WO2019093168A1 - 放射線撮像装置および放射線撮像システム - Google Patents

放射線撮像装置および放射線撮像システム Download PDF

Info

Publication number
WO2019093168A1
WO2019093168A1 PCT/JP2018/040045 JP2018040045W WO2019093168A1 WO 2019093168 A1 WO2019093168 A1 WO 2019093168A1 JP 2018040045 W JP2018040045 W JP 2018040045W WO 2019093168 A1 WO2019093168 A1 WO 2019093168A1
Authority
WO
WIPO (PCT)
Prior art keywords
conversion elements
radiation
scintillator
radiation imaging
conversion element
Prior art date
Application number
PCT/JP2018/040045
Other languages
English (en)
French (fr)
Inventor
竹中 克郎
尚志郎 猿田
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Priority to CN201880072085.0A priority Critical patent/CN111316133B/zh
Publication of WO2019093168A1 publication Critical patent/WO2019093168A1/ja
Priority to US16/867,401 priority patent/US11243313B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2018Scintillation-photodiode combinations
    • G01T1/20181Stacked detectors, e.g. for measuring energy and positional information
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2002Optical details, e.g. reflecting or diffusing layers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2018Scintillation-photodiode combinations
    • G01T1/20184Detector read-out circuitry, e.g. for clearing of traps, compensating for traps or compensating for direct hits
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • A61B6/4216Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector using storage phosphor screens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • A61B6/4233Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector using matrix detectors

Definitions

  • the present invention relates to a radiation imaging apparatus and a radiation imaging system.
  • a radiation imaging device including an imaging panel in which pixels in which conversion elements for converting radiation into electric charges and switch elements such as thin film transistors (TFTs) are combined are arranged in an array. It is widely used.
  • a scintillator is disposed on both sides of a light transmitting substrate, and a photo diode for detecting light emitted from the scintillator on one side and a photo for detecting light emitted from the scintillator on the other side It has been shown to arrange a diode. Two different energy components can be acquired in one irradiation of radiation from the respective photodiodes which detect light emitted from different scintillators via respective signal wires, and an energy subtraction image can be generated.
  • JP-A-2010-56396 two signal lines respectively corresponding to two photodiodes are used to generate one pixel data of a radiation image. Therefore, a circuit for reading out a signal from the wiring structure of the imaging panel and the signal wiring becomes complicated, which may increase the manufacturing cost and the device cost.
  • An object of the present invention is to provide a radiation imaging apparatus capable of acquiring an energy subtraction image with a simple configuration.
  • a radiation imaging apparatus includes: a pixel array in which a plurality of conversion elements arranged in a plurality of rows and a plurality of columns are arranged on a substrate transmitting light; A plurality of signal lines extending in the column direction for outputting the signal generated in step (d), a first scintillator disposed on the side of the first surface of the substrate, and the first surface of the substrate; A radiation imaging device including a second scintillator disposed on the side of the opposite second surface, wherein the plurality of conversion elements are a plurality of first conversion elements and a plurality of second conversion elements And the plurality of second conversion elements are configured such that the amount of light that can be received from the first scintillator is smaller than that of the first conversion elements.
  • a light shielding layer is disposed between each of the plurality of The number of columns and the plurality of signal lines ⁇ Ko is characterized in that equal.
  • FIG. 2 is a view showing an example of the arrangement of an imaging panel of the radiation imaging apparatus of FIG. 1;
  • FIG. 2 is a view showing a structural example of a cross section of a pixel of the radiation imaging apparatus of FIG. 1;
  • FIG. 2 is a view showing a structural example of a cross section of a pixel of the radiation imaging apparatus of FIG. 1;
  • FIG. 2 is a view showing an arrangement example of pixels of the radiation imaging apparatus of FIG. 1;
  • FIG. 2 is a view showing an arrangement example of pixels of the radiation imaging apparatus of FIG.
  • FIG. 2 is a diagram showing an operation flow of the radiation imaging apparatus of FIG. 1;
  • FIG. 2 is a view showing an example of pixel interpolation of the radiation imaging apparatus of FIG. 1;
  • FIG. 2 is a view showing an example of pixel interpolation of the radiation imaging apparatus of FIG. 1;
  • FIG. 2 is a view showing an example of pixel interpolation of the radiation imaging apparatus of FIG. 1;
  • FIG. 2 is a view showing an example of the arrangement of an imaging panel of the radiation imaging apparatus of FIG. 1;
  • 10 is a timing chart showing the operation of the radiation imaging apparatus of FIG.
  • FIG. 2 is a view showing an example of the arrangement of an imaging panel of the radiation imaging apparatus of FIG. 1;
  • FIG. 2 is a view showing an example of the arrangement of an imaging panel of the radiation imaging apparatus of FIG. 1;
  • FIG. 2 is a view showing an example of the arrangement of an imaging panel of the radiation imaging apparatus of FIG. 1;
  • FIG. 2 is a view showing an example of the
  • the radiation in the present invention may be, for example, X-ray having a similar or higher energy, in addition to ⁇ -ray, ⁇ -ray and ⁇ -ray which are beams produced by particles (including photons) emitted by radiation decay. It may also include rays, particle rays, cosmic rays, etc.
  • FIG. 1 is a view showing a configuration example of a radiation imaging system 200 using the radiation imaging apparatus 210 according to the embodiment of the present invention.
  • the radiation imaging system 200 is configured to electrically capture an optical image converted from radiation and obtain an electrical signal (radiation image data) for generating a radiation image.
  • the radiation imaging system 200 includes, for example, a radiation imaging apparatus 210, a radiation source 230, an exposure control unit 220, and a computer 240.
  • the radiation source 230 starts radiation of radiation according to the radiation command (radiation command) from the radiation control unit 220.
  • the radiation emitted from the radiation source 230 is irradiated to the radiation imaging apparatus 210 through an unshown object to be illustrated.
  • the radiation source 230 also stops radiation emission according to the stop command from the exposure control unit 220.
  • the radiation imaging apparatus 210 includes an imaging panel 212 and a control unit 214 that controls the imaging panel 212.
  • the control unit 214 generates a stop signal for stopping the radiation of the radiation from the radiation source 230 based on the signal obtained from the imaging panel 212.
  • the stop signal is supplied to the irradiation control unit 220, and the irradiation control unit 220 sends a stop command to the radiation source 230 in response to the stop signal.
  • the control unit 214 is, for example, a PLD (abbreviation of Programmable Logic Device) such as FPGA (abbreviation of Field Programmable Gate Array), or a general-purpose computer in which an ASIC (abbreviation of Application Specific Integrated Circuit) or a program is incorporated. Or a combination of all or part of them.
  • the computer 240 controls the radiation imaging apparatus 210 and the exposure control unit 220.
  • the computer 240 also includes a signal processing unit 241 that receives the radiation image data output from the radiation imaging apparatus 210 and processes the radiation image data.
  • the signal processing unit 241 can generate a radiation image from radiation image data.
  • the exposure control unit 220 has an exposure switch (not shown) as an example, and when the exposure switch is turned on by the user, it sends an irradiation command to the radiation source 230 and starts to indicate the start of radiation emission. Send a notification to computer 240.
  • the computer 240 that has received the start notification notifies the start of radiation emission to the control unit 214 of the radiation imaging apparatus 210 in response to the start notification.
  • the imaging panel 212 includes a pixel array 112.
  • the pixel array 112 includes a plurality of pixels PIX each including conversion elements S arranged in a two-dimensional array for detecting radiation.
  • the pixel array 112 has a plurality of column signal lines Sig1 to Sig4 along the column direction (vertical direction in FIG. 2) for outputting the signal generated by the conversion element S.
  • the imaging panel 212 includes a drive circuit (row selection circuit) 114 for driving the pixel array 112, and a readout circuit 113 for detecting a signal appearing on the column signal line Sig of the pixel array 112. In the configuration shown in FIG.
  • the pixel array 112 is configured by 4 rows ⁇ 4 columns of pixels PIX for simplification of the description, but in actuality, more pixels PIX may be arranged.
  • the imaging panel 212 has dimensions of 17 inches and may have about 3000 rows by about 3000 columns of pixels PIX. That is, the plurality of conversion elements S are arranged in a plurality of rows and a plurality of columns.
  • Each pixel PIX has a conversion element S for detecting radiation, and a switch T for connecting the conversion element S and a column signal line Sig (a signal line Sig corresponding to the conversion element C among the plurality of signal lines Sig). including.
  • Each conversion element S outputs a signal corresponding to the amount of incident radiation to the column signal line Sig.
  • the conversion element S may be, for example, a MIS type photodiode which is disposed on an insulating substrate such as a glass substrate and is mainly made of amorphous silicon.
  • the conversion element S may be a PIN type photodiode.
  • the conversion element S can be configured as an indirect type element that detects light after converting radiation into light by the scintillator.
  • the scintillator may be shared by a plurality of pixels PIX (a plurality of conversion elements S).
  • the switch T can be configured, for example, by a transistor such as a thin film transistor (TFT) having a control terminal (gate) and two main terminals (source, drain).
  • the conversion element S has two main electrodes, one main electrode of the conversion element S is connected to one of the two main terminals of the switch T, and the other main electrode of the conversion element S is common. It is connected to the bias power supply 103 via the bias line Bs.
  • the bias power supply 103 supplies a bias voltage Vs.
  • the control terminal of the switch T of each pixel PIX arranged in the first row is connected to the gate line Vg1 arranged along the row direction (lateral direction in FIG. 2).
  • control terminals of the switches SW of the respective pixels PIX arranged in the second to fourth rows are connected to the gate lines Vg2 to Vg4, respectively.
  • a gate signal is supplied from the drive circuit 114 to the gate lines Vg1 to Vg4.
  • each pixel PIX arranged in the first column the main terminal on the side not connected to the conversion element S of the switch T is connected to the column signal line Sig1 of the first column.
  • the main terminals on the side not connected to the conversion element S of the switch T are connected to the column signal lines Sig2 to Sig4 in the second to fourth columns, respectively. .
  • the read circuit 113 has a plurality of column amplification units CA such that one column amplification unit CA corresponds to one column signal line Sig.
  • Each column amplification unit CA may include an integration amplifier 105, a variable amplifier 104, a sample hold circuit 107, and a buffer circuit 106.
  • the integrating amplifier 105 amplifies the signal appearing on the column signal line Sig.
  • the integrating amplifier 105 may include an operational amplifier and an integrating capacitor and a reset switch connected in parallel between the inverting input terminal and the output terminal of the operational amplifier.
  • the reference potential Vref is supplied to the non-inverted input terminal of the operational amplifier.
  • the reset switch may be controlled by a reset pulse RC supplied from the controller 214.
  • the variable amplifier 104 amplifies the signal output from the integrating amplifier 105 at a set amplification factor.
  • the sample and hold circuit 107 samples and holds the signal output from the variable amplifier 104.
  • the sample and hold circuit 107 can be configured by a sampling switch and a sampling capacitor.
  • the buffer circuit 106 buffers (impedance converts) the signal output from the sample and hold circuit 107 and outputs the signal.
  • the sampling switch can be controlled by the sampling pulse supplied from the control unit 214.
  • Read circuit 113 further includes a multiplexer 108 which selects and outputs signals from a plurality of column amplification units CA provided corresponding to respective column signal lines Sig in a predetermined order.
  • the multiplexer 108 includes, for example, a shift register.
  • the shift register performs a shift operation according to the clock signal CLK supplied from the control unit 214, and one signal from the plurality of column amplification units CA is selected by the shift register.
  • Readout circuit 113 further includes a buffer 109 for buffering (impedance conversion) a signal output from multiplexer 108, and an AD converter 110 for converting an analog signal which is a signal output from buffer 109 to a digital signal. sell.
  • the output of the AD converter 110 ie, the radiation image data, is transferred to the computer 240.
  • each pixel PIX includes two types of conversion elements S.
  • the conversion elements S12, S14, S21, S23, S32, S34, S41, and S43 are arranged to receive the light from the two scintillators.
  • a light shielding layer 903 is disposed between one scintillator and each of the conversion elements S.
  • the conversion elements S11, S13, S22, S24, S31, S33, S42, and S44 are arranged such that the light from one scintillator is blocked and the light from the other scintillator is received.
  • These conversion elements S are hereinafter referred to as second conversion elements 902 in the case of specifying those conversion elements from among the conversion elements S from which light from one of the scintillators is blocked.
  • the light shielding layer 903 is a layer that shields light emitted by the scintillator, and may shield light between the second conversion element 902 and either of the scintillator that covers the incident surface side or the back surface side of the substrate. At this time, in the second conversion element 902, the light from one scintillator may not be completely blocked. In order to reduce the amount of light that can be received from one scintillator than the first conversion element 901, one of the scintillators covering the side of the incident surface of the substrate or the side of the back surface and the second conversion element 902 A light shielding layer 903 may be disposed therebetween.
  • the light shielding layer 903 is disposed between the scintillator disposed on the incident surface side of the substrate and the second conversion element 902.
  • a component with low energy is absorbed by the scintillator covering the side of the incident surface of the substrate, converted into visible light, and enters each pixel PIX.
  • the second conversion element 902 since the side of the incident surface of the substrate is shielded, the light emitted on the side of the incident surface of the substrate does not enter. Therefore, light converted from the low energy component of the radiation does not enter the second conversion element 902.
  • the first conversion element 901 since the light shielding layer 903 is not disposed, light converted from a component with low energy of radiation is incident.
  • the radiation a component of high energy which has not been absorbed by the scintillator disposed on the incident surface side of the substrate is absorbed by the scintillator covering the back surface side of the substrate and converted into visible light.
  • the light converted from the component of high energy among the radiation is the first conversion element 901, the second conversion element The light is incident on both of the conversion elements 902.
  • the first conversion element 901 a signal resulting from the high energy component and low energy component of the radiation
  • a signal resulting from the high energy component of the radiation You can get each one. That is, different radiation energy information can be held by the pixels PIX adjacent to each other. By holding information obtained from radiation of different energy components in the adjacent pixels PIX in this manner, energy subtraction can be performed using a method described later.
  • the signals of the first conversion element 901 and the second conversion element 902 are read out via the column signal lines Sig of the same number as the number of columns of the pixels PIX (and conversion elements) of the pixel array 112.
  • FIG. 3 schematically shows an example of the cross-sectional structure of the pixel PIXA having the first conversion element 901, and the pixel PIXB and the pixel PIXC having the second conversion element 902.
  • the first conversion element 901 and the second conversion element 902 are disposed between the substrate 310 and the scintillator 904 disposed on the side of the incident surface of the substrate 310.
  • FIG. 3A shows a case where the light shielding layer 903 is disposed between the second conversion element 902 and the scintillator 904 in the pixel PIXB.
  • FIG. 3B is the same as FIG.
  • the first conversion element 901 and the second conversion element 902 are disposed between the substrate 310 and the scintillator 904 covering the side of the incident surface of the substrate 310.
  • the light shielding layer 903 is disposed between the second conversion element 902 and the scintillator 905 disposed on the back side opposite to the incident surface of the substrate 310.
  • each pixel PIX is disposed on an insulating substrate 310 such as a glass substrate that transmits light emitted by the scintillators 904 and 905.
  • Each pixel PIX includes, over the substrate 310, the conductive layer 311, the insulating layer 312, the semiconductor layer 313, the impurity semiconductor layer 314, and the conductive layer 315 in this order.
  • the conductive layer 311 constitutes a gate electrode of a transistor (for example, a TFT) constituting the switch T.
  • the insulating layer 312 is disposed so as to cover the conductive layer 311, and the semiconductor layer 313 is disposed on a portion of the conductive layer 311 which constitutes the gate electrode with the insulating layer 312 interposed therebetween.
  • the impurity semiconductor layer 314 is disposed on the semiconductor layer 313 so as to form two main terminals (a source, a drain) of a transistor forming the switch T.
  • the conductive layer 315 constitutes a wiring pattern connected to the two main terminals (source, drain) of the transistor constituting the switch T.
  • a part of the conductive layer 315 constitutes a column signal line Sig, and another part constitutes a wiring pattern for connecting the conversion element S and the switch T.
  • Each pixel PIX further includes an interlayer insulating film 316 covering the insulating layer 312 and the conductive layer 315.
  • the interlayer insulating film 316 is provided with a contact plug 317 for connecting to a portion of the conductive layer 315 which constitutes the switch T.
  • Each pixel PIX includes a conversion element S disposed on the interlayer insulating film 316.
  • the conversion element S is configured as an indirect conversion element that converts light converted from radiation by the scintillators 904 and 905 into an electrical signal.
  • the conversion element S includes a conductive layer 318, an insulating layer 319, a semiconductor layer 320, an impurity semiconductor layer 321, a conductive layer 322, and an electrode layer 325 stacked on the interlayer insulating film 316.
  • a protective layer 323 and an adhesive layer 324 are disposed on the conversion element S.
  • the scintillator 904 is disposed on the adhesive layer 324 so as to cover the side of the incident surface of the substrate 310.
  • the scintillator 905 is disposed so as to cover the side of the back surface opposite to the incident surface of the substrate 310.
  • the conductive layers 318 respectively constitute lower electrodes of the conversion elements S. Moreover, the conductive layer 322 and the electrode layer 325 constitute the upper electrode of each conversion element S.
  • the conductive layer 318, the insulating layer 319, the semiconductor layer 320, the impurity semiconductor layer 321, and the conductive layer 322 form a MIS sensor as the conversion element S.
  • the impurity semiconductor layer 321 is formed of an n-type impurity semiconductor layer.
  • the scintillators 904 and 905 can be configured using a material such as GOS (gadolinium oxysulfide) or CsI (cesium iodide). These materials can be formed by bonding, printing, vapor deposition or the like. The scintillator 904 and the scintillator 905 may use the same material, or may use different materials depending on the energy of the radiation to be acquired.
  • GOS gallium oxysulfide
  • CsI cesium iodide
  • the conversion element S shows the example using a MIS type sensor, it is not limited to this.
  • the conversion element S may be, for example, a pn-type or PIN-type photodiode.
  • the second conversion element 902 of the pixel PIXB is a conductive layer 318 constituting a lower electrode, a semiconductor layer 320 constituting a lower electrode, and a conductive member constituting an upper electrode toward the scintillator 904 from the incident surface side of the substrate 310. And the layers 322 in this order.
  • the conductive layer 322 constituting the upper electrode functions as the light shielding layer 903.
  • the conductive layer 322 functions as the light shielding layer 903 by forming the conductive layer 322 with a material opaque to light emitted from the scintillator 904, such as Al, Mo, Cr, or Cu. That is, the second conversion element 902 of the pixel PIXB has a light shielding layer between the scintillator 904 and the second conversion element 902 such that the amount of light that can be received from the scintillator 904 is smaller than that of the first conversion element 901. 903 are distributed. In addition, the second conversion element 902 of the pixel PIXB is arranged to receive light from the scintillator 905, like the first conversion element 901 of the pixel PIXA. Further, in FIG.
  • the second conversion element 902 of the pixel PIXC is a conductive layer 318 forming a lower electrode toward the scintillator 904 from the side of the incident surface of the substrate 310, a semiconductor layer 320, and a conductive layer forming an upper electrode. 322, and an electrode layer 325 in this order.
  • the conductive layer 318 constituting the lower electrode functions as the light shielding layer 903.
  • the conductive layer 322 functions as the light shielding layer 903 by forming the conductive layer 318 with a material opaque to light emitted from the scintillator 905, such as Al, Mo, Cr, or Cu.
  • the second conversion element 902 of the pixel PIXC has a light shielding layer between the scintillator 905 and the second conversion element 902 so that the amount of light that can be received from the scintillator 905 is smaller than that of the first conversion element 901. 903 are distributed. Further, the second conversion element 902 of the pixel PIXC is arranged to receive the light from the scintillator 904, like the first conversion element 901 of the pixel PIXA.
  • the first conversion element 901 of the pixel PIXA a material transparent to light emitted from the scintillator 904, such as ITO (indium tin oxide), is used for the conductive layer 318 and the electrode layer 325.
  • ITO indium tin oxide
  • the invention is not limited thereto.
  • a transparent material and an opaque material may be stacked, in which case the light shielding amount is determined by the area of the opaque material.
  • the conductive layer 322 of the pixel PIXB and the conductive layer 318 of the pixel PIXC function as the light shielding layer 903, but the arrangement of the light shielding layer 903 is not limited to this.
  • a dedicated light shielding layer 903 using Al, Mo, Cr, Cu, or the like may be disposed in the protective layer 323 with respect to light incident from the scintillator 904.
  • the potential of the light shielding layer 903 may be fixed and used at a constant potential.
  • the light shielding layer 903 does not have to completely shield the light from the scintillator 904 or the scintillator 905 to the second conversion element 902 as described above. Energy subtraction is possible if the amount of light received from the scintillator 904 or the scintillator 905 on the side where the light shielding layer 903 is arranged is different between the adjacent pixel PIXA and the pixel PIXB or the pixel PIXC. In such a case, it is checked in advance how many percent of the light received by the first conversion element 901 of the pixel PIXA is incident on the second conversion element 902 of the pixel PIXB or the pixel PIXC. It can correct
  • each of the column signal lines Sig is arranged to overlap with a part of the pixel PIX.
  • Such a configuration is advantageous in increasing the area of the conversion element S of each pixel PIX, but is disadvantageous in that the capacitive coupling between the column signal line Sig and the conversion element S is increased. is there.
  • capacitive coupling between the column signal line Sig and the conversion element S causes the column signal line Sig to The crosstalk of which the electric potential of this changes will generate
  • the number of pixels PIX having the second conversion elements 902 in which the light shielding layer 903 included is disposed is the same for each row Arrange as.
  • the number of pixels PIX having the plurality of second conversion elements 902 included is arranged to be the same for each column.
  • the radiation imaging apparatus 210 may have a function of automatically detecting the start of radiation irradiation.
  • the gate line Vg is operated to turn on / off the switch T, the signal from the conversion element S is read, and the presence or absence of radiation irradiation is determined from the output signal.
  • the number of pixels PIX having the second conversion element 902 including the light shielding layer 903 differs for each row, the amount of signal output for each row changes, and the detection accuracy varies. Therefore, as shown in FIGS. 4A and 4B, among the plurality of conversion elements S, the conversion elements S aligned in the row direction intersecting the column direction have the second conversion elements 902 in which the light shielding layer 903 included is disposed.
  • the number of pixels PIX is arranged to be the same for each row. Such an arrangement stabilizes detection accuracy for automatically detecting the start of radiation irradiation.
  • the density of the pixel PIX having the second conversion element 902 is reduced compared to the arrangement example of the pixel PIX in FIG. 4A.
  • the light from the scintillator 905 enters the conversion element S through the substrate 310, so that the light is diffused depending on the thickness of the substrate 310, and the MTF (Modulation Transfer Function) is reduced. Therefore, even if the density of the pixel PIX having the second conversion element 902 is reduced, substantially no reduction in resolution occurs.
  • the second conversion element 902 when the second conversion element 902 receives light emitted by the opposite scintillator 905 through the substrate 310, the second conversion element 902 is provided more than the number of pixels PIX provided with the first conversion element 901.
  • the number of pixels PIX may be smaller.
  • the thickness of the substrate 310 may be reduced by mechanical polishing or chemical polishing.
  • a scattering prevention layer such as a louver layer or a microlens that provides directivity to light emitted by the scintillator between the scintillator 905 and the substrate 310 326 may be provided.
  • the image processing in the signal processing unit 241 of the computer 240 may increase the resolution by sharpening processing.
  • the operation of radiation imaging system 200 is controlled by computer 240.
  • the operation of the radiation imaging apparatus 210 is controlled by the control unit 214 under the control of the computer 240.
  • the control unit 214 causes the drive circuit 114 and the readout circuit 113 to perform blank reading until radiation of radiation from the radiation source 230, in other words, irradiation of radiation to the radiation imaging apparatus 210 is started.
  • the drive circuit 114 sequentially drives the gate signals supplied to the gate lines Vg1 to Vg4 of the respective rows of the pixel array 112 to the active level to reset the dark charge stored in the conversion element S. is there.
  • a reset pulse of the active level is supplied to the reset switch of the integration amplifier 105, and the column signal line Sig is reset to the reference potential.
  • the dark charge is a charge generated despite the fact that radiation does not enter the conversion element S.
  • the control unit 214 can recognize the start of radiation emission from the radiation source 230, for example, based on the start notification supplied from the exposure control unit 220 via the computer 240. Further, as shown in FIG. 1, the radiation imaging apparatus 210 may be provided with a detection circuit 216 that detects a current flowing through the bias line Bs or the column signal line Sig of the pixel array 112. The controller 214 can recognize the start of the irradiation of the radiation from the radiation source 230 based on the output of the detection circuit 216.
  • control unit 214 controls the switch T in the open state (off state). As a result, the charge generated in the conversion element S by the radiation irradiation is accumulated. The control unit 214 waits in this state until the irradiation of the radiation ends.
  • the control unit 214 causes the drive circuit 114 and the read circuit 113 to execute the main reading.
  • the drive circuit 114 drives the gate signals supplied to the gate lines Vg1 to Vg4 of the respective rows of the pixel array 112 to the active level.
  • the readout circuit 113 reads out the charge stored in the conversion element S through the column signal line Sig, and outputs the charge as radiation image data to the computer 240 through the multiplexer 108, the buffer 109 and the AD converter 110.
  • the conversion element S continues to accumulate dark charge even in a state where it does not emit radiation. Therefore, the control unit 214 acquires offset image data by performing the same operation as acquiring radiation image data without irradiating radiation. By subtracting the offset image data from the radiation image data, the offset component due to the dark charge can be removed.
  • FIG. 6 a drive for capturing a moving image will be described using FIG.
  • a plurality of gate lines Vg are simultaneously driven to an active level to read out at high speed.
  • signals of the pixel PIX including the first conversion element 901 and the pixel PIX including the second conversion element 902 are output to one column signal wiring Sig. Therefore, as shown in FIG. 6, by simultaneously setting the gate signals supplied to the gate line Vg1 and the gate line Vg3 to the active level, the signals of the conversion element S12 which is the first conversion element 901 and the conversion element S32 Is output to the column signal line Sig2.
  • the signals of the conversion element S12 and the conversion element S32 are added (averaged) by the column signal line Sig2.
  • the signals of the conversion element S11 and the conversion element S31 which are the second conversion element 902 are output to the column signal line Sig1.
  • the signals of the conversion element S11 and the conversion element S31 are added (averaged) in the column signal line Sig1.
  • Energy subtraction processing can be performed by outputting the signals of the first conversion element 901 and the second conversion element 902 to different column signal lines Sig.
  • the conversion elements S11, S22, S31, S42, S51, S62, S71, and S82 which are the second conversion elements 902, have the second conversion elements to be added in two rows and two columns. Arrange in a diagonal line.
  • the switches T11, T22, T31, T42, T51, T62, T71, and T82 connect the column signal lines Sig1 in a staggered manner. In such a configuration, as shown in the timing chart of FIG.
  • Such a configuration is limited to the case where the ratio of the first conversion element 901 to the second conversion element 902 is 1: 1, ie, the arrangement density of the first conversion element 901 is 50%. is not.
  • the ratio of the first conversion element 901 to the second conversion element 902 is 2 to 1, that is, the arrangement density of the first conversion element 901 is the arrangement density of the second conversion element 902.
  • the second conversion elements 902 to be added are continuously arranged in the column direction, and the signals of the second conversion elements 902 in adjacent rows are read out to the same column signal line Sig. It is possible to add (average). However, although the readout speed at the time of moving image shooting is fast due to addition (average) and the resolution at the time of moving image shooting is not a problem, when reading out the signal separately from each one of the second conversion elements 902 , Resolution will be different in the row direction and the column direction.
  • the conversion elements S11, S22, S31, S42, S51, S62, S71, and S82 which are the second conversion elements 902 are arranged such that the second conversion elements to be added are arranged diagonally in two rows and two columns.
  • the switches T11, T22, T31, T42, T51, T62, T71, and T82 connect the column signal lines Sig2 in a staggered manner.
  • the conversion elements S12, S21, S32, S41, S52, S61, S72 and S81, which are the first conversion elements 901 are arranged such that the second conversion elements to be added are arranged diagonally in two rows and two columns. Do.
  • the switches T11, T22, T31, T42, T51, T62, T71, and T82 connect the column signal lines Sig1 in a staggered manner. Then, the column signal line Sig1 and the column signal line Sig2 are disposed between the conversion element of the first column and the conversion element of the second column.
  • the switches T13 and T24 are turned ON, and the signals of the conversion elements S13 and S24 are added. At the same time, the switches T12 and T23 are turned on, and the signals of the conversion elements S12 and S23 are added.
  • the pixel gravity center is shifted between the pair of conversion elements S13 and S24 and the pair of conversion elements S12 and S23.
  • resolution reduction or an artifact may occur.
  • the signals of the conversion elements S11 and S22 are added and the signals of the conversion elements S12 and S21 are added, the pixel gravity centers coincide with each other, so that the reduction in resolution and the occurrence of artifacts can be suppressed.
  • step S 910 after performing the above-described blank reading, the control unit 214 performs control so as to accumulate charges generated by the conversion element S during radiation irradiation in order to acquire radiation image data.
  • step S911 the control unit 214 causes the drive circuit 114 and the readout circuit 113 to perform the main reading, and reads the radiation image data.
  • step S 911 radiation image data is output to the computer 240.
  • step S912 the control unit 214 performs an accumulation operation for acquiring offset image data, and in step S913, causes the drive circuit 114 and the readout circuit 113 to read out the offset image data and causes the computer 240 to output the offset image data.
  • the signal processing unit 241 of the computer 240 performs offset correction by subtracting the radiation image data acquired in step S911 with the offset image data acquired in step S913.
  • the signal processing unit 241 sets the radiation image data after offset correction to the radiation image data output from the first conversion element 901 and the radiation image data output from the second conversion element 902.
  • the second conversion element 902 receives radiation from above in the figure, blocks light from the scintillator 904, and receives light generated by high-energy radiation from the scintillator 905. It explains as a thing.
  • the radiation image data output from the first conversion element 901 is described as double-sided image data
  • the radiation image data output from the second conversion element 902 is described as single-sided image data.
  • step S916 the signal processing unit 241 performs gain correction of double-sided image data using the gain correction image data captured without an object. Also, in step S917, the signal processing unit 241 performs gain correction of double-sided image data using the image data for gain correction.
  • step S 918 the signal processing unit 241 compensates for the loss of double-sided image data of the pixel PIX not including the first conversion element 901, in other words, the pixel PIX having the second conversion element 902. Perform pixel interpolation of Similarly, in step S919, the signal processing unit 241 performs pixel interpolation for compensating for the lack of single-sided image data of the pixel PIX not including the second conversion element 902, in other words, the pixel PIX having the first conversion element 901. .
  • the pixel interpolation in the steps S 918 and S 919 will be described with reference to FIG.
  • the arrangement shown in FIG. 4B in which the number of pixels PIX including the first conversion element 901 is larger than the number of pixels PIX including the second conversion element 902 will be described as an example.
  • the double-sided image data of the pixel E having the second conversion element 902 for outputting single-sided image data is the pixels A, B, C, D, which have the first conversion element 901 for outputting double-sided image data adjacent to the pixel E. Interpolation is performed using F, G, H, I double-sided image data.
  • the signal processing unit 241 may interpolate double-sided image data of the pixel E using an average value of double-sided image data of eight pixels adjacent to the pixel E.
  • the signal processing unit 241 may interpolate double-sided image data of the pixel E using an average value of double-sided image data of a part of adjacent pixels, such as pixels B, D, F, and H. .
  • step S 918 by performing pixel interpolation, radiation image data generated by the high energy component and the low energy component of the radiation of each pixel PIX is generated.
  • the single-sided image data of the pixel J having the first conversion element 901 for outputting double-sided image data is the same as that of the pixels K, L, M, N having the second conversion element 902 for outputting single-sided image data adjacent to the pixel J.
  • Interpolate using single-sided image data the signal processing unit 241 may interpolate single-sided image data of the pixel J using an average value of single-sided image data of four pixels adjacent to the pixel J. In this case, for example, the distance from the position where the pixel J is arranged to the pixel K and the distance to the pixel N are different.
  • the single-sided image data output from the pixels K, L, M, and N may be weighted and averaged.
  • step S919 pixel image interpolation is performed to generate radiation image data generated by the high energy components of the radiation of each pixel PIX.
  • step S920 the signal processing unit 241 generates radiation image data based on the low energy component of the radiation.
  • single-sided image data is radiation image data with high energy components.
  • double-sided image data is radiation image data having components of both high energy and low energy. For this reason, radiation image data of a low energy component can be generated by subtracting the single-sided image data stored in the pixel from the pixel-interpolated double-sided image data.
  • single-sided image data becomes radiation image data by low energy components.
  • the radiation image data of a high energy component can be generated by subtracting the single-sided image data stored in the pixel from the pixel-interpolated double-sided image data.
  • the amount of light from the scintillator 905 is smaller than the amount of light from the scintillator 904 because the radiation image with high energy components can not be absorbed by the scintillator 904 on the radiation incident side.
  • the second conversion element 902 shields the radiation incident side, and the double-sided image data is a high energy component + low energy component, and the single-sided image data is a high energy component image. It will be data.
  • the S / N ratio can be improved by subtracting single-sided image data from double-sided image data to generate a low energy image.
  • step S922 the signal processing unit 241 generates an energy subtraction image. Specifically, the signal processing unit 241 sets the second difference between the signal output from each of the first conversion elements 901 acquired in step S920 and the signal output from each of the second conversion elements 902, and And the signal output from each of the conversion elements 902 of This generates an energy subtraction image which is the difference between the high energy component radiation image data and the low energy component radiation image data.
  • the signal processing unit 241 may generate a normal radiation image on which energy subtraction is not performed in step S920 based on the double-sided image data output from the first conversion element 901 in step S918.
  • the first conversion element 901 receives the light from the scintillator 904 on the radiation incident side and the light from the scintillator 905 on the side opposite to the radiation incident side. As a result, it is possible to obtain a high S / N ratio in a normal radiation image as compared to the case where only light emitted by one scintillator is received.
  • the light shielding layer 903 for shielding the light from the scintillator 904 or 905 is disposed only in a part of the pixels PIX including the second conversion element 902 among the plurality of pixels PIX. . That is, since it is only necessary to add the light shielding layer 903 to a part of the pixels PIX, the structure is not complicated, and a radiation imaging apparatus capable of acquiring an energy subtraction image while suppressing the manufacturing cost can be realized.
  • the first conversion element 901 receives light emitted from the scintillator 904 and the scintillator 905, the sensitivity to incident radiation can be improved, and as a result, the image quality of the obtained radiation image can be improved. Furthermore, even when generating a normal radiation image, a radiation image is generated from the signal generated by receiving the light emitted by the two scintillators 904 and 905. For this reason, the S / N ratio at the time of capturing a normal radiation image is improved as compared with the structure as disclosed in JP-A-2010-56396.
  • a single imaging panel 212 can be used to record a radiation image of radiation of two different energy components by one radiation irradiation (one-shot method) on a subject. For this reason, compared with the radiation imaging device which produces

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Radiation (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

複数行及び複数列に配された複数の変換素子が光を透過する基板に配された画素アレイと、前記複数の変換素子で生成された信号を出力するための列方向に沿った複数の信号線と、前記基板の第1の面の側に配された第1のシンチレータと、前記基板のうち前記第1の面とは反対の第2の面の側に配された第2のシンチレータと、を含む放射線撮像装置であって、前記複数の変換素子は、複数の第1の変換素子と複数の第2の変換素子とを含み、前記複数の第2の変換素子は、前記第1の変換素子よりも前記第1のシンチレータから受光できる光の量が少なくなるように、前記第1のシンチレータと前記複数の第2の変換素子のそれぞれとの間に遮光層が配され、前記複数の変換素子の列数と前記複数の信号線の本数が等しい。

Description

放射線撮像装置および放射線撮像システム
 本発明は、放射線撮像装置および放射線撮像システムに関する。
 医療画像診断や非破壊検査に用いる撮像装置として、放射線を電荷に変換する変換素子と薄膜トランジスタ(TFT)などのスイッチ素子とを組み合わせた画素がアレイ状に配された撮像パネルを含む放射線撮像装置が広く利用されている。このような放射線撮像装置を用いて、エネルギ成分が異なる放射線を用いた放射線画像を複数取得し、取得した放射線画像の差分などから、特定の被写体部分を分離または強調したエネルギサブトラクション画像を取得する方法が知られている。特開2010-56396号公報には、光透過性を有する基板の両面にシンチレータを配し、一方の側のシンチレータが発する光を検出するフォトダイオードと他方の側のシンチレータが発する光を検出するフォトダイオードとを配することが示されている。互いに異なるシンチレータが発する光を検出するそれぞれのフォトダイオードからそれぞれ別の信号配線を介して、1回の放射線の照射で2つの異なるエネルギ成分の信号が取得され、エネルギサブトラクション画像が生成できる。
 特開2010-56396号公報において、放射線画像の1つの画素データを生成するのに、それぞれ2つのフォトダイオードに対応する2つの信号配線を用いる。そのため、撮像パネルの配線構造や信号配線から信号を読み出す回路が複雑になり、製造コストや装置コストが上昇してしまう可能性がある。
 本発明は、簡便な構成でエネルギサブトラクション画像の取得が可能な放射線撮像装置を提供することを目的とする。
 上記課題に鑑みて、本発明の実施形態に係る放射線撮像装置は、複数行及び複数列に配された複数の変換素子が光を透過する基板に配された画素アレイと、前記複数の変換素子で生成された信号を出力するための列方向に沿った複数の信号線と、前記基板の第1の面の側に配された第1のシンチレータと、前記基板のうち前記第1の面とは反対の第2の面の側に配された第2のシンチレータと、を含む放射線撮像装置であって、前記複数の変換素子は、複数の第1の変換素子と複数の第2の変換素子とを含み、前記複数の第2の変換素子は、前記第1の変換素子よりも前記第1のシンチレータから受光できる光の量が少なくなるように、前記第1のシンチレータと前記複数の第2の変換素子のそれぞれとの間に遮光層が配され、前記複数の変換素子の列数と前記複数の信号線の本数が等しいことを特徴とする。
本発明の実施形態に係る放射線撮像装置を用いた放射線撮像システムの構成例を示す図。 図1の放射線撮像装置の撮像パネルの構成例を示す図。 図1の放射線撮像装置の画素の断面の構造例を示す図。 図1の放射線撮像装置の画素の断面の構造例を示す図。 図1の放射線撮像装置の画素の配置例を示す図。 図1の放射線撮像装置の画素の配置例を示す図。 図1の放射線撮像装置の動作を示すタイミングチャート。 図1の放射線撮像装置の動作を示すタイミングチャート。 図1の放射線撮像装置の動作フローを示す図。 図1の放射線撮像装置の画素補間の例を示す図。 図1の放射線撮像装置の画素補間の例を示す図。 図1の放射線撮像装置の撮像パネルの構成例を示す図。 図9の放射線撮像装置の動作を示すタイミングチャート。 図1の放射線撮像装置の撮像パネルの構成例を示す図。 図1の放射線撮像装置の撮像パネルの構成例を示す図。 図1の放射線撮像装置の撮像パネルの構成例を示す図。
 以下、本発明に係る放射線撮像装置の具体的な実施形態を、添付図面を参照して説明する。なお、以下の説明及び図面において、複数の図面に渡って共通の構成については共通の符号を付している。そのため、複数の図面を相互に参照して共通する構成を説明し、共通の符号を付した構成については適宜説明を省略する。なお、本発明における放射線には、放射線崩壊によって放出される粒子(光子を含む)の作るビームであるα線、β線、γ線などの他に、同程度以上のエネルギを有するビーム、例えばX線や粒子線、宇宙線なども含みうる。
 図1~8を参照して、本発明の実施形態による放射線撮像装置の構成および動作について説明する。図1は、本発明の実施形態における放射線撮像装置210を用いた放射線撮像システム200の構成例を示す図である。放射線撮像システム200は、放射線から変換される光学像を電気的に撮像し、放射線画像を生成するための電気的な信号(放射線画像データ)を得るように構成される。放射線撮像システム200は、例えば、放射線撮像装置210、放射線源230、曝射制御部220およびコンピュータ240を含む。
 放射線源230は、曝射制御部220からの曝射指令(放射指令)に従って放射線の放射を開始する。放射線源230から放射された放射線は、不図示の被険体を通って放射線撮像装置210に照射される。放射線源230はまた、曝射制御部220からの停止指令に従って放射線の放射を停止する。
 放射線撮像装置210は、撮像パネル212と、撮像パネル212を制御する制御部214とを含む。制御部214は、撮像パネル212から得られる信号に基づいて、放射線源230からの放射線の放射を停止させるための停止信号を発生する。停止信号は、曝射制御部220に供給され、曝射制御部220は、停止信号に応答して、放射線源230に対して停止指令を送る。制御部214は、例えば、FPGA(Field Programmable Gate Arrayの略。)などのPLD(ProgrammableLogic Deviceの略。)、又は、ASIC(Application Specific Integrated Circuitの略。)、又は、プログラムが組み込まれた汎用コンピュータ、又は、これらの全部または一部の組み合わせによって構成されうる。
 コンピュータ240は、放射線撮像装置210および曝射制御部220を制御する。また、コンピュータ240は、放射線撮像装置210から出力される放射線画像データを受信し、放射線画像データを処理する信号処理部241を含む。信号処理部241は、放射線画像データから放射線画像を生成しうる。
 曝射制御部220は、一例として曝射スイッチ(不図示)を有し、ユーザによって曝射スイッチがオンされると、曝射指令を放射線源230に送るほか、放射線の放射の開始を示す開始通知をコンピュータ240に送る。該開始通知を受けたコンピュータ240は、該開始通知に応答して、放射線の放射の開始を放射線撮像装置210の制御部214に通知する。
 図2には、撮像パネル212の構成例が示される。撮像パネル212は、画素アレイ112を備える。画素アレイ112は、放射線を検出するための2次元アレイ状に配された変換素子Sをそれぞれ含む複数の画素PIXを備える。また、画素アレイ112は、変換素子Sで生成された信号を出力するための列方向(図2の縦方向)に沿った複数の列信号線Sig1~Sig4を有する。さらに、撮像パネル212は、画素アレイ112を駆動する駆動回路(行選択回路)114、および、画素アレイ112の列信号線Sigに現れる信号を検出するための読出回路113を備える。図2に示す構成では、記載の簡単化のために、画素アレイ112は、4行×4列の画素PIXで構成されているが、実際には、より多くの画素PIXが配列されうる。一例において、撮像パネル212は、17インチの寸法を有し、約3000行×約3000列の画素PIXを有しうる。すなわち、複数の変換素子Sは、複数行及び複数列に配されている。
 それぞれの画素PIXは、放射線を検出するための変換素子Sと、変換素子Sと列信号線Sig(複数の信号線Sigのうち変換素子Cに対応する信号線Sig)とを接続するスイッチTとを含む。それぞれの変換素子Sは、入射した放射線の量に対応する信号を列信号線Sigに出力する。変換素子Sは、例えば、ガラス基板等の絶縁性基板上に配置されアモルファスシリコンを主材料とするMIS型フォトダイオードであってもよい。また、変換素子Sは、PIN型フォトダイオードであってもよい。本実施形態において、変換素子Sは、放射線をシンチレータで光に変換した後に、光を検出する間接型の素子として構成されうる。間接型の素子において、シンチレータは、複数の画素PIX(複数の変換素子S)によって共有されうる。
 スイッチTは、例えば、制御端子(ゲート)と2つの主端子(ソース、ドレイン)とを有する薄膜トランジスタ(TFT)などのトランジスタによって構成されうる。変換素子Sは、2つの主電極を有し、変換素子Sの一方の主電極は、スイッチTの2つの主端子のうちの一方に接続され、変換素子Sの他方の主電極は、共通のバイアス線Bsを介してバイアス電源103に接続されている。バイアス電源103は、バイアス電圧Vsを供給する。第1行に配されるそれぞれの画素PIXのスイッチTの制御端子は、行方向(図2の横方向)に沿って配されたゲート線Vg1に接続される。同様に、第2~4行に配されるそれぞれの画素PIXのスイッチSWの制御端子は、それぞれゲート線Vg2~Vg4に接続される。ゲート線Vg1~Vg4には、駆動回路114によってゲート信号が供給される。
 第1列に配されるそれぞれの画素PIXは、スイッチTの変換素子Sと接続されない側の主端子が、第1列の列信号線Sig1に接続される。同様に、第2~4列に配されるそれぞれの画素PIXは、スイッチTの変換素子Sと接続されない側の主端子が、それぞれ第2~4列の列信号線Sig2~Sig4に接続される。
 読出回路113は、1つの列信号線Sigに1つの列増幅部CAが対応するように複数の列増幅部CAを有する。それぞれの列増幅部CAは、積分増幅器105、可変増幅器104、サンプルホールド回路107、バッファ回路106を含みうる。積分増幅器105は、列信号線Sigに現れた信号を増幅する。積分増幅器105は、演算増幅器と、演算増幅器の反転入力端子と出力端子との間に並列に接続された積分容量およびリセットスイッチとを含みうる。演算増幅器の非反転入力端子には、基準電位Vrefが供給される。リセットスイッチをオンさせることによって積分容量がリセットされるとともに、列信号線Sigの電位が基準電位Vrefにリセットされる。リセットスイッチは、制御部214から供給されるリセットパルスRCによって制御されうる。
 可変増幅器104は、積分増幅器105から出力された信号を設定された増幅率で増幅する。サンプルホールド回路107は、可変増幅器104から出力された信号をサンプルホールドする。サンプルホールド回路107は、サンプリングスイッチとサンプリング容量とによって構成されうる。バッファ回路106は、サンプルホールド回路107から出力された信号をバッファリング(インピーダンス変換)して出力する。サンプリングスイッチは、制御部214から供給されるサンプリングパルスによって制御されうる。
 また、読出回路113は、それぞれの列信号線Sigに対応するように設けられた複数の列増幅部CAからの信号を所定の順序で選択して出力するマルチプレクサ108を含む。マルチプレクサ108は、例えば、シフトレジスタを含む。シフトレジスタは、制御部214から供給されるクロック信号CLKに従ってシフト動作を行い、シフトレジスタによって複数の列増幅部CAからの1つの信号が選択される。読出回路113は、さらに、マルチプレクサ108から出力される信号をバッファリング(インピーダンス変換)するバッファ109、および、バッファ109から出力される信号であるアナログ信号をデジタル信号に変換するAD変換器110を含みうる。AD変換器110の出力、即ち、放射線画像データは、コンピュータ240に転送される。
 本実施形態において、後述するように、基板の放射線を入射させるための入射面の側と、入射面とは反対の側の裏面と、の両方に、放射線を可視光に変換するシンチレータが、それぞれの面を覆うように配される。また、それぞれの画素PIXに含まれる変換素子Sは、2種類の変換素子Sを含む。図2に示す構成において、変換素子S12、S14、S21、S23、S32、S34、S41、S43は、2つのシンチレータからの光を受光するように配される。以下において、変換素子Sのうち2つのシンチレータからの光を受光するこれらの変換素子を特定する場合、第1の変換素子901と呼ぶ。また、変換素子S11、S13、S22、S24、S31、S33、S42、S44には、一方のシンチレータと当該変換素子Sのそれぞれとの間に遮光層903が配される。これによって、変換素子S11、S13、S22、S24、S31、S33、S42、S44は、一方のシンチレータからの光が遮断され、他方のシンチレータからの光を受光するように配される。これらの変換素子Sを、以下において、変換素子Sのうち片方のシンチレータからの光が遮断されるこれらの変換素子を特定する場合、第2の変換素子902と呼ぶ。遮光層903は、シンチレータで発光した光を遮る層であり、基板の入射面の側または裏面の側を覆うシンチレータの何れか一方と、第2の変換素子902との間を遮光すればよい。このとき、第2の変換素子902において、一方のシンチレータからの光が完全に遮断されなくてもよい。第1の変換素子901よりも一方のシンチレータから受光できる光の量が少なくなるように、基板の入射面の側または裏面の側を覆うシンチレータの何れか一方と、第2の変換素子902との間に遮光層903が配されればよい。
 ここでは、基板の入射面の側に配されたシンチレータと第2の変換素子902との間に遮光層903が配されるとする。基板の入射面の側から入射した放射線のうち、エネルギの低い成分は、基板の入射面の側を覆うシンチレータで吸収され、可視光に変換されて、それぞれの画素PIXに入射する。第2の変換素子902は、基板の入射面の側が遮光されているため、基板の入射面の側で発光した光が入射しない。そのため、放射線のエネルギの低い成分から変換された光は、第2の変換素子902に入射しない。一方、第1の変換素子901は、遮光層903が配されないため、放射線のエネルギの低い成分から変換された光が入射する。
 また、放射線のうち、基板の入射面の側に配されたシンチレータで吸収されなかったエネルギの高い成分は、基板の裏面の側を覆うシンチレータで吸収され、可視光に変換される。第1の変換素子901および第2の変換素子902において、基板の裏面の側は遮光されていないため、放射線のうちエネルギが高い成分から変換された光は、第1の変換素子901、第2の変換素子902の両方に入射する。
 このように、第1の変換素子901において、放射線のうちエネルギの高い成分およびエネルギの低い成分に起因する信号、第2の変換素子902において、放射線のうちエネルギの高い成分に起因する信号が、それぞれ取得できる。つまり、互いに隣接する画素PIXで、異なる放射線エネルギの情報を保持することができる。このように隣接する画素PIXで、異なるエネルギ成分の放射線から取得される情報を保持することによって、後述する方法を用いてエネルギサブトラクションを行うことができる。そして、画素アレイ112の画素PIX(及び変換素子)の列数と等しい本数の列信号線Sigを介して、第1の変換素子901及び第2の変換素子902の信号が読み出される。これにより、列信号線をいたずらに増やすことなく、簡便な構成で簡便な構成でエネルギサブトラクション画像の取得が可能な放射線撮像装置を提供することが可能となる。
 図3は、第1の変換素子901を有する画素PIXAと第2の変換素子902を有する画素PIXBおよび画素PIXCとの断面構造の一例が模式的に示される。ここでは、図面の上側から放射線を入射させるとして説明するが、図面の下側から放射線を入射させてもよい。図3Aにおいて、第1の変換素子901および第2の変換素子902が基板310と基板310の入射面の側に配されたシンチレータ904との間に配される。さらに、図3Aでは、画素PIXBにおいて、遮光層903が、第2の変換素子902とシンチレータ904との間に配される場合を示す。また、図3Bは、第1の変換素子901および第2の変換素子902が基板310と基板310の入射面の側を覆うシンチレータ904との間に配されることは図3Aと同じである。一方、図3Bの構成において、画素PIXCにおいて、遮光層903が、第2の変換素子902と基板310の入射面とは反対の裏面の側に配されたシンチレータ905との間に配される場合を示す。
 それぞれの画素PIXの変換素子Sは、シンチレータ904、905で発光した光を透過するガラス基板などの絶縁性を有する基板310の上に配される。それぞれ画素PIXは、基板310の上に、導電層311、絶縁層312、半導体層313、不純物半導体層314および導電層315を、この順番で含む。導電層311は、スイッチTを構成するトランジスタ(例えばTFT)のゲート電極を構成する。絶縁層312は、導電層311を覆うように配置され、半導体層313は、絶縁層312を介して導電層311のうちゲート電極を構成する部分の上に配されている。不純物半導体層314は、スイッチTを構成するトランジスタの2つの主端子(ソース、ドレイン)を構成するように半導体層313の上に配されている。導電層315は、スイッチTを構成するトランジスタの2つの主端子(ソース、ドレイン)にそれぞれ接続された配線パターンを構成している。導電層315の一部は、列信号線Sigを構成し、他の一部は、変換素子SとスイッチTとを接続するための配線パターンを構成する。
 それぞれの画素PIXは、さらに、絶縁層312および導電層315を覆う層間絶縁膜316を含む。層間絶縁膜316には、導電層315のうちスイッチTを構成する部分と接続するためのコンタクトプラグ317が設けられている。また、それぞれの画素PIXは、層間絶縁膜316の上に配された変換素子Sを含む。図3に示される例では、変換素子Sは、シンチレータ904、905で放射線から変換された光を電気信号に変換する間接型の変換素子として構成されている。変換素子Sは、層間絶縁膜316の上に積層された導電層318、絶縁層319、半導体層320、不純物半導体層321、導電層322、電極層325を含む。変換素子Sの上には、保護層323および接着層324が配される。シンチレータ904は、接着層324の上に、基板310の入射面の側を覆うように配される。また、シンチレータ905は、基板310の入射面とは反対の裏面の側を覆うように配される。
 導電層318は、それぞれ変換素子Sの下部電極を構成する。また、導電層322および電極層325は、それぞれの変換素子Sの上部電極を構成する。導電層318、絶縁層319、半導体層320、不純物半導体層321、および、導電層322は、変換素子SとしてMIS型センサを構成している。例えば、不純物半導体層321は、n型の不純物半導体層で形成される。
 シンチレータ904、905は、GOS(酸硫化ガドリニウム)やCsI(ヨウ化セシウム)などの材料を用いて構成されうる。これらの材料は、貼り合わせや印刷、蒸着などによって形成されうる。シンチレータ904とシンチレータ905とは、同じ材料を用いてもよいし、取得する放射線のエネルギに応じて異なる材料を用いてもよい。
 本実施形態において、変換素子Sは、MIS型のセンサを用いる例を示しているが、これに限定されることはない。変換素子Sは、例えば、pn型やPIN型のフォトダイオードであってもよい。
 次いで、第2の変換素子902に配される、シンチレータ904またはシンチレータ905から入射する光を遮断するための遮光層903の配置について説明する。図3Aに示す構成において、画素PIXBの第2の変換素子902は、基板310の入射面の側からシンチレータ904に向かって下部電極を構成する導電層318と半導体層320と上部電極を構成する導電層322とをこの順番で含む。この上部電極を構成する導電層322が、遮光層903として機能する。具体的には、導電層322をAl、Mo、Cr、Cuなど、シンチレータ904で発せられる光に対して不透明な材料で形成することによって、導電層322が遮光層903として機能する。つまり、画素PIXBの第2の変換素子902は、第1の変換素子901よりもシンチレータ904から受光できる光の量が少なくなるように、シンチレータ904と第2の変換素子902との間に遮光層903が配される。また、画素PIXBの第2の変換素子902は、画素PIXAの第1の変換素子901と同様に、シンチレータ905からの光を受光するように配される。また、図3Bにおいて、画素PIXCの第2の変換素子902は、基板310の入射面の側からシンチレータ904に向かって下部電極を構成する導電層318と半導体層320と上部電極を構成する導電層322、電極層325とをこの順番で含む。この下部電極を構成する導電層318が、遮光層903として機能する。具体的には、導電層318をAl、Mo、Cr、Cuなど、シンチレータ905で発せられる光に対して不透明な材料で形成することによって、導電層322が遮光層903として機能する。つまり、画素PIXCの第2の変換素子902は、第1の変換素子901よりもシンチレータ905から受光できる光の量が少なくなるように、シンチレータ905と第2の変換素子902との間に遮光層903が配される。また、画素PIXCの第2の変換素子902は、画素PIXAの第1の変換素子901と同様に、シンチレータ904からの光を受光するように配される。
 一方、画素PIXAの第1の変換素子901において、導電層318および電極層325には、ITO(酸化インジウムスズ)など、シンチレータ904で発せられる光に対して透明な材料が用いられる。これによって、隣接する画素PIXAと画素PIXBまたは画素PIXCとの間でエネルギ成分の異なる信号を取得することができる。
 また、本実施形態において、画素PIXBの導電層322および画素PIXCの導電層318を単層構造とする例を示したが、これに限られることはない。例えば、画素PIXBの導電層322および画素PIXCの導電層318において、透明な材料と不透明な材料とを積層させてもよく、その場合、不透明な材料の面積で遮光量が決定する。また、本実施形態において、画素PIXBの導電層322および画素PIXCの導電層318を遮光層903として機能させたが、遮光層903の配置はこれに限られることはない。例えば、画素PIXBにおいて、保護層323の中にシンチレータ904から入射する光に対し、Al、Mo、Cr、Cuなどを用いた専用の遮光層903を配してもよい。この場合、遮光層903の電位を一定の電位に固定して用いてもよい。
 また、図3Bに示す画素PIXCのように、シンチレータ905からの光を遮断する場合、シンチレータ905からの光を受光する画素PIXAのスイッチTや列信号線Sigの位置を画素PIXCの側に寄せて配してもよい。このような配置にすることによって、画素PIXAにおいて、第1の変換素子901のシンチレータ905に対する開口率を上げることができる。
 また、遮光層903は、上述のようにシンチレータ904またはシンチレータ905から第2の変換素子902への光を完全に遮光する必要はない。隣接する画素PIXAと、画素PIXBまたは画素PIXCと、の間で、遮光層903が配される側のシンチレータ904またはシンチレータ905からの受光する量が異なるようにすれば、エネルギサブトラクションは可能である。このような場合、画素PIXAの第1の変換素子901が受光する光に対して何%の光が、画素PIXBまたは画素PIXCの第2の変換素子902に入射するかを事前に調べておき、第1の変換素子901の出力を基準に差分処理をすることによって補正できる。
 図3に示されるように、基板310の入射面に対する正射影において、列信号線Sigのそれぞれが、画素PIXの一部と重なるように配される。このような構成は、それぞれの画素PIXの変換素子Sの面積を大きくする点において有利であるが、一方、列信号線Sigと変換素子Sとの間の容量結合が大きくなるという点で不利である。変換素子Sに放射線が入射し、変換素子Sに電荷が蓄積されて下部電極である導電層318の電位が変化すると、列信号線Sigと変換素子Sとの間の容量結合によって列信号線Sigの電位が変化するクロストークが発生してしまう。図4A、Bは、このクロストークへの対応方法を示している。複数の変換素子Sのうち列方向と交差する行方向に並ぶ変換素子Sにおいて、含まれる遮光層903が配される第2の変換素子902を有する画素PIXの数が、行ごとに同じになるように配置する。また、複数の変換素子Sのうち列方向に並ぶ変換素子Sにおいて、含まれる複数の第2の変換素子902を有する画素PIXの数が、列ごとに同じになるように配置する。このように配置することによって、行、列単位でのクロストークによるアーチファクトの発生が抑制できる。
 また、放射線撮像装置210が、放射線の照射開始を自動で検知する機能を有していてもよい。この場合、例えば、ゲート線VgをスイッチTがオン/オフするように動作させ、当該変換素子Sからの信号を読み出し、出力信号から放射線照射の有無を判定する。遮光層903を備える第2の変換素子902を有する画素PIXの数が行ごとに異なる場合、行ごとに出力される信号量が変わり、検知精度がばらついてしまう。そのため、図4A、Bに示されるように、複数の変換素子Sのうち列方向と交差する行方向に並ぶ変換素子Sにおいて、含まれる遮光層903が配される第2の変換素子902を有する画素PIXの数が、行ごとに同じになるように配置する。このような配置をすることによって、放射線の照射開始を自動で検知する検知精度が安定する。
 また、図4Bの画素PIXの配置例は、図4Aの画素PIXの配置例に比べて、第2の変換素子902を有する画素PIXの密度を減らしている。シンチレータ905からの光は、基板310を介して変換素子Sに入射するため、基板310の厚さによって光が拡散し、MTF(Modulation Transfer Function)が低下してしまう。このため、第2の変換素子902を有する画素PIXの密度を減らしても実質的に解像力の低下が起こらない。つまり、第2の変換素子902が、基板310を介して対向するシンチレータ905が発する光を受光する場合、第1の変換素子901を備える画素PIXの数よりも、第2の変換素子902を備える画素PIXの数の方が少なくてもよい。
 また、シンチレータ905からの基板310を介した光の拡散を抑制しMTFの低下を低減するために、機械研磨や化学研磨によって、基板310の厚さを薄くしてもよい。また、MTFの低下を低減するために、図3に示すように、シンチレータ905と基板310との間に、シンチレータで発せられた光に指向性を付与するルーバー層やマイクロレンズなどの散乱防止層326を設けてもよい。また、MTFの低下を低減するために、コンピュータ240の信号処理部241における画像処理で、鮮鋭化処理によって解像力を上げてもよい。また、シンチレータ904からの光による低エネルギ成分と、シンチレータ905からの光による高エネルギ成分とのMTFを合わせる方法として、解像力を上げる以外にも、解像力の高い方を低い方に合わせてMTFを低下させる。その後、エネルギサブトラクション処理を行ってもよい。
 次いで、図5を参照しながら放射線撮像装置210および放射線撮像システム200の動作を説明する。ここでは、図2に示される、それぞれ変換素子Sを備える4行4列の画素PIXを含む撮像パネル212を有する放射線撮像装置210の動作を例に説明する。放射線撮像システム200の動作は、コンピュータ240によって制御される。放射線撮像装置210の動作は、コンピュータ240による制御の下で、制御部214によって制御される。
 まず、放射線源230からの放射線の放射、換言すると、放射線撮像装置210への放射線の照射が開始されるまで、制御部214は、駆動回路114および読出回路113に空読みを実施させる。空読みは、駆動回路114が画素アレイ112のそれぞれの行のゲート線Vg1~Vg4に供給されるゲート信号を順にアクティブレベルに駆動し、変換素子Sに蓄積されているダーク電荷をリセットするものである。ここで、空読みの際、積分増幅器105のリセットスイッチには、アクティブレベルのリセットパルスが供給され、列信号線Sigが基準電位にリセットされる。ダーク電荷とは、変換素子Sに放射線が入射しないにも関わらず発生する電荷である。
 制御部214は、例えば、曝射制御部220からコンピュータ240を介して供給される開始通知に基づいて、放射線源230からの放射線の放射の開始を認識することができる。また、図1に示すように、放射線撮像装置210に画素アレイ112のバイアス線Bsまたは列信号線Sigなどを流れる電流を検出する検出回路216が設けられてもよい。制御部214は、検出回路216の出力に基づいて放射線源230からの放射線の照射の開始を認識することができる。
 放射線が照射されると、制御部214は、スイッチTを開かれた状態(オフ状態)に制御する。これによって、放射線の照射によって変換素子Sに発生した電荷が蓄積される。放射線の照射が終了まで、制御部214は、この状態で待機する。
 次に、制御部214は、駆動回路114および読出回路113に本読みを実行させる。本読みでは、駆動回路114が、画素アレイ112のそれぞれの行のゲート線Vg1~Vg4に供給されるゲート信号をアクティブレベルに駆動する。そして、読出回路113は、列信号線Sigを介して変換素子Sに蓄積されている電荷を読み出し、マルチプレクサ108、バッファ109およびAD変換器110を通して放射線画像データとしてコンピュータ240に出力する。
 次にオフセット画像データの取得について説明する。変換素子Sは、放射線を照射しない状態においても、ダーク電荷が溜まり続ける。このため、制御部214は、放射線を照射せずに放射線画像データを取得する際と同様の動作を行うことによって、オフセット画像データを取得する。放射線画像データからオフセット画像データを引き算することで、ダーク電荷によるオフセット成分が除去できる。
 次に、図6を用いて動画を撮像するための駆動について説明する。動画を撮像する場合、高速に読み出すため、同時に複数のゲート線Vgをアクティブレベルに駆動する。このとき、第1の変換素子901を備える画素PIXと第2の変換素子902を有する画素PIXとの信号を1つの列信号配線Sigに出力してしまうと、エネルギ成分を分離できなくなってしまう。そのため、図6に示すように、ゲート線Vg1とゲート線Vg3とに供給されるゲート信号を同時にアクティブレベルにすることによって、第1の変換素子901である変換素子S12と変換素子S32との信号が列信号線Sig2に出力される。これにより、変換素子S12と変換素子S32の信号が列信号線Sig2で加算(平均)される。同時に、第2の変換素子902である変換素子S11と変換素子S31との信号が列信号線Sig1へ出力される。これにより、変換素子S11と変換素子S31の信号が列信号線Sig1で加算(平均)される。第1の変換素子901と第2の変換素子902との信号を、それぞれ異なる列信号線Sigに出力することによって、エネルギサブトラクション処理ができる。
 ここで、図6に示した駆動方法の場合、ゲート線Vg1とゲート線Vg3を同時にアクティブレベルにして読み出し、1行分空けているため、空間的な解像度が低下してしまう。そこで、図9に示すように、第2の変換素子902である変換素子S11、S22、S31、S42、S51、S62、S71、S82は、加算対象の第2変換素子同士を2行2列の対角に並ぶように配置する。そして、スイッチT11、T22、T31、T42、T51、T62、T71、T82は、列信号線Sig1に対して千鳥に接続を行う。このような構成に対して、図10のタイミングチャートに示すように、ゲート線Vg1とゲート線Vg2のように隣接したゲート線を同時に(同じ期間に)アクティブレベルにする。それにより、第2の変換素子902である変換素子S11と変換素子S22の信号が、列信号線Sig1で加算(平均)することが可能となる。
 なお、このような構成は、第1の変換素子901と第2の変換素子902との比率が1対1、すなわち、第1の変換素子901の配置密度が50%の場合に限定されるものではない。例えば図11に示すように、第1の変換素子901と第2の変換素子902との比率が2対1、すなわち、第1の変換素子901の配置密度が第2の変換素子902の配置密度よりも高い場合であっても可能である。このような場合であっても、隣接した行の第2の変換素子902を、同一の列信号線Sigに接続することにより、動画撮影時に解像度の低下を抑制しつつ加算により高速に読み出しできる。
 また、図12のように、列方向に加算対象の第2の変換素子902を連続して配置し、隣り合う行の第2の変換素子902の信号を同一の列信号線Sigに読み出すことにより、加算(平均)することは可能である。ただし、加算(平均)により動画撮影時の読み出し速度は速く、動画撮影時の解像度は問題ないが、静止画撮影時の第2の変換素子902の一つ一つから別々に信号を読み出す場合に、解像度が行方向と列方向で異なることとなる。
 また、図13のように配置することも可能である。図13では、第2の変換素子902である変換素子S11、S22、S31、S42、S51、S62、S71、S82は、加算対象の第2変換素子同士を2行2列の対角に並ぶように配置する。そして、スイッチT11、T22、T31、T42、T51、T62、T71、T82は、列信号線Sig2に対して千鳥に接続を行う。一方、第1の変換素子901である変換素子S12、S21、S32、S41、S52、S61、S72、S81は、加算対象の第2変換素子同士を2行2列の対角に並ぶように配置する。そして、スイッチT11、T22、T31、T42、T51、T62、T71、T82は、列信号線Sig1に対して千鳥に接続を行う。そして、列信号線Sig1と列信号線Sig2とを、1列目の変換素子と2列目の変換素子の間に配置する。図9の構成の場合、ゲート線Vg1とゲート線Vg2を同時にアクティブレベルにすると、スイッチT13とスイッチT24がONし、変換素子S13とS24の信号が加算されることになる。また、同時にスイッチT12とT23がONし、変換素子S12とS23の信号が加算される。このように信号が加算されると、画素重心が変換素子S13とS24のペアと変換素子S12とS23のペアでずれてしまう。重心がずれた画像で、エネルギサブトラクションを行うと、解像度の低下やアーチファクトが発生する場合がある。図13の場合、変換素子S11とS22の信号が加算され、変換素子S12とS21の信号が加算されるため、画素重心が一致するため、解像度の低下やアーチファクトの発生を抑えることができる。
 次に、本実施形態における画像処理フローについて、図7を用いて説明する。まず、ステップS910において、制御部214は、上述の空読みを行った後、放射線画像データを取得するために、放射線の照射中に変換素子Sで生成される電荷を蓄積するように制御する。次いで、制御部214は、ステップS911において、駆動回路114および読出回路113に本読みを実行させ、放射線画像データを読み出す。このステップS911で、放射線画像データがコンピュータ240に出力される。次いで、制御部214は、ステップS912においてオフセット画像データを取得するための蓄積動作を行い、ステップS913において、オフセット画像データを駆動回路114および読出回路113に読み出させ、コンピュータ240に出力させる。
 次いで、コンピュータ240の信号処理部241は、ステップS911で取得した放射線画像データを、ステップS913で取得したオフセット画像データで引き算することによってオフセット補正を行う。信号処理部241は、次に、ステップS915において、オフセット補正後の放射線画像データを、第1の変換素子901から出力される放射線画像データと、第2の変換素子902から出力される放射線画像データに分離する。ここでは、第2の変換素子902は、図3Aの構成において、図中の上から放射線が入射し、シンチレータ904からの光が遮光され、シンチレータ905からの高エネルギの放射線によって生じる光を受光するものとして説明する。また、第1の変換素子901から出力された放射線画像データを両面画像データ、第2の変換素子902から出力された放射線画像データを片面画像データとそれぞれ表記する。
 信号処理部241は、次いで、ステップS916において、被写体が無い状態で撮影したゲイン補正用画像データを用いて、両面画像データのゲイン補正を行う。また、信号処理部241は、ステップS917において、ゲイン補正用画像データを用いて、両面画像データのゲイン補正を行う。
 ゲイン補正を行った後、信号処理部241は、ステップS918において、第1の変換素子901を含まない画素PIX、換言すると第2の変換素子902を有する画素PIXの両面画像データの欠落を補うための画素補間を行う。同様に信号処理部241は、ステップS919において、第2の変換素子902を含まない画素PIX、換言すると第1の変換素子901を有する画素PIXの片面画像データの欠落を補うための画素補間を行う。このステップS918、S919での画素補間について、図8を用いて説明する。ここでは、図4Bに示される、第1の変換素子901を備える画素PIXの方が、第2の変換素子902を備える画素PIXよりも多い場合の配置を例に説明する。
 まず、図8Aを用いて、両面画像データの画素補間について説明する。片面画像データを出力する第2の変換素子902を有する画素Eの両面画像データは、画素Eに隣接する両面画像データを出力する第1の変換素子901を有する画素A、B、C、D、F、G、H、Iの両面画像データを用いて補間する。例えば、信号処理部241は、画素Eに隣接する8画素の両面画像データの平均値を用いて、画素Eの両面画像データを補間してもよい。また例えば、信号処理部241は、画素B、D、F、Hのように、隣接する一部の画素の両面画像データの平均値を用いて、画素Eの両面画像データを補間してもよい。ステップS918において、画素補間を行うことによって、それぞれの画素PIXの放射線の高エネルギ成分および低エネルギ成分によって生成された放射線画像データが生成される。
 次に、図8Bを用いて、片面画像データの画素補間について説明する。両面画像データを出力する第1の変換素子901を有する画素Jの片面画像データは、画素Jに隣接する片面画像データを出力する第2の変換素子902を有する画素K、L、M、Nの片面画像データを用いて補間する。例えば、信号処理部241は、画素Jに隣接する4画素の片面画像データの平均値を用いて、画素Jの片面画像データを補間してもよい。この場合、例えば、画素Jの配される位置から画素Kまでの距離と画素Nまでの距離とは異なる。そのため、距離に応じて、それぞれ画素K、L、M、Nから出力される片面画像データに対して重みづけをして平均化してもよい。ステップS919において、画素補間を行うことによって、それぞれの画素PIXの放射線の高エネルギ成分によって生成された放射線画像データが生成される。
 次いで、信号処理部241は、ステップS920において、放射線の低エネルギ成分による放射線画像データを生成する。上述のように、第2の変換素子902の放射線が入射する側に遮光層903を設けた場合、片面画像データは、高エネルギ成分による放射線画像データとなる。また、両面画像データは、高エネルギと低エネルギの両方の成分を有する放射線画像データとなる。このため、画素補間された両面画像データから画素保管された片面画像データを引き算することによって、低エネルギ成分の放射線画像データを生成することができる。
 また、第2の変換素子902の放射線が入射する側と反対側に遮光層903を設けた場合、片面画像データは、低エネルギ成分による放射線画像データとなる。このため、画素補間された両面画像データから画素保管された片面画像データを引き算することによって、高エネルギ成分の放射線画像データを生成することができる。しかしながら、高エネルギ成分による放射線画像は、放射線の入射する側のシンチレータ904で吸収しきれなかった放射線の成分のため、シンチレータ905からの光量は、シンチレータ904からの光量よりも少ない。そのため、両面画像データから片面画像データを減算して、高エネルギ成分の放射線画像データを生成すると、低エネルギ成分の放射線画像データのノイズが、高エネルギ成分の放射線画像データに乗ってしまう。結果として、高エネルギ成分の放射線画像データのS/N比が低くなってしまう。このため、上述の本実施形態に示すように、第2の変換素子902の放射線が入射する側を遮光し、両面画像データを高エネルギ成分+低エネルギ成分、片面画像データを高エネルギ成分の画像データとする。そして、両面画像データから片面画像データを減算し、低エネルギ画像を生成する方が、S/N比が向上しうる。
 信号処理部241は、ステップS922において、エネルギサブトラクション画像の生成を行う。具体的には、信号処理部241は、ステップS920で取得した第1の変換素子901のそれぞれから出力される信号と第2の変換素子902のそれぞれから出力される信号との差分と、第2の変換素子902のそれぞれから出力される信号と、の差分をとる。これによって、高エネルギ成分の放射線画像データと低エネルギ成分の放射線画像データとの差分であるエネルギサブトラクション画像が生成される。
 また、信号処理部241は、ステップS918において第1の変換素子901からそれぞれ出力された両面画像データに基づいて、ステップS920においてエネルギサブトラクションをしない通常の放射線画像を生成してもよい。第1の変換素子901は、放射線の入射する側のシンチレータ904からの光と、放射線が入射する側と反対側のシンチレータ905からの光とを受光する。これによって、一方のシンチレータで発光する光のみを受光する場合よりも、通常の放射線画像において、高いS/N比を得ることができる。
 ここで、特開2010-56396号公報に示される、放射線画像の1つの画素データを生成するために、放射線の入射する側のシンチレータの光のみを受光する変換素子と反対側のシンチレータの光のみを受光する変換素子との2つの変換素子を配する放射線撮像装置を考える。この2つの変換素子から出力される2つの信号の差分をとりエネルギサブトラクション画像を生成し、また、2つの信号を加算することによって通常の放射線画像を生成することができる。しかしながら、1つの画素データを生成するために、2つの変換素子が必要となることによって、構造が複雑になり、製造コストが上昇してしまう可能性がある。また、1つ1つの変換素子の大きさが小さくなり、得られる信号のS/N比が低下してしまう可能性がある。また、通常の放射線画像を生成する際、2つの信号を加算する際、それぞれの信号に重畳するノイズも加算されてしまうため、S/N比が低くなる可能性がある。一方、本実施形態において、複数の画素PIXのうち、第2の変換素子902を備える一部の画素PIXにのみ、シンチレータ904またはシンチレータ905からの光を遮断するための遮光層903が配される。つまり、一部の画素PIXに遮光層903を追加するだけでよいため、構造が複雑にならず、製造コストを抑制しつつ、エネルギサブトラクション画像を取得できる放射線撮像装置が実現できる。また、第1の変換素子901は、シンチレータ904およびシンチレータ905から発せられる光を受光するため、入射する放射線に対する感度が向上し、結果として、得られる放射線画像の画質が向上しうる。さらに、通常の放射線画像を生成する際においても、2つのシンチレータ904、905で発光した光を受光することで生成される信号から放射線画像が生成される。このため、特開2010-56396号公報のような構造と比較して、通常の放射線画像を撮影した際のS/N比が向上する。
 また、本実施形態において、1つの撮像パネル212を用いて、被写体に対して1回の放射線照射(ワンショット法)で2つの異なるエネルギ成分の放射線の放射線画像を記録することができる。このため、2つの撮像パネルを用いてエネルギサブトラクション画像を生成する放射線撮像装置と比較して、放射線撮像装置の部品点数が少なくなり製造コストが低減できる。また、放射線撮像装置210の重量を削減することが可能となるため、可搬型のユーザにとって使い勝手のよい放射線撮像装置が実現できる。また、1つの撮像パネルでエネルギサブトラクション画像を生成するため、2つの撮像パネル間での変換素子同士の位置ずれの問題が発生しない放射線撮像装置が実現できる。さらに、エネルギサブトラクション画像だけでなく、通常の放射線画像を生成において、高いS/N比の放射線画像の生成が可能な放射線撮像装置が実現できる。
 以上、本発明に係る実施形態を示したが、本発明はこれらの実施形態に限定されないことはいうまでもなく、本発明の要旨を逸脱しない範囲で、上述した実施形態は適宜変更、組み合わせが可能である。
 本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために以下の請求項を添付する。
 本願は、2017年11月10日提出の日本国特許出願特願2017-217014を基礎として優先権を主張するものであり、その記載内容の全てをここに援用する。

Claims (18)

  1.  複数行及び複数列に配された複数の変換素子が光を透過する基板に配された画素アレイと、前記複数の変換素子で生成された信号を出力するための列方向に沿った複数の信号線と、前記基板の第1の面の側に配された第1のシンチレータと、前記基板のうち前記第1の面とは反対の第2の面の側に配された第2のシンチレータと、を含む放射線撮像装置であって、
     前記複数の変換素子は、複数の第1の変換素子と複数の第2の変換素子とを含み、
     前記複数の第2の変換素子は、前記第1の変換素子よりも前記第1のシンチレータから受光できる光の量が少なくなるように、前記第1のシンチレータと前記複数の第2の変換素子のそれぞれとの間に遮光層が配され、
     前記複数の変換素子の列数と前記複数の信号線の本数が等しいことを特徴とする放射線撮像装置。
  2.  前記複数の第2の変換素子のうちある第2の変換素子と隣り合う行の第2の変換素子は、前記複数の信号線のうち前記ある第2の変換素子が接続される信号線に接続されることを特徴とする請求項1に記載の放射線撮像装置。
  3.  前記画素アレイを駆動する駆動回路を更に含み、
     前記駆動回路は、前記ある第2の変換素子からの信号と前記隣り合う行の第2の変換素子からの信号とを前記信号線に同じ期間に出力するように、前記画素アレイを駆動することを特徴とする請求項2に記載の放射線撮像装置。
  4.  前記複数の第1の変換素子は、前記第1のシンチレータおよび前記第2のシンチレータからの光を受光するように配され、
     前記複数の第2の変換素子は、前記第2のシンチレータからの光を受光するように配され、
     前記複数の変換素子は、前記第1の面と前記第1のシンチレータとの間に配されることを特徴とする請求項1乃至3の何れか1項に記載の放射線撮像装置。
  5.  前記複数の変換素子は、前記第1の面の側から前記第1のシンチレータに向かって第1の電極と半導体層と第2の電極とをこの順番で含み、
     前記複数の第2の変換素子において、前記第2の電極が前記遮光層として機能することを特徴とする請求項4に記載の放射線撮像装置。
  6.  前記第2のシンチレータと前記第2の面との間に散乱防止層が配されることを特徴とする請求項4または5に記載の放射線撮像装置。
  7.  前記複数の変換素子は、前記第2の面と前記第2のシンチレータとの間に配されることを特徴とする請求項1に記載の放射線撮像装置。
  8.  前記複数の変換素子は、前記第2の面の側から前記第2のシンチレータに向かって第1の電極と半導体層と第2の電極とをこの順番で含み、
     前記複数の第2の変換素子において、前記第1の電極が前記遮光層として機能することを特徴とする請求項7に記載の放射線撮像装置。
  9.  前記第1の面の側から放射線を入射させることを特徴とする請求項1乃至8の何れか1項に記載の放射線撮像装置。
  10.  前記第2の面の側から放射線を入射させることを特徴とする請求項1乃至8の何れか1項に記載の放射線撮像装置。
  11.  前記複数の変換素子のうち前記列方向と交差する行方向に並ぶ変換素子において、含まれる前記複数の第2の変換素子の数が、行ごとに同じことを特徴とする請求項1乃至10の何れか1項に記載の放射線撮像装置。
  12.  前記複数の変換素子のうち前記列方向に並ぶ変換素子において、含まれる前記複数の第2の変換素子の数が、列ごとに同じことを特徴とする請求項11に記載の放射線撮像装置。
  13.  前記複数の変換素子のうち前記列方向に並ぶ変換素子において、含まれる前記複数の第2の変換素子の数が、列ごとに同じことを特徴とする請求項1乃至10の何れか1項に記載の放射線撮像装置。
  14.  前記複数の第1の変換素子の数よりも前記複数の第2の変換素子の数の方が少ないことを特徴とする請求項1乃至13の何れか1項に記載の放射線撮像装置。
  15.  請求項1乃至14の何れか1項に記載の放射線撮像装置と、
     前記放射線撮像装置からの信号を処理する信号処理部と、を備えることを特徴とする放射線撮像システム。
  16.  前記信号処理部は、前記複数の第1の変換素子のそれぞれから出力される信号と前記複数の第2の変換素子のそれぞれから出力される信号とに基づいて、エネルギサブトラクション画像を生成することを特徴とする請求項15に記載の放射線撮像システム。
  17.  前記信号処理部は、前記複数の第1の変換素子のそれぞれから出力される信号と前記複数の第2の変換素子のそれぞれから出力される信号との差分と、前記第2の変換素子のそれぞれから出力される信号と、の差分に基づいてエネルギサブトラクション画像を生成することを特徴とする請求項15または16に記載の放射線撮像システム。
  18.  前記信号処理部は、前記複数の第1の変換素子のそれぞれから出力される信号に基づいて、通常の放射線画像を生成することを特徴とする請求項15に記載の放射線撮像システム。
PCT/JP2018/040045 2017-11-10 2018-10-29 放射線撮像装置および放射線撮像システム WO2019093168A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880072085.0A CN111316133B (zh) 2017-11-10 2018-10-29 放射线图像捕获装置和放射线图像捕获系统
US16/867,401 US11243313B2 (en) 2017-11-10 2020-05-05 Radiation image capturing apparatus and radiation image capturing system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017217014A JP6991835B2 (ja) 2017-11-10 2017-11-10 放射線撮像装置および放射線撮像システム
JP2017-217014 2017-11-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/867,401 Continuation US11243313B2 (en) 2017-11-10 2020-05-05 Radiation image capturing apparatus and radiation image capturing system

Publications (1)

Publication Number Publication Date
WO2019093168A1 true WO2019093168A1 (ja) 2019-05-16

Family

ID=66438414

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/040045 WO2019093168A1 (ja) 2017-11-10 2018-10-29 放射線撮像装置および放射線撮像システム

Country Status (4)

Country Link
US (1) US11243313B2 (ja)
JP (1) JP6991835B2 (ja)
CN (1) CN111316133B (ja)
WO (1) WO2019093168A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020241062A1 (ja) * 2019-05-29 2020-12-03 キヤノン株式会社 放射線撮像装置および放射線撮像システム

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7319809B2 (ja) * 2019-03-29 2023-08-02 キヤノン株式会社 放射線撮像装置、その制御方法及び放射線撮像システム
JP7196020B2 (ja) * 2019-06-14 2022-12-26 キヤノン株式会社 放射線検出装置及び放射線撮影システム
EP3835829A1 (en) * 2019-12-09 2021-06-16 Koninklijke Philips N.V. X-ray detector
FR3119708B1 (fr) * 2021-02-11 2023-08-25 Trixell Détecteur numérique à étages de conversion superposés

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07120557A (ja) * 1993-10-27 1995-05-12 Fuji Photo Film Co Ltd 放射線検出器
JP2008516692A (ja) * 2004-10-14 2008-05-22 エクリン メディカル システムズ, インコーポレイテッド 単一露光のエネルギーセンサー性x線画像に関するパターニングされたマスクを有する多色デジタルラジオグラフィー検出器
JP2012026932A (ja) * 2010-07-26 2012-02-09 Fujifilm Corp 放射線検出器
JP2012112928A (ja) * 2010-05-31 2012-06-14 Fujifilm Corp 放射線撮影装置
JP2012233781A (ja) * 2011-04-28 2012-11-29 Fujifilm Corp 放射線画像検出装置、及び放射線撮影装置
JP2016156719A (ja) * 2015-02-25 2016-09-01 東芝電子管デバイス株式会社 放射線検出器
WO2017013153A1 (en) * 2015-07-21 2017-01-26 Koninklijke Philips N.V. X-ray detector for phase contrast and/or dark-field imaging

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004279408A (ja) * 2003-02-28 2004-10-07 Fuji Photo Film Co Ltd 放射線画像形成用ユニット及びカセッテ
US7569832B2 (en) * 2006-07-14 2009-08-04 Carestream Health, Inc. Dual-screen digital radiographic imaging detector array
JP2009141439A (ja) * 2007-12-03 2009-06-25 Canon Inc 放射線撮像装置、その駆動方法及びプログラム
JP2010056396A (ja) 2008-08-29 2010-03-11 Fujifilm Corp X線検出素子
EP2372397A2 (en) * 2010-03-29 2011-10-05 Fujifilm Corporation Radiographic image capturing apparatus and radiographic image capturing system
US8729478B2 (en) * 2010-06-09 2014-05-20 Carestream Health, Inc. Dual screen radiographic detector with improved spatial sampling
JP2013044725A (ja) * 2011-08-26 2013-03-04 Fujifilm Corp 放射線検出器および放射線画像撮影装置
JP6214353B2 (ja) * 2013-11-20 2017-10-18 キヤノン株式会社 放射線撮像装置及び放射線撮像システム
US11156727B2 (en) * 2015-10-02 2021-10-26 Varian Medical Systems, Inc. High DQE imaging device
JP6706963B2 (ja) * 2016-04-18 2020-06-10 キヤノン株式会社 放射線撮像装置、放射線撮像システム、及び、放射線撮像装置の制御方法
CN106296613B (zh) * 2016-08-15 2019-04-23 南京普爱医疗设备股份有限公司 一种基于dr机器的双能量减影方法
JP2020503518A (ja) * 2017-01-02 2020-01-30 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. X線検知器及びx線撮像装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07120557A (ja) * 1993-10-27 1995-05-12 Fuji Photo Film Co Ltd 放射線検出器
JP2008516692A (ja) * 2004-10-14 2008-05-22 エクリン メディカル システムズ, インコーポレイテッド 単一露光のエネルギーセンサー性x線画像に関するパターニングされたマスクを有する多色デジタルラジオグラフィー検出器
JP2012112928A (ja) * 2010-05-31 2012-06-14 Fujifilm Corp 放射線撮影装置
JP2012026932A (ja) * 2010-07-26 2012-02-09 Fujifilm Corp 放射線検出器
JP2012233781A (ja) * 2011-04-28 2012-11-29 Fujifilm Corp 放射線画像検出装置、及び放射線撮影装置
JP2016156719A (ja) * 2015-02-25 2016-09-01 東芝電子管デバイス株式会社 放射線検出器
WO2017013153A1 (en) * 2015-07-21 2017-01-26 Koninklijke Philips N.V. X-ray detector for phase contrast and/or dark-field imaging

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020241062A1 (ja) * 2019-05-29 2020-12-03 キヤノン株式会社 放射線撮像装置および放射線撮像システム
JP2020193914A (ja) * 2019-05-29 2020-12-03 キヤノン株式会社 放射線撮像装置および放射線撮像システム
JP7157699B2 (ja) 2019-05-29 2022-10-20 キヤノン株式会社 放射線撮像装置、放射線撮像システム、放射線撮像装置の制御方法および当該方法を実行させるプログラム
US11693131B2 (en) 2019-05-29 2023-07-04 Canon Kabushiki Kaisha Radiation imaging apparatus and radiation imaging system

Also Published As

Publication number Publication date
JP6991835B2 (ja) 2022-01-13
US11243313B2 (en) 2022-02-08
US20200264319A1 (en) 2020-08-20
CN111316133B (zh) 2023-08-01
JP2019086482A (ja) 2019-06-06
CN111316133A (zh) 2020-06-19

Similar Documents

Publication Publication Date Title
CN110869809B (zh) 放射线成像装置和放射线成像系统
WO2019093168A1 (ja) 放射線撮像装置および放射線撮像システム
JP7067912B2 (ja) 放射線撮像装置および放射線撮像システム
JP6570315B2 (ja) 放射線撮像装置及び放射線撮像システム
JP7157699B2 (ja) 放射線撮像装置、放射線撮像システム、放射線撮像装置の制御方法および当該方法を実行させるプログラム
WO2017183264A1 (ja) 放射線撮像装置、放射線撮像システム、及び、放射線撮像装置の制御方法
US20130335610A1 (en) Image pickup unit and image pickup display system
WO2018135293A1 (ja) 放射線撮像装置及び放射線撮像システム
US10854663B2 (en) Radiation imaging apparatus and radiation imaging system
JP5941659B2 (ja) 固体撮像装置
JP6719324B2 (ja) 放射線撮像装置及び放射線撮像システム
JP6934763B2 (ja) 放射線撮像装置および放射線撮像システム
JP2019074368A (ja) 放射線撮像装置および放射線撮像システム
JP2019153692A (ja) 放射線撮像装置および放射線撮像システム
WO2020144972A1 (ja) 画像処理装置、画像処理方法およびプログラム
WO2019150731A1 (ja) 画像処理装置、画像処理方法及びプログラム
JP2018195949A (ja) 放射線撮像装置及び放射線撮像システム
JP7398931B2 (ja) 放射線撮像装置および放射線撮像システム
JP2021049204A (ja) 放射線撮像装置及び放射線撮像システム
JP2022087546A (ja) 放射線撮像システム
JP2024085815A (ja) 放射線検出器、放射線検出器の駆動方法、および放射線撮像システム
CN116019468A (zh) 放射线摄像系统、放射线摄像装置及控制方法、存储介质
JP2020005272A (ja) 放射線撮像装置及び放射線撮像システム
JP2012023743A (ja) 撮像装置及び放射線撮像システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18876525

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18876525

Country of ref document: EP

Kind code of ref document: A1