CN116019468A - 放射线摄像系统、放射线摄像装置及控制方法、存储介质 - Google Patents

放射线摄像系统、放射线摄像装置及控制方法、存储介质 Download PDF

Info

Publication number
CN116019468A
CN116019468A CN202211269482.1A CN202211269482A CN116019468A CN 116019468 A CN116019468 A CN 116019468A CN 202211269482 A CN202211269482 A CN 202211269482A CN 116019468 A CN116019468 A CN 116019468A
Authority
CN
China
Prior art keywords
conversion element
conversion
switching element
signal
switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211269482.1A
Other languages
English (en)
Inventor
竹中克郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Publication of CN116019468A publication Critical patent/CN116019468A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2018Scintillation-photodiode combinations
    • G01T1/20184Detector read-out circuitry, e.g. for clearing of traps, compensating for traps or compensating for direct hits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/17Circuit arrangements not adapted to a particular type of detector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • H01L27/14605Structural or functional details relating to the position of the pixel elements, e.g. smaller pixel elements in the center of the imager compared to pixel elements at the periphery

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Radiation (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

本公开涉及放射线摄像系统、放射线摄像装置及控制方法、存储介质。多个转换元件被布置成二维矩阵并且每一个转换元件被配置为将放射线转换成电信号。多个开关元件被配置为接通/断开信号从转换元件的读出。信号线沿列方向延伸并且被配置为用于从所述转换元件读取信号。驱动线沿行方向延伸并且连接到所述开关元件。驱动电路被配置为提供用于接通/断开开关元件的信号。驱动线在相邻行之间共享。所述驱动电路在分别读出来自所述多个转换元件的信号的情况与将来自所述多个转换元件的两个或多个转换元件的信号相加并读出的情况之间切换扫描方向。

Description

放射线摄像系统、放射线摄像装置及控制方法、存储介质
技术领域
本公开涉及一种放射线摄像装置、放射线摄像系统、控制放射线摄像装置的方法和存储介质。
背景技术
放射线摄像装置被配置为电拍摄由放射线形成的光学图像,并且包括配设在像素阵列的外围区域中的外围电路。外围电路包括用于驱动像素阵列的驱动电路和用于从像素阵列读出电信号的读出电路。日本专利特开No.2018-101909公开了一种放射线摄像装置,所述放射线摄像装置被配置为通过改变转换元件和开关元件的连接而经由一条信号线从两列转换元件读出信号。这简化了读出电路的配置。
放射线摄像装置具有以下能力,即,通过在逐像素地读出来自转换元件的信号的模式与针对多个像素一并读出来自转换元件的信号的模式(下文中也将该模式称为像素相加等)之间切换读取模式,来根据需要改变读出图像的分辨率的能力。像素相加不仅允许改变读出图像的分辨率,还允许改变读取速度(帧速率)、图像的信噪(S/N)比、数据大小等,因此像素相加是放射线摄像装置的必要能力。
然而,当日本专利特开No.2018-101909中公开的放射线摄像设装置对2行×2列的像素进行像素相加时,来自除2行×2列的像素之外的像素的信号被读出,因此未实现准确的像素相加。
发明内容
本公开提供一种在减少像素阵列与外围电路之间的触点数量的同时进行准确的像素相加的技术。一方面,本公开提供一种放射线摄像装置,所述放射线摄像装置包括:多个转换元件、信号线、多个开关元件、多条驱动线和驱动电路,所述多个转换元件被布置成二维矩阵并且每一个转换元件被配置为将放射线转换成电信号。所述多个转换元件包括第一转换元件、沿行方向与所述第一转换元件相邻的第二转换元件、沿列方向与所述第一转换元件相邻的第三转换元件、沿所述列方向与所述第二转换元件相邻且沿所述行方向与所述第三转换元件相邻的第四转换元件。所述信号线用于读取由所述多个转换元件获得的电信号。所述信号线连接到所述第二转换元件和所述第四转换元件,经由所述第二转换元件连接到所述第一转换元件,并且经由所述第四转换元件连接到所述第三转换元件。所述多个开关元件包括连接在所述第一转换元件与所述第二转换元件之间的第一开关元件、连接在所述第二转换元件与所述信号线之间的第二开关元件、连接在所述第三转换元件与所述第四转换元件之间的第三开关元件、连接在所述第四转换元件与所述信号线之间的第四开关元件。所述多条驱动线包括连接到所述第一开关元件的控制端子的第一驱动线、连接到所述第二开关元件的控制端子和所述第三开关元件的控制端子的第二驱动线以及连接到所述第四开关元件的控制端子的第三驱动线。所述驱动电路被配置为向所述多条驱动线中的每一者提供用于接通开关元件的接通信号或用于断开开关元件的断开信号。所述驱动电路通过同时向所述第一驱动线和所述第二驱动线提供所述接通信号而分别从所述第一转换元件和所述第二转换元件读出信号,然后通过同时向所述第二驱动线和所述第三驱动线提供所述接通信号而分别从所述第三转换元件和所述第四转换元件读出信号。
通过以下参照附图对示例性实施例的描述,本公开的其他特征将变得显而易见。
附图说明
图1是图示根据第一实施例的放射线摄像系统的配置示例的图。
图2是图示根据第一实施例的放射线摄像装置的配置示例的图。
图3是图示根据第一实施例的像素的剖面结构示例的图。
图4是图示根据第一实施例的放射线摄像系统的操作示例的图。
图5是图示根据第一实施例的驱动电路的配置示例的图。
图6是图示根据第一实施例的驱动电路的操作示例的图。
图7是图示根据第一实施例的放射线摄像系统的操作示例的图。
图8是图示根据第二实施例的放射线摄像装置的配置示例的图。
图9是图示根据第三实施例的放射线摄像装置的配置示例的图。
图10是图示根据第三实施例的放射线摄像系统的操作示例的图。
图11是图示根据第四实施例的放射线摄像装置的配置示例的图。
图12是图示根据第四实施例的放射线摄像系统的操作示例的图。
图13是图示根据第五实施例的放射线摄像装置的配置示例的图。
图14是图示根据第五实施例的放射线摄像系统的操作示例的图。
具体实施方式
下面将参照附图对实施例进行详细描述。应注意,以下实施例并不限制本公开的范围。虽然在实施例中描述了多个特征,但并非所有这些特征对于本公开而言都是必需的,并且可以对这些特征进行任意组合。在附图中,相同或相似的部件由相似的附图标记表示,并且将省略其冗余描述。在下文中,术语“单元”可以指软件环境、硬件环境或软件和硬件环境的组合。在软件环境中,术语“单元”是指可由可编程处理器(例如,微处理器、中央处理单元(CPU)或专门设计的可编程设备或控制器)执行的功能、应用程序、软件模块、函数、例程、指令集或程序。存储器包含指令或程序,当被CPU执行时,这些指令或程序能使CPU执行与单元或功能对应的操作。在硬件环境中,术语“单元”是指硬件元件、电路、组件、物理结构、系统、模块或子系统。它可以包括机械、光学或电气部件,或这些的任意组合。它可以包括有源(例如晶体管)或无源(例如电容器)组件。它可以包括具有衬底的半导体器件和具有不同电导率浓度的其他材料层。它可以包括能执行存储在存储器中的程序从而执行指定的功能的CPU或可编程处理器。它可以包括由晶体管电路或任何其他开关电路实现的逻辑元件(例如,AND、OR)。在软件和硬件环境的组合中,术语“单元”或“电路”是指上述软件和硬件环境的任意组合。此外,术语“元件”、“组件”、“部件”或“装置”也可指与包装材料集成或不集成的“电路”。
第一实施例
图1示出了根据本公开第一实施例的放射线摄像系统100的配置示例。放射线摄像系统100被配置为电拍摄由放射线形成的光学图像并获得电放射线图像。放射线通常是X射线,但放射线也可以是α-射线、β-射线、γ-射线等。放射线摄像系统100例如包括放射线摄像装置110、计算机120、曝光控制装置130和放射线源140。
放射线源140是根据来自曝光控制装置130的曝光命令(放射线命令)开始放射线照射的设备或电路。从放射线源140发射的放射线穿过被摄体150并且入射在放射线摄像装置110上。放射线源140根据来自曝光控制装置130的停止命令停止发射放射线。
放射线摄像装置110包括放射线检测面板111和控制电路112。放射线检测面板111根据入射在放射线摄像装置110上的放射线生成放射线图像数据并且将生成的放射线图像数据传输到计算机120。这里,放射线图像数据是指表示放射线图像的数据。
控制电路112控制放射线检测面板111的操作。例如,基于从放射线检测面板111提供的信号,控制电路112生成用于停止从放射线源140发射放射线的停止信号。停止信号被提供给曝光控制装置130。响应于停止信号,曝光控制装置130向放射线源140发送停止命令。
控制电路112例如使用诸如FPGA(现场可编程门阵列)等的PLD(可编程逻辑器件)来实现。另一选择是,控制电路112可以使用诸如ASIC(专用集成电路)等的专用电路来实现。
控制电路112可以由诸如处理器等的通用处理电路和诸如存储器等的存储电路的组合配置。在这种情况下,控制电路112的功能可以通过通用处理电路执行存储在存储电路中的程序来实现。
计算机120包括:控制单元,被配置为控制放射线摄像装置110和曝光控制装置130;接收单元或电路,被配置为从放射线摄像装置110接收放射线图像数据;以及信号处理单元或电路,被配置为处理由放射线摄像装置110获得的信号(放射线图像数据)。
与控制电路112一样,控制单元、接收单元和信号处理单元均可以由专用电路或由通用处理电路和存储器电路的组合来配置。
在一个示例中,曝光控制装置130具有曝光开关。当用户接通曝光开关时,曝光控制装置130向放射线源140发送曝光命令并且向计算机120发送放射线照射开始通知。当接收到放射线照射开始信号时,计算机120通知放射线摄像装置110的控制电路112已经开始放射线照射。
图2示出了放射线检测面板111的配置示例。放射线检测面板111包括例如像素阵列200、驱动电路210、读出电路220、缓冲电路230、AD转换器240和扫描方向切换单元400。驱动电路210和读出电路220充当像素阵列200的外围电路。
像素阵列200包括例如布置成二维矩阵的多个像素201、沿行方向延伸的多条驱动线Vgl至Vg5、沿列方向延伸的多条信号线Sigl至Sig2以及偏置线Bs。
在图2中,为了便于说明,像素阵列或电路200包括布置成4行×4列的像素或像素电路201。然而,在实践中,像素阵列200可以包括更多数量的像素201。在一个示例中,放射线检测面板111具有17英寸的尺寸并且包括布置成大约3000行和大约3000列的像素201。每个像素201包括转换元件或电路和开关元件或电路。
像素阵列200包括多个转换元件或电路C11至C44和多个开关元件或电路S11至S44。在以下描述中,将转换元件C11至C44统称为转换元件C。关于转换元件C的描述适用于转换元件C11至C44中的每一者。同样地,将开关元件S11至S44、驱动线Vg1至Vg5以及信号线Sig1至Sig2分别统称为开关元件S、驱动线Vg以及信号线Sig。
将像素阵列200的行按照图中所示从上到下依次称为第1行至第4行,并且将像素阵列200的列按照图中所示从左到右依次称为第1列至第4列。每个像素201包括一个转换元件C和一个开关元件S的组合。例如,位于第一行第二列的像素201包括转换元件C12和开关元件S12的组合。
在每个像素201中,转换元件C将入射的放射线转换成电信号(例如,电荷),其中,开关元件S连接在转换元件C与对应于该转换元件C的信号线Sig之间。例如,开关元件S11、S12、S21、S22连接在多个转换元件C11、C12、C21和C22与信号线Sig1之间。
当开关元件S接通时,转换元件C和信号线Sig电连接,并且转换元件C获得的电信号(例如,在转换元件C中累积的电荷)转移到信号线Sig。
每个转换元件C可以是例如形成在绝缘基板(例如玻璃基板)上的金属-绝缘层-半导体(MIS)型光电二极管,其中,MIS型光电二极管可以主要由非晶硅制成。另一选择是,每个转换元件C可以是PIN光电二极管。每个转换元件C可以是直接将放射线转换成电荷的直接类型,也可以是首先将放射线转换成光然后检测光的间接类型。在转换元件C是间接类型的情况下,闪烁体可以由多个像素201共享。
每个开关元件S包括例如晶体管,诸如具有控制端子(栅极)和两个主端子(源极和漏极)的薄膜晶体管(TFT)。转换元件C具有两个主电极。转换元件C的一个主电极连接到开关元件S的两个主端子中的一者,而转换元件C的另一主电极经由共用偏置线Bs连接到偏置电源Vs。偏置电源Vs生成偏置电压。
第一行偶数列的像素201的开关元件S的控制端子连接到驱动线Vgl,而第一行奇数列的像素201的开关元件S的控制端子连接到驱动线Vg2。第二行偶数列的像素201的开关元件S的控制端子连接到驱动线Vg2,而第二行奇数列的像素201的开关元件S的控制端子连接到驱动线Vg3。以上适用于第三行和第四行。
第一列中的像素201的开关元件S的主端子中的一者连接到同一像素201的转换元件C,而主端子中的另一者连接到第二列中的像素201的转换元件C。即,第一列中的像素201的开关元件S经由第二列中的像素201的开关元件S连接到信号线Sig。
第二列中的像素201的开关元件S的主端子中的一者连接到同一像素201的转换元件C,而主端子中的另一者连接到信号线Sig。即,第二列中的像素201的开关元件S连接在同一像素的转换元件C与信号线Sig之间。
以上适用于第三列和第四列。
例如,开关元件S12连接在转换元件C12与信号线Sigl之间。开关元件S11和S12串联连接在转换元件C11与信号线Sig1之间。开关元件S11经由开关元件S12连接到信号线Sig1。开关元件S22连接在转换元件C22和信号线Sig1之间。
转换元件C12和转换元件C22沿信号线Sig1延伸的方向布置。转换元件C11和转换元件C12沿驱动线Vg1延伸的方向布置。
在该连接配置中,信号线Sig的数量仅为像素阵列200的列数的一半。此外,驱动线Vg的数量仅比像素阵列200的行数大1。因此,与针对每个像素行提供一条驱动线并且针对每个像素列提供一条信号线的放射线检测面板的配置相比,能够减少像素阵列200与外围电路(驱动电路210和读出电路220)之间的触点数量,即,能够减少驱动线Vg和信号线Sig的总数。这使得能够简化外围电路的配置。
将以三个转换元件C11、C12和C22为例,描述用于在这些转换元件与信号线Sig1之间获得电导的条件。当连接到驱动线Vg1的开关元件S12处于接通状态时,转换元件C12与信号线Sig1彼此电连接,而当连接到驱动线Vg1的开关元件S12处于断开状态时,转换元件C12与信号线Sig1电断连。
当连接到驱动线Vg2的开关元件S22处于接通状态时,转换元件C22与信号线Sigl彼此电连接,而当连接到驱动线Vg2的开关元件S22处于断开状态时,转换元件C22与信号线Sigl电断连。当连接到驱动线Vg1的开关元件S12和连接到驱动线Vg2的开关元件S11都处于接通状态时,转换元件C11与信号线Sig1彼此电连接,而当开关元件S12和S11中的至少一者处于断开状态时,转换元件C11与信号线Sig1电断连。
驱动电路210根据从控制电路112提供的控制信号,经由驱动线Vg向每个像素201的开关元件S的控制端子提供驱动信号。当控制信号处于高电平时,所述控制信号充当用于接通开关元件S的接通信号。当控制信号处于低电平时,所述控制信号充当用于断开开关元件S的断开信号。
驱动电路210包括例如移位寄存器,所述移位寄存器根据从控制电路112提供的控制信号(例如,时钟信号)进行移位操作。稍后将描述驱动电路210的操作的具体示例。
读出电路220放大并读出由转换元件C输出并出现在信号线Sig上的电信号。针对每条信号线Sig,读出电路220包括一个放大器电路221。在图2中所示的示例中,像素阵列200具有两条信号线Sig,因此读出电路220包括两个放大电路221。每个放大电路221包括例如积分放大器222、可变放大器223、开关元件224、电容器225和缓冲电路226。
开关元件224和电容器225形成采样保持电路。积分放大器222包括例如运算放大器、积分电容器和复位开关,所述复位开关并联连接在运算放大器的反相输入端子与输出端子之间。参考电压从参考电压源Vref被提供给运算放大器的非反相输入端子。当复位开关响应于从控制电路112提供的控制信号RC(复位脉冲)而接通时,积分电容器复位并且信号线Sig的电位复位到参考电位。
可变放大器223以设定增益放大来自积分放大器222的信号。
采样保持电路对来自可变放大器223的信号进行采样并保持。采样保持电路中的开关元件224的接通/断开由从控制电路112提供的控制信号SH控制。缓冲电路226缓冲(通过阻抗转换)来自采样保持电路的信号并且输出缓冲的信号。
读出电路220还包括多路复用器227,所述多路复用器227被配置为以预定顺序依次选择和输出从多个放大器电路221提供的信号。多路复用器227包括例如移位寄存器,所述移位寄存器根据从控制电路112提供的控制信号(例如,时钟信号)进行移位操作。作为移位操作的结果,从多个放大器电路221输出的信号中选择一个信号。
缓冲电路230缓冲(通过阻抗转换)从多路复用器227输出的信号并且输出缓冲的信号。AD转换器240将从缓冲电路230输出的模拟信号转换为数字信号。AD转换器240提供的输出信号(即,放射线图像数据)被发送到计算机120。
扫描方向切换单元400根据要逐个像素读出信号还是要进行像素相加来输出扫描方向切换信号DIR,稍后将进行更详细的描述。
图3示意性地图示了一个像素201的剖面结构示例。像素201形成在诸如玻璃基板的绝缘基板301上。像素201包括在绝缘基板301上的导电层302、绝缘层303、半导体层304、杂质半导体层305和导电层306。
导电层302构成晶体管(例如,TFT)的栅极,所述晶体管构成开关元件S。绝缘层303以覆盖导电层302的方式设置。半导体层304经由绝缘层303配设在构成栅极的导电层302的一部分上。
杂质半导体层305设置在半导体层304上,以形成构成开关元件S的晶体管的两个主端子(源极和漏极)。
导电层306形成分别连接到构成开关元件S的晶体管的两个主端子(源极和漏极)的布线图案。导电层306的一部分构成信号线Sig,而另一部分构成用于连接转换元件C和开关元件S的布线图案。
像素201还包括覆盖绝缘层303和导电层306的层间绝缘膜307。
用于连接到导电层306(开关元件S)的接触插头308形成在层间绝缘膜307中。像素201还包括按上述顺序设置在层间绝缘膜307上的导电层309、绝缘层310、半导体层311、杂质半导体层312、导电层313、保护层314、粘合层315和闪烁体层316。间接型转换元件C由这些层形成。
导电层309和导电层313分别形成转换元件C的光电转换元件的下部电极和上部电极。导电层313由例如透明材料制成。导电层309、绝缘层310、半导体层311、杂质半导体层312和导电层313形成用作光电转换元件的MIS传感器。杂质半导体层312由例如n型杂质半导体层形成。闪烁体层316由例如钆基材料或CsI(碘化铯)材料制成,以能够将放射线转换为光。
代替上述配置示例,转换元件C可以被配置为将入射放射线直接转换成电信号(电荷)的直接型转换元件。直接型转换元件C例如由诸如非晶硒、砷化镓、磷化镓、碘化铅、碘化汞、CdTe、CdZnTe等主要材料制成。转换元件C并不限于MIS型,也可以是例如pn型、PIN型等光电二极管。
在图3中所示的示例中,如图中在形成像素阵列200的平面的正交投影中所示(即,如在平面图中所示),多条信号线Sig中的每一者与转换元件C的一部分重叠。这种配置有利于增加每个像素201的转换元件C的面积,但这种配置的缺点在于会增加信号线Sig与转换元件C之间的电容耦合的发生。当放射线入射在转换元件C上时,电荷在转换元件C中累积。因此,导电层309(下部电极)的电位发生变化,这因信号线Sig与转换元件C之间的电容耦合而导致信号线Sig的电位变化。
下面将参照图4描述放射线摄像系统100的操作示例。放射线摄像系统100的操作由计算机120控制。在计算机120的控制下,放射线摄像装置110的操作由控制电路112控制。例如,响应于放射线摄像系统100的用户发出的命令,开始图4中所示的操作。
在图4中,“操作”指示放射线摄像系统100的操作。放射线摄像系统100的操作包括待机序列、放射线图像获取序列和偏移图像获取序列。待机序列是在等待放射线照射开始时进行的操作序列。
放射线图像获取序列是为获取放射线图像而进行的操作的序列。偏移图像获取序列是为获取偏移图像而进行的操作的序列。偏移图像是在没有放射线入射在放射线摄像装置110上时由从各个像素201获得的信号形成的图像。
在图4中,“放射线”指示存在/不存在放射线照射。低电平指示不存在放射线照射,而高电平指示存在放射线照射。在图4中,“Vg1”至“Vg5”指示从驱动电路210提供给各条驱动线Vg1至Vg5的驱动信号的电平。当向驱动线Vg提供低电平驱动信号(断开信号)时,连接到该驱动线Vg的开关元件S断开,而当向驱动线Vg提供高电平驱动信号(接通信号)时,连接到该驱动线Vg的开关元件S接通。
在图4中,“Sig1”和“Sig2”指示是否正在经由各条信号线Sig1和Sig2读出信号,并且还指示从中读出信号的转换元件C。低电平指示未读取信号,而高电平指示正在读出信号。在“Sig1”或“Sig2”处于高电平的每个位置处,参考符号被描述为指示从中读出信号的转换元件C。
在待机序列中,放射线摄像装置110重复复位操作。复位操作是对在每个像素201的转换元件C中累积的暗电荷进行复位的操作。暗电荷是虽然转换元件C没有被放射线照射但依然出现的电荷。在复位操作中,像素201的转换元件C从第一行中的像素201到最后一行(第四行)中的像素201依次复位。将该复位操作称为一次复位操作。该复位操作由放射线摄像装置110重复进行。
在复位操作期间,控制电路112将有效电平复位脉冲提供给积分放大器222的复位开关。因此,信号线Sig复位到参考电位。在一次复位操作中,驱动电路210向驱动线Vg1和Vg2提供接通信号,以对第一行中的像素201进行复位。因此,转换元件C11与信号线Sig1彼此电连接,而转换元件C12与信号线Sig1电断连。这同样适用于转换元件C13和C14。
随后,驱动电路210向驱动线Vg2和Vg3提供接通信号,以对第二行中的像素201进行复位。以类似方式,驱动电路210对直到第四行中的像素201进行复位。
当控制电路112例如基于经由计算机120从曝光控制装置130提供的开始通知而识别到来自放射线源140的放射线的发射开始时,序列从待机序列转换到放射线图像获取序列。另一选择是,放射线摄像装置110可以具有被配置为检测流过像素阵列200的偏置线Bs、信号线Sig等的电流的检测电路,并且基于从该检测电路提供的输出信号,控制电路112可以识别到来自放射线源140的放射线的发射开始。
放射线图像获取序列包括累积操作和读出操作。在累积操作中,驱动电路210在预定时间段内向各条驱动线Vg1至Vg5提供断开信号。因此,与入射在转换元件C上的放射线对应的电荷在转换元件C中累积。在随后的读出操作中,控制电路112读出在各个转换元件C中累积的电荷(电信号)。
下面将更详细地描述读出操作。以下描述将集中于经由信号线Sig1读取电荷,但是也以类似方式通过信号线Sig2读取电荷。
首先,驱动电路210仅向驱动线Vgl提供接通信号。因此,开关元件S12接通,并且转换元件C12与信号线Sig1彼此电连接,因此在转换元件C12中获得的电荷被读出到信号线Sig1。在该状态下,向驱动线Vg2提供断开信号,因此开关元件S11保持断开状态,使得转换元件C11与信号线Sig1处于电断连状态。因此,此时在转换元件C11中获得的电荷不被读出到信号线Sig1。
在读出在转换元件C12中获得的电荷之后,驱动电路210仅向驱动线Vg2提供接通信号。因此,开关元件S22接通,并且转换元件C22与信号线Sig1彼此电连接,因此在转换元件C22中获得的电荷被读出到信号线Sig1。由于开关元件S11也接通,因此转换元件C11与转换元件C12经由开关元件S11彼此电连接。因此,在转换元件C11中获得的部分电荷转移到转换元件C12。
在该状态下,向驱动线Vgl提供断开信号,因此开关元件S12处于断开状态,并且转换元件C11与信号线Sigl处于电断连状态。因此,此时在转换元件C11中获得的电荷不被读出到信号线Sig1。
在读出在转换元件C22中获得的电荷之后,驱动电路210向驱动线Vgl和驱动线Vg2两者都提供接通信号。因此,开关元件S11和开关元件S12接通,并且转换元件C11与信号线Sig1彼此电连接,因此在转换元件C11中获得的电荷被读出到信号线Sig1。在该状态下,由于向驱动线Vg2提供接通信号,因此开关元件S22也接通,并且转换元件C22与信号线Sig1彼此电连接。
由于已经读出转换元件C22,因此此时没有电荷从转换元件C22被读出到信号线Sigl。此后,驱动电路210类似地向驱动线Vg提供接通信号或断开信号,直到在所有转换元件C中获得的电荷均被读出为止。
下面将进一步描述驱动电路210的一般读出操作。用k表示驱动线Vg的数量。将从像素阵列200的一侧开始数的第i(1≤i≤k)条驱动线Vg称为驱动线Vg(i)。
首先,驱动电路210向驱动线Vg(1)提供接通信号并且向除了该驱动线Vg(1)之外的所有驱动线提供断开信号。随后,驱动电路210向驱动线Vg(i+1)提供接通信号,然后针对i=1至i=k-2依次向驱动线Vg(i)和Vg(i+1)提供接通信号。
在该迭代中,当驱动电路210向驱动线Vg(i+1)提供接通信号时,驱动电路210向其他驱动线提供断开信号。当驱动电路210向驱动线Vg(i)和驱动线Vg(i+1)提供接通信号时,驱动电路210向其他驱动线提供断开信号。最后,驱动电路210向驱动线Vg(k-1)和Vg(k)提供接通信号,并且向其他驱动线提供断开信号。
在上述操作方法中,例如,在从转换元件C22读出电荷之后并且在向除驱动线Vgl和Vg2之外的驱动线提供接通信号之前,驱动电路210向驱动线Vg1和驱动线Vg2提供接通信号。由此,驱动电路210将在转换元件C11中获得的电荷读出到信号线Sig1。
换言之,驱动电路210进行读出操作,以在将在属于第三像素行的转换元件C中获得的电荷读出到信号线Sig1之前,针对属于第一像素行的所有转换元件C,完成将电荷从转换元件C读出到信号线Sig1。
一般而言,驱动电路210在将在属于第(i+2)(其中,1≤i≤像素行总数)个像素行的转换元件C中获得的电荷读出到信号线Sig1之前,完成将在属于直到第i个像素行的多个像素行的所有转换元件C中获得的电荷读出到信号线Sigl。这减少了偶数像素列与奇数像素列之间从复位时间开始经过的时间的差异。因此,与传统技术相比,可抑制图像质量的劣化。
注意,来自转换元件C12的电荷经由一个开关元件S12被读出,而来自转换元件C11的电荷经由两个开关元件S11和S12被读出。因此,驱动电路210向驱动线Vg1和驱动线Vg2提供接通信号以从转换元件C11读出电荷的时间段长于向驱动线Vg1提供接通信号以从转换元件C12读出电荷的时间段。
注意,在图4中,从Vg1到Vg5(沿正向)扫描驱动线Vg,以逐个像素分别读出累积在转换元件C中的电荷(电信号)。在该处理中,从扫描方向切换单元400向驱动电路210提供低电平的扫描方向切换信号DIR。注意,在稍后将要描述的像素相加驱动模式中,向驱动电路210提供高电平的扫描方向切换信号DIR,并且沿从Vg5到Vg1的反向进行扫描。
下面参照图5和图6描述驱动电路210的配置的具体示例和驱动操作的具体示例。驱动电路210包括多个栅极驱动器500。多个栅极驱动器500中的每一者包括数据输入端子504、数据输出端子506、移位时钟端子505、三个输出使能端子(output enable terminal)501至503以及扫描方向端子507。
数据输入端子504用于输入用于启动移位寄存器操作的启动信号,并且数据输出端子506用于将数据输出到下一栅极驱动器500。当将时钟信号施加到移位时钟时端子505时,输入到数据输入端子504的信号被依序移位,从而依序扫描驱动线。
扫描方向端子507是用于在正向与反向之间切换栅极驱动器的扫描方向的端子。数据输入端子504与数据输出端子506之间的数据流方向根据输入到扫描方向端子507的信号在从数据输出端子到数据输入端子的方向与从数据输入端子到数据输出端子的方向之间切换。通过扫描方向切换信号DIR,在DATA_IN信号输入到数据输入端子504的状态与DATA_IN信号输入到数据输出端子506的状态之间切换开关508。
为使栅极驱动器也可用于使用三种颜色RGB的液晶电视,存在三个输出使能端子501至503。代替三个输出使能端子,栅极驱动器可以被配置为具有两个输出使能端子。在这种情况下,接通状态和断开状态可在偶数行中的驱动线与奇数行中的驱动线之间切换。将控制信号XOE1_IN、XOE2_IN和XOE3_IN从控制电路112提供给各个栅极驱动器500的输出使能端子501、502和503。
图5中的每个栅极驱动器500具有用于向驱动线Vgl至Vg5提供信号的5ch端子,并且输出使能端子501至503以3ch周期性方式对应于驱动线Vg。更具体而言,输出使能端子501(XOE1)对应于驱动线Vg1和Vg4,输出使能端子502(XOE2)对应于驱动线Vg2和Vg5,并且输出使能端子503(XOE3)对应于驱动线Vg3。
在图5中从上数处于第一位置的第一栅极驱动器的情况下,来自控制电路112的控制信号XOE1_IN被输入到输出使能端子501(XOE1),控制信号XOE2_IN被输入到输出使能端子502(XOE2),并且控制信号XOE3_IN被输入到输出使能端子503(XOE3)。
在图5中从上数处于第二位置的第二栅极驱动器中,来自控制电路112的控制信号XOE1_IN被输入到输出使能端子502(XOE2),控制信号XOE2_IN被输入到输出使能端子503(XOE3),并且控制信号XOE3_IN被输入到输出使能端子501(XOE1)。
在使用多个栅极驱动器500的情况下,改变图5中从上数处于第一位置和第二位置的栅极驱动器的输出使能端子501至503的连接,以在栅极驱动器500之间维持控制信号XOE1_IN到XOE3_IN的连续性。驱动线Vg5对应于输出使能端子502(XOE2),而驱动线Vg6对应于输出使能端子501(XOE1)。
然而,当扫描栅极驱动器500时,需要按照XOE1_IN、XOE2_IN、XOE3_IN、XOE1_IN......等的顺序串行输出控制信号,否则将需要在操作中间进行切换。鉴于此,在图5中从上数处于第二位置的栅极驱动器中,控制信号XOE3_IN连接到输出使能端子501(XOE1)。
接下来,将参照图6对驱动操作进行说明。这里,为了逐个像素地从像素输出信号,将DIR_IN信号设为低电平并且沿正向进行扫描。将DATA_IN信号从控制电路112提供给图5中从上数处于第一位置的栅极驱动器500的数据输入端子504,并且两次将移位时钟信号CPV输入到移位时钟端子505。作为该操作的结果,在第一栅极驱动器500处选择Vg1和Vg2。
在该状态下,输出使能信号XOE1_IN被输入。因此,驱动线Vg1进入接通状态。接下来,输出使能信号XOE2_IN被输入。因此,驱动线Vg2进入接通状态。此外,输出使能信号XOE1_IN和XOE2_IN同时接通。因此,驱动线Vg1和Vg2同时进入接通状态。
接下来,当移位时钟信号CPV输入一次时,在第一栅极驱动器500处选择Vg2和Vg3。在该状态下,输出使能信号XOE3_IN被输入。因此,驱动线Vg3进入接通状态。接下来,输出使能信号XOE2_IN和XOE3_IN同时接通。因此,驱动线Vg2和Vg3同时进入接通状态。
通过以上述方式输入移位时钟信号CPV一次并输入输出使能信号XOE1_IN至XOE3_IN,第n行的驱动线接通,并且第n行和第n-1行同时接通,因此实现图4中所示的驱动操作。
放射线摄像装置110经由多路复用器227、缓冲电路230和AD转换器240,将在放射线图像获取序列中获得的各个转换元件C的电荷作为数字信号传输到计算机120。通过组合各个像素201的数据,获得放射线图像。
接下来,将描述偏移图像获取序列。放射线图像获取序列包括复位操作、累积操作和读出操作。首先,控制电路112以与待机序列中的复位操作相同的方式进行一次复位操作。因此,像素阵列200进入与放射线图像获取序列开始之前相同的状态。
此后,控制电路112以与放射线图像获取序列相同的方式进行累积操作和读出操作,从而获取偏移图像。与放射线图像一样,偏移图像也被从放射线摄像装置110传输到计算机120。然后,从放射线图像中减去偏移图像。因此,从放射线图像中去除因在放射线照射期间在转换元件C中出现的暗电荷所引起的偏移分量。
在上述读出操作中,存在像素201的灵敏度发生变化的可能性。例如,当向驱动线Vg2提供接通信号时,开关元件S11和S22接通。在这种情况下,在转换元件C11中获得的部分电荷转移到转换元件C12,这导致信号线Sig1的电位经由开关元件S12的源极-漏极电容而发生变化。因此,经由信号线Sig1读出的信号量变得大于在转换元件C22中获得的信号量。
另一方面,例如,在转换元件C11中获得的电荷经由两个开关元件S11和S12转移到信号线Sig1。因此,在转换元件C11中获得的部分电荷有可能留在转换元件C11中而未被转移,这导致包括转换元件C11的像素201的灵敏度降低。
要减少像素201的灵敏度的这种变化,放射线摄像装置110可以将在被摄体存在的状态下的拍摄图像除以在没有被摄体存在的状态下拍摄的图像,从而进行增益校正。
另一选择是,放射线摄像装置110可以预先确定在仅一行驱动线Vg接通的状态下进行驱动时获得的灵敏度与在仅两行驱动线Vg接通的状态下进行驱动时获得的灵敏度之间的灵敏度比,并且可以使用该灵敏度比来校正像素值。又一选择是,在奇数列中的像素201的转换元件C与偶数列中的像素201的转换元件C之间,孔径比可以不同。又一选择是,在奇数列中的像素201的开关元件S与偶数列中的像素201的开关元件S之间,接通电阻也可以不同。
根据像素阵列200中读出电路220连接到像素阵列200的位置,像素阵列200中的信号线Sig的长度改变。由于信号线Sig根据布线长度生成热噪声,因此信号线Sig越短,噪声越低。可以通过缩短像素阵列200的中心部分(可能是关注区域)中的信号线Sig的长度,来减少关注区域中的随机噪声。
接下来,将参照图7描述放射线摄像系统100的操作示例。与上面参照图4描述的那些操作的类似部分的重复描述将省略。图7示出了对2行×2列进行像素相加时进行的操作。在逐个像素进行读出的情况下,通过扫描方向切换单元400将扫描方向切换信号DIR设为低电平,并且沿从Vg1到Vg5的正向进行扫描。相反,在像素相加驱动模式中,将扫描方向切换信号DIR设为高电平,并且沿从Vg5到Vg1的反向进行扫描。
如果沿正向扫描方向驱动图2中所示的放射线摄像系统100并且进行像素相加使得2行×2列中的像素加在一起,则当例如驱动线Vgl和Vg2接通时,来自三个像素的转换元件C11、C12和C22的信号被输出到信号线Sig1。另一方面,当驱动线Vg1、Vg2和Vg3接通时,来自五个像素的转换元件C11、C12、C21、C22和C32的信号被输出到信号线Sig1。因此,输出信号未正确对应于2行×2列的布局,并且输出信号的像素位置出现失真。
另一方面,在沿反向扫描方向驱动放射线摄像系统100并且进行像素相加使得2行×2列中的像素加在一起的情况下,当驱动线Vg5、Vg4和Vg3接通时,来自2行×2列中的4个像素的转换元件C41、C42、C31和C32的信号被输出到信号线Sig1。在这种情况下,由于驱动线Vg3进入接通状态,因此开关元件S21接通。然而,驱动线Vg2处于断开状态,因此开关元件S22处于断开状态。因此,转换元件C21的信号不被输出到信号线Sig1。
随后,当驱动线Vg3、Vg2和Vg1进入接通状态时,来自2行×2列中的四个像素的转换元件C21、C22、C11和C12的信号被输出。在这种情况下,驱动线Vg3进入接通状态,因此开关元件S32接通,但是在之前的操作中来自转换元件C32的信号已经被读出,并且没有信号留在转换元件32中。因此,2行×2列的信号一并被读出到一条信号线。
在以上述方式进行操作的情况下,当信号被输出到读出电路时,四个像素的信号加在一起,因此与以下情况相比可获得具有高信噪比的图像:放射线摄像面板被配置以向每个像素分配一条信号线和一条驱动线,并且放射线摄像面板被驱动使得2行×1列中的信号被输出到信号线,然后列之间的信号在位于放射线摄像面板之后的读出电路中相加。
此外,与被配置以向每个像素分配一条信号线和一条驱动线的放射线摄像面板相比,能够减少信号线的数量,因此能够增加转换元件的孔径比,这使得能够提高信噪比。这在可以使信号线占据较大面积的像素间距小的面板中特别有效。
第二实施例
接下来,将参照图8描述根据第二实施例的放射线检测面板。除了设置像素阵列600来代替像素阵列200之外,图8中所示的配置与图2中所示的配置相似。
像素阵列600包括例如布置成阵列的多个像素601、多条驱动线Vg1至Vg5、多条信号线Sig1至Sig2以及偏置线Bs。像素阵列600包括多个转换元件C11至C44以及多个开关元件S11至S44和S11’至S44’。
在以下描述中,将转换元件C11至C44统称为转换元件C,并且将开关元件S11至S44和S11’至S44’统称为开关元件S。每个像素601包括一个转换元件C和两个开关元件S的组合。例如,第一行第二列的像素601由转换元件C12和开关元件S12和S12’的组合配置。
第一行偶数列中的像素601的两个开关元件S的控制端子连接到驱动线Vgl。第一行奇数列中的像素601的两个开关元件S中的一者的控制端子连接到驱动线Vg1,并且开关元件S中的另一者的控制端子连接到驱动线Vg2。以上适用于第二行至第四行。每个像素601的转换元件C经由位于同一像素601中的两个串联连接的开关元件S连接到信号线Sig。
例如,开关元件S11和S11’串联连接在转换元件C11与信号线Sig1之间。开关元件S11经由开关元件S11’连接到信号线Sig1。开关元件S12和S12’串联连接在转换元件C12与信号线Sig1之间。开关元件S22和S22’串联连接在转换元件C22与信号线Sig1之间。
转换元件C12和转换元件C22沿信号线Sigl延伸的方向布置。转换元件C11和转换元件C12沿驱动线Vg1延伸的方向布置。
与图7中所示的操作一样,图8中所示的像素阵列600操作使得当扫描方向切换信号DIR被设为高电平并且驱动线Vg5、Vg4和Vg3接通时,来自2行×2列中的4个像素的转换元件C41、C42、C31和C32的信号被输出到信号线Sig1。此后,驱动线Vg3、Vg2和Vg1接通,从而从2行×2列中的4个像素的转换元件C21、C22、C11和C12输出信号。因此,进行像素相加运算。
在上述连接配置中,信号线Sig的数量仅为像素阵列600的列数的一半。此外,驱动线Vg的数量仅比像素600的行数大1。因此,与针对每个像素行提供一条驱动线并且针对每个像素列提供一条信号线的放射线检测面板的配置相比,能够减少像素阵列600与外围电路(驱动电路210和读出电路220)之间的触点数量,即,能够减少驱动线Vg和信号线Sig的总数。这使得能够简化外围电路的配置。
第三实施例
下面将参照图9和图10描述放射线检测面板111的配置示例和放射线摄像系统100的操作示例。上面参照图2、图4或图7描述的配置或操作的类似部分的重复描述将省略。
与图2中所示的放射线检测面板111具有4行×4列的像素配置相比,图9中所示的放射线检测面板111具有8行×8列的像素配置。
与上面参照图7描述的将2行×2列中的像素相加的操作相比,进行图10中所示的操作使得在像素阵列200内部进行4行×2列的像素相加,并且通过读出电路进行列相加,由此最终实现4行×4列的像素相加。
当进行四行的像素相加时,扫描方向切换信号DIR被设为高电平,并且沿从Vg9到Vg1的反向进行扫描。在该操作中,当驱动线Vg9、Vg8、Vg7、Vg6和Vg5接通时,来自4行×2列中的8个像素的转换元件C81、C82、C71、C72、C61、C62、C51和C52的信号被输出到信号线Sig1。
在这种情况下,作为驱动线Vg5接通的结果,开关元件S41接通,但由于驱动线Vg4处于断开状态,因此开关元件S42处于断开状态。因此,转换元件C41的信号不被输出到信号线Sig1。
类似地,4行×2列中的8个像素的转换元件C83、C84、C73、C74、C63、C64、C53和C54的信号被输出到信号线Sig2。输出到信号线Sig1的信号和输出到信号线Sig2的信号由读出电路加在一起。因此,4行×4列的像素相加。
随后,当驱动线Vg5、Vg4、Vg3、Vg2和Vg1接通时,4行×2列中的八个像素的转换元件C41、C42、C31、C32、C21、C22、C11和C12的信号被输出到信号线Sig1。同时,4行×2列中的8个像素的转换元件C43、C44、C33、C34、C23、C24、C13和C14的信号被输出到信号线Sig2。输出到信号线Sig1的信号和输出到信号线Sig2的信号由读出电路加在一起。因此,4行×4列的像素相加。
如上所述,当逐个像素从在读取像素时使用的扫描方向切换扫描方向时,准确地进行像素相加。
第四实施例
下面将参照图11和图12描述第四实施例,其中,代替图2中所示的像素阵列200,放射线摄像装置110被配置为包括图11中所示的像素阵列700。
像素阵列700例如包括布置成阵列的多个像素701、多条驱动线Vgl至Vg3、多条信号线Sigl至Sig4以及偏置线Bs。像素阵列700包括多个转换元件C11至C44和多个开关元件S11至S44。
在以下描述中,将转换元件C11至C44统称为转换元件C,并且将开关元件S11至S44统称为开关元件S。每个像素701包括一个转换元件C和两个开关元件S的组合。例如,第一行第二列的像素701由转换元件C12和开关元件S12的组合配置。
第一行中的每个像素701的开关元件S的控制端子连接到驱动线Vgl。第二行中的每个像素701的开关元件S的控制端子连接到驱动线Vg2。第三行中的每个像素701的开关元件S的控制端子连接到驱动线Vg2。第四行中的每个像素701的开关元件S的控制端子连接到驱动线Vg3。每个奇数行中的每个像素701的转换元件C经由同一像素中包括的开关元件S连接到信号线Sig。
每个偶数行中的每个像素701的转换元件C经由同一像素中包括的开关元件S和沿列方向(沿信号线Sig延伸的方向)与同一像素相邻的另一像素的开关元件S连接到信号线Sig。
例如,开关元件S11连接在转换元件C11与信号线Sig1之间。开关元件S11和S21串联连接在转换元件C21与信号线Sig1之间。开关元件S21经由开关元件S11连接到信号线Sig1。开关元件S31连接在转换元件C31与信号线Sig1之间。转换元件C11、转换元件C21和转换元件C31沿信号线Sig1延伸的方向布置。
在上述连接配置中,驱动线Vg的数量仅等于像素阵列700的行数的一半加1。信号线Sig的数量与像素阵列700的列数相同。因此,与针对每个像素行设置一条驱动线并且针对每个像素列设置一条信号线的放射线检测面板的配置相比,能够减少像素阵列700与外围电路(驱动电路210和读出电路220)之间的触点数量,即,能够减少驱动线Vg和信号线Sig的总数。这使得能够简化外围电路的配置。
下面将参照图12详细描述像素相加模式中的读出操作。下面的描述将集中于经由信号线Sig1读取电荷,但是操作与经由信号线Sig2到Sig4中的一者读出电荷时类似。
首先,驱动电路210向驱动线Vg2和Vg3提供接通信号。因此,开关元件S31和S41接通,因此转换元件C41和转换元件C31电连接到信号线Sig1。因此,在转换元件C41和C31中获得的电荷被读出到信号线Sig1。
然而,由于向驱动线Vgl提供断开信号,因此开关元件S11处于断开状态,因此转换元件C11和C21未电连接到信号线Sigl。因此,此时,在转换元件C11和C21中获得的电荷不被读出到信号线Sig1。因此,在转换元件C32和C42中获得的电荷被读出到信号线Sig2。在进行AD转换之后,将经由信号线Sig1输出的信号和经由信号线Sig2输出的信号加在一起,从而实现2行×2列的像素相加。
在转换元件C41和转换元件C31中获得的电荷被读出之后,驱动电路210向驱动线Vgl和Vg2提供接通信号。因此,开关元件S11和开关元件S21接通,并且转换元件C11和转换元件C21电连接到信号线Sig1,因此在转换元件C11和转换元件C21中获得的电荷被读出到信号线Sig1。
由于开关元件S31也接通,因此转换元件C31电连接到信号线Sigl。然而,在转换元件C31中获得的电荷已经被读出,因此没有电荷被输出到信号线Sig1。
通过以上述方式进行驱动,能够实现准确的像素相加。
第五实施例
下面将参照图13和图14描述第五实施例,其中,代替图2中所示的像素阵列200,放射线摄像装置110被配置为包括图13中所示的像素阵列900。
像素阵列900例如包括布置成阵列的多个像素901、多条驱动线Vgl至Vg6、信号线Sigl和偏置线Bs。像素阵列900包括多个转换元件C11至C44和多个开关元件S11至S44、S11’至S44’以及S11”至S44”。
在以下描述中,将转换元件C11至C44统称为转换元件C,并且将开关元件S11至S44、S11’至S44’以及S11”至S44”统称为开关元件S。信号线Sig1也称为信号线Sig。每个像素901包括一个转换元件C和三个开关元件S的组合。例如,第一行第二列的像素901由转换元件C12和开关元件S12、S12’和S12”的组合配置。
第一行第一列的像素901的三个开关元件S的控制端子连接到驱动线Vgl。第一行第二列的像素901的三个开关元件S中的两者的控制端子连接到驱动线Vg1,而三个开关元件S中的另一者的控制端子连接到驱动线Vg2。第一行第三列的像素901的三个开关元件S中的两者的控制端子连接到驱动线Vg1,而三个开关元件S中的另一者的控制端子连接到驱动线Vg3。
第一行第四列的像素901的三个开关元件S中的一者的控制端子连接到驱动线Vgl,三个开关元件S中的另一者的控制端子连接到驱动线Vg2,而三个开关元件S中的再一者的控制端子连接到驱动线Vg3。以上适用于第二行至第四行。在像素阵列900包括多于五列像素901的情况下,可以重复第一列至第四列的配置。每个像素901的转换元件C经由串联连接的三个开关元件S连接到信号线Sig。
例如,开关元件S11、S11’和S11”串联连接在转换元件C11与信号线Sigl之间。开关元件S12、S12’和S12”串联连接在转换元件之间C12与信号线Sig1。开关元件S12和S12’经由开关元件S12”连接到信号线Sig1。开关元件S13、S13’和S13”串联连接在转换元件C13与信号线Sig1之间。
开关元件S13”和S13’经由开关元件S13连接到信号线Sigl。开关元件S14、S14’和S14”串联连接在转换元件C14与信号线Sigl之间。开关元件S14”经由开关元件S14和S14’连接到信号线Sig1。开关元件S21、S21’和S21”串联连接在转换元件C21与信号线Sig1之间。
转换元件C11和转换元件C21沿信号线Sigl延伸的方向布置。转换元件C11、转换元件C12、转换元件C13和转换元件C14沿驱动线Vg1延伸的方向布置。
在上述连接配置中,信号线Sig的数量仅为像素阵列900的列数的四分之一。此外,驱动线Vg的数量仅比像素阵列900的行数大2。
因此,与根据第一实施例的配置相比,能够减少像素阵列900与外围电路(驱动电路210和读出电路220)之间的触点数量,即,能够减少驱动线Vg和信号线Sig的总数。这使得能够进一步简化外围电路的配置。
下面将参照图14详细描述在将2行×4列中的像素加在一起的像素相加模式中的读出操作。
首先,驱动电路210向驱动线Vg3至Vg6提供接通信号。因此,连接到驱动线Vg3至Vg6的开关元件S接通,并且转换元件C31、C32、C33、C34、C41、C42、C43和C44电连接到信号线Sig1。因此,在转换元件C31、C32、C33、C34、C41、C42、C43和C44中获得的电荷被读出到信号线Sig1。
在这种状态下,由于向驱动线Vg2提供断开信号,因此转换元件C21、C22、C23和C24与信号线Sigl电断连。因此,此时,在转换元件C21、C22、C23和C24中获得的电荷不被读出到信号线Sig1。
在转换元件C31、C32、C33、C34、C41、C42、C43和C44中获得的电荷被读出之后,驱动电路210将接通信号提供给驱动线Vg1至Vg4。因此,连接到驱动线Vg1至Vg4的开关元件S接通,并且转换元件C11、C12、C13、C14、C21、C22、C23和C24电连接到信号线Sig1。因此,在转换元件C11、C12、C13、C14、C21、C22、C23和C24中获得的电荷被读出到信号线Sig1。
此时,转换元件C31和C32电连接到信号线Sigl,但是在转换元件C31和C32中获得的电荷已经被读出,因此没有电荷从这些转换元件输出到信号线Sig1。通过以上述方式进行驱动,能够实现准确的像素相加。
其他实施例
本公开还可以通过进行处理使得用于实现上述功能的程序经由网络或存储介质被提供给系统或装置并且通过系统或装置的计算机中的一个或多个处理器读出并执行程序来实现。
可用作存储介质的示例包括软盘、光盘(诸如,CD-ROM、DVD-ROM等)、磁光盘、磁带、非易失性存储器(诸如,USB存储器)、ROM等。实现功能的程序可以经由网络下载并由计算机执行。
注意,上述实施例的功能的实现不限于由计算机读取并执行程序代码的情况。可以由在计算机上运行的操作系统等根据程序代码进行部分或全部处理。这种功能的实现也落入本发明的范围内。
此外,本公开的范围还包括将程序代码从存储介质加载到设置在插入计算机中的功能扩展板上或设置在连接到计算机的功能扩展单元中的存储器中的情况。可以根据加载的程序代码由配设在功能扩展卡或功能扩展单元上的CPU等进行部分或全部处理。注意,这种功能的实现也落入本公开的范围内。
应当注意,本公开的上述实施例仅为实施本公开的具体示例,并且本公开的技术范围不应被解释为受这些实施例的限制。即,本公开可以在不背离其技术思想或主要特征的情况下以各种形式实现。
如上所述,根据本公开的实施例,能够在减少像素阵列与外围电路之间的触点数量的同时实现准确的像素相加。
本公开的实施例还可以通过如下的方法来实现,即,通过网络或者各种存储介质将执行上述实施例的功能的软件(程序)提供给系统或装置,该系统或装置的计算机或是中央处理单元(CPU)、微处理单元(MPU)读出并执行程序的方法。
虽然已参照示例性实施例描述了本公开,但是应当理解,本公开并不局限于所公开的示例性实施例。应给予随附权利要求范围最宽泛的解释,以涵盖所有这些修改以及等效结构和功能。

Claims (10)

1.一种放射线摄像装置,所述放射线摄像装置包括:
多个转换元件,所述多个转换元件被布置成二维矩阵并且每一个转换元件被配置为将放射线转换成电信号,所述多个转换元件包括第一转换元件、沿行方向与所述第一转换元件相邻的第二转换元件、沿列方向与所述第一转换元件相邻的第三转换元件、沿所述列方向与所述第二转换元件相邻且沿所述行方向与所述第三转换元件相邻的第四转换元件;
信号线,所述信号线用于读取由所述多个转换元件获得的电信号,所述信号线连接到所述第二转换元件和所述第四转换元件,经由所述第二转换元件连接到所述第一转换元件,并且经由所述第四转换元件连接到所述第三转换元件;
多个开关元件,所述多个开关元件包括连接在所述第一转换元件与所述第二转换元件之间的第一开关元件、连接在所述第二转换元件与所述信号线之间的第二开关元件、连接在所述第三转换元件与所述第四转换元件之间的第三开关元件、连接在所述第四转换元件与所述信号线之间的第四开关元件;
多条驱动线,所述多条驱动线包括连接到所述第一开关元件的控制端子的第一驱动线、连接到所述第二开关元件的控制端子和所述第三开关元件的控制端子的第二驱动线以及连接到所述第四开关元件的控制端子的第三驱动线;以及
驱动电路,所述驱动电路被配置为向所述多条驱动线中的每一者提供用于接通开关元件的接通信号或用于断开开关元件的断开信号,
其中,所述驱动电路通过同时向所述第一驱动线和所述第二驱动线提供所述接通信号而分别从所述第一转换元件和所述第二转换元件读出信号,然后通过同时向所述第二驱动线和所述第三驱动线提供所述接通信号而分别从所述第三转换元件和所述第四转换元件读出信号。
2.根据权利要求1所述的放射线摄像装置,其中,所述驱动电路在分别读出来自所述多个转换元件的信号的情况与将来自所述多个转换元件中的两个或多个转换元件的信号相加并读出的情况之间切换扫描方向。
3.根据权利要求2所述的放射线摄像装置,其中,所述驱动电路在分别读出来自所述第一转换元件、所述第二转换元件、所述第三转换元件和所述第四转换元件的信号的情况与将来自所述第一转换元件和所述第二转换元件的信号相加并读出以及将来自所述第三转换元件和所述第四转换元件的信号相加并读出的情况之间切换扫描方向。
4.根据权利要求1所述的放射线摄像装置,其中,所述第一转换元件和所述第二转换元件沿所述第一驱动线延伸的方向设置。
5.根据权利要求1所述的放射线摄像装置,其中,所述第一转换元件和所述第三转换元件沿所述信号线延伸的方向设置。
6.根据权利要求1所述的放射线摄像装置,其中,在所述多个转换元件之中,孔径比在奇数列中设置的转换元件与偶数列中设置的转换元件之间不同。
7.根据权利要求1所述的放射线摄像装置,其中,在所述多个转换元件之中,接通电阻在奇数列中设置的转换元件与偶数列中设置的转换元件之间不同。
8.一种放射线摄像系统,所述放射线摄像系统包括:
根据权利要求1至7任一所述的放射线摄像装置;以及
放射线源,所述放射线源被配置为用放射线照射所述放射线摄像装置。
9.一种放射线摄像装置的控制方法,所述放射线摄像装置包括:
多个转换元件,所述多个转换元件被布置成二维矩阵并且每一个转换元件被配置为将放射线转换成电信号,所述多个转换元件包括第一转换元件、沿行方向与所述第一转换元件相邻的第二转换元件、沿列方向与所述第一转换元件相邻的第三转换元件、沿所述列方向与所述第二转换元件相邻且沿所述行方向与所述第三转换元件相邻的第四转换元件;
信号线,所述信号线用于读取由所述多个转换元件获得的电信号,所述信号线连接到所述第二转换元件和所述第四转换元件,经由所述第二转换元件连接到所述第一转换元件,并且经由所述第四转换元件连接到所述第三转换元件;
多个开关元件,所述多个开关元件包括连接在所述第一转换元件与所述第二转换元件之间的第一开关元件、连接在所述第二转换元件与所述信号线之间的第二开关元件、连接在所述第三转换元件与所述第四转换元件之间的第三开关元件、连接在所述第四转换元件与所述信号线之间的第四开关元件;
多条驱动线,所述多条驱动线包括连接到所述第一开关元件的控制端子的第一驱动线、连接到所述第二开关元件的控制端子和所述第三开关元件的控制端子的第二驱动线以及连接到所述第四开关元件的控制端子的第三驱动线;以及
驱动电路,所述驱动电路被配置为向所述多条驱动线中的每一者提供用于接通开关元件的接通信号或用于断开开关元件的断开信号,
所述方法包括:
通过同时向所述第一驱动线和所述第二驱动线提供所述接通信号,进行从所述第一转换元件和所述第二转换元件读取信号的第一读出处理;以及
在所述第一读出处理之后,通过同时向所述第二驱动线和所述第三驱动线提供所述接通信号,进行从所述第三转换元件和所述第四转换元件读取信号的第二读出处理。
10.一种计算机可读存储介质,用于存储使计算机执行根据权利要求9的控制方法的程序。
CN202211269482.1A 2021-10-26 2022-10-18 放射线摄像系统、放射线摄像装置及控制方法、存储介质 Pending CN116019468A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021174756A JP2023064459A (ja) 2021-10-26 2021-10-26 放射線撮像装置、放射線撮像システム、および放射線撮像装置の制御方法
JP2021-174756 2021-10-26

Publications (1)

Publication Number Publication Date
CN116019468A true CN116019468A (zh) 2023-04-28

Family

ID=86057429

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211269482.1A Pending CN116019468A (zh) 2021-10-26 2022-10-18 放射线摄像系统、放射线摄像装置及控制方法、存储介质

Country Status (3)

Country Link
US (1) US20230125228A1 (zh)
JP (1) JP2023064459A (zh)
CN (1) CN116019468A (zh)

Also Published As

Publication number Publication date
JP2023064459A (ja) 2023-05-11
US20230125228A1 (en) 2023-04-27

Similar Documents

Publication Publication Date Title
CN109069085B (zh) 放射线图像拍摄装置、放射线图像拍摄系统和放射线图像拍摄装置的控制方法
US11187816B2 (en) Radiation imaging apparatus and radiation imaging system
CN110869809B (zh) 放射线成像装置和放射线成像系统
US10653372B2 (en) Radiation imaging system
US9113102B2 (en) Method of acquiring physical information and physical information acquiring device
US11090018B2 (en) Radiation imaging apparatus, radiation imaging system, control method of radiation imaging apparatus, and non-transitory computer-readable storage medium
US8482642B2 (en) Dual pinned diode pixel with shutter
US8809760B2 (en) Imaging apparatus, imaging system, method of controlling the apparatus and the system, and program
US10659713B2 (en) Image sensing device
TW201911855A (zh) 具有堆疊基板的光感測器的偵測電路
RU2527076C2 (ru) Устройство формирования изображений, система формирования изображений, способ управления устройством и системой и программа
JP5150283B2 (ja) 固体撮像装置
CN110099229B (zh) 摄像装置
EP0793378A2 (en) Photoelectric conversion device using charge skimming
US11294078B2 (en) Radiation imaging apparatus and radiation imaging system
WO2018083894A1 (ja) 放射線撮像装置、放射線撮像システム、放射線撮像装置の駆動方法およびプログラム
US10854663B2 (en) Radiation imaging apparatus and radiation imaging system
CN116019468A (zh) 放射线摄像系统、放射线摄像装置及控制方法、存储介质
CN109561874B (zh) 固体摄像装置、放射线摄像系统及固体摄像装置控制方法
JP2008245153A (ja) フォトセンサ、フォトセンサアレイ、フォトセンサシステム及びフォトセンサシステムの駆動制御方法
US20220365228A1 (en) Radiation imaging apparatus, radiation imaging system, drive method for radiation imaging apparatus, and non-transitory computer-readable storage medium
JP2021052287A (ja) 放射線撮像装置及び放射線撮像システム
JP2021168450A (ja) 放射線撮像装置、放射線撮像システム、放射線撮像装置の駆動方法、および、プログラム
JP2021049204A (ja) 放射線撮像装置及び放射線撮像システム
JP2019213742A (ja) 放射線撮像装置、放射線撮像システム、および、放射線撮像装置の制御方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination