WO2019090888A1 - 一种锂电池用有机无机复合隔膜及制备方法 - Google Patents

一种锂电池用有机无机复合隔膜及制备方法 Download PDF

Info

Publication number
WO2019090888A1
WO2019090888A1 PCT/CN2017/115926 CN2017115926W WO2019090888A1 WO 2019090888 A1 WO2019090888 A1 WO 2019090888A1 CN 2017115926 W CN2017115926 W CN 2017115926W WO 2019090888 A1 WO2019090888 A1 WO 2019090888A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
organic
solvent
inorganic
alumina
Prior art date
Application number
PCT/CN2017/115926
Other languages
English (en)
French (fr)
Inventor
周寿斌
汪的华
彭创
毛旭辉
刘畅
王雅琼
肖巍
钱帮芬
姜庆海
Original Assignee
江苏华富储能新技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏华富储能新技术股份有限公司 filed Critical 江苏华富储能新技术股份有限公司
Publication of WO2019090888A1 publication Critical patent/WO2019090888A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • H01M50/406Moulding; Embossing; Cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to an organic-inorganic composite separator for a lithium battery and a preparation method thereof, and belongs to the technical field of lithium batteries.
  • lithium-ion batteries originated in the 1990s, but it has only been 20 years. In the past 20 years, it has been a leap in the lithium battery industry. With the attention of countries to the environment and new energy, lithium-ion batteries will have a rapid development.
  • Lithium-ion batteries have the following characteristics: (1) High operating voltage. The voltage of a lithium-ion battery is generally 3.6V, which is three times the working voltage of a nickel-cadmium and nickel-hydrogen battery. (2) High energy density. The energy density of lithium-ion batteries should reach 180Wh/kg, which is three times that of nickel-cadmium batteries of the same quality and 1.5 times that of nickel-hydrogen batteries. (3) Long cycle life. Lithium-ion batteries typically have a cycle life of more than 1,000 cycles, which is twice that of nickel-cadmium and nickel-hydrogen batteries. (4) The self-discharge rate is small. Lithium-ion battery forms a solid electrolyte passivation film (SEI) on the carbon negative electrode during the first charging process.
  • SEI solid electrolyte passivation film
  • the monthly self-discharge rate is 2% to 3%, which is much lower than that of nickel-cadmium batteries (25% to 30%) and nickel-hydrogen batteries (20%).
  • the temperature range is wide, and it has excellent high and low temperature discharge performance, and can work between -20 ° C and +60 ° C.
  • the memory effect means that the amount of charge will decrease when the battery is not fully charged, and the lithium ion battery does not have the memory effect of the nickel-cadmium or nickel-hydrogen battery, and can be charged and discharged at any time without affecting its capacity and cycle life. Because lithium-ion battery has the above excellent performance, it has shown broad application prospects and potential huge economic benefits in many aspects such as portable electronic equipment, electric vehicles, space technology, and defense industry. It is called the ideal power supply for the 21st century. .
  • the safety of battery separators is critical to the safety of lithium-ion batteries, whether high-capacity or high-power batteries.
  • the lithium battery separators currently used in commercial applications are PP and PE double-layer or three-layer composite separators.
  • One of the most prominent problems in the application of such separators is that the melting point of the polymer is generally low, the melting point of PE is 130 degrees Celsius, and the melting point of PP is 180. Celsius. Under the condition of abuse, the internal heat of the battery increases sharply, which causes great problem in battery safety.
  • CN103165841A discloses a method for producing a separator for a lithium ion battery, comprising the steps of: preparing a high melting point plastic particle blended with a nano material; and extruding and stretching the obtained high melting point plastic particle blended with the nano material; Heat setting; the nano material is one of nano silica, nano barium sulfate, and nano calcium carbonate, and the high melting plastic particles are one of PEEK, PEI or PPS plastic particles.
  • CN103915593A discloses a preparation method of a polyimide nano lithium ion battery separator and a product thereof, the preparation method comprising the following steps: preparing a polyamic acid solution: Preparation of 4,4'-diaminodiphenyl ether and 4,4'-oxydiphthalic anhydride in a certain ratio in dimethylacetamide (DMAc); preparation of melt: obtained polymer The solution is solidified at a certain temperature to obtain a cured product, and then the cured product is melted in the range of 20-30 ° C below the melting point to obtain a semi-crystalline melt; the separator is prepared: the obtained melt is melt-spun, recrystallized, hot and cold A series of processes for stretching and heat setting to obtain a nano-membrane; post-treatment of the separator: removing the diluent and some residual solvent in the separator, drying the polyamic acid separator in a vacuum; imidization treatment: preparing the prepared polyamic acid The nano-me
  • the above separator has a problem of low strength and low high temperature resistance.
  • the object of the present invention is to solve the problem that the separator inside the lithium battery has low strength and high temperature resistance, and an organic-inorganic composite separator having high strength and high temperature resistance is proposed.
  • An organic-inorganic composite separator for a lithium battery comprising an intermediate inorganic ceramic layer and an organic layer on both sides thereof, wherein the raw material of the organic layer comprises the following components in parts by weight: 50 to 70 parts of polyolefin, 10 to 20 parts of the non-conjugated olefin copolymer, 1 to 5 parts of the surfactant, 1 to 5 parts of the antioxidant, 1 to 5 parts of the lubricant, 1 to 5 parts of the filler, and 15 to 30 parts of the first solvent;
  • the raw material of the inorganic ceramic layer includes the following components in parts by weight: 40 to 60 parts of alumina/zirconia/two-dimensional nano titanium carbide composite particles, 20 to 40 parts of nano alumina particles, and 10 to 20 binders.
  • the fraction, the nonionic surface activity is 1 to 5 parts
  • the second solvent is 10 to 30 parts.
  • the material form of the organic layer is a nonwoven fabric.
  • the polyolefin is selected from the group consisting of polypropylene or polyethylene.
  • the non-conjugated olefin copolymer is selected from the group consisting of ethylene-propylene-diene rubber (EPDM).
  • the alumina/zirconia/two-dimensional nano-titanium carbide composite particles and/or nano-alumina particles have an average particle diameter ranging from 50 to 200 ⁇ m.
  • the first solvent is selected from one or a mixture of ethyl acetate, butyl acetate, ethanol, and propanol.
  • the second solvent is selected from one or a mixture of two of water or ethanol.
  • the preparation method of the alumina/zirconia/two-dimensional nano titanium carbide composite particles comprises the following steps:
  • the Ti 3 AlC 2 powder is ball-milled and then post-dried to obtain a refined ceramic powder
  • the refined ceramic powder is reacted by immersing 2 g to 10 g of 50 mL to 200 mL of hydrofluoric acid solution, and the corrosion product is washed with deionized water to neutrality, and then washed with absolute ethanol; the obtained solid sample is dried. , obtaining a ceramic powder after corrosion;
  • the third step 15 g to 25 g of the etched ceramic powder obtained in the step (2) is placed in 2 to 4 L of absolute ethanol, stirred, and then 5 to 20 g of aluminum nitrate powder and 1 to 5 g of ZrOCl 2 powder are added, and then Slowly add 100-150ml of dilute hydrochloric acid, continue to stir the reaction, centrifuge with absolute ethanol, then centrifuge with deionized water, and dry the solid sample to obtain Al(OH) 3 -Zr(OH) 2 -Ti 3 C 2 composite.
  • the ball milling time is 1 to 10 hours
  • the ball milling speed is 400 r/min
  • the ball mass ratio is 6:1
  • the drying temperature is 40 to 60 °C.
  • the concentration of the hydrofluoric acid solution is 35 to 45 wt%, and the reaction time is 6 to 12 h.
  • the mass concentration of the dilute hydrochloric acid is 1 to 5 wt%; the reaction time is 6 to 12 h; and the drying temperature is 110 to 120 °C.
  • the preparation method of the composite membrane comprises the following steps:
  • the alumina/zirconia/two-dimensional nano titanium carbide composite particles, the nano alumina particles, the binder, the nonionic surface active, and the second solvent are uniformly mixed to obtain an inorganic particle slurry;
  • an inorganic particle slurry is coated on the nonwoven fabric layer, and another layer of the nonwoven fabric layer is placed on the formed slurry layer; after drying, a composite separator is obtained.
  • the coating method may be selected from one of spray coating, knife coating or roll coating.
  • the lithium battery provided by the invention adopts an organic-inorganic composite diaphragm structure, and has the advantages of high temperature resistance and high strength.
  • a concentration range of "about 0.1% to about 5%” should be understood to include not only a concentration of about 0.1% to about 5% that is explicitly listed, but also a single concentration within a range of indications (eg, 1%, 2). %, 3%, and 4%) and subintervals (eg, 0.1% to 0.5%, 1% to 2.2%, 3.3% to 4.4%).
  • the percentages in the present invention refer to weight percentages unless otherwise specified.
  • the structure of the composite separator provided by the present invention comprises an intermediate inorganic ceramic layer and an organic layer on both sides thereof, wherein the raw material of the organic layer comprises the following components in parts by weight: 50 to 70 parts of polyolefin, 10 to 20 parts of the non-conjugated olefin copolymer, 1 to 5 parts of the nonionic surface active, 1 to 5 parts of the antioxidant, 1 to 5 parts of the lubricant, 1 to 5 parts of the filler, and 15 to 30 parts of the first solvent;
  • the raw material of the inorganic ceramic layer includes the following components by weight: 40-60 parts of alumina/zirconia/two-dimensional nano titanium carbide composite particles, 20-40 parts of nano-alumina particles, and binder 10 ⁇ 20 parts, 1 to 5 parts of nonionic surface active, and 10 to 30 parts of second solvent.
  • polystyrene resin examples include polyethylene, polypropylene, and a polymer formed of a resin such as ethylene or a copolymer of propylene and another ⁇ -olefin.
  • the polypropylene may be a polymer synthesized using a usual Ziegler-Natta catalyst, or may be a polymer synthesized using a single site catalyst represented by a metallocene.
  • the other ⁇ -olefin is an olefin having 3 to 10 carbon atoms, and specific examples thereof include propylene, 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, and - octene and the like. These may be used alone or in combination of two or more.
  • a non-conjugated olefin copolymer which is a reinforcing component which acts synergistically with the polyolefin to provide good compatibility and to provide improved adhesion between adjacent layers.
  • the preferred copolymer is ethylene-propylene-diene rubber (EPDM), which is obtained by introducing a small amount of the third component into ethylene-propylene rubber (EPM), a copolymer of ethylene and propylene, to form in the main chain. Double key.
  • EPM ethylene-propylene-diene rubber
  • DCP dicyclopentadiene
  • antioxidant for example, triphenylphosphite, tris(4-methylphenyl)phosphite, tris(4-t-butylphenyl)phosphite, tris(monodecylphenyl) sub may be employed.
  • Phosphate ester tris(2-methyl-4-ethylphenyl)phosphite, tris(2-methyl-4-tert-butylphenyl)phosphite, tris(2,4-di-tert-butyl) Phenyl)phosphite, tris(2,6-di-tert-butylphenyl)phosphite, tris(2,4-di-tert-butyl-5-methylphenyl)phosphite, three (mono, dinonylphenyl) phosphite, bis(monodecylphenyl)pentaerythritol-di-phosphite, bis(2,4-di-tert-butylphenyl)pentaerythritol-di-phosphite , bis(2,6-di-tert-butyl-4-methylphenyl)pentaerythritol-di-
  • the lubricant used in the present invention is not particularly limited as long as it functions to increase the fluidity of the thermoplastic polymer, and examples thereof include hydrocarbon lubricants such as liquid paraffin, solid paraffin, microcrystalline paraffin and polyethylene wax.
  • hydrocarbon lubricants such as liquid paraffin, solid paraffin, microcrystalline paraffin and polyethylene wax.
  • Fatty acid lubricants such as stearic acid, behenic acid, and 1,2-hydroxystearic acid; and ester lubricants such as butyl stearate, stearic acid monoglyceride, pentaerythritol tetrastearate , hardened castor oil and stearyl stearate.
  • the fillers used in the present invention generally refer to inert solid particulate materials such as finely divided silicic acid such as pyrogenic silicic acid or silica gel, titanium dioxide, hydroxides such as aluminum hydroxide, potassium carbonate, magnesium carbonate and calcium carbonate, silicon.
  • Acid salts such as sodium silicate, magnesium silicate, talc, calcium silicate, zinc silicate, aluminosilicates such as sodium aluminosilicate, potassium aluminosilicate, calcium aluminosilicate, bentonite, kaolin. These may be used alone or in combination of two or more.
  • the first solvent is used in the reaction.
  • the organic solvent which can be used include an alkane such as hexane, cyclohexane or heptane, an aromatic hydrocarbon compound such as toluene or xylene, methanol, ethanol, isopropanol, butanol, hexanol or cyclohexanol. Alcohols.
  • a ketone such as methyl ethyl ketone, methyl isobutyl ketone, cycloheptanone or cyclohexanone, an ether such as diethyl ether, tetrahydrofuran or dioxane, ethyl acetate, butyl acetate or formic acid may be used.
  • An ester compound such as a methyl ester or a nitrile compound such as acetonitrile.
  • an alkane such as hexane, cyclohexane or heptane, or an aromatic hydrocarbon compound such as toluene or xylene. More preferably, one or a mixture of ethyl acetate, butyl acetate, ethanol, and propanol is mixed.
  • the raw materials in the inorganic ceramic layer include: 40 to 60 parts of alumina/zirconia/two-dimensional nano titanium carbide composite particles, 20 to 40 parts of nano alumina particles, 10 to 20 parts of binder, and nonionic surface activity 1 ⁇ 5 parts and 10 to 30 parts of the second solvent.
  • the alumina/zirconia/two-dimensional nano titanium carbide composite particles can be prepared by the following method:
  • the Ti 3 AlC 2 powder is ball-milled and then post-dried to obtain a refined ceramic powder
  • the refined ceramic powder is reacted by immersing 2 g to 10 g of 50 mL to 200 mL of hydrofluoric acid solution, and the corrosion product is washed with deionized water to neutrality, and then washed with absolute ethanol; the obtained solid sample is dried. , obtaining a ceramic powder after corrosion;
  • the third step 15 g to 25 g of the etched ceramic powder obtained in the step (2) is placed in 2 to 4 L of absolute ethanol, stirred, and then 5 to 20 g of aluminum nitrate powder and 1 to 5 g of ZrOCl 2 powder are added, and then Slowly add 100-150ml of dilute hydrochloric acid, continue to stir the reaction, centrifuge with absolute ethanol, then centrifuge with deionized water, and dry the solid sample to obtain Al(OH) 3 -Zr(OH) 2 -Ti 3 C 2 composite.
  • the ball milling time is 1 to 10 hours
  • the ball milling speed is 400 r/min
  • the ball mass ratio is 6:1
  • the drying temperature is 40 to 60 °C.
  • the concentration of the hydrofluoric acid solution is 35 to 45 wt%, and the reaction time is 6 to 12 h.
  • the mass concentration of the dilute hydrochloric acid is 1 to 5 wt%; the reaction time is 6 to 12 h; and the drying temperature is 110 to 120 °C.
  • Binders include glycerin, hypromellose, dextrin, polyethylene glycol, syrup, gum arabic, sorbitol, gelatin or polyvinylpyrrolidone.
  • the second solvent is selected from one or a mixture of two of water or ethanol.
  • An organic-inorganic composite separator for a lithium battery comprising an intermediate inorganic ceramic layer and an organic layer on both sides thereof, the raw material of the organic layer comprising the following components by weight: 50 parts of polypropylene, non-conjugated olefin Copolymer ethylene-propylene-diene rubber (EPDM) 10 parts, sorbitan ester surfactant 1 part, antioxidant 1 part, lubricant polyethylene wax 1 part, filler calcium silicate 1 part, first solvent 15 parts of ethyl acetate;
  • the raw material of the inorganic ceramic layer includes the following components by weight: aluminum oxide / zirconia / two-dimensional nano titanium carbide composite particles (average particle size range of 50 ⁇ m) 40 parts, 20 parts of nano-alumina particles (average particle size range of 50 ⁇ m), 10 parts of binder polyethylene glycol, 1 part of sorbitan ester nonionic surface active, 10 parts of second solvent water; wherein, organic layer The material form is a non-woven fabric;
  • the preparation method of the alumina/zirconia/two-dimensional nano titanium carbide composite particles comprises the following steps:
  • the Ti 3 AlC 2 powder is ball-milled and then post-dried to obtain a refined ceramic powder
  • the refined ceramic powder is immersed in 50 mL of hydrofluoric acid solution, and the corrosion product is washed with deionized water to neutrality, and then washed with absolute ethanol; the obtained solid sample is dried to obtain corrosion.
  • the third step 15 g of the etched ceramic powder obtained in the step (2) is placed in 2 L of absolute ethanol, stirred, and then 5 g of aluminum nitrate powder and 1 g of ZrOCl 2 powder are added, and then 100 ml of dilute hydrochloric acid is slowly added dropwise, and stirring is continued.
  • the reaction was centrifuged with absolute ethanol and then centrifuged with deionized water to dry the solid sample to obtain an Al(OH) 3 -Zr(OH) 2 -Ti 3 C 2 composite.
  • the ball milling time is 1 h
  • the ball milling speed is 400 r/min
  • the ball mass ratio is 6:1
  • the drying temperature is 40 °C.
  • the concentration of the hydrofluoric acid solution was 35 wt%, and the reaction time was 6 h.
  • the mass concentration of dilute hydrochloric acid is 1 wt%; the reaction time is 6 h; and the drying temperature is 110 °C.
  • the preparation method of the composite membrane comprises the following steps:
  • the alumina/zirconia/two-dimensional nano titanium carbide composite particles, the nano alumina particles, the binder, the nonionic surface active, and the second solvent are uniformly mixed to obtain an inorganic particle slurry;
  • An organic-inorganic composite separator for a lithium battery comprising an intermediate inorganic ceramic layer and an organic layer on both sides thereof, the raw material of the organic layer comprising the following components by weight: 70 parts of polypropylene, non-conjugated olefin Copolymer ethylene-propylene-diene 20 parts of rubber (EPDM), 5 parts of sorbitan ester surfactant, 5 parts of antioxidant triphenyl phosphite, 5 parts of lubricant stearic acid, 5 parts of filler bentonite, first solvent ethyl acetate 15 ⁇ 30 parts;
  • the raw material of the inorganic ceramic layer includes the following components by weight: alumina/zirconia/two-dimensional nano titanium carbide composite particles (average particle size range of 200 ⁇ m) 60 parts, nano-oxidation 40 parts of aluminum particles (average particle size range of 200 ⁇ m), 20 parts of binder polyethylene glycol, 5 parts of sorbitan ester nonionic surface active, 30 parts of second
  • the preparation method of the alumina/zirconia/two-dimensional nano titanium carbide composite particles comprises the following steps:
  • the Ti 3 AlC 2 powder is ball-milled and then post-dried to obtain a refined ceramic powder
  • the etched ceramic powder obtained in the step (2) is placed in 4 L of absolute ethanol, stirred, and then 20 g of aluminum nitrate powder and 5 g of ZrOCl 2 powder are added, and then 150 ml of dilute hydrochloric acid is slowly added dropwise, and stirring is continued.
  • the reaction was centrifuged with absolute ethanol and then centrifuged with deionized water to dry the solid sample to obtain an Al(OH) 3 -Zr(OH) 2 -Ti 3 C 2 composite.
  • the ball milling time is 10 h
  • the ball milling speed is 400 r/min
  • the ball mass ratio is 6:1
  • the drying temperature is 60 °C.
  • the concentration of the hydrofluoric acid solution was 45 wt%, and the reaction time was 12 h.
  • the mass concentration of dilute hydrochloric acid is 5 wt%; the reaction time is 12 h; and the drying temperature is 120 °C.
  • the preparation method of the composite membrane comprises the following steps:
  • S1 a polyolefin, a non-conjugated olefin copolymer, a surfactant, an antioxidant, a lubricant, a filler, a first solvent are mixed, melt extruded at 220 ° C, and sprayed onto a mesh through a spinneret having a diameter of 0.5 mm. On the curtain, 160 ° C roll setting, to obtain a nonwoven layer with a thickness of 10 ⁇ 20 ⁇ m;
  • the alumina/zirconia/two-dimensional nano titanium carbide composite particles, the nano alumina particles, the binder, the nonionic surface active, and the second solvent are uniformly mixed to obtain an inorganic particle slurry;
  • An organic-inorganic composite separator for a lithium battery comprising an intermediate inorganic ceramic layer and an organic layer on both sides thereof, the raw material of the organic layer comprising the following components by weight: 60 parts of polypropylene, non-conjugated olefin Copolymer ethylene-propylene-diene rubber (EPDM) 15 parts, sorbitan ester surfactant 2 parts, antioxidant triphenyl phosphite 2 parts, lubricant liquid paraffin 2 parts, filler calcium silicate 2 And the first solvent ethyl acetate 19 parts; the raw material of the inorganic ceramic layer
  • the following components are included in parts by weight: aluminum oxide/zirconia/two-dimensional nano titanium carbide composite particles (average particle size range: 100 ⁇ m), 50 parts, and nano-alumina particles (average particle size range: 100 ⁇ m), 30 parts, 15 parts of polyethylene glycol of binder, 3 parts of non-ionic surface active of sorbitan ester, and 18 parts of second solvent water; where
  • the preparation method of the alumina/zirconia/two-dimensional nano titanium carbide composite particles comprises the following steps:
  • the Ti 3 AlC 2 powder is ball-milled and then post-dried to obtain a refined ceramic powder
  • the etched ceramic powder obtained in the step (2) is placed in 3 L of absolute ethanol, stirred, and then 10 g of aluminum nitrate powder and 3 g of ZrOCl 2 powder are added, and then 120 ml of dilute hydrochloric acid is slowly added dropwise, and stirring is continued.
  • the reaction was centrifuged with absolute ethanol and then centrifuged with deionized water to dry the solid sample to obtain an Al(OH) 3 -Zr(OH) 2 -Ti 3 C 2 composite.
  • the ball milling time is 5 h
  • the ball milling speed is 400 r/min
  • the ball mass ratio is 6:1
  • the drying temperature is 40 to 60 ° C.
  • the concentration of the hydrofluoric acid solution was 40% by weight, and the reaction time was 8 hours.
  • the mass concentration of dilute hydrochloric acid is 3 wt%; the reaction time is 8 h; and the drying temperature is 115 °C.
  • the preparation method of the composite membrane comprises the following steps:
  • the alumina/zirconia/two-dimensional nano titanium carbide composite particles, the nano alumina particles, the binder, the nonionic surface active, and the second solvent are uniformly mixed to obtain an inorganic particle slurry;
  • Example 3 The difference from Example 3 is that in the preparation of the alumina/zirconia/two-dimensional nano titanium carbide composite particles, the particles of the second step are not corroded by the hydrofluoric acid solution.
  • An organic-inorganic composite separator for a lithium battery comprising an intermediate inorganic ceramic layer and an organic layer on both sides thereof, the raw material of the organic layer comprising the following components by weight: 60 parts of polypropylene, non-conjugated olefin Copolymer ethylene-propylene-diene rubber (EPDM) 15 parts, sorbitan ester surfactant 2 parts, antioxidant triphenyl phosphite 2 parts, moist 2 parts of liquid paraffin, 2 parts of filler calcium silicate, 19 parts of ethyl acetate of the first solvent;
  • the raw material of the inorganic ceramic layer includes the following components by weight: alumina/zirconia/two Vitamin Nano titanium carbide composite particles (average particle size range of 100 ⁇ m) 50 parts, nano alumina particles (average particle size range of 100 ⁇ m) 30 parts, binder polyethylene glycol 15 parts, sorbitan ester nonionic 3 parts of surface active and 18 parts of second solvent water; wherein the material form of the
  • the preparation method of the alumina/zirconia/two-dimensional nano titanium carbide composite particles comprises the following steps:
  • the Ti 3 AlC 2 powder is ball-milled and then post-dried to obtain a refined ceramic powder
  • the refined ceramic powder is washed with deionized water until neutral, and then washed with absolute ethanol; the obtained solid sample is dried to obtain a washed ceramic powder;
  • the washed ceramic powder obtained in the step (2) is placed in 3 L of absolute ethanol, stirred, and then 10 g of aluminum nitrate powder and 3 g of ZrOCl 2 powder are added, and then 120 ml of dilute hydrochloric acid is slowly added dropwise, and stirring is continued.
  • the reaction was centrifuged with absolute ethanol and then centrifuged with deionized water to dry the solid sample to obtain an Al(OH) 3 -Zr(OH) 2 -Ti 3 C 2 composite.
  • the ball milling time is 5 h
  • the ball milling speed is 400 r/min
  • the ball mass ratio is 6:1
  • the drying temperature is 40 to 60 ° C.
  • the concentration of the hydrofluoric acid solution was 40% by weight, and the reaction time was 8 hours.
  • the mass concentration of dilute hydrochloric acid is 3 wt%; the reaction time is 8 h; and the drying temperature is 115 °C.
  • the preparation method of the composite membrane comprises the following steps:
  • the alumina/zirconia/two-dimensional nano titanium carbide composite particles, the nano alumina particles, the binder, the nonionic surface active, and the second solvent are uniformly mixed to obtain an inorganic particle slurry;
  • Example 3 The difference from Example 3 is that EPDM is not added to the organic layer.
  • An organic-inorganic composite separator for a lithium battery comprising an intermediate inorganic ceramic layer and an organic layer on both sides thereof, the raw material of the organic layer comprising the following components by weight: 60 parts of polypropylene, sorbitan 2 parts of ester surfactant, 2 parts of antioxidant triphenyl phosphite, 2 parts of lubricant liquid paraffin, 2 parts of filler calcium silicate, first solvent ethyl acetate 19 parts;
  • the raw material of the inorganic ceramic layer includes the following components by weight: alumina/zirconia/two-dimensional nano titanium carbide composite particles (average particle size range is 100 ⁇ m) 50 parts, nano-alumina 30 parts of particles (average particle size range of 100 ⁇ m), 15 parts of binder polyethylene glycol, 3 parts of sorbitan ester nonionic surface active, and 18 parts of second solvent water; wherein the material form of the organic layer is Non-woven fabric;
  • the preparation method of the alumina/zirconia/two-dimensional nano titanium carbide composite particles comprises the following steps:
  • the Ti 3 AlC 2 powder is ball-milled and then post-dried to obtain a refined ceramic powder
  • the etched ceramic powder obtained in the step (2) is placed in 3 L of absolute ethanol, stirred, and then 10 g of aluminum nitrate powder and 3 g of ZrOCl 2 powder are added, and then 120 ml of dilute hydrochloric acid is slowly added dropwise, and stirring is continued.
  • the reaction was centrifuged with absolute ethanol and then centrifuged with deionized water to dry the solid sample to obtain an Al(OH) 3 -Zr(OH) 2 -Ti 3 C 2 composite.
  • the ball milling time is 5 h
  • the ball milling speed is 400 r/min
  • the ball mass ratio is 6:1
  • the drying temperature is 40 to 60 ° C.
  • the concentration of the hydrofluoric acid solution was 40% by weight, and the reaction time was 8 hours.
  • the mass concentration of dilute hydrochloric acid is 3 wt%; the reaction time is 8 h; and the drying temperature is 115 °C.
  • the preparation method of the composite membrane comprises the following steps:
  • the alumina/zirconia/two-dimensional nano titanium carbide composite particles, the nano alumina particles, the binder, the nonionic surface active, and the second solvent are uniformly mixed to obtain an inorganic particle slurry;
  • a mixture of 100 g of the positive active material LiCoO 2 , 2 g of a binder of vinylidene fluoride (PVDF), and 3 g of a conductive agent acetylene black was added to 40 g of N-methyl-2-pyrrolidone (NMP), followed by vacuum Stir in a blender to form a uniform positive electrode slurry.
  • NMP N-methyl-2-pyrrolidone
  • the slurry was uniformly coated on an aluminum foil, and then dried, rolled, and cut at 150 ° C to obtain a positive electrode having a size of 390 mm ⁇ 40 mm ⁇ 18 ⁇ m (thickness) containing 5.8 g of active ingredient LiCoO 2 . .
  • the negative electrode slurry was uniformly coated on both sides of the copper foil, and then dried at 90 ° C, rolled and cut to obtain a negative electrode having a size of 395 mm ⁇ 41 mm ⁇ 12 ⁇ m (thickness), which contained 2.6 grams of active ingredient natural graphite.
  • the positive electrode, the negative electrode and the separator obtained above were laminated in this order and wound up, and then placed in a square aluminum case of 4.0 mm ⁇ 34 mm ⁇ 46 mm.
  • the separators were the composite separators produced in the examples and the comparative examples, respectively.
  • An electrolyte containing 1 mol of lithium hexafluorophosphate (LiPF 6 ) in a solvent (ethylene carbonate: methyl ethyl carbonate: diethyl carbonate (EC/EMC/DEC) volume ratio of 1:1:1) is about 2.4 g was injected into the above battery and aged in a conventional manner, and a lithium ion secondary battery was obtained by sealing the aluminum case of the battery.
  • the battery has a design capacity of 750 mAh.
  • the test method was as follows: The battery was charged in 1 C to a 100% state of charge, placed in an oven, and the oven temperature was raised from room temperature to 150 ° C and 180 ° C at 5 ° C / min, wherein a battery voltage drop greater than 0.2 volt was considered a short circuit.
  • the test method is as follows: The battery is cyclically charged and discharged 500 times at 25 ° C ⁇ 5 ° C, and the remaining amount of electricity is recorded. The higher the remaining charge, the longer the battery life.
  • the battery separator provided by the invention has better strength and high temperature resistance, can still maintain more than 80% of the remaining electricity after multiple cycles of discharge; and has the advantage of low conductivity.
  • Example 3, relative to Comparative Example 1, can promote the roughening of the surface of the powder by the ceramic powder in the hydrofluoric acid solution, and can be combined with the organic layer.
  • Better integration improves the strength of the separator material; in addition, in Example 3, by adding EPDM, it is possible to better fuse with the inorganic particle layer, and the conductivity of the separator can be lowered.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Cell Separators (AREA)

Abstract

一种锂电池用有机无机复合隔膜及制备方法,属于锂电池技术领域。复合隔膜,包括有中间的无机陶瓷层以及其两侧的有机层,所述有机层的原料中包括有如下组分:聚烯烃、非共轭烯烃共聚物、表面活性剂、抗氧化剂、润滑剂、填料、第一溶剂;所述的无机陶瓷层的原料中包括有按重量份计的如下组分:氧化铝/氧化锆/二维纳米碳化钛复合颗粒、纳米氧化铝颗粒、粘合剂、非离子表面活性、第二溶剂。提供的有机无机复合隔膜的锂电池,具有耐高温性能好、强度高的优点。

Description

一种锂电池用有机无机复合隔膜及制备方法 技术领域
本发明涉及一种锂电池用有机无机复合隔膜及制备方法,属于锂电池技术领域。
背景技术
锂离子电池的发展源于上世纪90年代,至今不过20年,在过去的20年是锂电行业的一次飞跃,随着各国对环境、新能源的重视,锂离子电池更会有突飞猛进的发展。
锂离子电池具有以下特点:(1)工作电压高。锂离子电池的电压一般在3.6V,是镍镉、镍氢电池工作电压的3倍。(2)能量密度高。锂离子电池的能量密度应达到180Wh/kg,是同等质量下镍镉电池的3倍,镍氢电池的1.5倍。(3)循环寿命长。锂离子电池通常具有1000多次的循环寿命,是镍镉、镍氢电池的2倍。(4)自放电率小。锂离子电池在首次充电的过程中会在碳负极上形成一层固体电解质钝化膜(SEI),它只允许离子通过而不允许电子通过,因此可以较好地防止自放电,使得贮存寿命增长,容量衰减减小。一般其月自放电率为2%~3%,远低于镍镉电池(25%~30%)及镍氢电池(20%)。(5)允许温度范围宽,具有优良的高低温放电性能,可在-20℃~+60℃之间工作。(6)无环境污染。锂离子电池中不含有铅、镉等有毒、有害物质,是真正的绿色环保电池。(7)无记忆效应。记忆效应指电池用电未完时再充电时充电量会下降,而锂离子电池不存在镍镉、镍氢电池的记忆效应,可随时充放电,而不影响其容量和循环寿命。由于锂离子电池具有以上优良的性能,因此它在便携式电子设备、电动汽车、空间技术、国防工业等多方面均展示了广阔的应用前景和潜在的巨大经济效益,被称为21世纪的理想电源。
电池隔膜的安全性对锂离子电池,不论是高容量电池还是高功率电池的安全性都至关重要。我们知道目前商业化应用的锂电池隔膜是PP和PE双层或者三层复合隔膜,此种隔膜现在应用的一个最突出问题就是聚合物熔点一般较低,PE熔点是130摄氏度,PP熔点是180摄氏度。在滥用条件下,电池内部热量急剧增大从而使电池安全性发生极大问题。
CN103165841A公开了一种锂离子电池用隔膜的生产方法,包括以下步骤:制备与纳米材料共混的高熔点塑料粒子;将得到的与纳米材料共混的高熔点塑料粒子进行挤出和拉伸;热定型;所述的纳米材料是纳米二氧化硅、纳米硫酸钡、纳米碳酸钙中的一种,所述的高熔点塑料粒子是PEEK、PEI或PPS塑料粒子中的一种。CN103915593A公开了一种聚酰亚胺纳米锂离子电池隔膜的制备方法及其产品,其制备方法包括以下步骤:聚酰胺酸溶液的制备: 将4,4'一二氨基二苯醚与4,4'一氧双邻苯二甲酸酐按一定比例在二甲基乙酰胺(DMAc)中缩聚制得;熔体的制备:将所得聚合物溶液在一定温度下固化得到固化物,再将固化物在其熔点以下20-30℃范围内熔化,得到半结晶熔体;隔膜制备:将得到的熔体经熔融纺丝、重结晶、冷热拉伸及热定型一系列工艺处理得到纳米隔膜;隔膜后处理:包括去除隔膜中的稀释剂及部分剩余溶剂,在真空中干燥聚酰胺酸隔膜;亚胺化处理:对制备得到的聚酰胺酸纳米隔膜进行高温亚胺化处理得到聚酰亚胺纳米隔膜。
但是上述的隔膜存在着强度低、耐高温性能不高的问题。
发明内容
本发明的目的是:解决锂电池内部的隔膜存在着强度低、耐高温性能不高的问题,提出了一种具有高强度、耐高温性能优异的有机无机复合隔膜。
技术方案:
一种锂电池用有机无机复合隔膜,包括有中间的无机陶瓷层以及其两侧的有机层,所述有机层的原料中包括有按重量份计的如下组分:聚烯烃50~70份、非共轭烯烃共聚物10~20份、表面活性剂1~5份、抗氧化剂1~5份、润滑剂1~5份、填料1~5份、第一溶剂15~30份;所述的无机陶瓷层的原料中包括有按重量份计的如下组分:氧化铝/氧化锆/二维纳米碳化钛复合颗粒40~60份、纳米氧化铝颗粒20~40份、粘合剂10~20份、非离子表面活性1~5份、第二溶剂10~30份。
所述的有机层的材料形态是无纺布。
所述的聚烯烃选自聚丙烯或者聚乙烯。
所述的非共轭烯烃共聚物选自乙烯-丙烯-二烯橡胶(EPDM)。
所述氧化铝/氧化锆/二维纳米碳化钛复合颗粒和/或纳米氧化铝颗粒的平均粒径范围是50~200μm。
所述的第一溶剂选自乙酸乙酯、乙酸丁酯、乙醇、丙醇中的一种或者几种的混合。
所述的第二溶剂选自水或者乙醇中的一种或者两者的混合。
所述氧化铝/氧化锆/二维纳米碳化钛复合颗粒的制备方法,包括如下步骤:
第1步,将Ti3AlC2粉体球磨,再进行后烘干,得到细化的陶瓷粉体;
第2步,将细化的陶瓷粉体取2g~10g浸没50mL~200mL氢氟酸溶液中反应,将腐蚀产物用去离子水清洗至中性,然后用无水乙醇清洗;将所得固体样品干燥,得到腐蚀后的陶瓷粉体;
第3步,将步骤(2)所得腐蚀后的陶瓷粉体取15g~25g放入2~4L无水乙醇中,搅拌,再加入5~20g的硝酸铝粉末和1~5g ZrOCl2粉末,再缓慢滴加稀盐酸100~150ml,继续搅拌反应,用无水乙醇离心清洗后再用去离子水离心清洗,将固体样品烘干,即得Al(OH)3-Zr(OH)2-Ti3C2复合材料。
所述的第1步中,球磨时间1~10h,球磨转速400r/min,球料质量比6:1;烘干温度是40~60℃。
所述的第2步中,氢氟酸溶液的浓度35~45wt%,反应时间6~12h。
所述的第3步中,稀盐酸的质量浓度是1~5wt%;反应时间6~12h;烘干温度是110~120℃。
所述的复合隔膜的制备方法,包括如下步骤:
S1,将聚烯烃、非共轭烯烃共聚物、表面活性剂、抗氧化剂、润滑剂、填料、第一溶剂混合,在210~220℃下熔融挤出,通过直径为0.1~0.5mm的喷丝头喷到网帘上,150~160℃辊压定型,得到厚度为10~20μm的无纺布层;
S2,将氧化铝/氧化锆/二维纳米碳化钛复合颗粒、纳米氧化铝颗粒、粘合剂、非离子表面活性、第二溶剂混合均匀,得到无机颗粒浆料;
S3,在无纺布层上涂覆无机颗粒浆料,再在形成的浆料层上放置另一层的无纺布层;再经过烘干后,得到复合隔膜。
所述涂覆方法可选自喷涂、刮涂或辊涂中的一种。
有益效果
本发明提供的锂电池采用了有机无机复合隔膜结构,具有耐高温性能好、强度高的优点。
具体实施方式
下面通过具体实施方式对本发明作进一步详细说明。但本领域技术人员将会理解,下列实施例仅用于说明本发明,而不应视为限定本发明的范围。实施例中未注明具体技术或条件者,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。
本文使用的词语“包括”、“包含”、“具有”或其任何其他变体意欲涵盖非排它性的包括。例如,包括列出要素的工艺、方法、物品或设备不必受限于那些要素,而是可以包括其他没有明确列出或属于这种工艺、方法、物品或设备固有的要素。
以范围形式表达的值应当以灵活的方式理解为不仅包括明确列举出的作为范围限值的数 值,而且还包括涵盖在该范围内的所有单个数值或子区间,犹如每个数值和子区间被明确列举出。例如,“大约0.1%至约5%”的浓度范围应当理解为不仅包括明确列举出的约0.1%至约5%的浓度,还包括有所指范围内的单个浓度(如,1%、2%、3%和4%)和子区间(例如,0.1%至0.5%、1%至2.2%、3.3%至4.4%)。本发明中的百分比在无特殊说明情况下是指重量百分比。
本发明所提供的复合隔膜的结构,包括有中间的无机陶瓷层以及其两侧的有机层,所述有机层的原料中包括有按重量份计的如下组分:聚烯烃50~70份、非共轭烯烃共聚物10~20份、非离子表面活性1~5份、抗氧化剂1~5份、润滑剂1~5份、填料1~5份、第一溶剂15~30份;所述的无机陶瓷层的原料中包括有按重量份计的如下组分:氧化铝/氧化锆/二维纳米碳化钛复合颗粒40~60份、纳米氧化铝颗粒20~40份、粘合剂10~20份、非离子表面活性1~5份、第二溶剂10~30份。
本发明中使用的聚烯烃例如可列举出聚乙烯、聚丙烯、以及由乙烯或丙烯与其它α-烯烃的共聚物等树脂形成的聚合物。
聚丙烯可以为利用通常的Ziegler-Natta催化剂合成的聚合物,或者也可以是利用以茂金属为代表的单活性中心催化剂合成的聚合物。作为其它α-烯烃,为碳数3~10的烯烃,具体而言,可列举出丙烯、1-丁烯、1-戊烯、1-己烯、4-甲基-1-戊烯和1-辛烯等。这些可以单独使用1种,也可以组合2种以上。
有机层中还包括有非共轭烯烃共聚物,它是增强成分,它与聚烯烃进行协同作用,能够提供良好相容性并提供改善的相邻的层之间结合力更牢固的作用。较优的共聚物采用的是乙烯-丙烯-二烯橡胶(EPDM),EPDM通过将少量第三组分引入乙丙橡胶(EPM)即乙烯和丙烯的共聚物来获得,从而在主链中形成双键。有许多具有不同量的不同类型的第三组分(典型地包括亚乙基降冰片烯(ENB)、1,4-己二烯(1,4-HD)和二环戊二烯(DCP))的合成橡胶。
作为抗氧化剂,可以采用例如三苯基亚磷酸酯、三(4-甲基苯基)亚磷酸酯、三(4-叔丁基苯基)亚磷酸酯、三(单壬基苯基)亚磷酸酯、三(2-甲基-4-乙基苯基)亚磷酸酯、三(2-甲基-4-叔丁基苯基)亚磷酸酯、三(2,4-二-叔丁基苯基)亚磷酸酯、三(2,6-二-叔丁基苯基)亚磷酸酯、三(2,4-二-叔丁基-5-甲基苯基)亚磷酸酯、三(单,二壬基苯基)亚磷酸酯、双(单壬基苯基)季戊四醇-二-亚磷酸酯、双(2,4-二-叔丁基苯基)季戊四醇-二-亚磷酸酯、双(2,6-二-叔丁基-4-甲基苯基)季戊四醇-二-亚磷酸酯、双(2,4,6-三-叔丁基苯基)季戊四醇-二-亚磷酸酯、双(2,4-二-叔丁基-5-甲基苯基)季戊四醇-二-亚磷酸酯、2,2-亚甲基双(4,6-二甲基苯基)辛基亚磷酸酯、2,2-亚甲基双(4-叔丁基-6-甲基苯基)辛基亚磷酸酯、2,2-亚甲基双(4,6-二-叔丁基苯基)辛基亚磷酸酯、2,2-亚甲基双(4,6-二甲 基苯基)己基亚磷酸酯、2,2-亚甲基双(4,6-二甲基苯基)己基亚磷酸酯、2,2-亚甲基双(4,6-二-叔丁基苯基)硬脂基亚磷酸酯等亚磷酸酯化合物;季戊四醇基-四[3-(3,5-二-叔丁基4-羟基苯基)丙酸酯]、1,6-己二醇-双[3-(3,5-二-叔丁基4-羟基苯基)丙酸酯]、十八烷基-3-(3,5-二-叔丁基-4-羟基苯基)丙酸酯、1,3,5-三甲基-2,4,6-三(3,5-二-叔丁基-4-羟基苯甲基)苯、三乙二醇-双[3-(3-叔丁基-5-甲基-4-羟基苯基)丙酸酯]、3,9-双{2-[3-(3-叔丁基-4-羟基-5-甲基苯基)丙酰氧基]-1,1-二甲基乙基}2,4,8,10-四氧杂螺[5,5]十一烷、1,1,3-三[2-甲基-4-(3,5-二-叔丁基-4-羟基苯基丙酰氧基)-5-叔丁基苯基]丁烷等受阻苯酚类化合物;5,7-二-叔丁基-3-(3,4-二甲基苯基)-3H-苯并呋喃-2-酮等。这些可以单独使用或者2种以上并用。
本发明中使用的润滑剂没有特殊限定,只要其在提高热塑性聚合物的流动性方面发挥作用即可,它们的实例包括烃类润滑剂,例如液体石蜡、固体石蜡、微晶石蜡和聚乙烯蜡;脂肪酸润滑剂,例如硬脂酸、二十二碳酸、和1,2-羟基硬脂酸;和酯润滑剂,例如硬脂酸丁酯、硬脂酸单甘油酯、四硬脂酸季戊四醇酯、硬化蓖麻油和硬脂酸硬脂酯。
本发明中所采用的填料一般是指指惰性固体颗粒状物质,例如细碎硅酸,如热解硅酸或硅胶,二氧化钛,氢氧化物如氢氧化铝,碳酸钾、碳酸镁和碳酸钙,硅酸盐如硅酸钠、硅酸镁、滑石、硅酸钙、硅酸锌,铝硅酸盐如铝硅酸钠、铝硅酸钾、铝硅酸钙,膨润土,高岭土。这些可以单独使用也可以2种以上并用。
本反应中使用第一溶剂。可以使用的有机溶剂的具体例,可以列举己烷、环己烷、庚烷等烷烃类、甲苯、二甲苯等芳香烃化合物、甲醇、乙醇、异丙醇、丁醇、己醇、环己醇等醇类。另外,根据情况也可以使用甲乙酮、甲基异丁基酮、环庚酮、环己酮等酮类、乙醚、四氢呋喃、二氧杂环己烷等醚类、乙酸乙酯、乙酸丁酯、甲酸甲酯等酯化合物、乙腈等腈化合物等。作为特别优选的溶剂,有己烷、环己烷、庚烷等烷烃类,甲苯、二甲苯等芳香烃化合物。更优选乙酸乙酯、乙酸丁酯、乙醇、丙醇中的一种或者几种的混合。
在无机陶瓷层中的原料包括有:氧化铝/氧化锆/二维纳米碳化钛复合颗粒40~60份、纳米氧化铝颗粒20~40份、粘合剂10~20份、非离子表面活性1~5份、第二溶剂10~30份。
其中,氧化铝/氧化锆/二维纳米碳化钛复合颗粒可以通过如下方法制备得到:
第1步,将Ti3AlC2粉体球磨,再进行后烘干,得到细化的陶瓷粉体;
第2步,将细化的陶瓷粉体取2g~10g浸没50mL~200mL氢氟酸溶液中反应,将腐蚀产物用去离子水清洗至中性,然后用无水乙醇清洗;将所得固体样品干燥,得到腐蚀后的陶瓷粉体;
第3步,将步骤(2)所得腐蚀后的陶瓷粉体取15g~25g放入2~4L无水乙醇中,搅拌,再加入5~20g的硝酸铝粉末和1~5g ZrOCl2粉末,再缓慢滴加稀盐酸100~150ml,继续搅拌反应,用无水乙醇离心清洗后再用去离子水离心清洗,将固体样品烘干,即得Al(OH)3-Zr(OH)2-Ti3C2复合材料。
第1步中,球磨时间1~10h,球磨转速400r/min,球料质量比6:1;烘干温度是40~60℃。
第2步中,氢氟酸溶液的浓度35~45wt%,反应时间6~12h。
第3步中,稀盐酸的质量浓度是1~5wt%;反应时间6~12h;烘干温度是110~120℃。
粘合剂包括甘油、羟丙甲纤维素、糊精、聚乙二醇、糖浆、阿拉伯胶、山梨醇、明胶或聚乙烯吡咯烷酮等。
所述的第二溶剂选自水或者乙醇中的一种或者两者的混合。
在有机层和无机陶瓷层中使用的表面活性剂,可以采用的是非离子表面活性剂,例如,线型聚氧化烯烷基醚类,如聚氧化乙烯己基醚,聚氧化乙烯辛基醚,聚氧化乙烯癸基醚,聚氧化乙烯月桂基醚和聚氧化乙烯十六烷基醚;支化聚氧化烯基伯烷基醚类,如聚氧化乙烯2-乙基己基醚,聚氧化乙烯异十六烷基醚和聚氧化乙烯异硬脂基醚;支化聚氧化烯仲烷基醚类,如聚氧化乙烯1-己基己基醚,聚氧化乙烯1-辛基己基醚,聚氧化乙烯1-己基辛基醚,聚氧化乙烯1-戊基庚基醚和聚氧化乙烯1-庚基戊基醚;聚氧化烯链烯基醚类,如聚氧化乙烯油烯基醚;聚氧化烯烷基苯基醚类,如聚氧化乙烯辛基苯基醚,聚氧化乙烯壬基苯基醚,和聚氧化乙烯十二烷基苯基醚;聚氧化烯烷基芳基苯基醚类,如聚氧化乙烯三苯乙烯基苯基醚,聚氧化乙烯二苯乙烯基苯基醚,聚氧化乙烯苯乙烯基苯基醚,聚氧化乙烯三苄基苯基,聚氧化乙烯二苄基苯基醚,以及聚氧化乙烯苄基苯基醚;聚氧化烯脂肪酸酯类,如聚氧化乙烯单月桂酸酯,聚氧化乙烯单油酸酯,聚氧化乙烯单硬脂酸酯,聚氧化乙烯单肉豆蔻酸酯,聚氧化乙烯二月桂酸酯,聚氧化乙烯二油酸酯,聚氧化乙烯二肉豆蔻酸酯,以及聚氧化乙烯二硬脂酸酯;脱水山梨糖醇酯类,如脱水山梨糖醇单棕榈酸酯和脱水山梨糖醇单油酸酯;聚氧化烯脱水山梨糖醇脂肪酸酯类,如聚氧化乙烯脱水山梨糖醇单硬脂酸酯和聚氧化乙烯脱水山梨糖醇单油酸酯;甘油脂肪酸酯类,如甘油单硬脂酸酯,甘油单月桂酸酯和甘油单棕榈酸酯;聚氧化烯山梨糖醇脂肪酸酯类;蔗糖脂肪酸酯类;聚氧化烯蓖麻油醚类,如聚氧化乙烯蓖麻油醚;聚氧化烯氢化蓖麻油醚类,如聚氧化乙烯氢化蓖麻油醚;聚氧化烯烷基氨基醚类,如聚氧化乙烯月桂基氨基醚和聚氧化乙烯硬脂基氨基醚;氧化乙烯-氧化丙烯嵌段或无规共聚物;末端烷基醚化的氧化乙烯基-氧化丙烯基嵌段或无规共聚物;和末端蔗糖-醚化的氧化乙烯-氧化丙烯嵌段或无规共聚物。
实施例1
锂电池用有机无机复合隔膜,包括有中间的无机陶瓷层以及其两侧的有机层,所述有机层的原料中包括有按重量份计的如下组分:聚丙烯50份、非共轭烯烃共聚物乙烯-丙烯-二烯橡胶(EPDM)10份、脱水山梨糖醇酯类表面活性剂1份、抗氧化剂1份、润滑剂聚乙烯蜡1份、填料硅酸钙1份、第一溶剂乙酸乙酯15份;所述的无机陶瓷层的原料中包括有按重量份计的如下组分:氧化铝/氧化锆/二维纳米碳化钛复合颗粒(平均粒径范围是50μm)40份、纳米氧化铝颗粒(平均粒径范围是50μm)20份、粘合剂聚乙二醇10份、脱水山梨糖醇酯类非离子表面活性1份、第二溶剂水10份;其中,有机层的材料形态是无纺布;
所述氧化铝/氧化锆/二维纳米碳化钛复合颗粒的制备方法,包括如下步骤:
第1步,将Ti3AlC2粉体球磨,再进行后烘干,得到细化的陶瓷粉体;
第2步,将细化的陶瓷粉体取2gg浸没50mL氢氟酸溶液中反应,将腐蚀产物用去离子水清洗至中性,然后用无水乙醇清洗;将所得固体样品干燥,得到腐蚀后的陶瓷粉体;
第3步,将步骤(2)所得腐蚀后的陶瓷粉体取15g放入2L无水乙醇中,搅拌,再加入5g的硝酸铝粉末和1gZrOCl2粉末,再缓慢滴加稀盐酸100ml,继续搅拌反应,用无水乙醇离心清洗后再用去离子水离心清洗,将固体样品烘干,即得Al(OH)3-Zr(OH)2-Ti3C2复合材料。
所述的第1步中,球磨时间1h,球磨转速400r/min,球料质量比6:1;烘干温度是40℃。
所述的第2步中,氢氟酸溶液的浓度35wt%,反应时间6h。
所述的第3步中,稀盐酸的质量浓度是1wt%;反应时间6h;烘干温度是110℃。
所述的复合隔膜的制备方法,包括如下步骤:
S1,将聚烯烃、非共轭烯烃共聚物、表面活性剂、抗氧化剂、润滑剂、填料、第一溶剂混合,在210℃下熔融挤出,通过直径为0.1mm的喷丝头喷到网帘上,150℃辊压定型,得到厚度为10~20μm的无纺布层;
S2,将氧化铝/氧化锆/二维纳米碳化钛复合颗粒、纳米氧化铝颗粒、粘合剂、非离子表面活性、第二溶剂混合均匀,得到无机颗粒浆料;
S3,在无纺布层上喷涂无机颗粒浆料,再在形成的浆料层上放置另一层的无纺布层;再经过烘干后,得到复合隔膜。
实施例2
锂电池用有机无机复合隔膜,包括有中间的无机陶瓷层以及其两侧的有机层,所述有机层的原料中包括有按重量份计的如下组分:聚丙烯70份、非共轭烯烃共聚物乙烯-丙烯-二烯 橡胶(EPDM)20份、脱水山梨糖醇酯类表面活性剂5份、抗氧化剂三苯基亚磷酸酯5份、润滑剂硬脂酸5份、填料膨润土5份、第一溶剂乙酸乙酯15~30份;所述的无机陶瓷层的原料中包括有按重量份计的如下组分:氧化铝/氧化锆/二维纳米碳化钛复合颗粒(平均粒径范围是200μm)60份、纳米氧化铝颗粒(平均粒径范围是200μm)40份、粘合剂聚乙二醇20份、脱水山梨糖醇酯类非离子表面活性5份、第二溶剂水30份;其中,有机层的材料形态是无纺布;
所述氧化铝/氧化锆/二维纳米碳化钛复合颗粒的制备方法,包括如下步骤:
第1步,将Ti3AlC2粉体球磨,再进行后烘干,得到细化的陶瓷粉体;
第2步,将细化的陶瓷粉体取10g浸没200mL氢氟酸溶液中反应,将腐蚀产物用去离子水清洗至中性,然后用无水乙醇清洗;将所得固体样品干燥,得到腐蚀后的陶瓷粉体;
第3步,将步骤(2)所得腐蚀后的陶瓷粉体取25g放入4L无水乙醇中,搅拌,再加入20g的硝酸铝粉末和5gZrOCl2粉末,再缓慢滴加稀盐酸150ml,继续搅拌反应,用无水乙醇离心清洗后再用去离子水离心清洗,将固体样品烘干,即得Al(OH)3-Zr(OH)2-Ti3C2复合材料。
所述的第1步中,球磨时间10h,球磨转速400r/min,球料质量比6:1;烘干温度是60℃。
所述的第2步中,氢氟酸溶液的浓度45wt%,反应时间12h。
所述的第3步中,稀盐酸的质量浓度是5wt%;反应时间12h;烘干温度是120℃。
所述的复合隔膜的制备方法,包括如下步骤:
S1,将聚烯烃、非共轭烯烃共聚物、表面活性剂、抗氧化剂、润滑剂、填料、第一溶剂混合,在220℃下熔融挤出,通过直径为0.5mm的喷丝头喷到网帘上,160℃辊压定型,得到厚度为10~20μm的无纺布层;
S2,将氧化铝/氧化锆/二维纳米碳化钛复合颗粒、纳米氧化铝颗粒、粘合剂、非离子表面活性、第二溶剂混合均匀,得到无机颗粒浆料;
S3,在无纺布层上喷涂无机颗粒浆料,再在形成的浆料层上放置另一层的无纺布层;再经过烘干后,得到复合隔膜。
实施例3
锂电池用有机无机复合隔膜,包括有中间的无机陶瓷层以及其两侧的有机层,所述有机层的原料中包括有按重量份计的如下组分:聚丙烯60份、非共轭烯烃共聚物乙烯-丙烯-二烯橡胶(EPDM)15份、脱水山梨糖醇酯类表面活性剂2份、抗氧化剂三苯基亚磷酸酯2份、润滑剂液体石蜡2份、填料硅酸钙2份、第一溶剂乙酸乙酯19份;所述的无机陶瓷层的原料中 包括有按重量份计的如下组分:氧化铝/氧化锆/二维纳米碳化钛复合颗粒(平均粒径范围是100μm)50份、纳米氧化铝颗粒(平均粒径范围是100μm)30份、粘合剂聚乙二醇15份、脱水山梨糖醇酯类非离子表面活性3份、第二溶剂水18份;其中,有机层的材料形态是无纺布;
所述氧化铝/氧化锆/二维纳米碳化钛复合颗粒的制备方法,包括如下步骤:
第1步,将Ti3AlC2粉体球磨,再进行后烘干,得到细化的陶瓷粉体;
第2步,将细化的陶瓷粉体取5g浸没100mL氢氟酸溶液中反应,将腐蚀产物用去离子水清洗至中性,然后用无水乙醇清洗;将所得固体样品干燥,得到腐蚀后的陶瓷粉体;
第3步,将步骤(2)所得腐蚀后的陶瓷粉体取18g放入3L无水乙醇中,搅拌,再加入10g的硝酸铝粉末和3gZrOCl2粉末,再缓慢滴加稀盐酸120ml,继续搅拌反应,用无水乙醇离心清洗后再用去离子水离心清洗,将固体样品烘干,即得Al(OH)3-Zr(OH)2-Ti3C2复合材料。
所述的第1步中,球磨时间5h,球磨转速400r/min,球料质量比6:1;烘干温度是40~60℃。
所述的第2步中,氢氟酸溶液的浓度40wt%,反应时间8h。
所述的第3步中,稀盐酸的质量浓度是3wt%;反应时间8h;烘干温度是115℃。
所述的复合隔膜的制备方法,包括如下步骤:
S1,将聚烯烃、非共轭烯烃共聚物、表面活性剂、抗氧化剂、润滑剂、填料、第一溶剂混合,在215℃下熔融挤出,通过直径为0.2mm的喷丝头喷到网帘上,155℃辊压定型,得到厚度为10~20μm的无纺布层;
S2,将氧化铝/氧化锆/二维纳米碳化钛复合颗粒、纳米氧化铝颗粒、粘合剂、非离子表面活性、第二溶剂混合均匀,得到无机颗粒浆料;
S3,在无纺布层上喷涂无机颗粒浆料,再在形成的浆料层上放置另一层的无纺布层;再经过烘干后,得到复合隔膜。
对照例1
与实施例3的区别在于:氧化铝/氧化锆/二维纳米碳化钛复合颗粒的制备过程中,第2步的颗粒未经过氢氟酸溶液的腐蚀。
锂电池用有机无机复合隔膜,包括有中间的无机陶瓷层以及其两侧的有机层,所述有机层的原料中包括有按重量份计的如下组分:聚丙烯60份、非共轭烯烃共聚物乙烯-丙烯-二烯橡胶(EPDM)15份、脱水山梨糖醇酯类表面活性剂2份、抗氧化剂三苯基亚磷酸酯2份、润 滑剂液体石蜡2份、填料硅酸钙2份、第一溶剂乙酸乙酯19份;所述的无机陶瓷层的原料中包括有按重量份计的如下组分:氧化铝/氧化锆/二维纳米碳化钛复合颗粒(平均粒径范围是100μm)50份、纳米氧化铝颗粒(平均粒径范围是100μm)30份、粘合剂聚乙二醇15份、脱水山梨糖醇酯类非离子表面活性3份、第二溶剂水18份;其中,有机层的材料形态是无纺布;
所述氧化铝/氧化锆/二维纳米碳化钛复合颗粒的制备方法,包括如下步骤:
第1步,将Ti3AlC2粉体球磨,再进行后烘干,得到细化的陶瓷粉体;
第2步,将细化的陶瓷粉体5g,用去离子水清洗至中性,然后用无水乙醇清洗;将所得固体样品干燥,得到清洗后的陶瓷粉体;
第3步,将步骤(2)所得清洗后的陶瓷粉体取18g放入3L无水乙醇中,搅拌,再加入10g的硝酸铝粉末和3gZrOCl2粉末,再缓慢滴加稀盐酸120ml,继续搅拌反应,用无水乙醇离心清洗后再用去离子水离心清洗,将固体样品烘干,即得Al(OH)3-Zr(OH)2-Ti3C2复合材料。
所述的第1步中,球磨时间5h,球磨转速400r/min,球料质量比6:1;烘干温度是40~60℃。
所述的第2步中,氢氟酸溶液的浓度40wt%,反应时间8h。
所述的第3步中,稀盐酸的质量浓度是3wt%;反应时间8h;烘干温度是115℃。
所述的复合隔膜的制备方法,包括如下步骤:
S1,将聚烯烃、非共轭烯烃共聚物、表面活性剂、抗氧化剂、润滑剂、填料、第一溶剂混合,在215℃下熔融挤出,通过直径为0.2mm的喷丝头喷到网帘上,155℃辊压定型,得到厚度为10~20μm的无纺布层;
S2,将氧化铝/氧化锆/二维纳米碳化钛复合颗粒、纳米氧化铝颗粒、粘合剂、非离子表面活性、第二溶剂混合均匀,得到无机颗粒浆料;
S3,在无纺布层上喷涂无机颗粒浆料,再在形成的浆料层上放置另一层的无纺布层;再经过烘干后,得到复合隔膜。
对照例2
与实施例3的区别在于:在有机层中未加入EPDM。
锂电池用有机无机复合隔膜,包括有中间的无机陶瓷层以及其两侧的有机层,所述有机层的原料中包括有按重量份计的如下组分:聚丙烯60份、脱水山梨糖醇酯类表面活性剂2份、抗氧化剂三苯基亚磷酸酯2份、润滑剂液体石蜡2份、填料硅酸钙2份、第一溶剂乙酸乙酯 19份;所述的无机陶瓷层的原料中包括有按重量份计的如下组分:氧化铝/氧化锆/二维纳米碳化钛复合颗粒(平均粒径范围是100μm)50份、纳米氧化铝颗粒(平均粒径范围是100μm)30份、粘合剂聚乙二醇15份、脱水山梨糖醇酯类非离子表面活性3份、第二溶剂水18份;其中,有机层的材料形态是无纺布;
所述氧化铝/氧化锆/二维纳米碳化钛复合颗粒的制备方法,包括如下步骤:
第1步,将Ti3AlC2粉体球磨,再进行后烘干,得到细化的陶瓷粉体;
第2步,将细化的陶瓷粉体取5g浸没100mL氢氟酸溶液中反应,将腐蚀产物用去离子水清洗至中性,然后用无水乙醇清洗;将所得固体样品干燥,得到腐蚀后的陶瓷粉体;
第3步,将步骤(2)所得腐蚀后的陶瓷粉体取18g放入3L无水乙醇中,搅拌,再加入10g的硝酸铝粉末和3gZrOCl2粉末,再缓慢滴加稀盐酸120ml,继续搅拌反应,用无水乙醇离心清洗后再用去离子水离心清洗,将固体样品烘干,即得Al(OH)3-Zr(OH)2-Ti3C2复合材料。
所述的第1步中,球磨时间5h,球磨转速400r/min,球料质量比6:1;烘干温度是40~60℃。
所述的第2步中,氢氟酸溶液的浓度40wt%,反应时间8h。
所述的第3步中,稀盐酸的质量浓度是3wt%;反应时间8h;烘干温度是115℃。
所述的复合隔膜的制备方法,包括如下步骤:
S1,将聚烯烃、表面活性剂、抗氧化剂、润滑剂、填料、第一溶剂混合,在215℃下熔融挤出,通过直径为0.2mm的喷丝头喷到网帘上,155℃辊压定型,得到厚度为10~20μm的无纺布层;
S2,将氧化铝/氧化锆/二维纳米碳化钛复合颗粒、纳米氧化铝颗粒、粘合剂、非离子表面活性、第二溶剂混合均匀,得到无机颗粒浆料;
S3,在无纺布层上喷涂无机颗粒浆料,再在形成的浆料层上放置另一层的无纺布层;再经过烘干后,得到复合隔膜。
性能测试
测试电池性能
(1)正极的制备
将100克正极活性物质LiCoO2、2克粘合剂偏二氟乙烯(PVDF)、3克导电剂乙炔黑的混合物加入到40克N-甲基-2-吡咯烷酮(NMP)中,然后在真空搅拌机中搅拌形成均匀的正极浆料。
将该浆料均匀地涂布在铝箔上,然后150℃下烘干、辊压、裁切制得尺寸为390毫米×40毫米×18微米(厚)的正极,其中含有5.8克活性成分LiCoO2
(2)负极的制备
将100克负极活性物质天然石墨、1.5克粘合剂聚四氟乙烯(PTFE)和1.5克羧甲基纤维素(CMC)的混合物加入到100克水中,然后在真空搅拌机中搅拌形成均匀的负极浆料。
将该负极浆料均匀地涂布在铜箔的两侧上,然后在90℃下烘干,辊压、裁切制得尺寸为395毫米×41毫米×12微米(厚)的负极,其中含有2.6克活性成分天然石墨。
(3)用本发明的复合隔膜制作电池
将上述得到的正极、负极与隔膜依次叠层并卷绕好后纳入4.0毫米×34毫米×46毫米的方形铝壳中。所述隔膜分别为由实施例和对照例中制得的复合隔膜。
将在溶剂(碳酸亚乙酯:甲基乙基碳酸酯:碳酸二乙酯(EC/EMC/DEC)体积比为1:1:1)中含有1摩尔的六氟磷酸锂(LiPF6)的电解液约2.4克注入上述电池中,并按照常规方式陈化,密封电池铝壳即得到锂离子二次电池。该电池的设计容量为750毫安时。
(4)电池耐高温性能测试
测试方法如下:将电池进行1C充电到100%充电态,放置在烘箱中,烘箱温度以5℃/分钟从室温升高到150℃及180℃,其中电池电压跌落大于0.2伏视为短路。
(5)电池寿命测试
测试方法如下:在25℃±5℃下,将电池进行循环充放电500次,记录剩余电量。剩余电量越高,电池寿命越长。
将用实施例和对照例所制成的复合隔膜制作的电池,按照上述测试方法进行电池耐高温性能和寿命测试,所得到的结果列于表1中。
表1
Figure PCTCN2017115926-appb-000001
从上表中可以看出,本发明提供的电池隔膜具有较好的强度和耐高温性能,在多次循环放电后仍然可以保持80%以上的剩余电量;并且具有导电率低的优点。实施例3相对于对照例1来说,通过对陶瓷粉体在氢氟酸溶液中,可以促进粉体的表面的粗糙化,能够与有机层 更好的整合,提高隔膜材料的强度;另外实施例3相对于对照例2来说,通过加入EPDM可以更好地与无机颗粒层融合,可以降低隔膜的导电率。

Claims (8)

  1. 一种锂电池用有机无机复合隔膜,其特征在于,包括有中间的无机陶瓷层以及其两侧的有机层,所述有机层的原料中包括有按重量份计的如下组分:聚烯烃50~70份、非共轭烯烃共聚物10~20份、表面活性剂1~5份、抗氧化剂1~5份、润滑剂1~5份、填料1~5份、第一溶剂15~30份;所述的无机陶瓷层的原料中包括有按重量份计的如下组分:氧化铝/氧化锆/二维纳米碳化钛复合颗粒40~60份、纳米氧化铝颗粒20~40份、粘合剂10~20份、非离子表面活性1~5份、第二溶剂10~30份。
  2. 根据权利要求1所述的锂电池用有机无机复合隔膜,其特征在于,所述的有机层的材料形态是无纺布。
  3. 根据权利要求1所述的锂电池用有机无机复合隔膜,其特征在于,所述的聚烯烃选自聚丙烯或者聚乙烯;所述的非共轭烯烃共聚物选自乙烯-丙烯-二烯橡胶(EPDM);所述氧化铝/氧化锆/二维纳米碳化钛复合颗粒和/或纳米氧化铝颗粒的平均粒径范围是50~200μm。
  4. 根据权利要求1所述的锂电池用有机无机复合隔膜,其特征在于,所述的第一溶剂选自乙酸乙酯、乙酸丁酯、乙醇、丙醇中的一种或者几种的混合;所述的第二溶剂选自水或者乙醇中的一种或者两者的混合。
  5. 根据权利要求1所述的锂电池用有机无机复合隔膜,其特征在于,所述氧化铝/氧化锆/二维纳米碳化钛复合颗粒的制备方法,包括如下步骤:第1步,将Ti3AlC2粉体球磨,再进行后烘干,得到细化的陶瓷粉体;第2步,将细化的陶瓷粉体取2g~10g浸没50mL~200mL氢氟酸溶液中反应,将腐蚀产物用去离子水清洗至中性,然后用无水乙醇清洗;将所得固体样品干燥,得到腐蚀后的陶瓷粉体;第3步,将步骤(2)所得腐蚀后的陶瓷粉体取15g~25g放入2~4L无水乙醇中,搅拌,再加入5~20g的硝酸铝粉末和1~5g ZrOCl2粉末,再缓慢滴加稀盐酸100~150ml,继续搅拌反应,用无水乙醇离心清洗后再用去离子水离心清洗,将固体样品烘干,即得Al(OH)3-Zr(OH)2-Ti3C2复合材料。
  6. 根据权利要求5所述的锂电池用有机无机复合隔膜,其特征在于,所述的第1步中,球磨时间1~10h,球磨转速400r/min,球料质量比6:1;烘干温度是40~60℃;所述的第2步中,氢氟酸溶液的浓度35~45wt%,反应时间6~12h;所述的第3步中,稀盐酸的质量浓度是1~5wt%;反应时间6~12h;烘干温度是110~120℃。
  7. 权利要求1~6任一项所述的锂电池用有机无机复合隔膜的制备方法,其特征在于,包括如下步骤:S1,将聚烯烃、非共轭烯烃共聚物、表面活性剂、抗氧化剂、润滑剂、填料、第一溶剂混合,在210~220℃下熔融挤出,通过直径为0.1~0.5mm的喷丝头喷到网帘上,150~160℃辊压定型,得到厚度为10~20μm的无纺布层;S2,将氧化铝/氧化锆/二维纳 米碳化钛复合颗粒、纳米氧化铝颗粒、粘合剂、非离子表面活性、第二溶剂混合均匀,得到无机颗粒浆料;S3,在无纺布层上涂覆无机颗粒浆料,再在形成的浆料层上放置另一层的无纺布层;再经过烘干后,得到复合隔膜。
  8. 根据权利要求7所述的电池用有机无机复合隔膜的制备方法,其特征在于,所述涂覆方法可选自喷涂、刮涂或辊涂中的一种。
PCT/CN2017/115926 2017-11-10 2017-12-13 一种锂电池用有机无机复合隔膜及制备方法 WO2019090888A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711107203.0A CN107994186A (zh) 2017-11-10 2017-11-10 一种锂电池用有机无机复合隔膜及制备方法
CN201711107203.0 2017-11-10

Publications (1)

Publication Number Publication Date
WO2019090888A1 true WO2019090888A1 (zh) 2019-05-16

Family

ID=62031262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/115926 WO2019090888A1 (zh) 2017-11-10 2017-12-13 一种锂电池用有机无机复合隔膜及制备方法

Country Status (2)

Country Link
CN (1) CN107994186A (zh)
WO (1) WO2019090888A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111916634A (zh) * 2020-07-30 2020-11-10 福建巨电新能源股份有限公司 一种锂离子电池用ptc效应隔膜
WO2020242982A1 (en) * 2019-05-24 2020-12-03 Drexel University Mxene-polymer separators for li-ion batteries
CN113278310A (zh) * 2021-04-30 2021-08-20 惠州锂威新能源科技有限公司 一种复合陶瓷颗粒及其制备方法和应用
CN114614201A (zh) * 2022-03-29 2022-06-10 河北金力新能源科技股份有限公司 斑马涂覆隔膜及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113444527A (zh) * 2021-06-29 2021-09-28 江苏品和石油科技有限公司 一种锂离子隔膜成孔油用抗氧化安定剂生产制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007035541A (ja) * 2005-07-29 2007-02-08 Nitto Denko Corp 電池用セパレータとこれを用いる電池の製造方法
CN101160677A (zh) * 2004-10-21 2008-04-09 德古萨有限责任公司 锂离子电池的无机隔膜电极单元、其制造方法和在锂离子电池中的应用
CN101707242A (zh) * 2009-10-14 2010-05-12 东莞新能源科技有限公司 有机/无机复合多孔隔离膜
CN102903879A (zh) * 2012-08-02 2013-01-30 龙能科技(苏州)有限公司 制备二次电池用有机-无机复合隔膜的方法
CN104088155A (zh) * 2014-06-25 2014-10-08 江苏华东锂电技术研究院有限公司 复合隔膜及其制备方法,以及锂离子电池
CN104393217A (zh) * 2014-10-20 2015-03-04 佛山荷韵特种材料有限公司 一种叠涂复合锂离子电池隔膜及其制备方法
CN107994185A (zh) * 2017-11-10 2018-05-04 江苏华富储能新技术股份有限公司 一种采用有机无机复合隔膜的锂电池及制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3983660B2 (ja) * 2002-12-26 2007-09-26 日東電工株式会社 電池用セパレータ
CN103415568B (zh) * 2011-03-05 2016-04-06 株式会社普利司通 树脂组合物
CN102751459B (zh) * 2011-04-22 2016-03-23 天津东皋膜技术有限公司 后交联橡胶、聚烯烃复合材料纳米微多孔隔膜及其制造方法
CN103545472B (zh) * 2012-07-17 2016-03-02 比亚迪股份有限公司 一种锂电池用复合隔膜及其制备方法和包括该复合隔膜的锂电池
CN106046417A (zh) * 2016-06-15 2016-10-26 李孟平 一种表面包覆型复合无机阻燃剂、制备方法及其在电缆材料中的应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101160677A (zh) * 2004-10-21 2008-04-09 德古萨有限责任公司 锂离子电池的无机隔膜电极单元、其制造方法和在锂离子电池中的应用
JP2007035541A (ja) * 2005-07-29 2007-02-08 Nitto Denko Corp 電池用セパレータとこれを用いる電池の製造方法
CN101707242A (zh) * 2009-10-14 2010-05-12 东莞新能源科技有限公司 有机/无机复合多孔隔离膜
CN102903879A (zh) * 2012-08-02 2013-01-30 龙能科技(苏州)有限公司 制备二次电池用有机-无机复合隔膜的方法
CN104088155A (zh) * 2014-06-25 2014-10-08 江苏华东锂电技术研究院有限公司 复合隔膜及其制备方法,以及锂离子电池
CN104393217A (zh) * 2014-10-20 2015-03-04 佛山荷韵特种材料有限公司 一种叠涂复合锂离子电池隔膜及其制备方法
CN107994185A (zh) * 2017-11-10 2018-05-04 江苏华富储能新技术股份有限公司 一种采用有机无机复合隔膜的锂电池及制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020242982A1 (en) * 2019-05-24 2020-12-03 Drexel University Mxene-polymer separators for li-ion batteries
CN111916634A (zh) * 2020-07-30 2020-11-10 福建巨电新能源股份有限公司 一种锂离子电池用ptc效应隔膜
CN113278310A (zh) * 2021-04-30 2021-08-20 惠州锂威新能源科技有限公司 一种复合陶瓷颗粒及其制备方法和应用
CN114614201A (zh) * 2022-03-29 2022-06-10 河北金力新能源科技股份有限公司 斑马涂覆隔膜及其制备方法

Also Published As

Publication number Publication date
CN107994186A (zh) 2018-05-04

Similar Documents

Publication Publication Date Title
WO2019090888A1 (zh) 一种锂电池用有机无机复合隔膜及制备方法
US20220052327A1 (en) Anode material, electrochemical device and electronic device using the same
KR101198806B1 (ko) 다공절연층을 포함하는 이차전지 전극 및 그 제조 방법
KR101723994B1 (ko) 분리막, 분리막의 제조 방법, 이를 포함하는 리튬 폴리머 이차 전지, 및 이를 이용한 리튬 폴리머 이차 전지의 제조 방법
CN110061293B (zh) 电解液和使用其的电化学装置
CA2781164C (en) Positive-electrode material for a lithium ion secondary battery and manufacturing method of the same
US20160351876A1 (en) Heat resisting separator having ultrafine fibrous layer and secondary battery having the same
KR101408038B1 (ko) 표면처리된 음극 및 이를 채용한 리튬 전지
CN106450116B (zh) 锂离子电池用疏水性二氧化硅气凝胶复合隔膜
EP2077594A1 (en) Composite separator films for lithium-ion batteries
CN102326277A (zh) 电池用隔板及非水锂电池
JP6146667B2 (ja) 蓄電素子及び車載用蓄電システム
EP4040588B1 (en) Safe lithium-ion battery (lib) separator, fabrication method thereof, and lib
CN112352344A (zh) 具有微细图案的分隔件、卷绕体及非水电解质电池
KR20170015149A (ko) 선택적 이온 흡착성 세퍼레이터, 이의 제조 방법 및 이를 포함하는 전기 화학 전지
CN114361717A (zh) 复合隔膜及电化学装置
US20240145710A1 (en) Negative electrode sheet and battery applying same
KR20150022264A (ko) 리튬 이차 전지의 제조방법 및 상기 제조방법에 의해 제조된 리튬 이차 전지
KR102238664B1 (ko) 그래핀을 포함하는 2차원소재 코팅 조성물과 이를 이용한 이차전지 분리막 및 그 제조방법
US8563178B2 (en) Negative electrode for lithium secondary battery including a multilayer film on a tin based current collector and manufacturing method thereof
CN116565123A (zh) 干法电极片及其制备方法、钠离子电池
CN106450203B (zh) 金属氧化物/导电聚合物双重修饰的硫复合正极材料的制备方法
CN114649560A (zh) 一种Zn-MOF/PAN@PAN复合隔膜材料及其制备方法和应用
KR20170055419A (ko) 흡습성 물질을 포함하는 리튬 이차전지용 전극 및 이를 포함하는 리튬 이차전지
JP7160621B2 (ja) 含微量金属架橋セパレータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17931784

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17931784

Country of ref document: EP

Kind code of ref document: A1