WO2019088196A1 - 固体電解質、電極、蓄電素子及び固体電解質の製造方法 - Google Patents

固体電解質、電極、蓄電素子及び固体電解質の製造方法 Download PDF

Info

Publication number
WO2019088196A1
WO2019088196A1 PCT/JP2018/040578 JP2018040578W WO2019088196A1 WO 2019088196 A1 WO2019088196 A1 WO 2019088196A1 JP 2018040578 W JP2018040578 W JP 2018040578W WO 2019088196 A1 WO2019088196 A1 WO 2019088196A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
electrode
fsi
electrolyte
layer
Prior art date
Application number
PCT/JP2018/040578
Other languages
English (en)
French (fr)
Inventor
シュービン チェン
フィリップ フェレーケン
マールテン メース
クヌート ビャーネ ガンドラッド
村田 充弘
暁彦 相良
幸広 金子
富山 盛央
嶋田 幹也
Original Assignee
アイメック・ヴェーゼットウェー
カトリーケ・ユニフェルシテイト・ルーヴァン
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイメック・ヴェーゼットウェー, カトリーケ・ユニフェルシテイト・ルーヴァン, パナソニック株式会社 filed Critical アイメック・ヴェーゼットウェー
Priority to JP2019514840A priority Critical patent/JP7134948B2/ja
Priority to EP18874328.0A priority patent/EP3706226A4/en
Priority to US16/481,782 priority patent/US11557789B2/en
Publication of WO2019088196A1 publication Critical patent/WO2019088196A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/56Solid electrolytes, e.g. gels; Additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0045Room temperature molten salts comprising at least one organic ion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0085Immobilising or gelification of electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to a solid electrolyte, an electrode, a storage element, and a method of manufacturing a solid electrolyte.
  • Patent Document 1 discloses a method of producing a solid electrolyte by a sol-gel method using a liquid mixture containing an ionic liquid, a lithium salt and a silica precursor.
  • the present disclosure provides a novel solid electrolyte that exhibits high ionic conductivity.
  • the present disclosure Porous silica having a plurality of interconnected pores; An electrolyte covering an inner surface of the plurality of holes; Equipped with The electrolyte includes 1-ethyl-3-methylimidazolium bis (fluorosulfonyl) imide represented by EMI-FSI, and a lithium salt dissolved in the EMI-FSI,
  • EMI-FSI 1-ethyl-3-methylimidazolium bis (fluorosulfonyl) imide
  • a lithium salt dissolved in the EMI-FSI The solid electrolyte is provided, wherein the molar ratio of the EMI-FSI to silica is greater than 1.0 and less than 3.5.
  • a novel solid electrolyte exhibiting high ion conductivity can be provided.
  • FIG. 1A is a view schematically showing an example of a cross-sectional structure of a solid electrolyte according to a first embodiment.
  • FIG. 1B is a view schematically showing a cross section of pores of porous silica.
  • FIG. 2 is a view schematically showing an example of the structure of the first electrolyte layer.
  • FIG. 3 is a view schematically showing another example of the structure of the first electrolyte layer.
  • FIG. 4 is a view schematically showing still another example of the structure of the first electrolyte layer.
  • FIG. 5 is a flowchart showing an example of the method of manufacturing the solid electrolyte according to the first embodiment.
  • FIG. 6 is a view schematically showing an example of the cross-sectional structure of the electrode according to the second embodiment.
  • FIG. 1A is a view schematically showing an example of a cross-sectional structure of a solid electrolyte according to a first embodiment.
  • FIG. 1B is a view schematically showing
  • FIG. 7 is a flowchart showing an example of a method of manufacturing an electrode according to the second embodiment.
  • FIG. 8 is a flowchart showing another example of the method of manufacturing an electrode according to the second embodiment.
  • FIG. 9 is a flowchart showing still another example of the method of manufacturing an electrode according to the second embodiment.
  • FIG. 10 is a view schematically showing an example of the cross-sectional structure of the storage element according to the third embodiment.
  • FIG. 11 is a view schematically showing an example of the cross-sectional structure of the storage element according to the fourth embodiment.
  • FIG. 12 is a view schematically showing an example of the cross-sectional structure of the storage element of the fifth embodiment.
  • FIG. 13 is a graph showing the relationship between the molar ratio of EMI-FSI to TEOS and the ion conductivity.
  • FIG. 14A is a view schematically showing the state of the inner surface of the porous silica pore when the molar ratio of EMI-FSI to TEOS is too small.
  • FIG. 14B is a view schematically showing the state of the inner surface of the pores of porous silica when the molar ratio of EMI-FSI to TEOS is sufficiently large.
  • the solid electrolyte according to the first aspect of the present disclosure is Porous silica having a plurality of interconnected pores; An electrolyte covering an inner surface of the plurality of holes; Equipped with The electrolyte includes 1-ethyl-3-methylimidazolium bis (fluorosulfonyl) imide represented by EMI-FSI, and a lithium salt dissolved in the EMI-FSI,
  • EMI-FSI 1-ethyl-3-methylimidazolium bis (fluorosulfonyl) imide represented by EMI-FSI, and a lithium salt dissolved in the EMI-FSI,
  • the molar ratio of the EMI-FSI to the porous silica is greater than 1.0 and less than 3.5.
  • high ion conductivity can be achieved while maintaining the solid electrolyte in a gel state.
  • the lithium salt of the solid electrolyte according to the first aspect may include lithium bis (fluorosulfonyl) imide.
  • Li-FSI lithium bis (fluorosulfonyl) imide
  • the electrolyte of the solid electrolyte according to the second aspect may include a first electrolyte layer in contact with the inner surface of the plurality of holes, and the first electrolyte layer may , A first anion layer, a first cation layer, and a second anion layer, wherein the first anion layer comprises a plurality of first anions adsorbed onto the inner surface of the plurality of pores of the porous silica. And a plurality of 1-ethyl-3-methylimidazolium ions each ionically bonded to the plurality of first bis (fluorosulfonyl) imide ions.
  • the second anion layer may contain a plurality of second bis (ion) ionically bonded to the plurality of 1-ethyl-3-methylimidazolium ions, respectively.
  • Ruorosuruhoniru) imide ion may be contained. According to the third aspect, it is assumed that lithium ions can easily move on the first electrolyte layer.
  • the molar ratio of the EMI-FSI to the porous silica is 1.1 or more, and It may be 5 or less. According to the fourth aspect, it is possible to reliably obtain a solid electrolyte exhibiting high ion conductivity.
  • the porous silica may form a single layer, and the outer shape of the solid electrolyte is It may be defined by the porous silica. According to such a configuration, the handling of the solid electrolyte is easy, and the solid electrolyte can be easily applied to a storage element or the like.
  • An electrode according to a sixth aspect of the present disclosure is A solid electrolyte according to any one of the first to fifth aspects; An electrode active material, Is provided.
  • an electrode having excellent electrical characteristics can be obtained.
  • the electrode according to the sixth aspect may further include at least one selected from a conductive aid and a binder.
  • the conductive aid contributes to sufficiently reducing the internal resistance of the electrode.
  • the binder plays the role of fixing the particles of the electrode active material to each other. When the particles of the electrode active material are fixed to each other, the generation of gaps due to expansion and contraction of the particles of the electrode active material is suppressed. Thereby, the decrease of the discharge capacity of the battery is suppressed.
  • the electrode according to the sixth or seventh aspect may further include a conductive aid, and the plurality of first electrodes made of the electrode active material in the matrix of the solid electrolyte The particles and a plurality of second particles made of the conductive aid may be fixed.
  • the excellent electrical characteristics based on the high ion conductivity of the solid electrolyte can be surely exhibited.
  • a storage element is Positive electrode, A negative electrode, A solid electrolyte according to any one of the first to fifth aspects; Is provided.
  • a storage element having excellent electrical characteristics can be obtained.
  • a storage element is Positive electrode, A negative electrode, Equipped with At least one selected from the positive electrode and the negative electrode is an electrode according to any one of the sixth to eighth aspects.
  • a storage element having excellent electrical characteristics can be obtained.
  • a method of manufacturing a solid electrolyte according to an eleventh aspect of the present disclosure Preparing a liquid mixture by mixing a silicon alkoxide, 1-ethyl-3-methylimidazolium bis (fluorosulfonyl) imide, a lithium salt, water, and an organic solvent; Forming a mixed gel by gelling the mixed solution; Forming a solid electrolyte by drying the mixed gel; Including.
  • the solid electrolyte of the present disclosure can be efficiently produced.
  • the silicon alkoxide may include at least one selected from tetraethyl orthosilicate and a substitution product thereof. Because tetraethyl orthosilicate is less volatile during preparation of the mixture, use of tetraethyl orthosilicate as a raw material facilitates accurate control of the amount of silica finally obtained.
  • FIG. 1A schematically shows an example of the cross-sectional structure of the solid electrolyte 10 according to the first embodiment.
  • the solid electrolyte 10 comprises porous silica 11 and electrolyte 13.
  • the porous silica 11 has a plurality of interconnected pores 12.
  • the plurality of holes 12 are so-called continuous holes.
  • the plurality of holes 12 may include independent holes.
  • the electrolytes 13 cover the inner surface of the holes 12.
  • the electrolyte 13 may at least partially fill the inside of the plurality of holes 12 or may fill the entire inside of the plurality of holes 12.
  • solid means that the whole system is solid at room temperature, and does not exclude those which partially contain a liquid.
  • solids include gels.
  • the porous silica 11 is, for example, mesoporous silica.
  • the porous silica 11 may have a porosity in the range of 25% to 90%.
  • the diameter of each of the pores 12 of the porous silica 11 is, for example, in the range of 2 nm to 50 nm.
  • the diameter of the hole 12 can be measured, for example, by the following method. After the solid electrolyte 10 is immersed in an organic solvent to dissolve the electrolyte 13 in the organic solvent, the electrolyte 13 is removed by supercritical drying, and the specific surface area of the porous silica 11 is measured by the BET method. The porosity and the diameter (pore distribution) of each of the holes 12 can be calculated from the measurement results. Alternatively, thin sections of the solid electrolyte 10 can be produced by focused ion beam (FIB), and the thin sections of the solid electrolyte 10 can be observed by a transmission electron microscope (TEM) to determine the porosity and the diameter of the holes 12.
  • the porous silica 11 forms a single layer.
  • the layer of porous silica 11 may have self-supporting properties.
  • the outer shape of the solid electrolyte 10 is defined by the porous silica 11. According to such a configuration, the handling of the solid electrolyte 10 is easy, and the solid electrolyte 10 can be easily applied to a storage element or the like.
  • FIG. 1B schematically shows a cross section of the pores 12 of the porous silica 11.
  • the electrolyte 13 forms a first electrolyte layer 130 as a continuous film on the inner surfaces of the plurality of holes 12.
  • ions constituting the electrolyte 13 are oriented in an orderly manner.
  • the first electrolyte layers 130 provided on the inner surfaces of the plurality of holes 12 are connected to one another to form a three-dimensional network.
  • lithium is formed near the interface between the porous silica 11 and the electrolyte 13, more specifically, on the inner surface of the first electrolyte layer 130 provided along the plurality of holes 12.
  • a conduction path is formed for ions to move.
  • the electrolyte 13 may include a second electrolyte layer 140.
  • the second electrolyte layer 140 is in contact with the inner surface of the first electrolyte layer 130.
  • the second electrolyte layer 140 is located at the central portion of the hole 12.
  • the second electrolyte layer 140 is surrounded by the first electrolyte layer 130.
  • the second electrolyte layer 140 is a layer in which ions derived from the ionic liquid and the lithium salt are randomly oriented.
  • the electrolyte 13 contains an ionic liquid and a lithium salt.
  • the ionic liquid comprises 1-ethyl-3-methylimidazolium bis (fluorosulfonyl) imide represented by EMI-FSI.
  • the lithium salt is dissolved in EMI-FSI.
  • lithium salts examples include lithium perchlorate (LiClO 4 ), lithium borofluoride (LiBF 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium bis (fluorosulfonyl) imide (Li-FSI), lithium bis Trifluoromethanesulfonyl) imide (Li-TFSI) and lithium bis (pentafluoroethanesulfonyl) imide (Li-BETI) can be mentioned.
  • Li-FSI lithium bis (fluorosulfonyl) imide
  • Li-TFSI lithium bis Trifluoromethanesulfonyl) imide
  • Li-BETI lithium bis (pentafluoroethanesulfonyl) imide
  • the molar ratio of EMI-FSI to porous silica 11 is, for example, greater than 1.0 and less than 3.5. Thereby, high ion conductivity can be achieved while maintaining the solid electrolyte 10 in a gel state.
  • the molar ratio of EMI-FSI to porous silica 11 is 1.0 or less, it is difficult to achieve high ion conductivity (eg, 10 mS / cm or more).
  • the molar ratio of EMI-FSI to porous silica 11 is 3.5 or more, it is difficult to obtain gelled solid electrolyte 10.
  • the molar ratio of EMI-FSI to the porous silica 11 can be identified, for example, by elemental analysis of the solid electrolyte 10. Specifically, it can be calculated from the ratio of Si contained in the porous silica 11 and an element (for example, N, S or F) contained in the EMI-FSI.
  • elemental analysis include energy dispersive x-ray analysis (EDX), electron energy loss spectroscopy (EELS), Rutherford backscattering spectroscopy (RBS), x-ray photoelectron spectroscopy (XPS), and auger electron spectroscopy ( AES).
  • FIG. 2 schematically shows an example of the structure of the first electrolyte layer 130 in the vicinity of the inner surface of the pores 12 of the porous silica 11.
  • bis (fluorosulfonyl) imide ion may be described as "FSI - ion”.
  • the 1-ethyl-3-methylimidazolium ion may be described as "EMI + ion”.
  • the first electrolyte layer 130 includes a first anion layer 131a, a first cation layer 131b, and a second anion layer 132a.
  • the first anion layer 131 a, the first cation layer 131 b and the second anion layer 132 a are formed on the inner surface of the hole 12 in this order.
  • Lithium ions 132 L are present on the first electrolyte layer 130.
  • the first anion layer 131a is made of, for example, a plurality of FSI ⁇ ions. Those FSI ⁇ ions are adsorbed to the porous silica 11.
  • the first cation layer 131 b is made of, for example, a plurality of EMI + ions.
  • the EMI + ions are respectively coupled to a plurality of FSI ⁇ ions constituting the first anion layer 131 a.
  • the second anion layer 132a is made of, for example, an anion (eg, FSI ⁇ ion) derived from a lithium salt. Those anions are respectively coupled to a plurality of EMI + ions constituting the first cation layer 131 b.
  • the anion constituting the first anion layer 131a and the anion constituting the second anion layer 132a may be an anion derived from an ionic liquid or may be an anion derived from a lithium salt.
  • the type of bonding of anions and cations is, in particular, ionic bonding.
  • lithium ions 132L can easily move on the first electrolyte layer 130 (on the second anion layer 132a) by the following mechanism.
  • FSI - ions have ⁇ bonds resulting from SSO bonds.
  • the ⁇ electron cloud of FSI - ions has large delocalization.
  • the EMI + ion has a conjugated ⁇ bond resulting from the five membered ring. Conjugated ⁇ electron clouds of EMI + ions have large delocalization.
  • the oxygen of the FSI ⁇ ion is hydrogen-bonded to the hydrogen of the silanol group of the porous silica 11 to form a first anion layer 131 a.
  • the ⁇ electron cloud of the FSI ⁇ ion is drawn to the porous silica 11 side according to the surface potential of the porous silica 11.
  • polarization charges are generated in the FSI ⁇ ion. Specifically, in the FSI ⁇ ion, a negative polarization charge is generated on the side closer to the porous silica 11 and a positive polarization charge is generated on the side farther from the porous silica 11.
  • a state in which FSI ⁇ ions are adsorbed and aligned on the surface of the porous silica 11 is referred to as a first state.
  • the state in which FSI ⁇ ions and EMI + ions are alternately adsorbed and aligned on the surface of the porous silica 11 is referred to as a second state.
  • the first state is more stable than the second state. Therefore, FSI ⁇ ions are preferentially adsorbed and aligned on the surface of the porous silica 11.
  • the EMI + ions bind to the first anion layer 131a to form the first cation layer 131b.
  • the conjugated ⁇ electron cloud of the EMI + ion is drawn to the side of the first anion layer 131 a by the positive polarization charge on the surface of the first anion layer 131 a.
  • polarization charges are generated in the EMI + ions. Specifically, in the EMI + ion, negative polarization charge is generated on the side closer to the first anion layer 131a, and positive polarization charge is generated on the side farther from the first anion layer 131a.
  • FSI ⁇ ions bind to the first cation layer 131 b to form a second anion layer 132 a.
  • the ⁇ electron cloud of the FSI ⁇ ion is attracted to the first cation layer 131 b side by the positive polarization charge of the surface of the first cation layer 131 b.
  • polarization charges are generated in the FSI ⁇ ion. Specifically, in the FSI ⁇ ion, a negative polarization charge is generated on the side closer to the first cation layer 131 b, and a positive polarization charge is generated on the side farther from the first cation layer 131 b.
  • the positive polarization charge on the surface of the second anion layer 132a can weaken the Coulomb interaction between the FSI ⁇ ion of the second anion layer 132a and the lithium ion 132L. Thus, it is assumed that the lithium ions 132L are easily moved on the second anion layer 132a.
  • the structure of the electrolyte 13 can be estimated from the following method. Fourier transform infrared spectroscopy (FT-IR) or Raman analysis is performed to determine the vibrational mode of the molecule. This makes it possible to estimate that the ions of the electrolyte are bound to the silica. Moreover, in differential scanning calorimetry (DSC), the presence of the first electrolyte layer 130 which is already in the solid phase is confirmed by confirming that the peak when changing from the liquid phase to the solid phase does not appear or is small. it can.
  • FT-IR Fourier transform infrared spectroscopy
  • Raman analysis Raman analysis
  • FIG. 3 schematically shows another example of the structure of the first electrolyte layer.
  • ions constituting each layer of the first electrolyte layer 130a are not bonded in a one-to-one correspondence.
  • the ions constituting each layer of the first electrolyte layer 130a may be bonded to each other according to the molar ratio of the EMI-FSI and the lithium salt.
  • FIG. 4 schematically shows still another example of the structure of the first electrolyte layer.
  • the first electrolyte layer 130 b further includes a second cation layer 132 b and a third anion layer 133 a in addition to the structure described with reference to FIG. 2.
  • the second cation layer 132 b and the third anion layer 133 a are formed in this order on the second anion layer 132 a.
  • Lithium ions 132L are present on the third anion layer 133a.
  • the number of layers constituting the first electrolyte layer is not particularly limited.
  • the first electrolyte layer comprises a plurality of anion layers
  • at least one of the anion layers comprises FSI - ions.
  • the first electrolyte layer comprises a plurality of cationic layers
  • at least one of the cationic layers comprises EMI + ions.
  • the manufacturing method shown in FIG. 5 includes a step S1 of preparing a mixed solution, a step S2 of forming a mixed gel from the mixed solution, and a step S3 of drying the mixed gel.
  • the sol-gel method the solid electrolyte 10 described with reference to FIG. 1A can be efficiently produced.
  • step S1 silicon alkoxide, EMI-FSI, lithium salt, water, and an organic solvent are mixed.
  • silicon alkoxide, EMI-FSI, lithium salt, water, and an organic solvent is put in a container, and these are mixed.
  • silicon alkoxides examples include tetraethyl orthosilicate (TEOS), tetramethyl ortho silicate (TMOS), and substituted products thereof. One or more selected from these silicon alkoxides can be used.
  • TEOS tetraethyl orthosilicate
  • TMOS tetramethyl ortho silicate
  • One or more selected from these silicon alkoxides can be used.
  • the boiling point of TEOS is higher than the boiling point of TMOS.
  • the use of TEOS as a raw material facilitates accurate control of the amount of silica finally obtained because TEOS is less volatile during preparation of the mixture.
  • lithium salts examples include the various materials mentioned above.
  • the water may be any one that hydrolyzes silicon alkoxide, and is, for example, deionized water.
  • the organic solvent may be any one as long as it can uniformly mix silicon alkoxide, EMI-FSI, lithium salt and water, and is, for example, alcohol.
  • alcohols include methanol, ethanol, isopropanol and 1-methoxy-2-propanol (PGME). One or more selected from these alcohols can be used.
  • the volume of the organic solvent may be, for example, 1/2 or more and 3 or less times the sum of the volumes of silicon alkoxide, EMI-FSI, lithium salt, and water.
  • the hydrophilic material and the hydrophobic material can be properly mixed.
  • the collision frequency of siloxane monomers produced from silicon alkoxide can be increased to promote gelation.
  • the mixture may contain other materials.
  • step S2 the mixed solution is gelated to form a mixed gel.
  • the mixture changes to a wet mixed gel in about 4 to 23 days.
  • the time required for gelation can be controlled by the amount of water, the amount of organic solvent, and the storage temperature.
  • TEOS is hydrolyzed to form silanol.
  • a siloxane monomer is formed by dehydration condensation polymerization of the two silanols.
  • a plurality of siloxanes undergo dehydration condensation polymerization to form a siloxane polymer.
  • the siloxane polymer forms a network in a three-dimensional network to gelate the mixture.
  • step S3 the mixed gel is dried.
  • the solid electrolyte 10 is obtained.
  • the mixed gel is dried for 48 to 72 hours under the conditions of a pressure of 0.1 to 200 Pa and a temperature of 15 to 150 ° C. (ambient temperature) using a vacuum dryer.
  • a pre-drying treatment may be performed prior to the vacuum drying step in order to suppress bumping and air bubbles during vacuum drying.
  • the mixed gel is applied for 24 to 96 hours under the conditions of atmospheric pressure and temperature 15 to 90.degree. C. (surface temperature of hot plate). Heat up. Pre-drying can evaporate most of the water and the organic solvent contained in the mixed gel.
  • FIG. 6 schematically shows an example of the cross-sectional structure of the electrode 20 according to the second embodiment.
  • the electrode 20 is disposed on the current collector 21.
  • the electrode 20 includes an electrode active material, a conductive aid and a solid electrolyte.
  • electrode 20 includes active material particles 22, conductive additive particles 23, and solid electrolyte 24.
  • the active material particles 22 are embedded and fixed in the matrix of the solid electrolyte 24.
  • the conductive additive particles 23 are also embedded and fixed in the matrix of the solid electrolyte 24.
  • the shape of the particles 22 and 23 is not particularly limited.
  • the current collector 21 is made of a conductive material.
  • conductive materials include metals, conductive oxides, conductive nitrides, conductive carbides, conductive borides, and conductive resins.
  • the solid electrolyte 10 described in the first embodiment can be used as the solid electrolyte 24. Since the solid electrolyte 10 of the present disclosure has high ion conductivity, the use of the solid electrolyte 10 provides an electrode 20 having excellent electrical characteristics.
  • the active material particles 22 (first particles) and the conductive additive particles 23 (second particles) are fixed in the matrix of the solid electrolyte 24. According to such a structure, in the electrode 20, excellent electrical characteristics based on the high ion conductivity of the solid electrolyte 24 can be reliably exhibited.
  • examples of the positive electrode active material include lithium-containing transition metal oxides, vanadium oxides, chromium oxides, and lithium-containing transition metal sulfides. .
  • Examples of lithium-containing transition metal oxide LiCoO 2, LiNiO 2, LiMnO 2, LiMn 2 O 4, LiNiCoMnO 2, LiNiCoO 2, LiCoMnO 2, LiNiMnO 2, LiNiCoMnO 4, LiMnNiO 4, LiMnCoO 4, LiNiCoAlO 2, LiNiPO 4, LiCoPO 4, LiMnPO 4, LiFePO 4, Li 2 NiSiO 4, Li 2 CoSiO 4, Li 2 MnSiO 4, Li 2 FeSiO 4, LiNiBO 3, LiCoBO 3, LiMnBO 3, and LiFeBO 3 and the like.
  • Examples of lithium-containing transition metal sulfides include LiTiS 2 , Li 2 TiS 3 , and Li 3 NbS 4 .
  • examples of the negative electrode active material include metals, metalloids, oxides, nitrides, and carbon.
  • metals or metalloids include lithium, silicon, amorphous silicon, aluminum, silver, tin, antimony, and their alloys.
  • examples of the oxide include Li 4 Ti 5 O 12 , Li 2 SrTi 6 O 14 , TiO 2 , Nb 2 O 5 , SnO 2 , Ta 2 O 5 , WO 2 , WO 3 , Fe 2 O 3, CoO, MoO 2 , SiO, SnBPO 6 , and mixtures thereof.
  • Examples of carbon include graphite, graphene, hard carbon, carbon nanotubes and mixtures thereof. One or more selected from these negative electrode active materials can be used.
  • the conductive aid is, for example, conductive carbon.
  • conductive carbon include carbon black, fibrous carbon, graphite, ketjen black, and acetylene black.
  • One or two or more selected from these conductive assistants can be used.
  • the conductive aid contributes to sufficiently reducing the internal resistance of the electrode 20.
  • the electrode 20 may further contain a binder.
  • binders include carboxymethylcellulose (CMC) and styrene butadiene rubber (SBR). One or more selected from these binders can be used.
  • CMC carboxymethylcellulose
  • SBR styrene butadiene rubber
  • the binder exerts an effect of maintaining the shape of the electrode 20.
  • Step S11 a liquid mixture containing active material particles is prepared.
  • Step S11 may include sub-step S111 and sub-step S112.
  • sub-step S111 for example, EMI-FSI, lithium salt, water, organic solvent and active material particles are mixed to prepare a precursor solution.
  • sub-step S112 silicon alkoxide is mixed with the precursor solution. Thereby, a liquid mixture containing active material particles is obtained.
  • sub-step S112 for example, silicon alkoxide is dropped to a container containing the precursor solution.
  • Step S11 is the same step as step S1 in the first embodiment except that active material particles are added to the mixed solution.
  • step S12 active material particles coated with a solid electrolyte are formed.
  • step S12 for example, the same operation as step S2 and step S3 in the first embodiment is performed. Since the mixed solution contains active material particles, when the mixed solution is gelled, the mixed gel is formed to cover at least a part of the surface of the active material particles. When the active material particles coated with the mixed gel are dried, active material particles coated with a solid electrolyte are obtained.
  • a slurry containing the coated active material particles is prepared.
  • An electrolytic solution or a solvent is added to and mixed with the coated active material particles and conductive auxiliary particles.
  • a binder may be added to the slurry as needed.
  • the conductive aid may be previously added to the mixture in step S11.
  • the electrolyte solution used for preparation of a slurry the electrolyte solution containing lithium salt and carbonate ester is mentioned.
  • Carbonates include linear carbonates, cyclic carbonates, and mixtures thereof.
  • an electrolytic solution can be obtained by dissolving LiPF 6 at a concentration of 1 mol / liter in a mixed solvent containing ethylene carbonate and diethyl carbonate at a volume ratio of 1: 1.
  • solvents used for preparation of the slurry include water and organic solvents.
  • organic solvents include N-methyl pyrrolidone (NMP).
  • step S14 a slurry is applied to the current collector to form a coating film.
  • the application method of the slurry is not particularly limited.
  • the slurry is applied to the current collector by a blade coating method.
  • step S15 the coating film formed on the current collector is dried.
  • the dried coated film may be rolled so as to obtain an electrode 20 having a predetermined volume filling rate. Thereby, the electrode 20 is obtained. Drying of the coated film is performed, for example, using a vacuum dryer under conditions of a pressure of 0.1 to 200 Pa and a temperature of 80 to 150 ° C. (ambient temperature) for 4 to 12 hours.
  • Step S21 a mixed solution is prepared.
  • Step S21 is, for example, the same step as step S1 in the first embodiment.
  • step S22 an electrode layer is formed on the current collector.
  • the electrode layer is obtained by applying a slurry containing active material particles and conductive auxiliary particles to a current collector and drying the coating film.
  • the slurry can be prepared by adding and mixing an electrolyte solution or an organic solvent to the active material particles and the conductive auxiliary particles.
  • step S22 the same operation as step S14 and step S15 described with reference to FIG. 7 may be performed.
  • Step S21 is a step independent of step S22.
  • the order of step S21 and step S22 is not particularly limited.
  • the electrode layer is impregnated with the mixed solution.
  • the liquid mixture may be dropped to the electrode layer, or the electrode layer may be immersed in the liquid mixture.
  • gelation of the mixed solution may partially proceed. For example, after preparing a mixture, when the mixture is stored at room temperature for several days, gelation proceeds slightly. Such mixture may be impregnated into the electrode layer.
  • step S24 active material particles coated with a solid electrolyte are formed.
  • the mixture impregnated in the electrode layer is gelled and the mixed gel is dried.
  • step S24 for example, the same operation as step S2 and step S3 in the first embodiment is performed. Thus, the electrode 20 is obtained.
  • Step S31 a slurry containing active material particles is prepared.
  • Step S31 may include sub-step S311 and sub-step S312.
  • sub-step S311 for example, EMI-FSI, lithium salt, water, organic solvent, active material particles, conductive additive particles, and binder are mixed to prepare a precursor solution.
  • sub-step S312 silicon alkoxide is mixed with the precursor solution. Thereby, the slurry for electrode formation is obtained.
  • sub-step S312 for example, silicon alkoxide is dropped to a container containing the precursor solution.
  • step S32 a slurry is applied to the current collector to form a coating film.
  • the application method of the slurry is not particularly limited.
  • the slurry is applied to the current collector by a blade coating method.
  • step S33 the coating film formed on the current collector is dried.
  • the above-described hydrolysis reaction and dehydration condensation polymerization reaction proceed to form a solid electrolyte matrix around the active material particles and the conductive auxiliary particles.
  • the coated film may be stored at room temperature for a predetermined period (for example, 4 to 23 days), and then the coated film may be dried under predetermined conditions. Drying of the coating film is performed, for example, using a vacuum dryer under conditions of a pressure of 0.1 to 200 Pa and a temperature of 15 to 150 ° C. (ambient temperature) for 48 to 72 hours.
  • the dried coated film may be rolled so as to obtain an electrode 20 having a predetermined volume filling rate. Thereby, the electrode 20 is obtained.
  • FIG. 10 schematically shows an example of the cross-sectional structure of the storage element 30 according to the third embodiment.
  • the storage element 30 includes a current collector 31, a positive electrode 32, a solid electrolyte 33, a negative electrode 34, and a current collector 35.
  • the current collectors 31 and 35 the current collector 21 described in the second embodiment can be used.
  • the positive electrode 32 contains, for example, the positive electrode active material described in the second embodiment.
  • the negative electrode 34 contains, for example, the negative electrode active material described in the second embodiment.
  • the solid electrolyte 33 is disposed between the positive electrode 32 and the negative electrode 34.
  • the solid electrolyte 10 described in the first embodiment can be used as the solid electrolyte 33. Since the solid electrolyte 10 of the present disclosure has high ion conductivity, the use of the solid electrolyte 10 provides a storage element 30 having excellent electrical characteristics.
  • FIG. 11 shows an example of the cross-sectional structure of the storage element 40 according to the fourth embodiment.
  • the storage element 40 includes a current collector 41, a positive electrode 42, a solid electrolyte 43, a negative electrode 44, and a current collector 45.
  • the current collectors 41 and 45 the current collector 21 described in the second embodiment can be used.
  • the electrode 20 described in the second embodiment can be used as the positive electrode 42.
  • the negative electrode 44 contains, for example, the negative electrode active material described in the second embodiment.
  • the solid electrolyte 43 is disposed between the positive electrode 42 and the negative electrode 44.
  • the solid electrolyte 43 the solid electrolyte 10 described in the first embodiment can be used.
  • solid electrolyte 43 may be another solid electrolyte.
  • examples of other solid electrolytes include inorganic solid electrolytes and polymer electrolytes.
  • examples of inorganic solid electrolytes include inorganic oxides and inorganic sulfides.
  • Examples of the inorganic oxide include LiPON, LiAlTi (PO 4 ) 3 , LiAlGeTi (PO 4 ) 3 , LiLaTiO, LiLaZrO, Li 3 PO 4 , Li 2 SiO 2 , Li 3 SiO 4 , Li 3 VO 4 , Li 4 SiO 4 -Zn 2 SiO 4 , Li 4 GeO 4 -Li 2 GeZnO 4 , Li 2 GeZnO 4 -Zn 2 GeO 4 , and Li 4 GeO 4 -Li 3 VO 4 can be mentioned.
  • inorganic sulfides include Li 2 S-P 2 S 5 , Li 2 S-P 2 S 5 -LiI, Li 2 S-P 2 S 5 -Li 2 O-LiI, Li 2 S-SiS 2 , Li 2 S-SiS 2 -LiI, Li 2 S-SiS 2 -LiBr, Li 2 S-SiS 2 -LiCl, Li 2 S-SiS 2 -B 2 S 3 -LiI, Li 2 S-SiS 2 -P 2 S 5 -LiI, Li 2 S-B 2 S 3 , Li 2 S-P 2 S 5- GeS, Li 2 S-P 2 S 5- ZnS, Li 2 S-P 2 S 5- GaS, Li 2 S -GeS 2, Li 2 S-SiS 2 -Li 3 PO 4, Li 2 S-SiS 2 -LiPO, Li 2 S-SiS 2 -LiSiO, Li 2 S-SiS 2 ,
  • the solid electrolyte 43 may be omitted.
  • a liquid mixture is applied to the surface of the electrode 20 to form a coating film.
  • the thin layer of solid electrolyte can be formed on the electrode 20 by gelling and drying the coated film. If this thin layer is sufficient to prevent a short circuit between the positive and negative electrodes, no separate solid electrolyte is required to act as a separator.
  • an electrode including the solid electrolyte of the present disclosure is used only for the positive electrode 42.
  • FIG. 12 shows an example of the cross-sectional structure of the storage element 50 according to the fifth embodiment.
  • the storage element 50 includes a current collector 51, a positive electrode 52, a solid electrolyte 53, a negative electrode 54, and a current collector 55.
  • the current collectors 51 and 55 the current collector 21 described in the second embodiment can be used.
  • the electrodes 20 described in the second embodiment can be used as the positive electrode 52 and the negative electrode 54.
  • the solid electrolyte 53 is disposed between the positive electrode 52 and the negative electrode 54.
  • the solid electrolyte 10 described in the first embodiment can be used as the solid electrolyte 53.
  • solid electrolyte 53 may be another solid electrolyte.
  • an electrode including the solid electrolyte of the present disclosure for both the positive electrode 52 and the negative electrode 54 is used.
  • an electrode including the solid electrolyte of the present disclosure may be used only for the negative electrode 54.
  • the electrode 20 of the present disclosure is used for at least one selected from the positive electrode and the negative electrode.
  • the electrode 20 includes the solid electrolyte 10 of the present disclosure. Since the solid electrolyte 10 has high ion conductivity, the use of the solid electrolyte 10 can provide a storage element having excellent electrical characteristics.
  • EMI-FSI Li-FSI
  • the amounts of EMI-FSI and Li-FSI were varied to obtain five mixed solution samples having different composition ratios.
  • the glass container was sealed and the sample was stored at room temperature (25 ° C.).
  • the sample having a molar ratio of EMI-FSI to TEOS of 3.5 (x 3.5) did not gel after 1 month or more.
  • the other samples turned into wet mixed gels in 10-17 days.
  • the ion conductivity of the obtained solid electrolyte was measured by an alternating current impedance method. The measurement was performed in a glove box kept at 25 ° C. The results are shown in FIG.
  • FIG. 13 shows the relationship between the molar ratio of EMI-FSI to TEOS and the ion conductivity. Assuming that all of the Si atoms contained in TEOS form a porous silica skeleton, the molar ratio of EMI-FSI to TEOS corresponds to the molar ratio of EMI-FSI to porous silica.
  • a non-aqueous electrolyte containing Li-FSI and EMI-FSI was prepared.
  • the molar ratio of Li-FSI to EMI-FSI was 0.33.
  • the ion conductivity of this non-aqueous electrolyte was 9.4 mS / cm.
  • the ion conductivity increased as the molar ratio of EMI-FSI to TEOS increased.
  • the ionic conductivity of the solid electrolyte exceeded the ionic conductivity of the non-aqueous electrolyte and reached about 15 mS / cm.
  • the technology of the present disclosure is useful for storage devices such as lithium ion secondary batteries.

Abstract

本開示の固体電解質(10)は、相互接続された複数の孔(12)を有する多孔質シリカ(11)と、複数の孔(12)の内表面を覆う電解質(13)とを備えている。電解質(13)は、EMI-FSIで表される1-エチル-3-メチルイミダゾリウムビス(フルオロスルホニル)イミドと、EMI-FSIに溶解したリチウム塩と、を含む。多孔質シリカ(11)に対するEMI-FSIのモル比が、1.0より大きく、かつ、3.5未満である。

Description

固体電解質、電極、蓄電素子及び固体電解質の製造方法
 本開示は、固体電解質、電極、蓄電素子及び固体電解質の製造方法に関する。
 近年、次世代電池として全固体リチウム二次電池の開発が進められている。全固体リチウム二次電池などの蓄電素子に用いられる固体電解質のイオン伝導度を向上させることが望まれている。
 特許文献1は、イオン液体、リチウム塩及びシリカ前駆体を含む混合液を用い、ゾルゲル法によって固体電解質を製造する方法を開示している。
特表2012-518248号公報
 本開示は、高いイオン伝導度を示す新規な固体電解質を提供する。
 本開示は、
 相互接続された複数の孔を有する多孔質シリカと、
 前記複数の孔の内表面を覆う電解質と、
 を備え、
 前記電解質は、EMI-FSIで表される1-エチル-3-メチルイミダゾリウムビス(フルオロスルホニル)イミドと、前記EMI-FSIに溶解したリチウム塩と、を含み、
 シリカに対する前記EMI-FSIのモル比が、1.0より大きく、かつ、3.5未満である、固体電解質を提供する。
 本開示によれば、高いイオン伝導度を示す新規な固体電解質を提供できる。
図1Aは、第1実施形態に係る固体電解質の断面構造の一例を模式的に示す図である。 図1Bは、多孔質シリカの孔の断面を模式的に示す図である。 図2は、第1電解質層の構造の一例を模式的に示す図である。 図3は、第1電解質層の構造の他の例を模式的に示す図である。 図4は、第1電解質層の構造のさらに他の例を模式的に示す図である。 図5は、第1実施形態に係る固体電解質の製造方法の一例を示すフローチャートである。 図6は、第2実施形態に係る電極の断面構造の一例を模式的に示す図である。 図7は、第2実施形態に係る電極の製造方法の一例を示すフローチャートである。 図8は、第2実施形態に係る電極の製造方法の他の例を示すフローチャートである。 図9は、第2実施形態に係る電極の製造方法のさらに他の例を示すフローチャートである。 図10は、第3実施形態に係る蓄電素子の断面構造の一例を模式的に示す図である。 図11は、第4実施形態に係る蓄電素子の断面構造の一例を模式的に示す図である。 図12は、第5実施形態に係る蓄電素子の断面構造の一例を模式的に示す図である。 図13は、TEOSに対するEMI-FSIのモル比と、イオン伝導度との関係を示すグラフである。 図14Aは、TEOSに対するEMI-FSIのモル比が小さすぎる場合における多孔質シリカの孔の内表面の状態を模式的に示す図である。 図14Bは、TEOSに対するEMI-FSIのモル比が十分に大きい場合における多孔質シリカの孔の内表面の状態を模式的に示す図である。
(本開示に係る一態様の概要)
 本開示の第1態様にかかる固体電解質は、
 相互接続された複数の孔を有する多孔質シリカと、
 前記複数の孔の内表面を覆う電解質と、
 を備え、
 前記電解質は、EMI-FSIで表される1-エチル-3-メチルイミダゾリウムビス(フルオロスルホニル)イミドと、前記EMI-FSIに溶解したリチウム塩と、を含み、
 前記多孔質シリカに対する前記EMI-FSIのモル比が、1.0より大きく、かつ、3.5未満である。
 第1態様によれば、固体電解質をゲル状に維持しながら、高いイオン伝導度を達成することができる。
 本開示の第2態様において、例えば、第1態様に係る固体電解質の前記リチウム塩が、リチウムビス(フルオロスルホニル)イミドを含んでいてもよい。Li-FSIを用いると、優れたサイクル特性、レート特性及び低温特性を有する固体電解質が得られる。
 本開示の第3態様において、例えば、第2態様に係る固体電解質の前記電解質は、前記複数の孔の前記内表面に接触する第1電解質層を含んでいてもよく、前記第1電解質層は、第1アニオン層、第1カチオン層及び第2アニオン層を含んでいてもよく、前記第1アニオン層は、前記多孔質シリカの前記複数の孔の前記内表面にそれぞれ吸着した複数の第1のビス(フルオロスルホニル)イミドイオンを含んでいてもよく、前記第1カチオン層は、前記複数の第1のビス(フルオロスルホニル)イミドイオンとそれぞれイオン結合した複数の1-エチル-3-メチルイミダゾリウムイオンを含んでいてもよく、前記第2アニオン層は、前記複数の1-エチル-3-メチルイミダゾリウムイオンとそれぞれイオン結合した複数の第2のビス(フルオロスルホニル)イミドイオンを含んでいてもよい。第3態様によれば、リチウムイオンが第1電解質層の上を容易に移動することができると推察される。
 本開示の第4態様において、例えば、第1から第3態様のいずれか1つに係る固体電解質では、前記多孔質シリカに対する前記EMI-FSIのモル比が、1.1以上、かつ、1.5以下であってもよい。第4態様によれば、高いイオン伝導度を示す固体電解質を確実に得ることができる。
 本開示の第5態様において、例えば、第1から第4態様のいずれか1つに係る固体電解質では、前記多孔質シリカは、単一の層をなしていてもよく、前記固体電解質の外形が前記多孔質シリカによって画定されていてもよい。このような構成によれば、固体電解質のハンドリングが容易であるとともに、固体電解質を蓄電素子などに応用しやすい。
 本開示の第6態様に係る電極は、
 第1から第5態様のいずれか1つに係る固体電解質と、
 電極活物質と、
 を備えたものである。
 第6態様によれば、優れた電気特性を有する電極が得られる。
 本開示の第7態様において、例えば、第6態様に係る電極は、導電助剤及びバインダーから選ばれる少なくとも1つをさらに備えていてもよい。導電助剤は、電極の内部抵抗を十分に低減することに寄与する。バインダーは、電極活物質の粒子を互いに固定する役割を担う。電極活物質の粒子が互いに固定されていると、電極活物質の粒子の膨張及び収縮に起因する隙間の発生が抑制される。これにより、電池の放電容量の減少が抑制される。
 本開示の第8態様において、例えば、第6又は第7態様に係る電極は、導電助剤をさらに備えていてもよく、前記固体電解質のマトリクス中に、前記電極活物質からなる複数の第1粒子と、前記導電助剤からなる複数の第2粒子とが固定されていてもよい。第8態様によれば、電極において、固体電解質の高いイオン伝導度に基づく優れた電気特性が確実に発揮されうる。
 本開示の第9態様に係る蓄電素子は、
 正極と、
 負極と、
 第1から第5態様のいずれか1つに係る固体電解質と、
 を備えたものである。
 第9態様によれば、優れた電気特性を有する蓄電素子が得られる。
 本開示の第10態様に係る蓄電素子は、
 正極と、
 負極と、
 を備え、
 前記正極及び前記負極から選ばれる少なくとも1つは、第6から第8態様のいずれか1つに係る電極である。
 第10態様によれば、優れた電気特性を有する蓄電素子が得られる。
 本開示の第11態様に係る固体電解質の製造方法は、
 シリコンアルコキシドと、1-エチル-3-メチルイミダゾリウムビス(フルオロスルホニル)イミドと、リチウム塩と、水と、有機溶媒とを混合して、混合液を調製することと、
 前記混合液をゲル化させることによって混合ゲルを形成することと、
 前記混合ゲルを乾燥させることによって固体電解質を形成することと、
 含む。
 第11態様によれば、本開示の固体電解質を効率的に製造できる。
 本開示の第12態様において、例えば、第11態様に係る固体電解質の製造方法では、前記シリコンアルコキシドは、オルトケイ酸テトラエチル及びその置換体から選ばれる少なくとも1つを含んでいてもよい。オルトケイ酸テトラエチルは混合液を調製する際に揮発しにくいので、オルトケイ酸テトラエチルを原料として使用すると、最終的に得られるシリカの量を正確に制御しやすい。
 以下、本開示の実施形態について、図面を参照しながら説明する。本開示は、以下の実施形態に限定されない。
(第1実施形態)
 図1Aは、第1実施形態に係る固体電解質10の断面構造の一例を模式的に示している。固体電解質10は、多孔質シリカ11及び電解質13を備えている。多孔質シリカ11は、相互接続された複数の孔12を有する。複数の孔12は、いわゆる連続孔である。ただし、複数の孔12は、独立孔を含んでいてもよい。電解質13は、それらの孔12の内表面を覆っている。電解質13は、複数の孔12の内部を少なくとも部分的に満たしていてもよいし、複数の孔12の内部の全体を満たしていてもよい。
 本明細書において、「固体」とは、室温において系全体として固形状であることを意味し、部分的に液体を含有するものを排除するものではない。「固体」の例としては、ゲルが挙げられる。
 多孔質シリカ11は、例えば、メソポーラスシリカである。多孔質シリカ11は、25%~90%の範囲の空隙率を有していてもよい。多孔質シリカ11の孔12のそれぞれの直径は、例えば、2nm~50nmの範囲にある。孔12の直径は、例えば、次の方法で測定されうる。固体電解質10を有機溶媒に浸して電解質13を有機溶媒に溶解させた後、超臨界乾燥により電解質13を取り除き、BET法によって多孔質シリカ11の比表面積を測定する。測定結果から空隙率及び孔12のそれぞれの直径(細孔分布)を算出することができる。あるいは、集束イオンビーム法(FIB)で固体電解質10の薄片を作製し、透過型電子顕微鏡(TEM)で固体電解質10の薄片を観察し、空隙率及び孔12の直径を求めることもできる。
 本実施形態において、多孔質シリカ11は、単一の層をなしている。多孔質シリカ11の層は、自立性を有していてもよい。固体電解質10の外形は、多孔質シリカ11によって画定されている。このような構成によれば、固体電解質10のハンドリングが容易であるとともに、固体電解質10を蓄電素子などに応用しやすい。
 図1Bは、多孔質シリカ11の孔12の断面を模式的に示している。図1Bに示すように、電解質13は、複数の孔12の内表面上に、連続膜として第1電解質層130を形成している。第1電解質層130では、電解質13を構成するイオンが秩序的に配向している。複数の孔12の内表面上にそれぞれ設けられた第1電解質層130は、相互に接続されて三次元的なネットワークを形成している。図1Aの破線Lに示すように、多孔質シリカ11と電解質13との界面付近、より具体的には、複数の孔12に沿って設けられた第1電解質層130の内表面上に、リチウムイオンが移動するための伝導パスが形成されている。
 図1Bに示すように、電解質13は、第2電解質層140を含んでいてもよい。第2電解質層140は、第1電解質層130の内表面に接している。第2電解質層140は、孔12の中心部分に位置している。第1電解質層130によって第2電解質層140が囲まれている。第2電解質層140は、イオン液体及びリチウム塩に由来するイオンが無秩序に配向している層である。
 電解質13は、イオン液体及びリチウム塩を含む。イオン液体は、EMI-FSIで表される1-エチル-3-メチルイミダゾリウムビス(フルオロスルホニル)イミドを含む。リチウム塩は、EMI-FSIに溶解している。
 リチウム塩の例としては、過塩素酸リチウム(LiClO4)、ホウフッ化リチウム(LiBF4)、ヘキサフルオロリン酸リチウム(LiPF6)、リチウムビス(フルオロスルホニル)イミド(Li-FSI)、リチウムビス(トリフルオロメタンスルホニル)イミド(Li-TFSI)、及び、リチウムビス(ペンタフルオロエタンスルホニル)イミド(Li-BETI)が挙げられる。これらのリチウム塩から選ばれる1種又は2種以上を使用することができる。リチウム塩は、例えば、リチウムビス(フルオロスルホニル)イミド(Li-FSI)である。Li-FSIを用いると、優れたレート特性を有する固体電解質が得られる。
 多孔質シリカ11に対するEMI-FSIのモル比は、例えば、1.0より大きく、かつ、3.5未満である。これにより、固体電解質10をゲル状に維持しながら、高いイオン伝導度を達成することができる。多孔質シリカ11に対するEMI-FSIのモル比が1.0以下の場合、高いイオン伝導度(例えば、10mS/cm以上)を達成することが難しい。多孔質シリカ11に対するEMI-FSIのモル比が3.5以上の場合、ゲル状の固体電解質10を得ることが難しい。
 多孔質シリカ11に対するEMI-FSIのモル比は、例えば、固体電解質10を元素分析することによって特定することができる。具体的には、多孔質シリカ11に含まれるSiと、EMI-FSIに含まれる元素(例えば、N、S又はF)との比から算出することができる。元素分析の例としては、エネルギー分散型X線分析(EDX)、電子エネルギー損失分光分析(EELS)、ラザフォード後方散乱分光分析(RBS)、X線光電子分光分析(XPS)、及びオージェ電子分光分析(AES)が挙げられる。
 図2は、多孔質シリカ11の孔12の内表面付近における第1電解質層130の構造の一例を模式的に示している。本明細書では、ビス(フルオロスルホニル)イミドイオンを「FSI-イオン」と表記することがある。1-エチル-3-メチルイミダゾリウムイオンを「EMI+イオン」と表記することがある。
 図2に示す例では、第1電解質層130は、第1アニオン層131a、第1カチオン層131b及び第2アニオン層132aを含む。第1アニオン層131a、第1カチオン層131b及び第2アニオン層132aは、孔12の内表面上にこの順で形成されている。第1電解質層130の上にリチウムイオン132Lが存在している。第1アニオン層131aは、例えば、複数のFSI-イオンで構成されている。それらのFSI-イオンは、多孔質シリカ11に吸着している。第1カチオン層131bは、例えば、複数のEMI+イオンで構成されている。それらのEMI+イオンは、第1アニオン層131aを構成する複数のFSI-イオンとそれぞれ結合している。第2アニオン層132aは、例えば、リチウム塩に由来するアニオン(例えば、FSI-イオン)で構成されている。それらのアニオンは、第1カチオン層131bを構成する複数のEMI+イオンとそれぞれ結合している。第1アニオン層131aを構成するアニオン及び第2アニオン層132aを構成するアニオンは、イオン液体に由来するアニオンであってもよく、リチウム塩に由来するアニオンであってもよい。アニオンとカチオンとの結合の形式は、詳細には、イオン結合である。
 固体電解質10において、リチウムイオン132Lは、以下のメカニズムによって、第1電解質層130の上(第2アニオン層132aの上)を容易に移動することができると推察される。
 FSI-イオンは、S=O結合に起因するπ結合を有する。FSI-イオンのπ電子雲は、大きい非局在性を有する。EMI+イオンは、五員環に起因する共役π結合を有する。EMI+イオンの共役π電子雲は、大きい非局在性を有する。
 まず、FSI-イオンの酸素が多孔質シリカ11のシラノール基の水素に水素結合し、第1アニオン層131aが形成される。このとき、FSI-イオンのπ電子雲は、多孔質シリカ11の表面電位に従って多孔質シリカ11側に引き寄せられる。その結果、FSI-イオンに分極電荷が生じる。具体的には、FSI-イオンにおいて、多孔質シリカ11に近い側に負の分極電荷が生じ、多孔質シリカ11から遠い側に正の分極電荷が生じる。
 図2に示すように、多孔質シリカ11の表面にFSI-イオンが吸着及び整列した状態を第1状態とする。他方、多孔質シリカ11の表面にFSI-イオンとEMI+イオンとが交互に吸着及び整列した状態を第2状態とする。計算によれば、第1状態は、第2状態よりも安定である。そのため、多孔質シリカ11の表面にFSI-イオンが優先的に吸着及び整列する。
 次に、EMI+イオンが第1アニオン層131aに結合し、第1カチオン層131bが形成される。このとき、EMI+イオンの共役π電子雲は、第1アニオン層131aの表面の正の分極電荷によって、第1アニオン層131a側に引き寄せられる。その結果、EMI+イオンに分極電荷が生じる。具体的には、EMI+イオンにおいて、第1アニオン層131aに近い側に負の分極電荷が生じ、第1アニオン層131aから遠い側に正の分極電荷が生じる。
 次に、FSI-イオンが第1カチオン層131bに結合し、第2アニオン層132aが形成される。このとき、FSI-イオンのπ電子雲は、第1カチオン層131bの表面の正の分極電荷によって、第1カチオン層131b側に引き寄せられる。その結果、FSI-イオンに分極電荷が生じる。具体的には、FSI-イオンにおいて、第1カチオン層131bに近い側に負の分極電荷が生じ、第1カチオン層131bから遠い側に正の分極電荷が生じる。
 第2アニオン層132aの表面の正の分極電荷は、第2アニオン層132aのFSI-イオンとリチウムイオン132Lとのクーロン相互作用を弱めることができる。これにより、リチウムイオン132Lは、第2アニオン層132aの上を動きやすくなると推察される。
 電解質13の構造は、以下の方法から推定することができる。フーリエ変換赤外分光分析(FT-IR)又はラマン分析を行い、分子の振動モードを測定する。これにより、電解質のイオンがシリカに結合していることを推定できる。また、示差走査熱量測定(DSC)において、液相から固相へ変化する際のピークが現れない又は小さいことを確認することによって、既に固相となっている第1電解質層130の存在を確認できる。
 図3は、第1電解質層の構造の他の例を模式的に示している。図3に示すように、第1電解質層130aの各層を構成するイオンは、1対1対応で結合していない。第1電解質層130aの各層を構成するイオンは、EMI-FSIとリチウム塩とのモル比に応じて互いに結合していてもよい。
 図4は、第1電解質層の構造のさらに他の例を模式的に示している。図4に示すように、第1電解質層130bは、図2を参照して説明した構造に加え、第2カチオン層132b及び第3アニオン層133aをさらに含む。第2カチオン層132b及び第3アニオン層133aは、第2アニオン層132aの上にこの順で形成されている。第3アニオン層133aの上にリチウムイオン132Lが存在している。
 図2及び図4から理解できるように、第1電解質層を構成する層の数は特に限定されない。第1電解質層が複数のアニオン層を含む場合、それらのアニオン層の少なくとも1つがFSI-イオンを含む。第1電解質層が複数のカチオン層を含む場合、それらのカチオン層の少なくとも1つがEMI+イオンを含む。
 次に、図5を参照しつつ、固体電解質10の製造方法の一例を説明する。
 図5に示す製造方法は、混合液を調製する工程S1、混合液から混合ゲルを形成する工程S2、及び、混合ゲルを乾燥させる工程S3を含む。ゾルゲル法によれば、図1Aを参照して説明した固体電解質10を効率的に製造できる。
 工程S1では、シリコンアルコキシド、EMI-FSI、リチウム塩、水、及び、有機溶媒を混合する。例えば、シリコンアルコキシド、EMI-FSI、リチウム塩、水、及び、有機溶媒のそれぞれを容器に入れ、これらを混合する。
 シリコンアルコキシドの例としては、オルトケイ酸テトラエチル(TEOS)、オルトケイ酸テトラメチル(TMOS)、及び、それらの置換体が挙げられる。これらのシリコンアルコキシドから選ばれる1種又は2種以上を使用することができる。TEOSの沸点は、TMOSの沸点よりも高い。TEOSは混合液を調製する際に揮発しにくいので、TEOSを原料として使用すると、最終的に得られるシリカの量を正確に制御しやすい。
 リチウム塩の例としては、上述の種々の材料が挙げられる。
 水は、シリコンアルコキシドを加水分解させるものであればよく、例えば、脱イオン水である。
 有機溶媒は、シリコンアルコキシド、EMI-FSI、リチウム塩、及び、水を均一に混合できるものであればよく、例えば、アルコールである。アルコールの例としては、メタノール、エタノール、イソプロパノール、及び、1-メトキシ-2-プロパノール(PGME)が挙げられる。これらのアルコールから選ばれる1種又は2種以上を使用することができる。
 有機溶媒の体積は、例えば、シリコンアルコキシド、EMI-FSI、リチウム塩、及び、水の体積の和に対して、1/2以上、かつ、3倍以下であってもよい。これにより、親水性材料と疎水性材料とを適切に混ぜることができる。シリコンアルコキシドから生成されたシロキサンモノマー同士の衝突頻度を高くして、ゲル化を促進することができる。
 混合液は、他の材料を含んでいてもよい。
 工程S2では、混合液をゲル化させることによって混合ゲルを形成する。例えば、容器を密閉して混合液を室温(25℃、周囲温度)で保管すると、4~23日程度で混合液が湿潤状態の混合ゲルに変化する。ゲル化に要する時間は、水の配合量、有機溶媒の配合量、及び、保管温度によって制御可能である。
 具体的には、以下の反応が進む。まず、TEOSが加水分解してシラノールが形成される。次に、2つのシラノールが脱水縮重合することによってシロキサンモノマーが形成される。そして、複数のシロキサンが脱水縮重合することによってシロキサンポリマーが形成される。このようにして、シロキサンポリマーが3次元の網目状にネットワークを形成することにより、混合液がゲル化する。
 混合液中のEMI-FSIの割合が高すぎると、シロキサンのネットワークが形成されにくく、混合液がゲル化しにくい。本発明者らは、混合液中の水の量を従来の方法よりも多くすることによって、EMI-FSIの割合が高い場合であっても、ゲル化が達成されることを見出している。
 工程S3では、混合ゲルを乾燥させる。これにより、固体電解質10が得られる。例えば、真空乾燥機を用いて、圧力0.1~200Pa、温度15~150℃(周囲温度)の条件のもとで、48~72時間かけて混合ゲルを乾燥させる。真空乾燥時の突沸及び気泡の発生を抑えるために、真空乾燥工程の前に事前乾燥処理を行ってもよい。事前乾燥処理では、例えば、局所排気装置に設置したホットプレートを用いて、大気圧、温度15~90℃(ホットプレートの表面温度)の条件のもとで、24~96時間かけて混合ゲルを加熱する。事前乾燥処理によって、混合ゲルに含まれる水と有機溶媒の大半を蒸発させることができる。
(第2実施形態)
 図6は、第2実施形態に係る電極20の断面構造の一例を模式的に示している。図6において、電極20は、集電体21の上に配置されている。電極20は、電極活物質、導電助剤及び固体電解質を含む。具体的には、電極20は、活物質粒子22、導電助剤粒子23及び固体電解質24を含む。活物質粒子22は、固体電解質24のマトリクスに埋め込まれて固定されている。導電助剤粒子23も固体電解質24のマトリクスに埋め込まれて固定されている。粒子22及び23の形状は特に限定されない。
 集電体21は、導電材料で構成されている。導電材料の例としては、金属、導電性酸化物、導電性窒化物、導電性炭化物、導電性硼化物、及び導電性樹脂が挙げられる。
 固体電解質24として、第1実施形態で説明した固体電解質10を用いることができる。本開示の固体電解質10は高いイオン伝導度を有するので、固体電解質10を用いることによって、優れた電気特性を有する電極20が得られる。
 本実施形態によれば、固体電解質24のマトリクス中に活物質粒子22(第1粒子)及び導電助剤粒子23(第2粒子)が固定されている。このような構造によれば、電極20において、固体電解質24の高いイオン伝導度に基づく優れた電気特性が確実に発揮されうる。
 電極20に用いられた電極活物質が正極活物質である場合、正極活物質の例としては、リチウム含有遷移金属酸化物、バナジウム酸化物、クロム酸化物、及びリチウム含有遷移金属硫化物が挙げられる。リチウム含有遷移金属酸化物の例としては、LiCoO2、LiNiO2、LiMnO2、LiMn24、LiNiCoMnO2、LiNiCoO2、LiCoMnO2、LiNiMnO2、LiNiCoMnO4、LiMnNiO4、LiMnCoO4、LiNiCoAlO2、LiNiPO4、LiCoPO4、LiMnPO4、LiFePO4、Li2NiSiO4、Li2CoSiO4、Li2MnSiO4、Li2FeSiO4、LiNiBO3、LiCoBO3、LiMnBO3、及びLiFeBO3が挙げられる。リチウム含有遷移金属硫化物の例として、LiTiS2、Li2TiS3、及びLi3NbS4が挙げられる。これらの正極活物質からから選ばれる1種又は2種以上を使用することができる。
 電極20に用いられた電極活物質が負極活物質である場合、負極活物質の例としては、金属、半金属、酸化物、窒化物、及び炭素が挙げられる。金属又は半金属の例としては、リチウム、シリコン、アモルファスシリコン、アルミニウム、銀、スズ、アンチモン、及びそれらの合金が挙げられる。酸化物の例としては、Li4Ti512、Li2SrTi614、TiO2、Nb25、SnO2、Ta25、WO2、WO3、Fe23、CoO、MoO2、SiO、SnBPO6、及びそれらの混合物が挙げられる。窒化物の例としては、LiCoN、Li3FeN2、Li7MnN4及びそれらの混合物が挙げられる。炭素の例としては、黒鉛、グラフェン、ハードカーボン、カーボンナノチューブ及びそれらの混合物が挙げられる。これらの負極活物質から選ばれる1種又は2種以上を使用することができる。
 導電助剤は、例えば、導電性カーボンである。導電性カーボンの例としては、カーボンブラック、ファイバー状カーボン、黒鉛、ケッチェンブラック、及びアセチレンブラックが挙げられる。これらの導電助剤から選ばれる1種又は2種以上を使用することができる。導電助剤は、電極20の内部抵抗を十分に低減することに寄与する。
 電極20は、さらに、バインダーを含んでいてもよい。バインダーの例としては、カルボキシメチルセルロース(CMC)及びスチレンブタジエンゴム(SBR)が挙げられる。これらのバインダーから選ばれる1種又は2種以上を使用することができる。バインダーは、電極20の形状を維持する効果を発揮する。
 次に、図7を参照しつつ、電極20の製造方法の一例を説明する。
 工程S11では、活物質粒子を含有する混合液を調製する。工程S11は、サブ工程S111及びサブ工程S112を含んでいてもよい。サブ工程S111では、例えば、EMI-FSI、リチウム塩、水、有機溶媒及び活物質粒子を混合して前駆液を調製する。サブ工程S112では、前駆液にシリコンアルコキシドを混合する。これにより、活物質粒子を含有する混合液が得られる。サブ工程S112では、例えば、前駆液が入れられた容器にシリコンアルコキシドを滴下する。工程S11は、混合液に活物質粒子が加えられることを除き、第1実施形態における工程S1と同じ工程である。
 工程S12では、固体電解質によって被覆された活物質粒子を形成する。工程S12では、例えば、第1実施形態における工程S2及び工程S3と同じ操作を行う。混合液が活物質粒子を含有するため、混合液をゲル化させると、混合ゲルが活物質粒子の表面の少なくとも一部を覆うように形成される。混合ゲルによって被覆された活物質粒子を乾燥させると、固体電解質によって被覆された活物質粒子が得られる。
 工程S13では、被覆された活物質粒子を含有するスラリーを調製する。被覆された活物質粒子及び導電助剤粒子に電解液又は溶媒を加えて混合する。これにより、電極形成用のスラリーが得られる。必要に応じて、スラリーにはバインダーが加えられてもよい。導電助剤は、工程S11において混合液に予め加えられてもよい。スラリーの調製に用いられる電解液の例としては、リチウム塩と炭酸エステルとを含む電解液が挙げられる。炭酸エステルとしては、鎖状炭酸エステル、環状炭酸エステル、及びそれらの混合物が挙げられる。例えば、エチレンカーボネートとジエチルカーボネートとを1:1の体積比で含む混合溶媒にLiPF6を1mol/リットルの濃度で溶解させることによって、電解液が得られる。スラリーの調製に用いられる溶媒の例としては、水及び有機溶媒が挙げられる。有機溶媒の例としては、N-メチルピロリドン(NMP)が挙げられる。
 工程S14では、集電体にスラリーを塗布して塗布膜を形成する。スラリーの塗布方法は特に限定されない。例えば、ブレードコート法によって集電体にスラリーを塗布する。
 工程S15では、集電体上に形成された塗布膜を乾燥させる。所定の体積充填率を有する電極20が得られるように、乾燥した塗布膜を圧延してもよい。これにより、電極20が得られる。塗布膜の乾燥は、例えば、真空乾燥機を用いて、圧力0.1~200Pa、温度80~150℃(周囲温度)の条件のもとで、4~12時間かけて行われる。
 次に、図8を参照しつつ、電極20の製造方法の他の例を説明する。
 工程S21では、混合液を調製する。工程S21は、例えば、第1実施形態における工程S1と同じ工程である。
 工程S22では、集電体上に電極層を形成する。電極層は、活物質粒子及び導電助剤粒子を含むスラリーを集電体に塗布し、塗布膜を乾燥させることによって得られる。スラリーは、活物質粒子及び導電助剤粒子に電解液又は有機溶媒を加えて混合することによって調製されうる。工程S22では、図7を参照して説明した工程S14及び工程S15と同じ操作を行ってもよい。
 工程S21は、工程S22から独立した工程である。工程S21と工程S22の順序は特に限定されない。
 工程S23では、電極層に混合液を含浸させる。電極層に混合液を含浸させるために、電極層に混合液を滴下させてもよいし、電極層を混合液に浸漬させてもよい。電極層に含浸させる前において、混合液のゲル化が一部進行していてもよい。例えば、混合液を調製した後、混合液を室温で数日間保存すると、ゲル化が少し進行する。そのような混合液を電極層に含浸させてもよい。
 工程S24では、固体電解質によって被覆された活物質粒子を形成する。電極層に含浸した混合液をゲル化させ、混合ゲルを乾燥させる。工程S24では、例えば、第1実施形態における工程S2及び工程S3と同じ操作を行う。以上により、電極20が得られる。
 次に、図9を参照しつつ、電極20の製造方法のさらに他の例を説明する。
 工程S31では、活物質粒子を含有するスラリーを調製する。工程S31は、サブ工程S311及びサブ工程S312を含んでいてもよい。サブ工程S311では、例えば、EMI-FSI、リチウム塩、水、有機溶媒、活物質粒子、導電助剤粒子及びバインダーを混合して前駆液を調製する。サブ工程S312では、前駆液にシリコンアルコキシドを混合する。これにより、電極形成用のスラリーが得られる。サブ工程S312では、例えば、前駆液が入れられた容器にシリコンアルコキシドを滴下する。
 工程S32では、集電体にスラリーを塗布して塗布膜を形成する。スラリーの塗布方法は特に限定されない。例えば、ブレードコート法によって集電体にスラリーを塗布する。
 工程S33では、集電体上に形成された塗布膜を乾燥させる。塗布膜を乾燥させると、先に説明した加水分解反応及び脱水縮重合反応が進行し、活物質粒子及び導電助剤粒子の周囲に固体電解質のマトリクスが形成される。塗布膜を所定期間(例えば、4~23日)にわたって室温で保存し、その後、所定条件にて塗布膜を乾燥させてもよい。塗布膜の乾燥は、例えば、真空乾燥機を用いて、圧力0.1~200Pa、温度15~150℃(周囲温度)の条件のもとで、48~72時間かけて行われる。所定の体積充填率を有する電極20が得られるように、乾燥した塗布膜を圧延してもよい。これにより、電極20が得られる。
(第3実施形態)
 図10は、第3実施形態に係る蓄電素子30の断面構造の一例を模式的に示している。図10において、蓄電素子30は、集電体31、正極32、固体電解質33、負極34、及び集電体35を備えている。集電体31及び35として、第2実施形態で説明した集電体21を用いることができる。正極32は、例えば、第2実施形態で説明した正極活物質を含有する。負極34は、例えば、第2実施形態で説明した負極活物質を含有する。
 固体電解質33は、正極32と負極34との間に配置されている。固体電解質33として、第1実施形態で説明した固体電解質10を用いることができる。本開示の固体電解質10は高いイオン伝導度を有するので、固体電解質10を用いることによって、優れた電気特性を有する蓄電素子30が得られる。
(第4実施形態)
 図11は、第4実施形態に係る蓄電素子40の断面構造の一例を示している。図11において、蓄電素子40は、集電体41、正極42、固体電解質43、負極44、及び集電体45を備えている。集電体41及び45として、第2実施形態で説明した集電体21を用いることができる。正極42として、第2実施形態で説明した電極20を用いることができる。負極44は、例えば、第2実施形態で説明した負極活物質を含有する。
 固体電解質43は、正極42と負極44との間に配置されている。固体電解質43として、第1実施形態で説明した固体電解質10を用いることができる。あるいは、固体電解質43は、その他の固体電解質であってもよい。その他の固体電解質の例としては、無機固体電解質及びポリマー電解質が挙げられる。無機固体電解質の例としては、無機酸化物及び無機硫化物が挙げられる。無機酸化物の例としては、LiPON、LiAlTi(PO43、LiAlGeTi(PO43、LiLaTiO、LiLaZrO、Li3PO4、Li2SiO2、Li3SiO4、Li3VO4、Li4SiO4-Zn2SiO4、Li4GeO4-Li2GeZnO4、Li2GeZnO4-Zn2GeO4、及びLi4GeO4-Li3VO4が挙げられる。無機硫化物の例としては、Li2S-P25、Li2S-P25-LiI、Li2S-P25-Li2O-LiI、Li2S-SiS2、Li2S-SiS2-LiI、Li2S-SiS2-LiBr、Li2S-SiS2-LiCl、Li2S-SiS2-B23-LiI、Li2S-SiS2-P25-LiI、Li2S-B23、Li2S-P25-GeS、Li2S-P25-ZnS、Li2S-P25-GaS、Li2S-GeS2、Li2S-SiS2-Li3PO4、Li2S-SiS2-LiPO、Li2S-SiS2-LiSiO、Li2S-SiS2-LiGeO、Li2S-SiS2-LiBO、Li2S-SiS2-LiAlO、Li2S-SiS2-LiGaO、Li2S-SiS2-LiInO、Li4GeS4-Li3PS3、Li4SiS4-Li3PS4、及びLi3PS4-Li2Sが挙げられる。ポリマー電解質の例としては、フッ素樹脂、ポリエチレンオキサイド、ポリアクリルニトリル、ポリアクリレート、これらの誘導体、及びこれらの共重合体が挙げられる。
 蓄電素子40の内部で十分な電子絶縁性が確保できる場合、固体電解質43は省略されてもよい。例えば、図6を参照して説明した電極20を作製したのち、電極20の表面に混合液を塗布して塗布膜を形成する。塗布膜をゲル化及び乾燥させることによって、電極20の上に固体電解質の薄い層を形成することができる。この薄い層が正極と負極との短絡を防ぐのに十分である場合、セパレータの役割を果たす固体電解質が別途必要とされない。
 図11に示す蓄電素子40においては、正極42のみに本開示の固体電解質を含む電極が使用されている。
(第5実施形態)
 図12は、第5実施形態に係る蓄電素子50の断面構造の一例を示している。図12において、蓄電素子50は、集電体51、正極52、固体電解質53、負極54、及び集電体55を備えている。集電体51及び55として、第2実施形態で説明した集電体21を用いることができる。正極52及び負極54として、第2実施形態で説明した電極20を用いることができる。固体電解質53は、正極52と負極54との間に配置されている。固体電解質53として、第1実施形態で説明した固体電解質10を用いることができる。あるいは、固体電解質53は、その他の固体電解質であってもよい。本実施形態では、正極52と負極54の両方に本開示の固体電解質を含む電極が使用されている。ただし、負極54のみに本開示の固体電解質を含む電極が使用されてもよい。
 第4及び第5実施形態によれば、正極及び負極から選ばれる少なくとも1つに本開示の電極20が用いられている。電極20は、本開示の固体電解質10を含む。固体電解質10は高いイオン伝導度を有するので、固体電解質10を用いることによって、優れた電気特性を有する蓄電素子が得られる。
 EMI-FSI、Li-FSI、0.5mlのTEOS、1.5mlのPGME及び0.5mlの水をガラス容器に入れて混合し、混合液を得た。モル比にて、TEOS:EMI-FSI:Li-FSI=1:x:0.33x(x=0.25、0.5、1.0、1.5又は3.5)の関係を満たすようにEMI-FSI及びLi-FSIの量を変化させ、互いに異なる組成比を有する5つの混合液試料を得た。
 ガラス容器を密閉して試料を室温(25℃)で保管した。TEOSに対するEMI-FSIのモル比が3.5(x=3.5)の試料は、1ヶ月以上経ってもゲル化しなかった。他の試料は10~17日で湿潤状態の混合ゲルに変化した。
 混合ゲルに変化した4つの試料(x=0.25、0.5、1.0又は1.5)を真空乾燥機に入れ、90℃、0.1Pa以下の条件で72時間にわたって焼成した。これにより、固体電解質を得た。得られた固体電解質のイオン伝導度を交流インピーダンス法によって測定した。測定は、25℃に保たれたグローブボックス内で行った。結果を図13に示す。
 図13は、TEOSに対するEMI-FSIのモル比と、イオン伝導度との関係を示している。TEOSに含まれたSi原子の全てが多孔質シリカの骨格を形成すると仮定した場合、TEOSに対するEMI-FSIのモル比は、多孔質シリカに対するEMI-FSIのモル比に一致する。
 参考例として、Li-FSI及びEMI-FSIを含む非水電解液を調製した。EMI-FSIに対するLi-FSIのモル比は0.33であった。この非水電解液のイオン伝導度は、9.4mS/cmであった。
 図13に示すように、TEOSに対するEMI-FSIのモル比の増加に伴ってイオン伝導度が増大した。TEOSに対するEMI-FSIのモル比が1.0を超えると、固体電解質のイオン伝導度は、非水電解液のイオン伝導度を上回り、約15mS/cmに達した。
 図14Aに示すように、TEOSに対するEMI-FSIのモル比が小さすぎる場合、多孔質シリカの孔の内表面に連続的な第1電解質層130が形成されず、連続的なイオン伝導経路が形成されなかったと考えられる。TEOSに対するEMI-FSIのモル比の増加に伴って、図14Bに示すように、多孔質シリカ11の孔12の内表面が分極電荷を有する第1電解質層130で十分に覆われ、連続的なイオン伝導経路が形成されたと考えられる。
 以上の結果から、多孔質シリカに対するEMI-FSIのモル比が1.0より大きく、かつ、3.5未満であるとき、高いイオン伝導度を示す固体電解質が得られる。図13のグラフから、多孔質シリカに対するEMI-FSIのモル比が1.1以上、かつ、1.5以下であるとき、高いイオン伝導度を示す固体電解質を確実に得ることができるといえる。
 本開示の技術は、リチウムイオン二次電池などの蓄電素子に有用である。

Claims (12)

  1.  相互接続された複数の孔を有する多孔質シリカと、
     前記複数の孔の内表面を覆う電解質と、
     を備え、
     前記電解質は、EMI-FSIで表される1-エチル-3-メチルイミダゾリウムビス(フルオロスルホニル)イミドと、前記EMI-FSIに溶解したリチウム塩と、を含み、
     シリカに対する前記EMI-FSIのモル比が、1.0より大きく、かつ、3.5未満である、固体電解質。
  2.  前記リチウム塩が、リチウムビス(フルオロスルホニル)イミドを含む、請求項1に記載の固体電解質。
  3.  前記電解質は、前記複数の孔の前記内表面に接触する第1電解質層を含み、
     前記第1電解質層は、第1アニオン層、第1カチオン層及び第2アニオン層を含み、
     前記第1アニオン層は、前記多孔質シリカの前記複数の孔の前記内表面にそれぞれ吸着した複数の第1のビス(フルオロスルホニル)イミドイオンを含み、
     前記第1カチオン層は、前記複数の第1のビス(フルオロスルホニル)イミドイオンとそれぞれイオン結合した複数の1-エチル-3-メチルイミダゾリウムイオンを含み、
     前記第2アニオン層は、前記複数の1-エチル-3-メチルイミダゾリウムイオンとそれぞれイオン結合した複数の第2のビス(フルオロスルホニル)イミドイオンを含む、請求項2に記載の固体電解質。
  4.  シリカに対する前記EMI-FSIのモル比が、1.1以上、かつ、1.5以下である、請求項1から3のいずれか1項に記載の固体電解質。
  5.  前記多孔質シリカは、単一の層をなし、
     前記固体電解質の外形が前記多孔質シリカによって画定されている、請求項1から4のいずれか1項に記載の固体電解質。
  6.  請求項1から5のいずれか1項に記載の固体電解質と、
     電極活物質と、
     を備えた、電極。
  7.  導電助剤及びバインダーから選ばれる少なくとも1つをさらに備えた、請求項6に記載の電極。
  8.  導電助剤をさらに備え、
     前記固体電解質のマトリクス中に、前記電極活物質からなる複数の第1粒子と、前記導電助剤からなる複数の第2粒子とが固定されている、請求項6又は7に記載の電極。
  9.  正極と、
     負極と、
     請求項1から5のいずれか1項に記載の固体電解質と、
     を備えた、蓄電素子。
  10.  正極と、
     負極と、
     を備え、
     前記正極及び前記負極から選ばれる少なくとも1つは、請求項6から8のいずれか1項に記載の電極である、蓄電素子。
  11.  シリコンアルコキシドと、1-エチル-3-メチルイミダゾリウムビス(フルオロスルホニル)イミドと、リチウム塩と、水と、有機溶媒とを混合して、混合液を調製することと、
     前記混合液をゲル化させることによって混合ゲルを形成することと、
     前記混合ゲルを乾燥させることによって固体電解質を形成することと、
     含む、固体電解質の製造方法。
  12.  前記シリコンアルコキシドは、オルトケイ酸テトラエチル及びその置換体から選ばれる少なくとも1つを含む、請求項11に記載の固体電解質の製造方法。
     
PCT/JP2018/040578 2017-11-02 2018-10-31 固体電解質、電極、蓄電素子及び固体電解質の製造方法 WO2019088196A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019514840A JP7134948B2 (ja) 2017-11-02 2018-10-31 固体電解質、電極、蓄電素子及び固体電解質の製造方法
EP18874328.0A EP3706226A4 (en) 2017-11-02 2018-10-31 SOLID ELECTROLYTE, ELECTRODE, ELECTRIC ENERGY STORAGE ELEMENT, AND SOLID ELECTROLYTE MANUFACTURING PROCESS
US16/481,782 US11557789B2 (en) 2017-11-02 2018-10-31 Solid electrolyte, electrode, power storage device, and method for producing solid electrolytes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017212740 2017-11-02
JP2017-212740 2017-11-02

Publications (1)

Publication Number Publication Date
WO2019088196A1 true WO2019088196A1 (ja) 2019-05-09

Family

ID=66332933

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/040578 WO2019088196A1 (ja) 2017-11-02 2018-10-31 固体電解質、電極、蓄電素子及び固体電解質の製造方法

Country Status (4)

Country Link
US (1) US11557789B2 (ja)
EP (1) EP3706226A4 (ja)
JP (1) JP7134948B2 (ja)
WO (1) WO2019088196A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024019138A1 (ja) * 2022-07-22 2024-01-25 株式会社村田製作所 電解質および電解質を備える電池
WO2024019135A1 (ja) * 2022-07-22 2024-01-25 株式会社村田製作所 電解質および電解質を備える電池
WO2024019136A1 (ja) * 2022-07-22 2024-01-25 株式会社村田製作所 電解質および電解質を備える電池

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7153713B2 (ja) 2017-04-24 2022-10-14 アイメック・ヴェーゼットウェー 固体ナノ複合電解質材料
US11710850B2 (en) 2017-11-02 2023-07-25 Imec Vzw Solid electrolyte, electrode, power storage device, and method for producing solid electrolytes
FR3080945A1 (fr) * 2018-05-07 2019-11-08 I-Ten Electrolytes mesoporeux pour dispositifs electrochimiques en couches minces

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010113939A (ja) * 2008-11-06 2010-05-20 Nissan Motor Co Ltd 双極型二次電池およびその製造方法
JP2010225511A (ja) * 2009-03-25 2010-10-07 Konica Minolta Holdings Inc 電解質及び二次電池
JP2012518248A (ja) 2009-02-13 2012-08-09 サントル ナショナル ドゥ ラ ルシェルシュ シアンティフィク イオン導電ゲルに基づく高エネルギー非水電池、その製造方法及びその用途
JP2016508279A (ja) * 2012-12-12 2016-03-17 三星エスディアイ株式会社Samsung SDI Co.,Ltd. イオン性液体を含む固体電解質
JP2017130448A (ja) * 2016-01-18 2017-07-27 国立大学法人東京工業大学 溶融塩を含む電解質を用いた蓄電デバイス

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6275317B1 (en) 1998-03-10 2001-08-14 Agere Systems Optoelectronics Guardian Corp. Hybrid integration of a wavelength selectable laser source and optical amplifier/modulator
JP2001228372A (ja) 2000-02-15 2001-08-24 Nec Corp 半導体レーザモジュール
JP2002040350A (ja) 2000-07-28 2002-02-06 Fuji Xerox Co Ltd 光走査装置
US8119273B1 (en) 2004-01-07 2012-02-21 The United States Of America As Represented By The Department Of Energy Unique battery with an active membrane separator having uniform physico-chemically functionalized ion channels and a method making the same
PL1782489T3 (pl) * 2004-07-07 2021-05-31 Lg Chem, Ltd. Porowaty separator kompozytowy organiczno/nieorganiczny i urządzenie elektrochemiczne go zawierające
JP2008060272A (ja) 2006-08-30 2008-03-13 Matsushita Electric Ind Co Ltd 半導体レーザ装置の製造方法、および半導体レーザ装置
JP2008130229A (ja) 2006-11-16 2008-06-05 National Institute Of Advanced Industrial & Technology リチウム二次電池
JP4885688B2 (ja) 2006-11-16 2012-02-29 ルネサスエレクトロニクス株式会社 半導体レーザ装置
JP5533875B2 (ja) * 2009-08-28 2014-06-25 コニカミノルタ株式会社 固体電解質の製造方法および二次電池
JP2011113906A (ja) * 2009-11-30 2011-06-09 Konica Minolta Holdings Inc 固体電解質とその製造方法及びそれを用いた二次電池
JP2011134459A (ja) 2009-12-22 2011-07-07 Konica Minolta Holdings Inc 電解質組成物、二次電池、および化合物
JP2012074351A (ja) 2010-08-31 2012-04-12 Japan Advanced Institute Of Science & Technology Hokuriku イオン伝導性材料及びその利用
JP5731278B2 (ja) 2011-05-24 2015-06-10 株式会社オハラ 全固体リチウムイオン電池
WO2013009731A2 (en) 2011-07-11 2013-01-17 Cornell University Ionic-liquid nanoscale ionic material (il-nim) compositions, methods and applications
WO2013051302A1 (ja) 2011-10-05 2013-04-11 国立大学法人東北大学 二次電池
CN103151557B (zh) * 2013-03-12 2015-07-22 北京理工大学 一种固态化复合电解质及其制备方法
EP2814091B1 (en) 2013-06-11 2020-08-26 IMEC vzw Solid state battery with surface ion-diffusion enhancement coating and method for manufacturing thereof.
JP6220973B2 (ja) 2013-07-29 2017-10-25 ハチンソン バイオポリマーマトリックスを含むモノリシックイオノゲル、及びその製造方法
US9742028B2 (en) 2013-08-21 2017-08-22 GM Global Technology Operations LLC Flexible membranes and coated electrodes for lithium based batteries
WO2015089498A1 (en) 2013-12-13 2015-06-18 Tufts University Silicone-containing ionic materials
JP6413675B2 (ja) 2014-11-13 2018-10-31 住友電気工業株式会社 光モジュール
KR20170123641A (ko) 2015-02-26 2017-11-08 내셔날 인스티튜트 오브 어드밴스드 인더스트리얼 사이언스 앤드 테크놀로지 용융염 조성물, 전해질 및 축전 장치 및 액화 용융염의 증점 방법
FR3043404B1 (fr) 2015-11-05 2017-11-24 Hutchinson Ionogel formant un film autosupporte d'electrolyte solide, dispositif electrochimique l'incorporant et procede de fabrication de l'ionogel.
US10784540B2 (en) 2016-03-31 2020-09-22 Imprint Energy, Inc. Ionic liquid gel for electrolyte, method of and ink for making the same, and printed batteries including such ionic liquid gels and/or electrolytes
EP3531492A4 (en) 2016-10-20 2020-06-17 Hitachi, Ltd. LITHIUM SECONDARY BATTERY
DE112017006331T5 (de) 2016-12-16 2019-09-19 Sumitomo Electric Industries, Ltd. Optisches modul
JP7153713B2 (ja) 2017-04-24 2022-10-14 アイメック・ヴェーゼットウェー 固体ナノ複合電解質材料
US11710850B2 (en) 2017-11-02 2023-07-25 Imec Vzw Solid electrolyte, electrode, power storage device, and method for producing solid electrolytes

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010113939A (ja) * 2008-11-06 2010-05-20 Nissan Motor Co Ltd 双極型二次電池およびその製造方法
JP2012518248A (ja) 2009-02-13 2012-08-09 サントル ナショナル ドゥ ラ ルシェルシュ シアンティフィク イオン導電ゲルに基づく高エネルギー非水電池、その製造方法及びその用途
JP2010225511A (ja) * 2009-03-25 2010-10-07 Konica Minolta Holdings Inc 電解質及び二次電池
JP2016508279A (ja) * 2012-12-12 2016-03-17 三星エスディアイ株式会社Samsung SDI Co.,Ltd. イオン性液体を含む固体電解質
JP2017130448A (ja) * 2016-01-18 2017-07-27 国立大学法人東京工業大学 溶融塩を含む電解質を用いた蓄電デバイス

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3706226A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024019138A1 (ja) * 2022-07-22 2024-01-25 株式会社村田製作所 電解質および電解質を備える電池
WO2024019135A1 (ja) * 2022-07-22 2024-01-25 株式会社村田製作所 電解質および電解質を備える電池
WO2024019136A1 (ja) * 2022-07-22 2024-01-25 株式会社村田製作所 電解質および電解質を備える電池

Also Published As

Publication number Publication date
JPWO2019088196A1 (ja) 2020-09-24
US20200006807A1 (en) 2020-01-02
JP7134948B2 (ja) 2022-09-12
EP3706226A4 (en) 2020-12-16
EP3706226A1 (en) 2020-09-09
US11557789B2 (en) 2023-01-17

Similar Documents

Publication Publication Date Title
WO2019088196A1 (ja) 固体電解質、電極、蓄電素子及び固体電解質の製造方法
JP5821857B2 (ja) 複合活物質、複合活物質の製造方法および電池
JP5912551B2 (ja) 電極材料、電極及びそれを用いた電池
WO2012105048A1 (ja) 被覆活物質、電池および被覆活物質の製造方法
JP5912550B2 (ja) 電極材料、電極及びそれを用いた電池
WO2019088197A1 (ja) 固体電解質、電極、蓄電素子及び固体電解質の製造方法
CN102456878A (zh) 正极活性物质及其制造方法、正极以及非水电解质二次电池
JP5912549B2 (ja) 電極材料、電極及びそれを用いた電池
Nara et al. Techniques for realizing practical application of sulfur cathodes in future Li-ion batteries
JP6665343B2 (ja) 無機固体電解質材料、並びに、これを用いたスラリー、全固体二次電池用固体電解質膜、全固体二次電池用固体電解質シート、全固体二次電池用正極活物質膜、全固体二次電池用負極活物質膜、全固体二次電池用電極シート、全固体二次電池及び全固体二次電池の製造方法
JP2022109315A (ja) 固体電解質、電極、蓄電素子及び固体電解質の製造方法
CN112262442B (zh) 固体电解质、电极以及蓄电元件
WO2021241002A1 (ja) 固体電解質、電極、蓄電素子及び固体電解質の製造方法
KR20200034286A (ko) 실리카 겔 전해질 및 이를 포함하는 전고체 전지
JP6524785B2 (ja) 全固体電池
JP2021153010A (ja) リチウム二次電池
White Observing Conductive Properties of Ionogel Electrolytes for Solid State Batteries

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019514840

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18874328

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018874328

Country of ref document: EP

Effective date: 20200602