WO2019087737A1 - ガスセンサ用固体電解質、ガスセンサ - Google Patents

ガスセンサ用固体電解質、ガスセンサ Download PDF

Info

Publication number
WO2019087737A1
WO2019087737A1 PCT/JP2018/038083 JP2018038083W WO2019087737A1 WO 2019087737 A1 WO2019087737 A1 WO 2019087737A1 JP 2018038083 W JP2018038083 W JP 2018038083W WO 2019087737 A1 WO2019087737 A1 WO 2019087737A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
low concentration
stabilizer
concentration phase
phase particles
Prior art date
Application number
PCT/JP2018/038083
Other languages
English (en)
French (fr)
Inventor
真 野口
聡司 鈴木
充宏 吉田
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN201880071043.5A priority Critical patent/CN111279185B/zh
Priority to DE112018005233.8T priority patent/DE112018005233T5/de
Publication of WO2019087737A1 publication Critical patent/WO2019087737A1/ja
Priority to US16/864,281 priority patent/US11927561B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4073Composition or fabrication of the solid electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/41Oxygen pumping cells
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3246Stabilised zirconias, e.g. YSZ or cerium stabilised zirconia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/781Nanograined materials, i.e. having grain sizes below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/785Submicron sized grains, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron

Definitions

  • the present invention relates to a solid electrolyte composed of partially stabilized zirconia, and a gas sensor provided with the solid electrolyte.
  • a gas sensor element is used in an exhaust system or the like of an internal combustion engine for the purpose of detecting an oxygen concentration in an exhaust gas, an air-fuel ratio, and the like.
  • An oxide ion conductive solid electrolyte such as zirconia is used for such a gas sensor element.
  • partially stabilized zirconia is required to suppress strength reduction in a high temperature environment, suppression of strength reduction at low temperatures is also important.
  • partially stabilized zirconia has a phase transition from tetragonal (that is, T phase) to monoclinic (that is, M phase) in the crystal phase that constitutes crystal particles at a low temperature of 100 to 300 ° C. in the presence of water. Occur. This phase transition causes volume change such as volume expansion, which leads to a decrease in strength of the solid electrolyte.
  • Patent Document 1 discloses a sintered body further containing alumina and titania in a zirconia-based sintered body in which yttria is solid-solved. And in such a zirconia-based sintered body, it is disclosed that a phase transition is suppressed.
  • the suppression of the phase transition itself is limited, and it is difficult to completely prevent the phase transition. Therefore, in the solid electrolyte composed of the conventional zirconia sintered body or the like, a considerable amount of phase transition occurs in the low temperature region of the thermal cycle in the presence of water, and the volume change of the crystal phase occurs. As a result, internal stress such as tensile stress is generated at the crystal grain boundaries, and there is a possibility that a crack may be generated from, for example, the water contact surface of the solid electrolyte. As a result, the strength may be reduced, which may lead to the destruction of the solid electrolyte.
  • the present disclosure aims to provide a solid electrolyte capable of exhibiting excellent strength even when exposed to a low temperature environment in the presence of water, and a gas sensor using the same.
  • One embodiment of the present disclosure is a solid electrolyte comprising partially stabilized zirconia in which a stabilizer is solid-solved in zirconia,
  • the partially stabilized zirconia contains, as crystal particles, stabilizer low concentration phase particles in which the concentration of the stabilizer is less than 4.7 mol%,
  • the partially stabilized zirconia has a void between the crystal particles,
  • a solid for gas sensor wherein the abundance ratio of the low concentration stabilizer phase particles having a gap of 5 ⁇ m or less among the low concentration stabilizer particles in the partially stabilized zirconia is 65 volume% or more In the electrolyte.
  • Another aspect of the present disclosure is a gas sensor provided with the above solid electrolyte.
  • the solid electrolyte has stabilizer low concentration phase particles as crystal particles.
  • Stabilizer low concentration phase particles are appropriately referred to as "low concentration phase particles".
  • the partially stabilized zirconia has a void, and low concentration phase particles having a gap with the void within the above range are present at a ratio of the above-mentioned predetermined amount or more. That is, many low concentration phase particles close to the gap are present.
  • the solid electrolyte can exhibit excellent strength even when exposed to a low temperature environment in the presence of water.
  • the gas sensor is provided with a solid electrolyte that exhibits excellent strength even in the presence of moisture as described above. Therefore, the gas sensor is unlikely to be internally damaged even when exposed to a low temperature environment containing moisture. Thus, the gas sensor exhibits high reliability for the thermal cycle.
  • FIG. 1 is a schematic view showing a microstructure of partially stabilized zirconia constituting a solid electrolyte in Embodiment 1
  • FIG. 2 is an explanatory view showing (a) a gap between crystal grains and a void, and (b) an explanatory view showing a gap between the voids in the first embodiment
  • FIG. 3 is an explanatory view showing the particle diameter of crystal particles or voids in Embodiment 1
  • FIG. 4 is an explanatory view showing the number particle size distribution of crystal particles or voids in the first embodiment
  • FIG. 5 is an explanatory view showing a method of manufacturing a solid electrolyte in Embodiment 1
  • 6 is an explanatory view schematically showing a heat treatment step and a mixing step in the manufacturing method in Embodiment 1.
  • FIG. 7 is a schematic view showing a microstructure of partially stabilized zirconia constituting a solid electrolyte in Comparative Embodiment 1
  • FIG. 8 is a cross-sectional view of the gas sensor in the second embodiment
  • FIG. 9 is a cross-sectional view of a stacked-type gas sensor element in Embodiment 2
  • FIG. 10 is an explanatory view of a cross section of the cup-shaped gas sensor element in the second embodiment.
  • the solid electrolyte 1 is composed of partially stabilized zirconia 2.
  • the partially stabilized zirconia 2 is a so-called sintered body.
  • the partially stabilized zirconia 2 is a sintered body in which a stabilizer is solid-solved in zirconia, and consists of a large number of crystal particles 3.
  • the stabilizer examples include yttria, calcia, magnesia, scandia, ytterbia and the like.
  • Partially stabilized zirconia can contain at least one of these as a stabilizer.
  • the partially stabilized zirconia 2 contains a large number of low concentration phase particles 31 as crystal particles 3 constituting the zirconia.
  • the low concentration phase particles 31 are crystal particles in which the concentration of the stabilizer is less than 4.7 mol%.
  • the crystal system of the crystal phase of the low concentration phase particle 31 is usually monoclinic or tetragonal.
  • the measurement of the concentration of the stabilizer in the crystal particle 3 is carried out by the concentration of the metal element such as Y in the stabilizer by scanning electron microscope / energy dispersive X-ray spectroscopy (that is, SEM / EDX analysis) described later. It is performed by measuring.
  • the partially stabilized zirconia 2 contains a large number of stabilizer high concentration phase particles 32 as crystal particles 3.
  • the stabilizer high concentration phase particles 32 are appropriately referred to as "high concentration phase particles 32".
  • the high concentration phase particles 32 are crystal particles in which the concentration of the stabilizer is 4.7 mol% or more.
  • the crystal system of the crystal phase in the high concentration phase particle 32 is usually cubic.
  • the main crystal grains constituting the partially stabilized zirconia 2 are preferably high concentration phase particles 32. In this case, the stability of the solid electrolyte 1 against heat is enhanced.
  • the main crystal grains are crystal grains having the highest content on a volume basis among crystal grains 3 constituting the partially stabilized zirconia 2.
  • the partially stabilized zirconia 2 has a void 25 between the crystal particles 3 and has a low concentration phase particle 31 whose distance D1 to the void 25 is 5 ⁇ m or less.
  • the low concentration phase particles 31 having a distance D1 of 5 ⁇ m or less with respect to the air gap 25 are appropriately referred to as “near low concentration phase particles 311”.
  • the low concentration phase particles 31 whose distance D1 to the air gap 25 exceeds 5 ⁇ m are referred to as “remote low concentration phase particles 312” as appropriate.
  • the distance D1 between the low concentration phase particle 31 and the air gap 25 refers to the distance between the centers of the both.
  • the center O1 of the crystal particle 3 such as the low concentration phase particle 31 is the center of gravity of the rectangle surrounded by the maximum width of the crystal particle 3 in the horizontal direction and the vertical direction.
  • the low concentration phase particles 31 whose distance D1 to the air gap 25 is 5 ⁇ m or less are the above-mentioned neighboring low concentration phase particles 311.
  • the low concentration phase particles 31 in which the distance D 1 to the air gap 25 exceeds 5 ⁇ m are the above-mentioned remote low concentration phase particles 312.
  • the adjacent low concentration phase particles 311 may or may not be adjacent to the void 25.
  • the void 25 can sufficiently reduce the volume change such as the volume expansion associated with the phase transition of the nearby low concentration phase particle 311 present near the void 25.
  • the abundance ratio of the adjacent low concentration phase particles 311 among the low concentration phase particles 31 in the partially stabilized zirconia 2 is 65% by volume or more on a volume basis.
  • the abundance ratio of the adjacent low concentration phase particles 311 is less than 65% by volume, it means that there are many low concentration phase particles 31 not present near the void 25. Therefore, the effect of alleviating the volume change of the low concentration phase particles 31 due to the voids 25 can not be sufficiently obtained. Therefore, for example, when a phase transition occurs in the low concentration phase particles 31 at a low temperature in the presence of water, there is a possibility that the strength can be reduced without sufficiently relaxing the volume change.
  • the abundance ratio of the adjacent low concentration phase particles 311 is 80% by volume or more from the viewpoint that the relaxation effect is more sufficiently obtained and the reduction in strength is further suppressed. As a result, it is possible to sufficiently reduce the remote low concentration phase particles 312 which are difficult to reduce the volume change by the air gap 25.
  • the particle diameter of the low concentration phase particles 31 is, as exemplified in FIG. 3, a length in the vertical direction and a horizontal length L1 in a rectangle surrounded by the maximum width of the mixed phase particles 35 in the horizontal direction and the vertical direction. It is expressed as an arithmetic mean with L2.
  • the particle sizes of the other crystal particles 3 and the voids 25 are also measured and calculated in the same manner as the low concentration phase particles 31.
  • the number particle size distribution P1 of the low concentration phase particles 31 is illustrated in FIG. As exemplified in FIG. 4, in the number particle size distribution P1, except for 10% on the small diameter side and 10% on the large diameter side, the average particle diameter of the remaining 80% of the low concentration phase particles 31 is excluded. It is an average particle size. In FIG. 4, the region of 10% on the small diameter side and 10% on the large diameter side is shown with dots. That is, the average particle diameter is calculated by adding up the particle diameters of the remaining low concentration phase particles 31 excluding 10% on the small diameter side and 10% on the large diameter side and dividing by the number of particles. The number particle size distribution of the low concentration phase particles 31 is created based on the 50 low concentration phase particles 31.
  • the average diameter of the voids 25 and the average particle diameter of the high concentration phase particles 32 are also limited to the number particle size distribution P2 of the 50 voids 25 and the number particle size distribution P3 of the 50 high concentration phase particles 32. Is calculated in the same manner as the low concentration phase particle 31.
  • the average particle diameter of the low concentration phase particles 31 is preferably 0.05 to 1.0 ⁇ m, and the average diameter of the voids 25 is preferably 0.05 to 5.0 ⁇ m.
  • the voids 25 can more sufficiently absorb the volume expansion of the low concentration phase particles 31. That is, the void 25 can more sufficiently reduce the volume change of the low concentration phase particle 31, and the stress relaxation effect is enhanced. Thereby, stress such as tensile stress generated at the grain boundary 30 of the crystal particle 3 is more sufficiently reduced. Therefore, it is possible to further suppress the reduction in strength due to the progress of the crack. From the viewpoint of further enhancing this effect, the average diameter of the voids 25 is more preferably 0.05 to 2.0 ⁇ m.
  • the partially stabilized zirconia 2 preferably has an average particle diameter R of the high concentration phase particles 32 of 1 to 5 ⁇ m.
  • the average value D2 ave of the gap D2 between the air gaps 25 is 5 ⁇ m or less
  • the standard deviation S of the average value D2 ave is 3 or less
  • the dispersion degree A is preferably 5.0 or less.
  • gap 25 comrades says the thing of the distance between the centers of both. A S / D2 ave ⁇ R (1)
  • the porosity of the solid electrolyte 1 is preferably 0.5 to 8.0%. In this case, the effect of alleviating the volume change of the low concentration phase particles 31 due to the voids 25 is more sufficiently exhibited, and the strength of the solid electrolyte itself is further improved. From the viewpoint of further enhancing the strength, the porosity is more preferably 0.5 to 6.0%.
  • the type of the stabilizer is not particularly limited from the viewpoint of obtaining the effects in the present disclosure, but from the viewpoint that the chemical stability of the stabilizer is good, the stabilizer is made of yttria. Is preferred.
  • the stress is relaxed to the volume expansion of the low concentration phase particles 31 when the temperature is lowered in the presence of water. This effect is remarkable when the solid electrolyte 1 is used in applications in which it is in contact with moisture or a gas containing moisture.
  • the solid electrolyte 1 is used for a gas sensor.
  • the solid electrolyte 1 can have a contact surface 1A configured to be in contact with a gas such as a measurement gas (see Embodiment 2 described later).
  • Gas includes, for example, exhaust gas, air, etc., which contain water. Therefore, the contact surface 1A can also be a contact surface with moisture.
  • the solid electrolyte 1 is obtained by performing the mixing step, the forming step, and the firing step.
  • the first raw material powder 221, the third raw material powder 223, and the stabilizer raw material powder 211 are mixed. This gives a mixture 20.
  • the third raw material powder 223 is made of cluster particles in which a plurality of zirconia particles are aggregated.
  • the third raw material powder 223 is obtained, for example, by heat-treating the second raw material powder 222.
  • the first raw material powder 221 and the second raw material powder 222 are both made of zirconia powder.
  • the stabilizer raw material powder 211 is made of a stabilizer such as yttria.
  • the stabilizer raw material powder 211 yttria powder, calcia powder, magnesia powder, scandia powder, ytterbia powder or the like can be used. As the stabilizer raw material powder 211, at least one of these can be used.
  • the third raw material powder 223 can be produced by heat treating the zirconia powder. By heat treatment, the zirconia particles aggregate to form clusters. Thereby, the third raw material powder 223 consisting of cluster particles is obtained.
  • the cluster particles can be said to be secondary particles formed by aggregation of zirconia particles (that is, primary particles). As illustrated in FIG. 6, each cluster particle constituting the third raw material powder 223 contains a void 229.
  • the void 25 described above is easily formed in the partially stabilized zirconia 2 by using the third raw material powder 223 made of cluster particles.
  • the zirconia powder that is, the second raw material powder 222 used for the heat treatment, it is preferable to use one having an average particle diameter larger than that of the zirconia powder of the first raw material powder 221. In this case, the average particle diameter of the voids 229 in which the clusters are contained can also be increased, and the voids 25 described above are easily formed.
  • the average particle diameter of each raw material powder can be adjusted suitably.
  • the average particle diameter of each raw material powder means the particle diameter at 50% volume integration in the particle size distribution determined by the laser diffraction / scattering method.
  • the particle diameter at 50% volume integration in the particle size distribution determined by the laser diffraction / scattering method is appropriately referred to as "d50 particle diameter".
  • the d50 particle size of the first raw material powder 221 can be, for example, in the range of 0.2 to 0.5 ⁇ m.
  • the d50 particle size of the second raw material powder 222 can be, for example, in the range of 0.6 to 1.0 ⁇ m.
  • the mixing step preferably further includes a first mixing step and a second mixing step.
  • mixing I means the first mixing step
  • mixing II means the second mixing step.
  • the first mixing step the first raw material powder 221 and the stabilizer raw material powder 211 are mixed.
  • the second raw material powder 222 is heated, and the third raw material powder 223 composed of cluster particles including the voids 229 is obtained.
  • the third raw material powder 223 is mixed with the mixture 200 of the first raw material powder 221 and the stabilizer raw material powder 211 to obtain the mixture 20.
  • the mixture 20 can be slurried prior to shaping.
  • liquids such as water, alcohol and liquid organic matter can be used.
  • a water-based liquid is used.
  • the slurryed mixture may be granulated.
  • the molding method is not particularly limited, and examples thereof include powder compacting, pressure molding, extrusion molding, injection molding, hot pressing, cold isostatic pressing, grinding and the like.
  • a molded body having a desired shape can be obtained depending on the application. For example, molded articles of various shapes such as plate, sheet, hollow sheet, rod, cylinder, and bottomed cylinder can be obtained. Grinding can be performed on the compact as required.
  • the formed body is fired.
  • partially stabilized zirconia 2 is produced, and solid electrolyte 1 is obtained.
  • the firing temperature can be appropriately changed according to the composition etc., but is, for example, 1300 to 1500 ° C.
  • the 3rd raw material powder 223 in which the cluster of the zirconia particle was formed in a part of zirconia raw material is used.
  • the above-mentioned air gap 25 becomes easy to be formed in a calcination process.
  • the solid electrolyte 1 of this embodiment is composed of a partially stabilized zirconia 2 in which a stabilizer is solid-solved in zirconia.
  • the partially stabilized zirconia 2 contains low concentration phase particles 31 as crystal particles 3 constituting the zirconia and has voids 25.
  • the void 25 can sufficiently reduce the volume change of the low concentration phase particle 31 such as volume expansion.
  • the solid electrolyte 1 can exhibit excellent strength even when exposed to a low temperature environment in the presence of water.
  • the air gap 25 can reduce the volume change of the low concentration phase particle 31 and reduce the internal stress of the solid electrolyte 1. Therefore, it is considered that the solid electrolyte 1 of the present embodiment can relieve internal stress that may occur not only in a low temperature environment but also in a high temperature environment. It is known that, in the high temperature environment, transformation from T phase to M phase occurs at the time of temperature decrease, so that volume expansion of the low concentration phase particles 31 occurs.
  • the solid electrolyte 1 of the present embodiment is considered to be able to absorb the volume expansion of the low concentration phase particles 31 at the time of temperature decrease in the high temperature range, and thus is considered to exhibit excellent strength even when exposed to the high temperature range.
  • a zirconia raw material powder composed of zirconia particles and a stabilizer raw material powder are mixed. Then, it is made into slurry, molded and fired. Thus, the solid electrolyte 9 of the present embodiment can be obtained.
  • the partially stabilized zirconia 90 constituting the solid electrolyte 9 of the present embodiment is, as crystal particles, cubic crystal particles 91 (that is, C phase particles 91) and monoclinic crystal particles 92 (that is, M phase). Particles 92) and the like.
  • the production of bonded particles by the heat treatment process is not performed. Therefore, the reactivity between zirconia and the stabilizer is high.
  • the stabilizer is dissolved not only in the C-phase particles 91 but also in the M-phase particles 92. This can be confirmed by SEM / EDX analysis.
  • the solid electrolyte 9 of the present embodiment does not have mixed phase particles as in the first embodiment. Therefore, the solid electrolyte 9 has insufficient strength against the thermal cycle.
  • the M phase (or T phase) present at the grain boundaries of the C phase causes a volume change due to phase transformation.
  • the change in volume causes internal stress in the solid electrolyte 9, resulting in a decrease in strength against the thermal cycle. Therefore, when the solid electrolyte 9 is subjected to a thermal cycle leading to, for example, a high temperature range exceeding 1000 ° C., the solid electrolyte 9 may be easily damaged.
  • Experimental Example 1 A plurality of solid electrolytes according to Examples and Comparative Examples are manufactured, and their performances are compared and evaluated. The method for producing the solid electrolyte in this example will be described below.
  • yttria powder and zirconia powder having a d50 particle size of 0.30 ⁇ m were mixed and sized.
  • the zirconia particles were aggregated by heat treating the zirconia powder having a d50 particle size of 0.7 ⁇ m at 700 ° C. Thereby, a zirconia aggregation powder in which a cluster of zirconia particles was formed was obtained.
  • the zirconia agglomerated powder was then mixed with a mixture of zirconia powder and yttria powder.
  • the zirconia powder having a d50 particle size of 0.30 ⁇ m corresponds to the above-mentioned first raw material powder
  • the zirconia agglomerated powder corresponds to the above-mentioned third raw material powder
  • Yttria powder corresponds to the above-mentioned stabilizer raw material powder.
  • the mixing ratio of these can be adjusted according to the target composition.
  • a mixture of zirconia powder, yttria powder and zirconia aggregate powder was mixed with water to obtain a slurry of the mixture.
  • the slurry of the mixture was granulated in order to enhance the flowability of the raw material particles constituting the mixture to facilitate the formation of the desired shape. Granulation is performed by, for example, spray granulation.
  • the mixture was molded to obtain a molded body.
  • the forming is performed by, for example, compacting.
  • the molded body was fired at a temperature of 1400 ° C.
  • a solid electrolyte was obtained.
  • the solid electrolytes of the samples 1 to 8 shown in Table 1 are produced by changing the average particle diameter, blending ratio, heat treatment conditions (specifically, temperature, time) at the time of cluster formation of each raw material. did.
  • the voids at the grain boundaries of the crystal grains can be easily determined as darker than the surroundings.
  • the observation conditions of SEM are as follows. Device: “SU8220” manufactured by Hitachi High-Technologies Corporation, accelerating voltage: 5 kV, WD setting: 8 to 10 mm, current: 10 mA, magnification: 5000 times.
  • the measurement conditions by EDX are as follows. Device: “X flash 6160” manufactured by Bruker, acceleration voltage: 5 kV, WD setting: 14 mm, current: 5 to 15 mA, magnification: 50000 times. The current was adjusted so that the detection amount was 40 to 55 kcps.
  • the particle size of the adjacent low density phase particles contained in the image was measured.
  • the particle size of the adjacent low concentration phase particles is represented by an arithmetic average of the lengths of two sides in a vertical relationship in the rectangle surrounding the particles.
  • the volume of the adjacent low concentration phase particles in the above-described predetermined region was calculated by squaring the particle diameter of each particle. Then, the total volume V2 of all the adjacent low concentration phase particles in the predetermined region was calculated.
  • the nearby low concentration phase particles draw a circle with a radius of 5 ⁇ m from the center of each void in the image, and it can be determined by whether or not the center of the low concentration phase particles is included in the circle. If the center of the low concentration phase particle is included inside the circle, the low concentration phase particle is a neighboring low concentration phase particle.
  • the inside of the circle also includes the circle. That is, even when the center of the low concentration phase particles is located on a circle, it is determined that the low concentration phase particles are close low concentration phase particles. On the other hand, when the center of the low concentration phase particles is not included in the above-mentioned circle, the low concentration phase particles are not neighboring low concentration phase particles. That is, it is remote low concentration phase particles.
  • a circle is used for the description based on a two-dimensional image, but this circle substantially means a "sphere".
  • Samples 2 to 8 exhibit excellent strength even when heated in the presence of water.
  • the solid electrolytes of these samples are suitable for gas sensors.
  • the strength after the hydrothermal deterioration test is preferably 120 MPa or more, more preferably 140 MPa or more, and still more preferably 160 MPa or more.
  • Example 2 Similar to Experimental Example 1, a plurality of solid electrolytes are produced, and their performances are compared and evaluated.
  • Solid electrolytes of Samples 9 to 35 shown in Table 2 were produced by changing the average particle diameter, the blending ratio, the heat treatment condition and the like of each raw material in the same manner as in Experimental Example 1.
  • the initial strength is the strength of the solid electrolyte before the hydrothermal deterioration test.
  • Example 3 Similar to Experimental Example 1, a plurality of solid electrolytes are produced, and their performances are compared and evaluated.
  • Solid electrolytes of Samples 36 to 47 shown in Table 3 were produced by changing the average particle diameter, the blending ratio, the heat treatment condition and the like of each raw material in the same manner as in Experimental Example 1. About each sample, the following measurement was performed while measuring the existence rate of the neighborhood low concentration phase particles, the intensity after a hydrothermal degradation test similarly to Experimental example 1.
  • Average particle size R of high concentration phase particles The average particle size R of the high concentration phase particles was measured and calculated by the method described above. The results are shown in Table 3.
  • the degree of dispersion is preferably 5.0 or less from the viewpoint of further increasing the strength after heating in the presence of water.
  • the average particle diameter R of the high concentration phase particles is preferably 1 to 5 ⁇ m, and the average value D2 ave of the spacing between the voids is 5 ⁇ m or less, and the standard deviation S thereof is 3 or less preferable.
  • Example 4 Similar to Experimental Example 1, a plurality of solid electrolytes are produced, and their performances are compared and evaluated.
  • Solid electrolytes of Samples 48 to 57 shown in Table 2 were produced by changing the average particle diameter, the blending ratio, the heat treatment condition and the like of each raw material in the same manner as in Experimental Example 1.
  • the measurement of the initial stage strength of Experimental example 2 was performed, and also the porosity was measured by the following method. The results are shown in Table 4.
  • the bulk density was calculated according to JIS R1634: 1998.
  • the true density was obtained by pulverizing a measurement sample of the solid electrolyte body into a powder in an automatic mortar and measuring the value with a density measuring device.
  • a density measuring device "AccuPycII 1340" manufactured by Micromeritics was used.
  • the porosity is preferably 0.5 to 8%.
  • the gas sensor 5 of the present embodiment includes a sensor element 6 as shown in FIGS. 8 and 9.
  • the sensor element 6 of the present embodiment is a gas sensor element that detects a gas.
  • the sensor element 6 has a solid electrolyte 1, a detection electrode 62, a reference electrode 63, and a diffusion resistance layer 66. That is, the gas sensor 5 includes the solid electrolyte 1 in the sensor element 6.
  • the detection electrode 62 and the reference electrode 63 are formed on both surfaces 601A and 602A of the solid electrolyte 1, respectively.
  • the detection electrode 62 and the reference electrode 63 form a pair of electrodes formed at mutually opposing positions.
  • the diffusion resistance layer 66 restricts the flow rate of the measurement gas such as the exhaust gas G which reaches the detection electrode 62.
  • the gas sensor 5 detects the oxygen concentration (that is, the air-fuel ratio) of the exhaust gas G according to the magnitude of the limiting current generated between the pair of electrodes 62 and 63 in the state where a voltage is applied between the pair of electrodes 62 and 63. Limit current type.
  • the gas sensor 5 of the present embodiment will be described in detail below.
  • the side exposed to the measurement gas such as the exhaust gas G in the axial direction X of the gas sensor 5 is referred to as the tip end side X1
  • the opposite side is referred to as the base end side X2.
  • the gas sensor 5 is disposed and used in an exhaust pipe of an internal combustion engine such as a vehicle.
  • the limiting current gas sensor 5 is used as an air-fuel ratio sensor that quantitatively detects the air-fuel ratio of the exhaust gas G flowing through the exhaust pipe.
  • the gas sensor 5 can quantitatively determine the air-fuel ratio whether the air-fuel ratio of the exhaust gas G is on the rich side or the lean side.
  • the air-fuel ratio of the exhaust gas G refers to the mixing ratio of fuel and air when burned in the internal combustion engine.
  • the rich side means that the air-fuel ratio of the exhaust gas G is on the side where the amount of fuel is larger than the theoretical air-fuel ratio when the fuel and air are completely burned.
  • the lean side means that the air-fuel ratio of the exhaust gas G is on the side where the fuel is smaller than the stoichiometric air-fuel ratio.
  • the air-fuel ratio of the exhaust gas is detected by detecting the oxygen concentration of the exhaust gas.
  • the gas sensor 5 as the air-fuel ratio sensor substantially detects the oxygen concentration of the exhaust gas G on the lean side, and detects the unburned gas concentration of the exhaust gas G on the rich side.
  • the gas sensor 5 includes a housing 71, a distal end side cover 72, a proximal end side cover 73, and the like.
  • the housing 71 is attached to the exhaust pipe and holds the sensor element 6 through the insulator 74.
  • the front end side cover 72 is attached to the front end side X 1 of the housing 71 and covers the sensor element 6.
  • the front cover 72 has a double structure, and includes an inner cover 721 and an outer cover 722.
  • the base end cover 73 is attached to the base end side X 2 of the housing 71 and covers the terminals 75 and the like for the electrical wiring of the sensor element 6.
  • the sensor element 6 As illustrated in FIG. 9, for example, a stacked sensor element is used as the sensor element 6. That is, the sensor element 6 can be configured from a laminate in which the reference electrode 63, the plate-like solid electrolyte 1 and the detection electrode 62 are sequentially stacked.
  • the sensor element 6 has a plate-like solid electrolyte 1, for example.
  • the solid electrolyte 1 has a measurement gas surface 601A and a reference gas surface 602A.
  • the measurement gas surface 601A is a surface exposed to the measurement gas such as the exhaust gas G.
  • the reference gas surface 602A is a surface exposed to a reference gas such as the atmosphere A.
  • the measurement gas surface 601A and the reference gas surface 602A are opposite to each other in the solid electrolyte 1.
  • the detection electrode 62 is provided on the measurement gas surface 601 A of the solid electrolyte 1.
  • the reference electrode 63 is provided on the reference gas surface 602A.
  • the heating element 641 constituting the heater 64 is stacked on the solid electrolyte 1 via the insulator 642.
  • the insulator 642 is made of alumina, for example.
  • the detection electrode 62 faces the measurement gas chamber 68.
  • a measurement gas is introduced into the measurement gas chamber 68 via the porous diffusion resistance layer 66.
  • the measurement gas chamber 68 is a space surrounded by the solid electrolyte 1, the measurement gas chamber formation layer 681, and the diffusion resistance layer 66.
  • a detection electrode 62 is formed in contact with the solid electrolyte 1, and a measurement gas chamber formation layer 681 which is a structural member of the measurement gas chamber 68 is formed in contact with the solid electrolyte 1.
  • the detection electrode 62 is a portion which is exposed to the measurement gas such as the exhaust gas G and performs gas detection together with the reference electrode 63.
  • the detection electrode 62 is electrically connected to the terminal 75 to which the lead wire 76 is connected.
  • the reference electrode 63 faces the reference gas chamber 69.
  • a reference gas such as the atmosphere A is introduced from the base end side X2 via the passage hole 731 of the base end side cover 73.
  • the detection electrode 62 is exposed to the measurement gas such as the exhaust gas G flowing into the tip end cover 42 through the passage holes 723, 724, 725 provided in the tip end cover 72.
  • the reference electrode 63 is exposed to a reference gas such as the air A flowing into the reference gas chamber 69 of the solid electrolyte 1 from the inside of the base end cover 73 through the passage hole 731 provided in the base end cover 73.
  • the heater 64 generates heat by energization, and heats the solid electrolyte 1 and the electrodes 62 and 63 to the activation temperature at the time of startup of the internal combustion engine and the gas sensor 5 or the like.
  • the heater 64 is composed of an insulator 642 made of an alumina sintered body and a heating element 641 formed therein.
  • the alumina sintered body constituting the insulator 642 is in contact with the solid electrolyte.
  • the insulator 642 constituting the heater 64 is also a structural member forming the reference gas chamber 69 and also plays a role as a reference gas chamber forming layer.
  • a measurement gas chamber formation layer 681 constituting the measurement gas chamber 68 is laminated on the measurement gas surface 601 A side.
  • the measurement gas chamber formation layer 681 is made of alumina. That is, the solid electrolyte 1 is in contact with the insulator 642 constituting the heater 64 on the reference gas surface 602A side, and in contact with the measurement gas chamber formation layer 681 on the measurement gas surface 601A side.
  • the diffusion resistance layer 66 is made of, for example, a spinel porous body.
  • a shielding layer 60 made of alumina is provided on the surface of the diffusion resistance layer 66.
  • the shielding layer 60 is made of a dense body which does not transmit gas.
  • the exhaust gas G flowing into the front end side cover 72 passes through the diffusion resistance layer 66 and reaches the measurement unit 50 of the detection electrode 62.
  • the diffusion resistance layer 66 is not in contact with the solid electrolyte 1, but it is also possible to adopt a configuration in which the diffusion resistance layer 66 is in contact with the solid electrolyte 1.
  • the solid electrolyte 1 comprises partially stabilized zirconia 2. Specifically, the solid electrolyte described in Embodiment 1 is used.
  • the solid electrolyte 1 is excellent in the strength against the thermal cycle, and can maintain high strength even in the thermal cycle exposed to a high temperature range over 1000 ° C., for example. Therefore, even if the gas sensor 5 is applied to, for example, applications exceeding 1000 ° C., the gas sensor 5 can detect the measurement gas while maintaining high reliability.
  • the material of the detection electrode 62 of this embodiment is not particularly limited as long as it has catalytic activity to oxygen and the like.
  • the detection electrode 62 may contain any of Au (gold), Ag (silver), a mixture or alloy of Pd (palladium) and Ag, or a mixture or alloy of Pt and Au as a noble metal component. it can.
  • the material of the reference electrode 63 is not particularly limited, and it is possible to contain Pt (platinum), Au, Ag, Pd, a mixture or alloy of Pd and Ag, a mixture or alloy of Pt and Au, etc. as a noble metal component. it can.
  • a bottomed cylindrical (specifically, cup-shaped) sensor element can be used as illustrated in FIG.
  • a cup-shaped sensor element has a solid electrolyte 1 with a bottomed cylindrical shape (specifically, a cup shape), a detection electrode 62, and a reference electrode 63.
  • the detection electrode 62 is provided on the outer peripheral surface 601 A of the solid electrolyte 1.
  • the reference electrode 63 is provided on the inner circumferential surface 602 A of the solid electrolyte 1.
  • a rod-shaped heater (not shown) is inserted into the sensor element 6. The heater heats the sensor element 6 to a desired temperature.
  • the detection electrode 62 is provided on the outer peripheral surface 601 A of the solid electrolyte 1. Furthermore, a porous protective layer 625 is formed on the outer peripheral surface 601A of the solid electrolyte.
  • the protective layer 625 is a porous body and made of, for example, spinel.
  • the detection electrode 62 is present between the protective layer 625 and the solid electrolyte 1 in the example of FIG. 10, the detection electrode 62 is not necessarily formed on the entire outer peripheral surface 601A, and is usually not. There is a formation. Therefore, although the illustration of the configuration is omitted, there are portions where the protective layer 625 and the solid electrolyte 1 are in contact.
  • the reference electrode 63 is provided on the inner peripheral surface of the cup-shaped solid electrolyte 1, the reference electrode 63 may be provided on the entire inner peripheral surface or may be partially provided. When partially provided, the alumina constituting the heater may come in contact with the solid electrolyte.
  • the use of the solid electrolyte 1 of the first embodiment improves the strength against the thermal cycle. Therefore, even in the gas sensor 5 provided with the cup-shaped sensor element, the gas sensor 5 can detect the measurement gas while maintaining high reliability.
  • the present disclosure is not limited to the above embodiments, and can be applied to various embodiments without departing from the scope of the invention. That is, although the present disclosure has been described based on the embodiments, it is understood that the present disclosure is not limited to the embodiments, structures, and the like. The present disclosure also includes various modifications and variations within the equivalent range. In addition, various combinations and forms, and further, other combinations and forms including only one element, or more or less than these elements are also within the scope and the scope of the present disclosure.
  • the solid electrolyte in the first embodiment can be applied to an oxygen sensor, a NOx sensor, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Ceramic Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Electrochemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Molecular Biology (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)
  • Conductive Materials (AREA)

Abstract

部分安定化ジルコニア(2)からなる固体電解質(1)、これを備えるガスセンサ(5)である。部分安定化ジルコニア(2)は、結晶粒子(3)として、少なくとも安定化剤低濃度相粒子(31)を含有し、さらに空隙(25)を有する。安定化剤低濃度相粒子(31)のうち、空隙(25)との間隔が5μm以下となる安定化剤低濃度相粒子(31)の存在率が65体積%以上である。

Description

ガスセンサ用固体電解質、ガスセンサ 関連出願の相互参照
 本出願は、2017年11月3日に出願された日本出願番号2017-213348号に基づくもので、ここにその記載内容を援用する。
 部分安定化ジルコニアからなる固体電解質、該固体電解質を備えるガスセンサに関する。
 内燃機関の排気系等に、排ガス中の酸素濃度や空燃比等を検出する目的でガスセンサ素子が利用されている。このようなガスセンサ素子にはジルコニア等の酸化物イオン伝導性の固体電解質が用いられている。
 部分安定化ジルコニアには、高温環境下での強度低下の抑制が要求されているが、低温での強度低下の抑制も重要である。つまり、部分安定化ジルコニアは、水分存在下では100~300℃という低温で、結晶粒子を構成する結晶相において正方晶(つまりT相)から単斜晶(つまり、M相)への相転移が起こる。この相転移は体積膨張などの体積変化を生じるため、固体電解質の強度低下に繋がる。
 そこで、例えば、特許文献1には、イットリアが固溶したジルコニア質焼結体において、さらにアルミナやチタニアを含有する焼結体が開示されている。そして、このようなジルコニア質焼結体では、相転移が抑制されることが開示されている。
特開平11-116328号公報
 近年、車両には、厳しい燃費、排出規制が要求されているなかで、例えば車載用のガスセンサには、その搭載位置の変更等により更なる高温環境下での信頼性が求められている。一方、ハイブリッド車やアイドルストップ車等の普及による頻繁なエンジンの停止頻度に対し、低消費電力化の観点から例えばガスセンサにおいても、停止時にはヒータON/OFFよる低温維持が求められている。したがって、固体電解質にも、冷熱サイクルの負荷増大に対する高い信頼性が要求されており、高温環境下だけでなく、水分存在下における低温での強度低下の抑制が望まれている。
 しかしながら、相転移自体の抑制には限界があり、相転移を完全に防ぐことは困難である。したがって、従来のジルコニア質焼結体等からなる固体電解質は、水分存在下では、冷熱サイクルの低温領域において相転移が少なからず発生し、結晶相の体積変化が起こる。これにより、結晶粒界に引張応力等の内部応力が発生し、固体電解質の例えば水分接触面からクラックが発生するおそれがある。その結果、強度が低下し、固体電解質の破壊に繋がるおそれがある。
 本開示は、水分存在下における低温環境に曝されても優れた強度を示すことが可能な固体電解質、これを用いたガスセンサを提供することを目的とする。
 本開示の一態様は、安定化剤がジルコニアに固溶した部分安定化ジルコニアからなる固体電解質であって、
 上記部分安定化ジルコニアは、結晶粒子として、上記安定化剤の濃度が4.7mol%未満である安定化剤低濃度相粒子を含有し、
 上記部分安定化ジルコニアは、上記結晶粒子間に空隙を有し、
 上記部分安定化ジルコニア内の上記安定化剤低濃度相粒子のうち、上記空隙との間隔が5μm以下となる上記安定化剤低濃度相粒子の存在率が65体積%以上である、ガスセンサ用固体電解質にある。
 本開示の他の態様は、上記固体電解質を備える、ガスセンサにある。
 上記固体電解質は、上記のように、結晶粒子として安定化剤低濃度相粒子を有する。安定化剤低濃度相粒子のことを、適宜「低濃度相粒子」という。さらに、部安定化ジルコニアは、空隙を有し、この空隙との間隔が上記範囲内となる低濃度相粒子が上記所定以上の割合で存在している。つまり、空隙との間隔が近い低濃度相粒子が多く存在している。
 したがって、固体電解質が水分存在下で例えば100~300℃の低温環境に曝され、低濃度相粒子にその相転移に伴う体積変化が起こっても、低濃度相粒子の近くに存在する空隙が結晶粒子の粒界に発生する内部応力を緩和できる。これは、空隙が低濃度相粒子の体積膨張量などの体積変化量を吸収できるためであると考えられる。その結果、固体電解質は、水分存在下における低温環境に曝されても優れた強度を示すことができる。
 上記ガスセンサは、上記のように水分存在下の低温環境に対しても優れた強度を示す固体電解質を備える。そのため、ガスセンサは、水分を含む低温環境に曝されても、内部破損が起こり難い。したがって、ガスセンサは、冷熱サイクルに対して高い信頼性を示す。
 以上のごとく、上記態様によれば、水分存在下における低温環境に曝されても優れた強度を示すことが可能な固体電解質、これを用いたガスセンサを提供することができる。
 なお、請求の範囲に記載した括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものであり、本開示の技術的範囲を限定するものではない。
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、実施形態1における、固体電解質を構成する部分安定化ジルコニアの微構造を示す模式図であり、 図2は、実施形態1における、(a)結晶粒子と空隙との間隔とを示す説明図、(b)空隙同士の間隔を示す説明図であり、 図3は、実施形態1における、結晶粒子又は空隙の粒径を示す説明図であり、 図4は、実施形態1における、結晶粒子又は空隙の個数粒度分布を示す説明図であり、 図5は、実施形態1における、固体電解質の製造方法を示す説明図であり、 図6は、実施形態1における、製造方法における熱処理工程及び混合工程を模式的に示す説明図であり、 図7は、比較形態1における、固体電解質を構成する部分安定化ジルコニアの微構造を示す模式図であり、 図8は、実施形態2における、ガスセンサの断面図であり、 図9は、実施形態2における、積層型のガスセンサ素子の断面図であり、 図10は、実施形態2における、コップ型のガスセンサ素子の断面の説明図である。
(実施形態1)
 固体電解質に係る実施形態について、図1~図4を参照して説明する。図1に例示されるように、固体電解質1は、部分安定化ジルコニア2からなる。部分安定化ジルコニア2は、所謂焼結体である。部分安定化ジルコニア2は、安定化剤がジルコニアに固溶した焼結体であり、多数の結晶粒子3からなる。
 安定化剤としては、イットリア、カルシア、マグネシア、スカンジア、イッテルビア等が例示される。部分安定化ジルコニアは、安定化剤として、これらのうち少なくとも1種を含有することができる。
 図1に例示されるように、部分安定化ジルコニア2は、これを構成する結晶粒子3として、多数の低濃度相粒子31を含有する。低濃度相粒子31は、安定化剤の濃度が4.7mol%未満である結晶粒子である。低濃度相粒子31における結晶相の結晶系は、通常、単斜晶又は正方晶である。結晶粒子3における安定化剤の濃度の測定は、後述の走査型電子顕微鏡/エネルギー分散型X線分光法(つまり、SEM/EDX分析)によって、安定化剤中のY等の金属元素の濃度を測定することにより行われる。
 一方、部分安定化ジルコニア2は、結晶粒子3として、多数の安定化剤高濃度相粒子32を含有する。安定化剤高濃度相粒子32のことを、適宜「高濃度相粒子32」という。高濃度相粒子32は、安定化剤の濃度が4.7mol%以上である結晶粒子である。高濃度相粒子32における結晶相の結晶系は、通常、立方晶である。
 部分安定化ジルコニア2を構成する主結晶粒は、高濃度相粒子32であることが好ましい。この場合には、固体電解質1の熱に対する安定性が高まる。主結晶粒は、部分安定化ジルコニア2を構成する結晶粒子3のうち、体積基準で最も含有量の高い結晶粒子のことである。
 部分安定化ジルコニア2は、結晶粒子3間に空隙25を有し、空隙25との間隔D1が5μm以下となる低濃度相粒子31を有する。部分安定化ジルコニア2を構成する多数の低濃度相粒子31のうち、空隙25との間隔D1が5μm以下の低濃度相粒子31のことを、適宜「近隣低濃度相粒子311」という。一方、空隙25との間隔D1が5μmを超える低濃度相粒子31のことを、適宜「遠隔低濃度相粒子312」という。
 図2に例示されるように低濃度相粒子31と空隙25との間隔D1は、両者の中心間距離のことをいう。低濃度相粒子31等の結晶粒子3の中心O1は、水平方向と垂直方向での結晶粒子3の最大幅で囲われた長方形の重心のことである。空隙25の中心O2についても同様であり、中心O2は、水平方向と垂直方向での空隙25の最大幅で囲われた長方形の重心のことである。空隙25との間隔D1が5μm以下となる低濃度相粒子31が、上述の近隣低濃度相粒子311である。一方、空隙25との間隔D1が5μmを超える低濃度相粒子31が、上述の遠隔低濃度相粒子312である。近隣低濃度相粒子311は、空隙25に隣接していてもよいが、隣接していなくてもよい。空隙25は、その近くに存在する近隣低濃度相粒子311の相転移に伴う体積膨張などの体積変化を十分緩和できる。
 部分安定化ジルコニア2内の低濃度相粒子31のうちの近隣低濃度相粒子311の存在率は、体積基準で65体積%以上である。近隣低濃度相粒子311の存在率が65体積%未満の場合には、空隙25の近くに存在しない低濃度相粒子31が多いことを意味する。そのため、空隙25による低濃度相粒子31の体積変化の緩和効果が十分に得られなくなる。そのため、例えば水分存在下における低温で低濃度相粒子31に相転移が起こったときに、体積変化を十分に緩和できずに、強度が低下するおそれがある。緩和効果がより十分に得られ、強度低下をより抑制するという観点から、近隣低濃度相粒子311の存在率が80体積%以上であることが好ましい。これにより、空隙25によって体積変化の緩和の困難な遠隔低濃度相粒子312を十分に減らすことができる。
 低濃度相粒子31の粒径は、図3に例示されるように、水平方向と垂直方向での混相粒子35の最大幅で囲われた長方形における水平方向の長さL1と垂直方向の長さL2との算術平均で表される。なお、他の結晶粒子3、空隙25の粒径についても、低濃度相粒子31と同様にして測定、算出される。
 低濃度相粒子31の個数粒度分布P1を図4に例示する。図4に例示されるように、個数粒度分布P1において、小径側の10%及び大径側の10%を除外して、残りの80%の部分についての平均粒径が低濃度相粒子31の平均粒径である。図4においては、小径側10%、大径側10%の領域を、ドットを付けて示す。つまり、平均粒径は、小径側の10%及び大径側の10%を除外した残りの低濃度相粒子31の粒径を合計し、その個数で除することにより算出される。低濃度相粒子31の個数粒度分布の作成は、50個の低濃度相粒子31に基づいて行う。なお、空隙25の平均径、高濃度相粒子32の平均粒径についても、50個の空隙25の個数粒度分布P2、50個の高濃度相粒子32の個数粒度分布P3に基づく点を除いては、低濃度相粒子31と同様にして算出される。
 低濃度相粒子31の平均粒径が0.05~1.0μmであり、空隙25の平均径が0.05~5.0μmであることが好ましい。低濃度相粒子31の平均粒径と空隙25の平均径との両方が上記範囲内となる場合には、低濃度相粒子31の体積膨張を空隙25がより十分に吸収できる。つまり、空隙25が低濃度相粒子31の体積変化をより十分に緩和でき、応力緩和効果が高まる。これにより、結晶粒子3の粒界30に発生する引張応力などの応力がより十分に低減される。したがって、クラックの進展による強度低下の更なる抑制が可能になる。この効果をより高めるという観点から、空隙25の平均径は、0.05~2.0μmであることがより好ましい。
 部分安定化ジルコニア2は、高濃度相粒子32の平均粒径Rが1~5μmであることが好ましい。また、空隙25同士の間隔D2の平均値D2aveが5μm以下であり、平均値D2aveの標準偏差Sが3以下であり、平均距離D2aveと標準偏差Sとから式(1)より算出される分散度Aが5.0以下であることが好ましい。高濃度相粒子32の平均粒径R、空隙25の間隔D2の平均値D2ave、及び分散度Aがそれぞれ上記範囲内となる場合には、熱ストレスに対して安定な高濃度相粒子32が十分な大きさで存在し、空隙25の分散状態が十分均一に分散されることとなる。そのため、空隙25による低濃度相粒子31の体積変化に対する緩和効果がさらに高まる。その結果、固体電解質1の亀裂の発生による強度低下が更に十分抑制される。なお、図2に例示されるように空隙25同士の間隔D2は、両者の中心間距離のことをいう。
  A=S/D2ave×R ・・・(1)
 固体電解質1の空隙率は0.5~8.0%であることが好ましい。この場合には、空隙25による低濃度相粒子31の体積変化の緩和効果がより十分に発揮されるとともに、固体電解質自体の強度がより向上する。強度をより高めるという観点から、空隙率は0.5~6.0%であることがより好ましい。
 本開示における効果を得るという観点からは、安定化剤の種類は特に限定されるわけではないが、安定化剤の化学的安定性が良好になるという観点から、安定化剤はイットリアからなることが好ましい。
 固体電解質1においては、水分存在下における低温化での低濃度相粒子31の体積膨張に応力が緩和される。この効果は、固体電解質1が水分や水分を含むガス等と接触する用途に用いられる場合に、顕著となる。
 固体電解質1はガスセンサに用いられる。ガスセンサにおいて、固体電解質1は、測定ガス等のガスと接触するように構成された接触面1Aを有することができる(後述の実施形態2参照)。ガスは、例えば、排ガス、大気などがあり、これらは水分を含有する。したがって、接触面1Aは、水分との接触面ともなりうる。
 次に、固体電解質1の製造方法について説明する。図5及び図6に例示されるように、混合工程と、成形工程と、焼成工程とを行うことにより、固体電解質1が得られる。
 混合工程においては、第1原料粉末221と、第3原料粉末223と、安定化剤原料粉末211とを混合する。これにより混合物20を得る。第3原料粉末223は、複数のジルコニア粒子が凝集したクラスター粒子からなる。第3原料粉末223は、例えば第2原料粉末222を熱処理することにより得られる。第1原料粉末221及び第2原料粉末222は、いずれもジルコニア粉末からなる。安定化剤原料粉末211は、イットリアなどの安定化剤からなる。
 安定化剤原料粉末211としては、イットリア粉末、カルシア粉末、マグネシア粉末、スカンジア粉末、イッテルビア粉末等を用いることができる。安定化剤原料粉末211としては、これらのうちの少なくとも1種を用いることができる。
 第3原料粉末223は、ジルコニア粉末を熱処理することによって作製することができる。熱処理により、ジルコニア粒子同士が凝集してクラスターを形成する。これにより、クラスター粒子からなる第3原料粉末223が得られる。クラスター粒子はジルコニア粒子(つまり、1次粒子)が凝集してなる2次粒子であるということができる。図6に例示されるように、第3原料粉末223を構成する各クラスター粒子は空隙229を内包する。
 クラスター粒子は、上述のように空隙229を内包するため、クラスター粒子からなる第3原料粉末223を用いることにより、部分安定化ジルコニア2内に上述の空隙25が形成されやすくなる。熱処理に用いるジルコニア粉末(つまり、第2原料粉末222)としては、第1原料粉末221のジルコニア粉末よりも平均粒径が大きいものを用いることが好ましい。この場合には、クラスターが内包する空隙229の平均粒径も大きくすることができ、上述の空隙25が形成されやすくなる。
 各原料粉末の平均粒径は、適宜調整することができる。各原料粉末の平均粒径は、レーザ回折・散乱法によって求めた粒度分布における体積積算50%における粒径を意味する。レーザ回折・散乱法によって求めた粒度分布における体積積算50%における粒径のことを適宜「d50粒径」という。
 第1原料粉末221のd50粒径は、例えば0.2~0.5μmの範囲とすることができる。一方、第2原料粉末222のd50粒径は、例えば0.6~1.0μmの範囲とすることができる。
 混合工程は、さらに第1混合工程と第2混合工程とを有することが好ましい。図5においては、混合Iが第1混合工程を意味し、混合IIが第2混合工程を意味する。図6に例示されるように、第1混合工程においては、第1原料粉末221と安定化剤原料粉末211とを混合する。また、熱処理工程を行うことにより、第2原料粉末222を加熱し、空隙229を内包するクラスター粒子からなる第3原料粉末223を得る。第2混合工程においては、第1原料粉末221と安定化剤原料粉末211との混合物200に対して、第3原料粉末223を混合することにより、混合物20を得る。
 混合物20は、成形の前にスラリー化することができる。スラリー化には、水、アルコール、液状有機物などの液体を使用できる。好ましくは、水系の液体が用いられる。スラリー化した混合物については、造粒を行ってもよい。
 次いで、成形工程を行う。成形工程においては、第1原料粉末221と第3原料粉末223と安定化剤原料粉末211とを含む混合物20を成形する。これにより成形体が得られる。成形方法は特に限定されず、圧粉成形、加圧成形、押出成形、射出成形、ホットプレス、冷間等方加圧成形、研削などが挙げられる。成形により、用途に応じて所望形状の成形体が得られる。例えば、板状、シート状、中空シート状、棒状、筒状、有底筒状等の各種形状の成形体を得ることができる。必要に応じて成形体に対して研削を行うことができる。
 次いで、焼成工程においては、成形体を焼成する。この焼成により、部分安定化ジルコニア2が生成し、固体電解質1が得られる。焼成温度は、組成等に応じて適宜変更可能であるが、例えば1300~1500℃である。
 上記製造方法においては、ジルコニア原料の一部にジルコニア粒子のクラスターが形成された第3原料粉末223を用いている。これにより、焼成工程において上述の空隙25が形成されやすくなる。
 本形態の固体電解質1は、安定化剤がジルコニアに固溶した部分安定化ジルコニア2からなる。部分安定化ジルコニア2は、これを構成する結晶粒子3として低濃度相粒子31を含有すると共に、空隙25を有する。空隙25との間隔D1が5μm以下となる低濃度相粒子31が65体積%以上であると、空隙25によって低濃度相粒子31の体積膨張などの体積変化を十分に緩和することができる。
 したがって、固体電解質1が水分存在下で例えば100~300℃の低温環境に曝され、低濃度相粒子31にその相転移に伴う体積変化が起こっても、低濃度相粒子31の近くに存在する空隙25が結晶粒子3の粒界に発生する内部応力を緩和できる。その結果、固体電解質1は、水分存在下で低温環境に曝されても優れた強度を示すことができる。
 また、空隙25は、低濃度相粒子31の体積変化を緩和して固体電解質1の内部応力を低減できる。したがって、本形態の固体電解質1は、低温環境下だけでなく、高温環境下においても発生しうる内部応力をも緩和できると考えられる。高温環境では降温時に、T相からM相への変態が起こるため、低濃度相粒子31の体積膨張が起こることが知られている。本形態の固体電解質1は、空隙25が高温域での降温時における低濃度相粒子31の体積膨張を吸収できると考えられるため、高温域に曝されても優れた強度を示すと考えられる。
<比較形態1>
 次に、比較形態の固体電解質について説明する。熱処理工程を行わず、第1原料粉末及び第3原料粉末の代わりに1種類のジルコニア原料粉末を用いた点を除いては、実施形態1と同様の方法により製造される。
 具体的には、ジルコニア粒子からなるジルコニア原料粉末と、安定化剤原料粉末とを混合する。次いで、スラリー化して、成形、焼成する。このようにして、本形態の固体電解質9を得ることができる。
 図7に例示されるように、本形態の固体電解質9を構成する部分安定化ジルコニア90は、結晶粒子として、立方晶粒子91(つまりC相粒子91)、単斜晶粒子92(つまりM相粒子92)等を含有する。
 本形態では、熱処理工程による接合粒子の製造を行っていない。そのため、ジルコニアと安定化剤との反応性が高い。その結果、固溶された状態の図示は省略するが、C相粒子91だけでなく、M相粒子92の内部にまで安定化剤が固溶される。これは、SEM/EDX分析により確認できる。本形態の固体電解質9は、実施形態1のような混相粒子を有していない。したがって、固体電解質9は、冷熱サイクルに対する強度が不十分になる。
 これは、C相の粒界に存在するM相(又はT相)が相変態により体積変化を生じるためである。体積変化により、固体電解質9に内部応力が生じ、その結果冷熱サイクルに対する強度が低下する。したがって、固体電解質9は、例えば1000℃を超える高温域に至る冷熱サイクルに曝されると、破損が生じ易くなるおそれがある。
<実験例1>
 実施例、比較例にかかる複数の固体電解質を作製、その性能を比較評価する。以下に本例における固体電解質の作製方法を説明する。
 まず、イットリア粉末と、d50粒径が0.30μmのジルコニア粉末とを混合し、整粒した。また、d50粒径が0.7μmのジルコニア粉末を700℃で熱処理することにより、ジルコニア粒子同士を凝集させた。これにより、ジルコニア粒子のクラスターが形成されたジルコニア凝集粉末を得た。
 次いで、ジルコニア粉末とイットリア粉末との混合物に、ジルコニア凝集粉末を混合した。d50粒径が0.30μmのジルコニア粉末が上述の第1原料粉末、ジルコニア凝集粉末が上述の第3原料粉末に相当する。イットリア粉末は、上述の安定化剤原料粉末に相当する。これらの混合割合は、目的の組成に合わせて調整できる。
 次いで、ジルコニア粉末とイットリア粉末とジルコニア凝集粉末との混合物と、水とを混合し、混合物のスラリーを得た。混合物を構成する原料粒子の流動性を高めて所望形状に成形し易くするために、混合物のスラリーの造粒を行った。造粒は、例えばスプレー造粒により行う。
 次に、混合物を成形して成形体を得た。成形は例えば圧粉成形により行う。本例においては、後述の各評価に用いるサンプル形状に成形した。
 次に、成形体を温度1400℃にて焼成した。このようにして、固体電解質を得た。本例では、各原料の平均粒径、配合割合、クラスター形成時の熱処理条件(具体的には、温度、時間)などを変更することにより、表1に示す試料1~8の固体電解質を作製した。
(低濃度相粒子、高濃度相粒子、空隙の観察)
 各試料から幅5mm、長さ20mm、厚み2mmの測定試料を切り出した。この測定試料の表面を研磨後、サーマルエッチング処理を行った。サーマルエッチングは、温度1200℃で測定試料を1時間加熱することにより行った。SEM/EDX分析による組成分析により、Y元素のマッピングを測定試料における5箇所の領域について行い観察した。そこで観察された結晶粒子のうちY濃度が4.7mol%以上の粒子を高濃度相粒子、Y濃度が4.7mol%未満の粒子を低濃度相粒子と判定した。また、結晶粒子の粒界にある空隙は、周囲よりも黒い部分として容易に判定できる。SEMの観察条件は次の通りである。装置:株式会社日立ハイテクノロジーズ製の「SU8220」、加速電圧:5kV、WD設定:8~10mm、電流:10mA、倍率:5000倍。また、EDXによる測定条件は次の通りである。装置:ブルカー社製の「Xflash6160」、加速電圧:5kV、WD設定:14mm、電流:5~15mA、倍率:50000倍。電流は、検出量が40~55kcpsとなるように調整した。
(近隣低濃度相粒子の存在率)
 上述のSEM/EDX分析により得られた所定領域(具体的には、20μm×20μmで囲まれた領域)のY元素のマッピング画像について、その画像内に含まれる低濃度相粒子の粒径を測定した。粒径は、上述の通り粒子を囲む長方形における垂直関係にある2辺の長さの算術平均で表される。各粒子の粒径を3乗することにより、上述の所定領域内における低濃度相粒子の体積を算出した。そして、所定領域内の全ての低濃度相粒子の合計体積V1を算出した。
 一方、同じ領域のY元素マッピング画像について、その画像内に含まれる近隣低濃度相粒子の粒径を測定した。近隣低濃度相粒子の粒径は、上述の通り、粒子を囲む長方形における垂直関係にある2辺の長さの算術平均で表される。各粒子の粒径を3乗することにより、上述の所定領域内における近隣低濃度相粒子の体積を算出した。そして、所定領域内の全ての近隣低濃度相粒子の合計体積V2を算出した。
 なお、近隣低濃度相粒子は、画像内の各空隙の中心からから半径5μmの円を描き、その円内に低濃度相粒子の中心が含まれるか否かにより判定できる。円の内側に低濃度相粒子の中心が含まれる場合には、その低濃度相粒子は近隣低濃度相粒子である。円の内側は円上も含む。つまり、低濃度相粒子の中心が円上に位置する場合も、この低濃度相粒子は近接低濃度相粒子であると判定される。一方、上述の円内に低濃度相粒子の中心が含まれない場合には、その低濃度相粒子は、近隣低濃度相粒子ではない。つまり、遠隔低濃度相粒子である。なお、上記説明においては、2次元画像に基づいた説明のため、円としているが、この円は実質的には「球」を意味する。
 近隣低濃度相粒子の存在率は、下記式(2)で算出されるV3の値を、上述の5カ所の領域について求め、各値の算術平均値で表される。その結果を表1に示す。
  V3=100×V2/V1 ・・・(2)
(低濃度相粒子の平均粒径、空隙の平均径)
 低濃度相粒子の平均粒径、空隙の平均径は、上述の方法によって、測定、算出した。その結果を表1に示す。
(水熱劣化試験)
 各試料から幅5mm、長さ20mm、厚み2mmの測定試料を切り出した。次いで、オートクレーブ内に各試料を水と共に入れ、温度230℃で10時間加熱した。その後、オートクレーブから測定試料を取り出した。
(強度の測定)
 測定試料から、JIS R1601:2008に記載の4点曲げ強さ試験にしたがって、強度評価サンプルを作製した。次いで、JIS R1601:2008に準拠して4点曲げ強さ試験を行った。なお、試験は各試料について10回ずつ行った。強度は、10回の測定値の平均値で表される。表1に水熱劣化試験後の強度を示す。
Figure JPOXMLDOC01-appb-T000001
 表1より知られるように、近隣低濃度相粒子の存在率が65体積%以上となる試料2~8は、試料1に比べて水熱劣化試験後の強度が十分に向上している。一方、65体積%未満となる試料1は、水熱劣化試験後の強度が不十分である。なお、各試料は、水熱劣化試験前の初期強度がいずれも350MPa程度であったことを確認している。試料1においては、相変態時の応力により亀裂が発生したため、上記のように強度が低下したと考えられる。
 表1より、試料2~8は、水分存在下で加熱されても優れた強度を示すことがわかる。これらの試料の固体電解質は、ガスセンサに好適である。水熱劣化試験後の強度は、120MPa以上であることが好ましく、140MPa以上であることがより好ましく、160MPa以上であることがさらに好ましい。表1においては、強度が120MPa未満の場合を「×」とし、120MPa以上140MPa未満を「○」とし、140MPa以上を「◎」として判定した。後述の表2~4についても同様である。
<実験例2>
 実験例1と同様に、複数の固体電解質を作製し、その性能を比較評価する。まず、実験例1と同様にして、各原料の平均粒径、配合割合、熱処理条件などを変更することにより、表2に示す試料9~35の固体電解質を作製した。各試料について、実験例1と同様の測定を行うと共に、さらに以下の初期強度の測定を行い、その結果を表2に示す。初期強度は、水熱劣化試験前の固体電解質の強度である。
Figure JPOXMLDOC01-appb-T000002
 表2において、近隣低濃度相粒子の存在率が相互に近い試料9~16を比較して知られるように、試料10~15は水熱劣化試験後の強度が試料9、試料16よりも向上している。この結果、低濃度相粒子の平均粒径は0.05~1.0μmであり、空隙の平均径は0.05~5.0μmであることが好ましいことがわかる。試料17~25、試料26~33を比較しても同様のことがわかる。また、試料16、25、33のように、空隙径が大きくなると、固体電解質自体の強度が低下する傾向があることがわかる。
<実験例3>
 実験例1と同様に、複数の固体電解質を作製し、その性能を比較評価する。まず、実験例1と同様にして、各原料の平均粒径、配合割合、熱処理条件などを変更することにより、表3に示す試料36~47の固体電解質を作製した。各試料について、実験例1と同様に、近隣低濃度相粒子の存在率、水熱劣化試験後の強度の測定を行うと共に、さらに下記の測定を行った。
(高濃度相粒子の平均粒径R)
 高濃度相粒子の平均粒径Rは、上述の方法によって、測定、算出した。その結果を表3に示す。
(空間同士の間隔の平均値D2ave、標準偏差S、分散度)
 空間同士の間隔を50箇所において測定し、その算術平均から平均値D2aveが算出され、標準偏差Sも算出される。次いで、高濃度相粒子の平均粒径R、空隙同士の間隔の平均値D2ave、及び標準偏差Sに基づいて、上記式(1)から分散度Aを算出した。その結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3より知られるように、分散度が高くなり、空隙の分散性が悪くなると、水熱劣化試験後の強度に悪影響を及ぼすことがわかる。したがって、水分存在下での加熱後の強度をより高めるという観点から、分散度は5.0以下であることが好ましい。同様の観点から、高濃度相粒子の平均粒径Rは1~5μmであることが好ましく、空隙同士の間隔の平均値D2aveが5μm以下であり、その標準偏差Sが3以下であることが好ましい。
<実験例4>
 実験例1と同様に、複数の固体電解質を作製し、その性能を比較評価する。まず、実験例1と同様にして、各原料の平均粒径、配合割合、熱処理条件などを変更することにより、表2に示す試料48~57の固体電解質を作製した。各試料について、実験例1と同様の測定を行うと共に、実験例2の初期強度の測定を行い、さらに下記の方法により空隙率を測定した。その結果を表4に示す。
(空隙率)
 かさ密度D1と、真密度D2を測定し、下記の式(3)から空隙率Zを算出した。その結果を表4に示す。
  Z=(1-D1/D2)×100
 かさ密度は、JIS R1634:1998に準じて算出した。
 真密度は、固体電解質体の測定試料を自動乳鉢にて粉末状に粉砕し、密度測定装置にて測定した値を採用した。密度測定装置としては、Micromeritics社製の「AccuPycII 1340」を用いた。
Figure JPOXMLDOC01-appb-T000004
 表4より知られるように、空隙率を所定の範囲にすることにより、初期強度、水熱劣化試験後の強度がより向上する。これらを高いレベルで向上させるという観点から、空隙率が0.5~8%であることが好ましい。
<実施形態2>
 次に、固体電解質を用いたガスセンサ5の実施形態について説明する。なお、実施形態2以降において用いた符号のうち、既出の実施形態において用いた符号と同一のものは、特に示さない限り、既出の実施形態におけるものと同様の構成要素等を表す。
 本形態のガスセンサ5は、図8及び図9に示すように、センサ素子6を備えている。本形態のセンサ素子6は、ガスを検出するガスセンサ素子である。センサ素子6は、固体電解質1と、検出電極62と、基準電極63と、拡散抵抗層66とを有する。つまり、ガスセンサ5は、センサ素子6内に固体電解質1を備える。検出電極62及び基準電極63は、固体電解質1の両表面601A、602Aにそれぞれ形成されている。検出電極62及び基準電極63は、互いに対向する位置に形成された一対の電極を形成している。拡散抵抗層66は、検出電極62に到達する排ガスG等の測定ガスの流量を制限する。ガスセンサ5は、一対の電極62、63の間に電圧が印加された状態においてこれらの電極62、63の間に生じる限界電流の大きさによって、排ガスGの酸素濃度(つまり、空燃比)を検出する限界電流式のものである。
 以下に、本形態のガスセンサ5について詳説する。なお、以降の説明において、ガスセンサ5の軸方向Xにおける排ガスG等の測定ガスに曝される側と先端側X1といい、その反対側を基端側X2という。
(ガスセンサ)
 ガスセンサ5は、車両等の内燃機関の排気管に配置されて使用される。本形態のように限界電流式のガスセンサ5は、排気管を流れる排ガスGの空燃比を定量的に検出する空燃比センサとして使用される。このガスセンサ5は、排ガスGの空燃比がリッチ側にある場合と、リーン側にある場合とのいずれにおいても、空燃比を定量的に求めることができる。
 ここで、排ガスGの空燃比とは、内燃機関において燃焼された際の燃料と空気との混合比率のことをいう。また、リッチ側とは、排ガスGの空燃比が、燃料と空気が完全燃焼するときの理論空燃比に比べて、燃料が多い側にあることをいう。リーン側とは、排ガスGの空燃比が、理論空燃比に比べて燃料が少ない側にあることをいう。
 本形態のガスセンサ5においては、排ガスの酸素濃度を検出することにより、排ガスの空燃比が検出される。空燃比センサとしてのガスセンサ5は、実質的には、リーン側においては、排ガスGの酸素濃度を検出する一方、リッチ側においては、排ガスGの未燃ガス濃度を検出することになる。
 図8に示すように、ガスセンサ5は、センサ素子6の他に、ハウジング71、先端側カバー72、基端側カバー73等を有する。ハウジング71は、排気管に取り付けられて絶縁碍子74を介してセンサ素子6を保持する。先端側カバー72は、ハウジング71の先端側X1に取り付けられてセンサ素子6を覆う。先端側カバー72は、2重構造であり、内側カバー721と外側カバー722とからなる。基端側カバー73は、ハウジング71の基端側X2に取り付けられてセンサ素子6の電気配線用の端子75等を覆う。
(センサ素子)
 図9に例示されるように、センサ素子6としては、例えば積層型センサ素子が用いられる。つまり、センサ素子6は、基準電極63と板状の固体電解質1と検出電極62とが順次積層された積層体から構成することができる。
 図9に例示されるように、センサ素子6は、例えば板状の固体電解質1を有する。固体電解質1は、測定ガス面601Aと基準ガス面602Aとを有する。測定ガス面601Aは、排ガスGなどの測定ガスに曝される面である。一方、基準ガス面602Aは、大気A等の基準ガスに曝される面である。測定ガス面601Aと基準ガス面602Aとは、固体電解質1における相互に反対の面となる。
 検出電極62は、固体電解質1の測定ガス面601Aに設けられる。一方、基準電極63は基準ガス面602Aに設けられる。センサ素子6がこのような積層型センサ素子からなる場合には、ヒータ64を構成する発熱体641が絶縁体642を介して固体電解質1に積層される。絶縁体642は例えばアルミナからなる。
 検出電極62は、測定ガス室68に面している。測定ガス室68内には、多孔質の拡散抵抗層66を経由した測定ガスが導入される。測定ガス室68は、固体電解質1と、測定ガス室形成層681と、拡散抵抗層66とにより囲まれた空間である。検出電極62が固体電解質1に接触して形成され、さらに、測定ガス室68の構造部材である測定ガス室形成層681が固体電解質1に接触して形成されている。検出電極62が排ガスG等の測定ガスに晒され、基準電極63とともにガス検出を行う部位である。検出電極62はリード線76が接続された端子75に電気的に接続される。
 基準電極63は基準ガス室69に面している。基準ガス室69内には、基端側カバー73の通過孔731を経由して基端側X2から大気A等の基準ガスが導入される。なお、センサ素子6としては、積層型センサ素子に代えて後述のコップ型センサ素子を用いることも可能である。
 検出電極62は、先端側カバー72に設けられた通過孔723、724、725を通って先端側カバー42内に流入する排ガスG等の測定ガスに晒される。基準電極63は、基端側カバー73に設けられた通過孔731を通って基端側カバー73内から固体電解質1の基準ガス室69内に流入する大気A等の基準ガスに晒される。
 ヒータ64は、通電によって発熱するものであり、内燃機関及びガスセンサ5の起動時等において、固体電解質1及び各電極62、63を活性温度に加熱するものである。ヒータ64は、アルミナ焼結体からなる絶縁体642と、その内部に形成された発熱体641とからなる。絶縁体642を構成するアルミナ焼結体は、固体電解質に接触している。ヒータ64を構成する絶縁体642は、基準ガス室69を形成する構造部材でもあり、基準ガス室形成層としても役割も果たす。
 また、固体電解質1には、測定ガス面601A側に、測定ガス室68を構成する測定ガス室形成層681が積層形成されている。測定ガス室形成層681はアルミナからなる。つまり、固体電解質1は、基準ガス面602A側において上述のヒータ64を構成する絶縁体642と接触し、測定ガス面601A側において測定ガス室形成層681と接触している。
 拡散抵抗層66は例えばスピネルの多孔質体からなる。また、拡散抵抗層66の表面には、アルミナからなる遮蔽層60が設けられている。この遮蔽層60は、ガスを透過しない緻密体からなる。先端側カバー72内に流入した排ガスGは、拡散抵抗層66を通過して検出電極62の測定部50に至る。図9に例示されるセンサ素子6の構成では、拡散抵抗層66は、固体電解質1に接触していないが、拡散抵抗層66を固体電解質1に接触させる構成を採用することも可能である。
(固体電解質)
 固体電解質1は、部分安定化ジルコニア2からなる。具体的には、実施形態1に記載の固体電解質が用いられる。この固体電解質1は、冷熱サイクルに対する強度に優れており、例えば1000℃を超える高温域に曝される冷熱サイクルに対しても、高い強度を維持することができる。したがって、例えば1000℃を超える用途にガスセンサ5を適用しても、ガスセンサ5は高い信頼性を維持しながら測定ガスの検出が可能になる。
(電極)
 本形態の検出電極62の材質は、酸素等に対する触媒活性を有するものであれば特に限定されない。例えば検出電極62は、貴金属成分として、Au(金)、Ag(銀)、Pd(パラジウム)とAgの混合物又は合金、PtとAuの混合物又は合金のうちのいずれかの組成を含有することができる。また、基準電極63の材質についても特に限定されず、貴金属成分として、Pt(白金)、Au、Ag、Pd、PdとAgの混合物または合金、PtとAuの混合物または合金等を含有することができる。
 また、センサ素子6として、積層型センサ素子に代えて、図10に例示されるように、例えば有底円筒型(具体的には、コップ型)のセンサ素子を用いることもできる。このようなコップ型センサ素子は、有底円筒形状(具体的には、コップ形状)の固体電解質1、検出電極62、及び基準電極63を有する。検出電極62は固体電解質1の外周面601Aに設けられる。基準電極63は固体電解質1の内周面602Aに設けられている。このようなコップ型センサ素子においては、センサ素子6の内部に図示を省略する棒状ヒータが挿入される。ヒータは、センサ素子6を所望温度に加熱する。
 検出電極62は、固体電解質1の外周面601Aに設けられる。さらに、固体電解質の外周面601Aには、多孔質の保護層625が形成される。図10においては、保護層625は多孔質体であり、例えばスピネルからなる。なお、図10の例示においては、保護層625と固体電解質1との間に検出電極62が存在するが、検出電極62は、必ずしも外周面601Aの全体に形成されるわけではなく、通常は非形成部が存在する。したがって、構成の図示を省略するが、保護層625と固体電解質1とは接触する部分が存在している。
 また、基準電極63は、コップ型の固体電解質1の内周面に設けられるが、基準電極63は、内周面の全体に設けられても部分的に設けられていてもよい。部分的に設けられる場合には、ヒータを構成するアルミナと、固体電解質とが接触する場合がある。
 上述の積層型センサ素子の場合と同様に、コップ型センサ素子においても、実施形態1における固体電解質1を用いることにより、冷熱サイクルに対する強度が向上する。したがって、コップ型センサ素子を備えるガスセンサ5においても、ガスセンサ5は高い信頼性を維持しながら測定ガスの検出が可能になる。
 本開示は上記各実施形態に限定されるものではなく、その要旨を逸脱しない範囲において種々の実施形態に適用することが可能である。すなわち、本開示は、実施形態に準拠して記述されたが、本開示は、当該実施形態や構造等に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。例えば実施形態1における固体電解質は、実施形態2に例示する空燃比センサの他に、酸素センサ、NOxセンサ等にも適用可能である。

Claims (6)

  1.  安定化剤がジルコニアに固溶した部分安定化ジルコニア(2)からなる固体電解質(1)であって、
     上記部分安定化ジルコニアは、結晶粒子(3)として、上記安定化剤の濃度が4.7mol%未満である安定化剤低濃度相粒子(31)を含有し、
     上記部分安定化ジルコニアは、上記結晶粒子間に空隙(25)を有し、
     上記部分安定化ジルコニア内の上記安定化剤低濃度相粒子のうち、上記空隙との間隔(D1)が5μm以下となる上記安定化剤低濃度相粒子の存在率が65体積%以上である、ガスセンサ用固体電解質。
  2.  上記安定化剤低濃度相粒子の個数粒度分布(P1)において、小径側10%及び大径側10%を除外して算出される上記安定化剤低濃度相粒子の平均粒径が0.05~1.0μmであり、上記空隙の個数粒度分布(P2)において、小径側10%及び大径側10%を除外して算出される上記空隙の平均径が0.05~5.0μmである、請求項1に記載のガスセンサ用固体電解質。
  3.  上記部分安定化ジルコニアは、上記結晶粒子として、上記安定化剤の濃度が4.7mol%以上である安定化剤高濃度相粒子(32)をさらに含有し、該安定化剤高濃度相粒子の個数粒度分布(P3)において、小径側10%及び大径側10%を除外して算出される上記安定化剤高濃度相粒子の平均粒径Rが1~5μmであり、
     上記空隙同士の間隔(D2)の平均値D2aveが5μm以下であり、該平均値D2aveの標準偏差Sが3以下であり、上記平均値D2aveと上記標準偏差Sとから下記式(1)より算出される分散度Aが5.0以下である、請求項1又は2に記載のガスセンサ用固体電解質。
      A=S/D2ave×R ・・・(1)
  4.  上記固体電解質の空隙率が0.5~8%である、請求項1~3のいずれか1項に記載のガスセンサ用固体電解質。
  5.  上記安定化剤がイットリアからなる、請求項1~4のいずれか1項に記載のガスセンサ用固体電解質。
  6.  請求項1~5のいずれか1項に記載の固体電解質を備える、ガスセンサ(5)。
PCT/JP2018/038083 2017-11-03 2018-10-12 ガスセンサ用固体電解質、ガスセンサ WO2019087737A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880071043.5A CN111279185B (zh) 2017-11-03 2018-10-12 气体传感器用固体电解质、气体传感器
DE112018005233.8T DE112018005233T5 (de) 2017-11-03 2018-10-12 Festelektrolyt für gassensor und gassensor
US16/864,281 US11927561B2 (en) 2017-11-03 2020-05-01 Solid electrolyte for gas sensor and gas sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017213348A JP2019086345A (ja) 2017-11-03 2017-11-03 ガスセンサ用固体電解質、ガスセンサ
JP2017-213348 2017-11-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/864,281 Continuation US11927561B2 (en) 2017-11-03 2020-05-01 Solid electrolyte for gas sensor and gas sensor

Publications (1)

Publication Number Publication Date
WO2019087737A1 true WO2019087737A1 (ja) 2019-05-09

Family

ID=66333479

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/038083 WO2019087737A1 (ja) 2017-11-03 2018-10-12 ガスセンサ用固体電解質、ガスセンサ

Country Status (5)

Country Link
US (1) US11927561B2 (ja)
JP (1) JP2019086345A (ja)
CN (1) CN111279185B (ja)
DE (1) DE112018005233T5 (ja)
WO (1) WO2019087737A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7272250B2 (ja) * 2019-12-04 2023-05-12 株式会社デンソー ガスセンサおよびガスセンサ用粉末

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54134494A (en) * 1978-04-10 1979-10-18 Nippon Denso Co Ltd Solid electrolyte for oxygen concentration sensor
JPS5650169A (en) * 1979-09-28 1981-05-07 Sumitomo Aluminium Smelting Co Manufacture of zirconia sintered body
JPH10139436A (ja) * 1996-11-12 1998-05-26 Tosoh Corp 固体電解質用ジルコニア微粉末及びその製造方法
JP2009104990A (ja) * 2007-10-25 2009-05-14 Nippon Shokubai Co Ltd 固体酸化物形燃料電池用電解質シートの製造方法および電解質シート
JP2013112595A (ja) * 2011-11-30 2013-06-10 Nikkato:Kk コーティング層を有するジルコニア製酸素センサー素子
JP2014146421A (ja) * 2013-01-25 2014-08-14 Riken Corp 固体酸化物型燃料電池の支持体を兼ねる燃料極およびその製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56111455A (en) * 1980-02-07 1981-09-03 Nippon Denso Co Ltd Solid electrolyte body for oxygen sensor
JP3248182B2 (ja) 1990-06-15 2002-01-21 東ソー株式会社 ジルコニア粉末及び焼結体並びにそれらの製造方法
JPH11316211A (ja) 1998-03-05 1999-11-16 Denso Corp 積層型空燃比センサ素子
JPH11116328A (ja) 1997-10-08 1999-04-27 Ngk Spark Plug Co Ltd ジルコニア質焼結体
JP4724772B2 (ja) * 2009-02-06 2011-07-13 株式会社日本自動車部品総合研究所 ガスセンサ用固体電解質、その製造方法、及びそれを用いたガスセンサ
CN103998922B (zh) * 2011-12-14 2016-01-20 日本特殊陶业株式会社 气体传感器用电极及气体传感器
JP5900395B2 (ja) * 2012-11-22 2016-04-06 トヨタ自動車株式会社 複合酸化物粒子及びこれを用いた排ガス浄化用触媒
US10099386B2 (en) * 2015-01-28 2018-10-16 Kyocera Corporation Suction nozzle
JP6929665B2 (ja) 2016-05-30 2021-09-01 キヤノンメディカルシステムズ株式会社 プローブアダプタ、超音波プローブ、及び超音波診断装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54134494A (en) * 1978-04-10 1979-10-18 Nippon Denso Co Ltd Solid electrolyte for oxygen concentration sensor
JPS5650169A (en) * 1979-09-28 1981-05-07 Sumitomo Aluminium Smelting Co Manufacture of zirconia sintered body
JPH10139436A (ja) * 1996-11-12 1998-05-26 Tosoh Corp 固体電解質用ジルコニア微粉末及びその製造方法
JP2009104990A (ja) * 2007-10-25 2009-05-14 Nippon Shokubai Co Ltd 固体酸化物形燃料電池用電解質シートの製造方法および電解質シート
JP2013112595A (ja) * 2011-11-30 2013-06-10 Nikkato:Kk コーティング層を有するジルコニア製酸素センサー素子
JP2014146421A (ja) * 2013-01-25 2014-08-14 Riken Corp 固体酸化物型燃料電池の支持体を兼ねる燃料極およびその製造方法

Also Published As

Publication number Publication date
US11927561B2 (en) 2024-03-12
DE112018005233T5 (de) 2020-06-18
US20200256823A1 (en) 2020-08-13
CN111279185B (zh) 2022-12-20
CN111279185A (zh) 2020-06-12
JP2019086345A (ja) 2019-06-06

Similar Documents

Publication Publication Date Title
US11474068B2 (en) Gas sensor element and gas sensor
JP6577408B2 (ja) ガスセンサ素子およびガスセンサ
JP5187417B2 (ja) ガスセンサ素子及びその製造方法
US11643365B2 (en) Solid electrolyte, producing method thereof, and gas sensor
US11592418B2 (en) Solid electrolyte, manufacturing method thereof, and gas sensor
US10228342B2 (en) Solid electrolyte body and gas sensor
WO2019087737A1 (ja) ガスセンサ用固体電解質、ガスセンサ
JP5935548B2 (ja) アルミナ/ジルコニア積層焼結体とその製造方法、並びに、アルミナ/ジルコニア積層焼結体を含むガスセンサ素子
US11656196B2 (en) Solid electrolyte, manufacturing method thereof, and gas sensor
JP2010019736A (ja) ガスセンサ素子及びガスセンサ
WO2022254989A1 (ja) 固体電解質およびガスセンサ
JP2009008435A (ja) ガスセンサ素子
JP4819846B2 (ja) 複合セラミック体の製造方法
JP6118679B2 (ja) ガスセンサ素子およびガスセンサ
US12111282B2 (en) Solid electrolyte and gas sensor with thermal shock resistance
JP2018112492A (ja) ガスセンサ素子およびガスセンサ
JP2018080963A (ja) ガスセンサ素子用固体電解質体とその製造方法及びガスセンサ素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18873435

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18873435

Country of ref document: EP

Kind code of ref document: A1