
  • nonionic polymer for example, cyclic carboxylic acid amide type polymer, oxazoline type polymer, polyalkylene oxide, alkylene oxide adduct of alkyl alcohol, polyoxyalkylene fatty acid ester, poly (meth) acrylic acid polyalkylene oxide, polyvinyl ether poly Alkylene oxide, and other polymers besides the above can be mentioned.
  • cyclic carboxylic acid amide polymers include polyvinyl pyrrolidone and derivatives. Among these, polyvinyl pyrrolidone is preferable.
  • oxazoline-based polymer examples include polyoxazoline, poly (2-methyl 2-oxazoline), poly (2-ethyl 2-oxazoline) and the like. Among these, poly (2-ethyl 2-oxazoline) is preferable.
  • the oxazoline polymer is preferably a homopolymer.
  • R 1 and R 2 represent a hydrogen atom or an alkyl group, and the carbon number of R 1 and R 2 is preferably 1 or more and 7 or less.
  • EO is ethylene oxide
  • PO is propylene oxide
  • m is 1 or more
  • the value of the sum of m and n and l is 1 or more, preferably 2 or more, and preferably 50 or less, wherein ethylene oxide and propylene oxide are It may be block-added or random-added, and in the case of block addition, it may be binary block or ternary block.
  • Formula (2) is preferably poly (ethylene glycol) -block-poly (propylene glycol) -block-poly (ethylene glycol).
  • the polyalkylene oxide adduct of the alkyl alcohol is not particularly limited, but one represented by the following formula (3) is preferable.
  • R 3 represents an alkyl group, an alkylene group or an allyl group, and the carbon number of R 3 is 1 or more, preferably 8 or more and 22 or less.
  • EO is ethylene oxide and PO is propylene
  • the polyoxyalkylene fatty acid ester is not particularly limited, but one represented by the following formula (4) is preferable.
  • R 4 represents an alkyl group, an alkylene group or an allyl group, and the carbon number of R 4 is 1 or more, preferably 8 or more and 20 or less.
  • EO is ethylene oxide
  • PO is propylene
  • m is 1 or more
  • the sum of m and n is 1 or more, preferably 2 or more, and preferably 30 or less
  • ethylene oxide and propylene oxide are blocks It may be added or randomly added, and in the case of block addition, it may be binary block or ternary block.
  • R 5 represents a hydrogen atom or a methyl group.
  • EO represents ethylene oxide
  • PO represents propylene oxide
  • m is 1 or more
  • the sum of m and n is preferably 1 or more, preferably Is 2 or more, and preferably 30 or less
  • ethylene oxide and propylene oxide may be either block-added or random-added, and in the case of block addition, even binary blocks may be used. It may be an original block.
  • R 5 represents a hydrogen atom or a methyl group.
  • EO represents ethylene oxide
  • PO represents propylene oxide
  • the sum of m and n may be 0, preferably 1 or more, preferably 2 or more, and preferably 30 or less
  • ethylene oxide and propylene oxide may be either block-added or random-added, and in the case of block addition, even binary blocks may be ternary. It may be a block.
  • N-vinyl polymers include, for example, N-vinyl polymers.
  • N-vinyl polymers include poly N vinyl formamide, poly N vinyl acetamide, poly N vinyl N methyl formamide, poly N vinyl methyl acetamide, poly N vinyl oxazolidone and the like.
  • the weight average molecular weight of the nonionic polymer is preferably 5000 or more, more preferably 8000 or more, and still more preferably 9000 or more, from the viewpoint of further improving the growth suppression effect of the silica scale. Further, from the viewpoint of effectively suppressing the reaction point of the silica scale, it is preferably 50000 or less, more preferably 30000 or less, and still more preferably 12000 or less.
  • the weight average molecular weight is preferably 1000 or more, more preferably 3000 or more from the viewpoint of further improving the growth suppression effect of silica scale. More preferably, it is 4000 or more, and from the viewpoint of effectively suppressing the reaction point of the silica scale, it is preferably 10000 or less, more preferably 8000 or less, still more preferably 6000 or less.
  • the nonionic polymer is, for example, poly (ethylene glycol) -block-poly (propylene glycol) -block-poly (ethylene glycol)
  • the weight-average molecular weight further improves the growth suppression effect of silica scale.
  • the weight average molecular weight is within the above range, the reaction point of the silica scale can be effectively suppressed, and the growth suppression effect of the silica scale can be obtained.
  • the weight average molecular weight can be measured by gel permeation chromatography (GPC).
  • the method for producing the nonionic polymer is not particularly limited, and can be produced by known polymerization methods such as aqueous solution polymerization, suspension polymerization, emulsion polymerization and bulk polymerization.
  • aqueous solution polymerization the monomer aqueous solution whose pH is adjusted as necessary is adjusted, and heating is performed at 50 to 100 ° C. in a state in which the atmosphere is replaced by inert gas, and polymerization is performed by adding a water-soluble polymerization initiator. It can be performed.
  • Water-soluble polymerization initiators include 2,2'-azobis (2-amidinopropane) dihydrochloride, azobis-N, N'-dimethylene isobutylamidine dihydrochloride, 4,4'-azobis (4-cyanovaleric acid 2.) Azo compounds such as 2-sodium, persulfates such as ammonium persulfate, sodium persulfate and potassium persulfate, peroxides such as hydrogen peroxide and sodium periodate can be used.
  • the polymerization is carried out with a polymerization time of 2 to 6 hours, and allowed to cool, whereby an aqueous polymer solution or aqueous dispersion can be obtained.
  • the polymerization can be carried out not only in an aqueous medium, but also by solution polymerization, suspension polymerization, emulsion polymerization and the like in a common organic solvent.
  • an antifoaming agent When carrying out the silica scale growth suppression operation, if foaming is a concern, an antifoaming agent may be used in combination.
  • the defoamer is preferably a silicone defoamer.
  • a scale inhibiting agent, an anticorrosive agent, and a slime control agent can be used together with a nonionic polymer as needed, for example.
  • Scale inhibitor examples of scale inhibitors that can be used in combination with nonionic polymers include polyacrylic acid, maleic acid / acrylic acid, maleic acid / sulfonic acid, copolymers of acrylic acid / nonion group-containing monomers, acrylic acid / sulfonic acid / nonion group-containing monomers Terpolymers and the like.
  • Anticorrosive agent examples of the anticorrosive that can be used in combination with the nonionic polymer include zinc salts, nickel salts, molybdenum salts, tungsten salts, oxycarboxylates, triazoles, amines and the like.
  • quaternary ammonium salts such as alkyldimethylbenzyl ammonium chloride, chlormethyltrithiazoline, chlormethylisothiazoline, methylisothiazoline, ethylaminoisopropylaminomethylthiatriazine, hypochlorous acid And hypobromous acid, a mixture of hypochlorous acid and sulfofamic acid, and the like.
  • quaternary ammonium salts such as alkyldimethylbenzyl ammonium chloride, chlormethyltrithiazoline, chlormethylisothiazoline, methylisothiazoline, ethylaminoisopropylaminomethylthiatriazine, hypochlorous acid And hypobromous acid, a mixture of hypochlorous acid and sulfofamic acid, and the like.
  • These may include enzymes, bactericides, coloring agents, perfumes, water-soluble organic solvents, and antifoam agents.
  • silica concentration The silica concentration was measured by molybdenum blue absorption spectrophotometry according to JIS K 0101: 1998.
  • Preparation of treatment solution ⁇ Preparation of simulated scale batch processing solution> Using sodium metasilicate, calcium chloride, magnesium sulfate, sodium hydrogencarbonate, phosphonobutane tricarboxylic acid, and agents shown in Tables 1 and 2, ion-exchanged water with a silica concentration of 200 mg SiO 2 / L, calcium hardness 100 mg CaCO 3 / L, magnesium hardness 100 mg CaCO 3 / L, M alkalinity 200 mg CaCO 3 / L, phosphonic acid concentration 3 mg PO 4 / L, and drug concentrations shown in Tables 1 and 2 were adjusted to produce simulated scale batch processing solutions .
  • the pH of the treatment solution was 8.5 (30 ° C.).
  • Sodium metasilicate was used in ion exchanged water to prepare an aqueous solution having a silica concentration of 50 g SiO 2 / L.
  • an aqueous solution of calcium hardness 100 g CaCO 3 / L using calcium chloride an aqueous solution of M alkalinity 50 g CaCO 3 / L using sodium hydrogen carbonate, an aqueous solution of magnesium hardness 100 g CaCO 3 / L using magnesium sulfate, phosphonobu
  • An aqueous solution having a phosphonic acid concentration of 1 g PO 4 / L was prepared using tan tricarboxylic acid.
  • aqueous solution with a phosphonic acid concentration of 1 g PO 4 / L 1.5 ml of an aqueous solution with a phosphonic acid concentration of 1 g PO 4 / L, 0.5 ml of an aqueous solution with a calcium hardness of 100 g CaCO 3 / L, and 0.5 ml of an aqueous solution with a magnesium hardness of 100 g CaCO 3 / L are added to the aqueous solution adjusted to pH 9
  • the pH was adjusted to 8.5 (30.degree. C.) using hydrochloric acid.
  • the aqueous solution adjusted to pH 8.5 was made up to 500 ml with ion exchange water to prepare a continuous treatment solution.
  • polyvinylpyrrolidone (hereinafter, also simply referred to as "PNVP") is added as a drug to an aqueous solution adjusted to pH 8.5 so that the PNVP concentration is 50 mg / L, and ion exchange is performed.
  • the solution was made up to 500 ml with water to make a continuous processing solution.
  • Examples 1 to 7, 9, 10, Comparative Examples 4 to 8 [Simulated scale batch processing] Silica gel was used as a simulated scale. Add 0.1 g / L of silica gel to the simulated scale batch processing solution to the simulated scale batch processing solution adjusted to the concentrations shown in Table 1 and Table 2 using the agents shown in Tables 1 and 2. Stirring was carried out continuously for the times shown in Tables 1 and 2. After completion of the stirring, the simulated scale batch treated solution was filtered through a 0.1 ⁇ m filter paper to remove the silica gel, to obtain a batch treated simulated scale (batch treated silica gel).
  • the simulated scale batch process is a process assuming a silica scale growth suppression operation.
  • Example 8 The simulated scale batch process was performed in the same manner as in Example 1 except that the simulated scale batch processing solution was adjusted to have a concentration of PNVP of 10000 mg / L and treated for 20 hours.
  • the continuous processing was carried out in the same manner as in Example 1 except that a continuous processing solution adjusted to have a concentration of 50 mg / L of PNVP was used.
  • Example 11 0.3% of polyalkylsiloxane is added as a defoaming agent to the drug added to the simulated scale batch processing solution to the simulated scale batch processing solution adjusted so that the concentration of PNVP becomes 10000 mg / L at the time of simulated scale batch processing It carried out like Example 1 except having carried out.
  • Comparative Example 1 The procedure was carried out in the same manner as Example 1, except that the simulated scale batch process was not performed and the silica gel was not added in the continuous process.
  • Comparative example 2 The procedure was carried out in the same manner as Example 1, except that the simulated scale batch process was not performed and the silica gel not subjected to the simulated scale batch process was used in the continuous process.
  • Example 1 is the same as Example 1 except that the simulated scale batch process is not performed, and the silica gel not subjected to the simulated scale batch process is used in the continuous process and the concentration of PNVP is adjusted to 50 mg / L. It carried out similarly.
  • PNVP polyvinyl pyrrolidone K-15; (manufactured by Tokyo Chemical Industry Co., Ltd., weight average molecular weight 10,000)
  • PEO poly (2-ethyl 2-oxazoline); (Sigma Aldrich Japan Joint Corporation, weight average molecular weight 5,000)
  • F68 Poly (ethylene glycol) -block-poly (propylene glycol) -block-poly (ethylene glycol) F-68; (Sigma Aldrich Japan Joint Corporation, weight average molecular weight 8,400)
  • Antifoaming agent silicone antifoaming agent
  • EGDG Ethyl glycol diglycidyl ether
  • NIPAM poly N-isopropyl acrylamide
  • PAA Polyacrylic acid (Sigma Aldrich Japan Joint Ltd., weight average molecular weight 8,000)
  • AA / AMPS acrylic acid / 2-acrylamido-2-methylpropane sulfonic acid; (molar ratio of monomers 80: 20, weight average molecular weight 13, 500)
  • the growth of the silica scale is carried out by adding the nonionic polymer so that the concentration of the nonionic polymer in water is 500 mg / L or more with respect to the total amount of water, and carrying out the scale inhibition operation.
  • the concentration of the nonionic polymer in water is 500 mg / L or more with respect to the total amount of water, and carrying out the scale inhibition operation.
  • the scale inhibition operation was confirmed to be suppressed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

シリカスケールが付着している水系において、水系中を循環する循環水中におけるノニオン性ポリマーの濃度が500mg/L以上となるように前記ノニオン性ポリマーを添加し、前記循環水を水系内に循環させるシリカスケール成長抑制運転を実施する、シリカスケールの成長抑制方法。

Description

シリカスケールの成長抑制方法
 本発明は、冷却水系、ボイラ水系、膜処理に係る水系、地熱発電所の還元井に係る水系等のシリカスケールが付着している水系における、シリカスケールの成長抑制方法に関する。
 冷却水系、ボイラ水系、膜処理に係る水系、地熱発電所の還元井に係る水系おいて、水と接触する伝熱面、配管、膜面ではスケール障害が発生する。
 特に、省資源、省エネルギーの立場から、高濃縮運転をした場合や、膜処理に係る水系において回収率を高くした場合、溶解する塩類が濃縮され難溶性の塩となってスケール化する。
 冷却水系、ボイラ水系において、伝熱面に生成したスケールは伝熱阻害を引き起こし、配管に生成したスケールは流量低下を引き起こす。更に、生成したスケールが剥離して系内を循環し、ポンプ、配管、熱交部の閉塞や、閉塞に伴う配管や伝熱面でのスケール化の促進を引き起こす。同様に、地熱発電所の還元井に係る水系においてもこのような現象が起こる。又、膜処理に係る水系では、スケールが膜へ付着することにより、フラックス低下を引き起こす。
 これらの水系に生成するスケール種としては、炭酸カルシウム、硫酸カルシウム、亜硫酸カルシウム、リン酸カルシウム、ケイ酸カルシウム、ケイ酸マグネシウム、水酸化マグネシウム、リン酸亜鉛、水酸化亜鉛、塩基性炭酸亜鉛等がある。
 カルシウム系スケールにおいては、マレイン酸、アクリル酸、イタコン酸等のカルボキシル基を有する化合物が有効である。これらのカルボキシル基を有する化合物と、ビニルスルホン酸、アリルスルホン酸、2-アクリルアミド2-メチルプロパンスルホン酸等のスルホン酸基を有するビニルモノマーや、アクリルアミド等のノニオン性ビニルモノマー等を、対象水質に応じて組み合わせたコポリマーが、スケール防止剤として一般的に使用されている。
 又、ヘキサメタリン酸ソーダやトリポリリン酸ソーダ等の無機ポリリン酸類、ヒドロキシエチリデンジホスホン酸やホスホノブタントリカルボン酸等のホスホン酸類も一般的に使用されている。
 特許文献1には、特にシリカ系スケールに対する防止効果に優れた、ポリアクリルアミドを含むスケール防止剤が提案されている。
 又、特許文献2には、カルシウムスケールとシリカスケールの両方が析出する冷却水系において、カルシウムイオンやケイ酸イオンを高濃度に保持してもスケールの発生を十分に防止し、高濃縮運転を可能とする薬剤として、ポリエチレングリコールが提案されている。
 その他、シリカスケールの発生を防止する為の薬剤として、ポリビニルホルムアミド(特許文献3)、ポリビニルピロリドン(以下、「PNVP」ともいう)(特許文献4)、ノニオン性重合体とリン化合物の併用(特許文献5)等が提案されている。
特開昭61-107998号公報 特開平2-31894号公報 特開平11-57783号公報 特開1999-57783号公報 特開2010-162459号公報
 しかしながら、前記特許文献1に記載のアクリルアミド系ポリマーは、水中のケイ酸濃度が低い場合には効果が認められるものの、ケイ酸濃度が高い場合には、効果が乏しい。
 前記特許文献2に記載のポリエチレングリコールは、水中のケイ酸濃度が低い場合には、スケールの付着防止効果が認められるが、共存する他種イオンの影響を受けやすいために、効果が安定しないという問題がある。
 前記特許文献3に記載のポリビニルホルムアミドは、カチオン性を帯びるため、組成比率の高いものは配管等の水系を構成する金属に吸着されやすいという問題がある。
 前記特許文献4に記載のポリビニルピロリドンは、高温部で生成するシリカ系スケールの防止には有効であるが、低温部で生成するシリカ系スケールの発生を防止することは困難である。
 前記特許文献5に記載のノニオン性重合体とリン化合物の併用は、シリカ濃度が高い場合において、清浄なRO膜や伝熱部等では効果が優れるが、冷却塔等、濡れ渇きにより固体が析出した場合や、過濃縮運転によりスケールが生成した場合、付着したスケールを起点にスケールが成長することを防止することができず、十分な効果を発揮することが難しい。
 又、シリカスケールが付着した場合、フッ酸を用いて洗浄すると、シリカスケールを取り除くことが可能であるが、フッ酸は毒物である為、取扱に注意を要する。その他、水酸化ナトリウムや水酸化カリウムを用いた洗浄によっても、シリカスケールを取り除くことが可能であるが、高アルカリとなる為、取扱に注意を要する。一般には、ジェット洗浄やブラシ等で物理的に洗浄する方法が多用されているが、完全に付着物を取り除くことは困難であり、系内にシリカスケールが残存した場合、付着したシリカスケールを起点にスケールが成長し、伝熱効率の低下や冷却塔でのスラッジ堆積が生じる。
 本発明は、上記実情に鑑みてなされたものであり、シリカスケールが付着している水系において、シリカスケールの成長を効果的に抑制し、水系の安定的かつ安全な運転に大きく寄与できるシリカスケールの成長抑制方法を提供することを目的とする。
 本発明者は、上記目的を達成するために鋭意検討した結果、シリカスケールが付着している水系において、水系中を循環する循環水中におけるノニオン性ポリマーの濃度が500mg/L以上となるように、前記ノニオン性ポリマーを添加し、前記循環水を水系内に循環させるシリカスケール成長抑制運転を実施することにより、シリカスケールの成長抑制効果が得られることを見出した。本発明は、かかる知見に基づいて完成したものである。
 すなわち、本発明は、次の[1]~[13]を提供する。
[1]シリカスケールが付着している水系において、水系中を循環する循環水中におけるノニオン性ポリマーの濃度が500mg/L以上となるように前記ノニオン性ポリマーを添加し、前記循環水を水系内に循環させるシリカスケール成長抑制運転を実施する、シリカスケールの成長抑制方法。
[2]前記シリカスケール成長抑制運転を、2時間以上実施する、上記[1]に記載のシリカスケールの成長抑制方法。
[3]前記シリカスケール成長抑制運転において、前記循環水中におけるノニオン性ポリマー濃度が500mg/L以上である状態を2時間以上維持する、上記[1]又は[2]に記載のシリカスケールの成長抑制方法。
[4]前記シリカスケール成長抑制運転において、水系中を循環する循環水中におけるノニオン性ポリマー濃度が500mg/L以上となるようにノニオン性ポリマーを添加した後、ブローすることなく前記循環水を2時間以上循環させる、上記[1]~[3]のいずれかに記載のシリカスケールの成長抑制方法。
[5]前記ノニオン性ポリマーが、
 環状カルボン酸アミド系ポリマー、オキサゾリン系ポリマー、ポリアルキレンオキシド、アルキルアルコールのアルキレンオキシド付加物、ポリオキシアルキレン脂肪酸エステル、ポリ(メタ)アクリル酸ポリアルキレンオキサイド、ポリビニルエーテルポリアルキレンオキサイドから選ばれる1種以上である、上記[1]~[4]のいずれかに記載のシリカスケールの成長抑制方法。
[6]前記ノニオン性ポリマーが、
 環状カルボン酸アミド系ポリマー、オキサゾリン系ポリマー、及びポリアルキレンオキシドから選ばれる1種以上である、上記[1]~[5]のいずれかに記載のシリカスケールの成長抑制方法。
[7]前記環状カルボン酸アミド系ポリマーが、ポリビニルピロリドンである、上記[6]に記載のシリカスケールの成長抑制方法。
[8]前記オキサゾリン系ポリマーが、ポリ(2-エチル2-オキサゾリン)である、上記[6]に記載のシリカスケールの成長抑制方法。
[9]前記ポリアルキレンオキシドが、下記式(2)で表されるものである、上記[6]に記載のシリカスケールの成長抑制方法。
Figure JPOXMLDOC01-appb-C000002

(式中、R及びRは水素原子又はアルキル基を表し、R及びRの炭素数は、1以上、7以下である。式中、EOはエチレンオキサイド、POはプロピレンオキサイドを表し、mは1以上であり、mとnとlの和の値は、1以上であり50以下である。式中、エチレンオキサイドとプロピレンオキサイドは、ブロック付加したもの又はランダム付加したものであり、ブロック付加の場合、二元ブロック又は三元ブロックである。)
[10]前記シリカスケール成長抑制運転において、前記水系に、更にシリコーン系消泡剤を添加する、上記[1]~[9]のいずれかに記載のシリカスケールの成長抑制方法。
[11]下記式を満たす場合に、前記シリカスケール成長抑制運転を実施する、上記[1]~[10]のいずれかに記載のシリカスケールの成長抑制方法。
 補給水シリカ濃度×濃縮倍数-水系のシリカ濃度≧20mg/L
[12]前記水系中の循環水の一部又は全部を補給水に入れ替えることにより、前記水系中の循環水の濃縮倍数低減運転の開始から、前期濃縮倍数低減運転を終了し、前記水系中の循環水の濃縮倍数が所定の値に増加する時点までの期間内における全期間又は一部の期間において、前記シリカスケール成長抑制運転を実施する、上記[1]~[11]のいずれかに記載のシリカスケールの成長抑制方法。
[13]前記水系からブローされたブロー水中に存在する前記ノニオン性ポリマーを、UF膜で回収し、再利用する、上記[1]~[12]のいずれかに記載のシリカスケールの成長抑制方法。
 本発明によれば、シリカスケールが付着している水系において、シリカスケールの成長を効果的に抑制することができる。
 従って、本発明のシリカスケールの成長抑制方法は、水系の安定的かつ安全な運転に大きく寄与できる。
 以下、本発明のシリカスケールの成長抑制方法を詳細に説明する。
[シリカスケールの成長抑制方法]
 本発明のシリカスケールの成長抑制方法は、シリカスケールが付着している水系において、水系中を循環する循環水中におけるノニオン性ポリマーの濃度が500mg/L以上となるように、前記ノニオン性ポリマーを添加し、前記循環水を水系内に循環させるシリカスケール成長抑制運転を実施することにより、シリカスケールの成長が抑制される。
 その理由は定かではないが、ノニオン性ポリマーが、シリカスケール表面に吸着し、スケールの成長点を抑え、スケールの成長を抑制すると考えられる。
 水系中を循環する循環水中におけるノニオン性ポリマーの濃度は、500mg/L以上であれば特に制限はなく、水系に付着しているスケール量に応じて適宜選択することができる。
 ノニオン性ポリマーの濃度は、シリカスケールの成長抑制効果をより向上させる観点から、500mg/L以上であり、好ましくは2000mg/L以上、より好ましくは4000mg/L以上、更に好ましく5000mg/L以上であり、又、省資源の観点から、好ましくは20000mg/L以下、より好ましくは15000mg/L以下、更に好ましくは12000mg/L以下である。
 ノニオン性ポリマーの添加方法は、特に制限はなく、水系中に循環水を循環させる連続運転を実施した後、当該連続運転を停止してジェット洗浄やブラシ洗浄、アルカリ洗浄した後に、ノニオン性ポリマーを添加してシリカスケール成長抑制運転を行ってもよく、当該連続運転を停止することなくノニオン性ポリマーを添加してシリカスケール成長抑制運転を行ってもよい。ノニオン性ポリマーを一度に投入してもよいし、連続的に添加してもよい。
 ノニオン性ポリマーがブロー等で消失する場合は、ブロー後の循環水中におけるノニオン性ポリマーの濃度が500mg/L以上の濃度となるように、消失する量を想定してノニオン性ポリマーを添加してもよく、又、ブロー中及び、又はブロー後にノニオン性ポリマーを追加添加してもよい。
 シリカスケール成長抑制運転時間は、特に制限はなく、用いるノニオン性ポリマーの濃度や、水系に付着しているスケール量に応じて適宜選択することができる。シリカスケール成長抑制運転時間は、シリカスケールの成長抑制効果をより向上させる観点から、好ましくは1時間以上、より好ましくは2時間以上であり、又、省エネルギーの観点から、好ましくは30時間以下、より好ましくは20時間以下である。
 シリカスケール成長抑制運転時のノニオン性ポリマーの濃度は、シリカスケールの成長抑制効果をより向上させる観点から、循環水中におけるノニオン性ポリマー濃度が500mg/L以上である状態を2時間以上実施することが好ましく、ノニオン性ポリマー濃度が500mg/L以上となるようにノニオン性ポリマーを添加した後、ブローすることなく前記循環水を2時間以上循環させることがより好ましい。
 シリカスケール成長抑制運転を行う時期は、特に制限はなく、適宜選択することができるが、省資源の観点から、前記水系中の循環水の一部又は全部を補給水に入れ替えることにより、前記水系中の循環水の濃縮倍数低減運転の開始から、前期濃縮倍数低減運転を終了し、前記水系中の循環水の濃縮倍数が所定の値に増加する時点までの期間内における全期間又は一部の期間において、前記シリカスケール成長抑制運転を実施することが好ましい。
 シリカスケール成長抑制運転は、シリカスケール成長抑制運転を実施した後、下記式を満たす場合に、繰り返し実施することが好ましい。
 補給水シリカ濃度×濃縮倍数-水系のシリカ濃度≧20mg/L (1)
 式(1)を満たす場合に、繰り返し実施することで、更に効果を維持することが可能である。
<水系>
 本発明のシリカスケール成長抑制方法は、水系において好適に用いられるものであり、冷却水系、ボイラ水系、膜処理に係る水系、及び地熱発電所の還元井に係る水系において発生するシリカ系スケールの付着や堆積防止に有効である。ただし、本発明の方法が適用される対象水系は、これらに限定されるものではなく、シリカ系スケールが発生しやすい水系において好適に適用することができる。
 なお、水系においては、例えば、MF(精密ろ過)膜、UF(限外ろ過)膜、イオン交換膜、RO(逆浸透)膜等を有するろ過器等、各種水処理機器を用いてもよい。省資源の観点から、水系からブローされたブロー水中に存在するノニオン性ポリマーを、UF膜で回収し、再利用することが好ましい。
<ノニオン性ポリマー>
 ノニオン性ポリマーは、水溶液中で荷電を有しないポリマーを意味する。ノニオン性ポリマーは、荷電を有しないモノマー、すなわちノニオン性モノマーを由来とするポリマーである。
 ノニオン性ポリマーを、シリカスケールの成長を抑制する薬剤として使用することで、シリカスケールの成長を抑制することができる。
 ノニオン性ポリマーとしては、例えば、環状カルボン酸アミド系ポリマー、オキサゾリン系ポリマー、ポリアルキレンオキシド、アルキルアルコールのアルキレンオキシド付加物、ポリオキシアルキレン脂肪酸エステル、ポリ(メタ)アクリル酸ポリアルキレンオキサイド、ポリビニルエーテルポリアルキレンオキサイド、及び上記以外のその他のポリマーが挙げられる。
 環状カルボン酸アミド系ポリマーとしては、具体的には、ポリビニルピロリドン及び誘導体が挙げられる。これらの中でも、ポリビニルピロリドンが好ましい。
 オキサゾリン系ポリマーとしては、例えば、ポリオキサゾリン、ポリ(2-メチル2-オキサゾリン)、ポリ(2-エチル2-オキサゾリン)等が挙げられる。これらの中でも、ポリ(2-エチル2-オキサゾリン)が好ましい。
 オキサゾリン系ポリマーは、ホモポリマーが好ましい。
 ポリアルキレンオキシドとしては、特に制限はないが、下記式(2)で表されるものが好ましい。
Figure JPOXMLDOC01-appb-C000003

(式中、R及びRは水素原子又はアルキル基を表し、R及びRの炭素数は、好ましくは1以上、7以下である。式中、EOはエチレンオキサイド、POはプロピレンオキサイドを表し、mは1以上であり、mとnとlの和の値は、1以上、好ましくは2以上であり、そして、好ましくは50以下である。式中、エチレンオキサイドとプロピレンオキサイドは、ブロック付加したものでもランダム付加したものでもよく、ブロック付加の場合、二元ブロックであっても三元ブロックであってもよい。)
 式(2)は、好ましくはポリ(エチレングリコール)-block-ポリ(プロピレングリコール)-block-ポリ(エチレングリコール)である。
 アルキルアルコールのポリアルキレンオキシド付加物としては、特に制限はないが、下記式(3)で表されるものが好ましい。
Figure JPOXMLDOC01-appb-C000004

(式中、Rは、アルキル基又はアルキレン基又はアリル基を表し、Rの炭素数は、1以上、好ましくは8以上、22以下である。式中、EOはエチレンオキサイド、POはプロピレンオキサイドを表し、mは1以上であり、mとnの和の値は、1以上、好ましくは2以上であり、そして、好ましくは30以下である。式中、エチレンオキサイドとプロピレンオキサイドは、ブロック付加したものでもランダム付加したものでもよく、ブロック付加の場合、二元ブロックであっても三元ブロックであってもよい。)
 ポリオキシアルキレン脂肪酸エステルとしては、特に制限はないが、下記式(4)で表されるものが好ましい。
Figure JPOXMLDOC01-appb-C000005

(式中、Rは、アルキル基又はアルキレン基又はアリル基を表し、Rの炭素数は、1以上、好ましくは8以上、20以下である。式中、EOはエチレンオキサイド、POはプロピレンオキサイドを表し、mは1以上であり、mとnの和の値は、1以上、好ましくは2以上であり、そして、好ましくは30以下である。式中、エチレンオキサイドとプロピレンオキサイドは、ブロック付加したものでもランダム付加したものでもよく、ブロック付加の場合、二元ブロックであっても三元ブロックであってもよい。)
 ポリ(メタ)アクリル酸ポリアルキレンオキサイドとしては、特に制限はないが、下記式(5)で表されるものが好ましい。
Figure JPOXMLDOC01-appb-C000006

(式中、Rは水素原子又はメチル基を表す。式中、EOはエチレンオキサイド、POはプロピレンオキサイドを表し、mは1以上であり、mとnの和の値は、1以上、好ましくは2以上であり、そして、好ましくは30以下である。式中、エチレンオキサイドとプロピレンオキサイドは、ブロック付加したものでもランダム付加したものでもよく、ブロック付加の場合、二元ブロックであっても三元ブロックであってもよい。)
 ポリビニルエーテルポリアルキレンオキサイドとしては、特に制限はないが、下記式(6)で表されるものが好ましい。
Figure JPOXMLDOC01-appb-C000007

(式中、Rは水素原子又はメチル基を表す。式中、EOはエチレンオキサイド、POはプロピレンオキサイドを表し、mとnの和の値は、0でもよく、好ましくは1以上、好ましくは2以上であり、そして、好ましくは30以下である。式中、エチレンオキサイドとプロピレンオキサイドは、ブロック付加したものでもランダム付加したものでもよく、ブロック付加の場合、二元ブロックであっても三元ブロックであってもよい。)
 その他のポリマーとしては、例えば、N-ビニルポリマーが挙げられる。N-ビニルポリマーとしては、例えば、ポリNビニルホルムアミド、ポリNビニルアセトアミド、ポリNビニルNメチルホルムアミド、ポリNビニルメチルアセトアミド、ポリNビニルオキサゾリドン等が挙げられる。
(ノニオン性ポリマーの重量平均分子量)
 前記ノニオン性ポリマーの重量平均分子量は、例えば、ポリビニルピロリドンの場合は、シリカスケールの成長抑制効果をより向上させる観点から、好ましくは5000以上、より好ましくは8000以上、更に好ましくは9000以上であり、又、シリカスケールの反応点を効果的に抑える観点から、好ましくは50000以下、より好ましくは30000以下、更に好ましくは12000以下である。
 前記ノニオン性ポリマーが、例えば、ポリ(2-エチル2-オキサゾリン)の場合は、その重量平均分子量は、シリカスケールの成長抑制効果をより向上させる観点から、好ましくは1000以上、より好ましくは3000以上、更に好ましくは4000以上であり、又、シリカスケールの反応点を効果的に抑える観点から、好ましくは10000以下、より好ましくは8000以下、更に好ましくは6000以下である。
 前記ノニオン性ポリマーが、例えば、ポリ(エチレングリコール)-block-ポリ(プロピレングリコール)-block-ポリ(エチレングリコール)の場合は、その重量平均分子量は、シリカスケールの成長抑制効果をより向上させる観点から、好ましくは1000以上、より好ましくは5000以上、更に好ましくは7000以上であり、又、シリカスケールの反応点を効果的に抑える観点から、好ましくは20000以下、より好ましくは15000以下、更に好ましくは10000以下である。
 上記範囲内の重量平均分子量であれば、シリカスケールの反応点を効果的に抑えることができ、シリカスケールの成長抑制効果が得られる。
 なお、前記重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)法により測定することができる。
(ノニオン性ポリマーの製造方法)
 ノニオン性ポリマーの製造方法は、特に制限はなく、水溶液重合、懸濁重合、乳化重合、塊状重合等、公知の重合法により製造できる。
 例えば、水溶液重合においては、必要に応じてpHを調整したモノマー水溶液を調整し、不活性ガスにより雰囲気を置換した状態で50~100℃に加熱し、水溶性重合開始剤を添加することにより重合を行うことができる。
 水溶性重合開始剤としては2,2’-アゾビス(2-アミジノプロパン)二塩酸塩、アゾビス-N,N’-ジメチレンイソブチルアミジン二塩酸塩、4,4’-アゾビス(4-シアノ吉草酸)-2-ナトリウム等のアゾ化合物、過硫酸アンモニウム、過硫酸ナトリウム、過硫酸カリウム等の過硫酸塩、過酸化水素、過ヨウ素酸ナトリウム等の過酸化物を用いることができる。重合時間2~6時間にて重合を行った後、放冷することにより、重合体水溶液又は水分散液を得ることができる。重合は水性媒体中に限らず、一般的な有機溶媒中での溶液重合、懸濁重合、乳化重合等によっても行うことができる。
<消泡剤>
 シリカスケール成長抑制運転を実施する際、泡立ちが懸念される場合は、消泡剤等を併用しても良い。消泡剤はシリコーン系消泡剤が好ましい。
<その他添加剤>
 当該シリカスケール成長抑制方法では、必要に応じて、例えば、スケール防止剤、防食剤、及びスライムコントロール剤を、ノニオン性ポリマーと併用して使用することができる。
(スケール防止剤)
 ノニオン性ポリマーと併用できるスケール防止剤としては、例えば、ポリアクリル酸、マレイン酸/アクリル酸、マレイン酸/スルホン酸、アクリル酸/ノニオン基含有モノマーのコポリマー、アクリル酸/スルホン酸/ノニオン基含有モノマーのターポリマー等が挙げられる。
(防食剤)
 ノニオン性ポリマーと併用できる防食剤としては、例えば、亜鉛塩、ニッケル塩、モリブデン塩、タングステン塩、オキシカルボン酸塩、トリアゾール類、アミン類等を挙げることができる。
(スライムコントロール剤)
 ノニオン性ポリマーと併用できるスライムコントロール剤としては、例えば、アルキルジメチルベンジルアンモニウムクロライド等の四級アンモニウム塩、クロルメチルトリチアゾリン、クロルメチルイソチアゾリン、メチルイソチアゾリン、エチルアミノイソプロピルアミノメチルチアトリアジン、次亜塩素酸、次亜臭素酸、次亜塩素酸とスルホファミン酸の混合物等が挙げられる。これらは、酵素、殺菌剤、着色剤、香料、水溶性有機溶媒、及び消泡剤等を含むものであってもよい。
 前記のスケール防止剤、防食剤、及びスライムコントロール剤は、それぞれ1種単独で又は2種以上を組み合わせて用いることができる。
 次に、本発明を実施例によりさらに詳細に説明するが、本発明はこれらの例によってなんら限定されるものではない。
[測定]
(シリカ濃度)
 シリカ濃度は、JIS K0101:1998のモリブデン青吸光光度法により測定した。
[処理溶液の作製]
<模擬スケールバッチ処理溶液の作製>
 イオン交換水に、メタケイ酸ナトリウム、塩化カルシウム、硫酸マグネシウム、炭酸水素ナトリウム、ホスホノブタントリカルボン酸、及び表1及び表2に示す薬剤を用いて、シリカ濃度200mgSiO/L、カルシウム硬度100mgCaCO/L、マグネシウム硬度100mgCaCO/L、Mアルカリ度200mgCaCO/L、ホスホン酸濃度3mgPO/L、及び表1及び表2に示す薬剤濃度となるように調整し、模擬スケールバッチ処理溶液を作製した。なお、処理溶液のpHは8.5(30℃)であった。
<連続処理溶液の作製>
 イオン交換水に、メタケイ酸ナトリウムを用いて、シリカ濃度50gSiO/Lの水溶液を作製した。同様に、塩化カルシウムを用いて、カルシウム硬度100gCaCO/Lの水溶液、炭酸水素ナトリウムを用いてMアルカリ度50gCaCO/Lの水溶液、硫酸マグネシウムを用いてマグネシウム硬度100gCaCO/Lの水溶液、ホスホノブタントリカルボン酸を用いてホスホン酸濃度1gPO/Lの水溶液をそれぞれ作製した。
 次に、500mLのメスフラスコに、イオン交換水を450ml入れ、Mアルカリ度50gCaCO/Lの水溶液を2.0ml、シリカ濃度50gSiO/Lの水溶液を2.0ml添加し、混合した後、塩酸を用いてpH9(30℃)に調整した。
 pH9に調整した水溶液に、更に、ホスホン酸濃度1gPO/Lの水溶液を1.5ml、カルシウム硬度100gCaCO/Lの水溶液を0.5ml、マグネシウム硬度100gCaCO/Lの水溶液を0.5ml添加し、塩酸を用いてpH8.5(30℃)に調整した。
 連続処理溶液に薬剤を添加しない場合は、pH8.5に調整した水溶液を、イオン交換水を用いて500mlにメスアップして連続処理溶液を作製した。連続処理溶液に薬剤を添加する場合は、薬剤としてポリビニルピロリドン(以下単に「PNVP」ともいう)を、PNVP濃度が50mg/Lとなるように、pH8.5に調整した水溶液に添加し、イオン交換水を用いて500mlにメスアップして連続処理溶液を作製した。
実施例1~7、9、10、比較例4~8
[模擬スケールバッチ処理]
 模擬スケールとしてシリカゲルを用いた。
 表1及び表2に示す薬剤を用いて、表1及び表2に示す濃度となるように調整した模擬スケールバッチ処理溶液に、シリカゲルを模擬スケールバッチ処理溶液に対して0.1g/L添加し、表1及び表2に示す時間継続して攪拌を行った。攪拌終了後、模擬スケールバッチ処理溶液を0.1μmのろ紙でろ過してシリカゲルを取り出し、バッチ処理済の模擬スケール(バッチ処理済のシリカゲル)を得た。なお、模擬スケールバッチ処理は、シリカスケール成長抑制運転を想定した処理である。
[連続処理]
 薬剤を添加していない連続処理溶液500mlに、バッチ処理済の模擬スケール(バッチ処理済のシリカゲル)を添加し、20時間継続して攪拌を行った。なお、連続処理とは、シリカスケール成長抑制運転を実施した後の通常運転を想定した処理である。
[評価]
(連続処理溶液のシリカ濃度)
 連続処理溶液を一定量サンプリングし、孔径が0.1μmのろ紙でろ過した後、連続処理溶液のシリカ濃度をモリブデン青吸光光度法にて測定した。その結果を、表1及び表2に示す。20時間後の連続処理液溶液のシリカ濃度が高いほど、シリカスケールの成長を抑制している。
(起泡性評価)
 500mlのメスシリンダーに、連続処理溶液を200ml入れ、消泡剤としてポリアルキルシロキサンを連続処理液に添加した薬剤に対し0.3%添加した後、散気管を取り付け、窒素を1L/minにて5分間通気した後、起泡量を評価した。その結果を、表1及び表2に示す。Aは泡が発生することなく起泡抑制効果に優れ、B、Cとなるにつれ、泡が発生し易くなる。
実施例8
 模擬スケールバッチ処理においては、PNVPの濃度が10000mg/Lとなるように調整した模擬スケールバッチ処理溶液を使用し、20時間処理したこと以外は、実施例1と同様にして実施した。連続処理においては、PNVPの濃度が50mg/Lとなるように調整した連続処理溶液を使用した以外は、実施例1と同様にして実施した。
実施例11
 模擬スケールバッチ処理時に、PNVPの濃度が10000mg/Lとなるように調整した模擬スケールバッチ処理溶液に、模擬スケールバッチ処理液に添加した薬剤に対し消泡剤としてポリアルキルシロキサンを0.3%添加した以外は、実施例1と同様にして実施した。
比較例1
 模擬スケールバッチ処理を行わず、連続処理においてシリカゲルを添加しなかったこと以外は、実施例1と同様にして実施した。
比較例2
 模擬スケールバッチ処理を行わず、連続処理において模擬スケールバッチ処理をしていないシリカゲルを使用した以外は、実施例1と同様にして実施した。
比較例3
 模擬スケールバッチ処理を行わず、連続処理において模擬スケールバッチ処理をしていないシリカゲルを使用し、PNVPの濃度が50mg/Lとなるように調整した連続処理溶液を使用した以外は、実施例1と同様にして実施した。
 
Figure JPOXMLDOC01-appb-T000008

PNVP:ポリビニルピロリドン K-15;(東京化成工業株式会社製、重量平均分子量10,000)
PEO:ポリ(2-エチル2-オキサゾリン);(シグマアルドリッチジャパン合同株式会社製、重量平均分子量5,000)
F68:ポリ(エチレングリコール)-block-ポリ(プロピレングリコール)-block-ポリ(エチレングリコール)F-68;(シグマアルドリッチジャパン合同株式会社製、重量平均分子量8,400)
消泡剤:シリコーン系消泡剤
Figure JPOXMLDOC01-appb-T000009

EGDG:エチルグリコールジグリシジルエーテル;(シグマアルドリッチジャパン合同株式会社製)
NIPAM:ポリN-イソプロピルアクリルアミド;(ポリマーサイエンス社製 重量平均分子量40,000)
PAA:ポリアクリル酸(シグマアルドリッチジャパン合同株式会社製、重量平均分子量8,000)
AA/AMPS:アクリル酸/2-アクリルアミド-2-メチルプロパンスルホン酸;(モノマーのモル比80:20、重量平均分子量13,500)
 表2の結果から、模擬スケールバッチ処理及び連続処理においてシリカゲルを添加しない条件(比較例1)では、20時間後の連続処理溶液のシリカ濃度は高い値で維持されているのに対し、模擬スケールバッチ処理を実施していないシリカゲルを連続処理溶液に添加した条件(比較例2)では、20時間後の連続処理液のシリカ濃度は低下している。以上より、水系内にシリカスケールが存在すると、付着しているそのシリカスケールを起点に、スケールが成長していると考えられる。
 比較例2及び比較例3の結果から、模擬スケールバッチ処理を実施していないシリカゲルを、ノニオン性ポリマーであるPNVPを添加していない連続処理溶液に添加した場合(比較例2)と、PNVPが添加されている連続処理溶液に添加した場合(比較例3)では、PNVPが添加されている条件の方が、維持できるシリカ濃度は高くなる。しかし、実施例1及び比較例3の比較より、模擬スケールバッチ処理を実施した条件(実施例1)の方が、維持できるシリカ濃度は高く、効果が大きい。以上より、水系内にシリカスケールが付着していると、水系のノニオン性ポリマーの濃度が50mg/L程度では、シリカスケールの成長を十分に抑制できないことがわかる。
 実施例と比較例の比較より、水中におけるノニオン性ポリマーの濃度が全水量に対して500mg/L以上となるようにノニオン性ポリマーを添加し、スケール抑制運転を実施することにより、シリカスケールの成長が抑制されることが確認された。
 更に、消泡剤を使用した場合においても、使用していない場合と同等の効果が得られることが確認された。
 

Claims (13)

  1.  シリカスケールが付着している水系において、水系中を循環する循環水中におけるノニオン性ポリマーの濃度が500mg/L以上となるように前記ノニオン性ポリマーを添加し、前記循環水を水系内に循環させるシリカスケール成長抑制運転を実施する、シリカスケールの成長抑制方法。
  2.  前記シリカスケール成長抑制運転を、2時間以上実施する、請求項1に記載のシリカスケールの成長抑制方法。
  3.  前記シリカスケール成長抑制運転において、前記循環水中におけるノニオン性ポリマー濃度が500mg/L以上である状態を2時間以上維持する、請求項1又は2に記載のシリカスケールの成長抑制方法。
  4.  前記シリカスケール成長抑制運転において、水系中を循環する循環水中におけるノニオン性ポリマー濃度が500mg/L以上となるようにノニオン性ポリマーを添加した後、ブローすることなく前記循環水を2時間以上循環させる、請求項1~3のいずれかに記載のシリカスケールの成長抑制方法。
  5.  前記ノニオン性ポリマーが、
     環状カルボン酸アミド系ポリマー、オキサゾリン系ポリマー、ポリアルキレンオキシド、アルキルアルコールのアルキレンオキシド付加物、ポリオキシアルキレン脂肪酸エステル、ポリ(メタ)アクリル酸ポリアルキレンオキサイド、ポリビニルエーテルポリアルキレンオキサイドから選ばれる1種以上である、請求項1~4のいずれかに記載のシリカスケールの成長抑制方法。
  6.  前記ノニオン性ポリマーが、
     環状カルボン酸アミド系ポリマー、オキサゾリン系ポリマー、及びポリアルキレンオキシドから選ばれる1種以上である、請求項1~5のいずれかに記載のシリカスケールの成長抑制方法。
  7.  前記環状カルボン酸アミド系ポリマーが、ポリビニルピロリドンである、請求項5又は6に記載のシリカスケールの成長抑制方法。
  8.  前記オキサゾリン系ポリマーが、ポリ(2-エチル2-オキサゾリン)である、請求項5又は6に記載のシリカスケールの成長抑制方法。
  9.  前記ポリアルキレンオキシドが、下記式(2)で表されるものである、請求項5又は6に記載のシリカスケールの成長抑制方法。
    Figure JPOXMLDOC01-appb-C000001

    (式中、R及びRは水素原子又はアルキル基を表し、R及びRの炭素数は、1以上、7以下である。式中、EOはエチレンオキサイド、POはプロピレンオキサイドを表し、mは1以上であり、mとnとlの和の値は、1以上であり50以下である。式中、エチレンオキサイドとプロピレンオキサイドは、ブロック付加したもの又はランダム付加したものであり、ブロック付加の場合、二元ブロック又は三元ブロックである。)
  10.  前記シリカスケール成長抑制運転において、前記水系に、更にシリコーン系消泡剤を添加する、請求項1~9のいずれかに記載のシリカスケールの成長抑制方法。
  11.  下記式を満たす場合に、前記シリカスケール成長抑制運転を実施する、請求項1~10のいずれかに記載のシリカスケールの成長抑制方法。
     補給水シリカ濃度×濃縮倍数-水系のシリカ濃度≧20mg/L
  12.  前記水系中の循環水の一部又は全部を補給水に入れ替えることにより、前記水系中の循環水の濃縮倍数低減運転の開始から、前期濃縮倍数低減運転を終了し、前記水系中の循環水の濃縮倍数が所定の値に増加する時点までの期間内における全期間又は一部の期間において、前記シリカスケール成長抑制運転を実施する、請求項1~11のいずれかに記載のシリカスケールの成長抑制方法。
  13.  前記水系からブローされたブロー水中に存在する前記ノニオン性ポリマーを、UF膜で回収し、再利用する、請求項1~12のいずれかに記載のシリカスケールの成長抑制方法。
     
     
PCT/JP2018/040175 2017-11-08 2018-10-29 シリカスケールの成長抑制方法 WO2019093183A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017215857A JP2019084507A (ja) 2017-11-08 2017-11-08 シリカスケールの成長抑制方法
JP2017-215857 2017-11-08

Publications (1)

Publication Number Publication Date
WO2019093183A1 true WO2019093183A1 (ja) 2019-05-16

Family

ID=66438302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/040175 WO2019093183A1 (ja) 2017-11-08 2018-10-29 シリカスケールの成長抑制方法

Country Status (2)

Country Link
JP (1) JP2019084507A (ja)
WO (1) WO2019093183A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06304594A (ja) * 1993-04-27 1994-11-01 Kurita Water Ind Ltd スケール成分の推定方法
JPH10137790A (ja) * 1996-09-24 1998-05-26 Calgon Corp 相乗的組合せを用いる、水性系におけるスケールの制御方法
JP2001170686A (ja) * 1999-12-20 2001-06-26 Kurita Water Ind Ltd スケールの付着防止方法
JP2010162459A (ja) * 2009-01-14 2010-07-29 Kurita Water Ind Ltd シリカ系スケール抑制剤及び防止方法
JP2013503740A (ja) * 2009-09-02 2013-02-04 ビーエーエスエフ ソシエタス・ヨーロピア 水性システムにおけるシリカおよび/またはケイ酸塩化合物の堆積を阻害する方法
JP2013166092A (ja) * 2012-02-14 2013-08-29 Kurita Water Ind Ltd スケール付着防止方法及びスケール付着防止剤
JP2016532763A (ja) * 2013-09-16 2016-10-20 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se ポリアスパラギン酸の製造方法
JP2017056428A (ja) * 2015-09-18 2017-03-23 三菱日立パワーシステムズ株式会社 水質管理装置、水処理システム、水質管理方法、および水処理システムの最適化プログラム
JP2017077510A (ja) * 2015-10-19 2017-04-27 株式会社東芝 水処理システムおよび水処理方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06304594A (ja) * 1993-04-27 1994-11-01 Kurita Water Ind Ltd スケール成分の推定方法
JPH10137790A (ja) * 1996-09-24 1998-05-26 Calgon Corp 相乗的組合せを用いる、水性系におけるスケールの制御方法
JP2001170686A (ja) * 1999-12-20 2001-06-26 Kurita Water Ind Ltd スケールの付着防止方法
JP2010162459A (ja) * 2009-01-14 2010-07-29 Kurita Water Ind Ltd シリカ系スケール抑制剤及び防止方法
JP2013503740A (ja) * 2009-09-02 2013-02-04 ビーエーエスエフ ソシエタス・ヨーロピア 水性システムにおけるシリカおよび/またはケイ酸塩化合物の堆積を阻害する方法
JP2013166092A (ja) * 2012-02-14 2013-08-29 Kurita Water Ind Ltd スケール付着防止方法及びスケール付着防止剤
JP2016532763A (ja) * 2013-09-16 2016-10-20 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se ポリアスパラギン酸の製造方法
JP2017056428A (ja) * 2015-09-18 2017-03-23 三菱日立パワーシステムズ株式会社 水質管理装置、水処理システム、水質管理方法、および水処理システムの最適化プログラム
JP2017077510A (ja) * 2015-10-19 2017-04-27 株式会社東芝 水処理システムおよび水処理方法

Also Published As

Publication number Publication date
JP2019084507A (ja) 2019-06-06

Similar Documents

Publication Publication Date Title
JP6146075B2 (ja) スケール防止方法及びスケール防止剤
JP5407348B2 (ja) シリカ系スケール抑制剤及び防止方法
JP4043551B2 (ja) スケール防止剤及びスケール防止方法
JP5353960B2 (ja) スケール防止方法
JP6255690B2 (ja) スケール防止方法及び逆浸透膜用水酸化マグネシウムスケール防止剤
JP5884730B2 (ja) 逆浸透膜用スケール防止剤及びスケール防止方法
JPWO2012132892A1 (ja) 逆浸透膜用スケール防止剤及びスケール防止方法
JP7534283B2 (ja) 研磨用組成物
JP6249123B1 (ja) スケール防止剤及びスケール防止方法
JP6065066B2 (ja) ボイラ用水処理装置及びボイラの運転方法
JP2024069185A (ja) 酸グラフトeo-poコポリマーを使用した、シリカスケール阻害の方法
JPH08224596A (ja) ボイラー水の処理のための非イオン性ポリマー
WO2019093183A1 (ja) シリカスケールの成長抑制方法
JP2002519512A (ja) シリカおよびシリケートの沈積の抑制
JP5856894B2 (ja) 冷却水系の処理方法
JP5085962B2 (ja) シリカ系汚れ防止剤及びシリカ系汚れ防止方法
JP2001048711A (ja) 冷却用水処理剤
JPH1190488A (ja) スケール防止剤
JP4126710B2 (ja) 水処理剤及び水処理方法
JP2000176488A (ja) 冷却水系用スケール防止剤
JP6357817B2 (ja) 亜鉛系スケールの防止方法及び亜鉛系スケール防止剤
JP2008238020A (ja) シリカ系汚れ防止剤及びシリカ系汚れ防止方法
JP2023073688A (ja) 水処理方法およびシリカ系スケール抑制剤
JP4479265B2 (ja) シリカ系スケール防止剤及びシリカ系スケール防止方法
JP2013180277A (ja) 逆浸透膜処理用スケール防止剤および逆浸透膜処理におけるスケール生成防止方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18875556

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18875556

Country of ref document: EP

Kind code of ref document: A1