WO2019087684A1 - アイドリングストップ用鉛蓄電池 - Google Patents

アイドリングストップ用鉛蓄電池 Download PDF

Info

Publication number
WO2019087684A1
WO2019087684A1 PCT/JP2018/037303 JP2018037303W WO2019087684A1 WO 2019087684 A1 WO2019087684 A1 WO 2019087684A1 JP 2018037303 W JP2018037303 W JP 2018037303W WO 2019087684 A1 WO2019087684 A1 WO 2019087684A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode plate
separator
rib
positive electrode
negative electrode
Prior art date
Application number
PCT/JP2018/037303
Other languages
English (en)
French (fr)
Inventor
和田 秀俊
賢 稲垣
真観 京
Original Assignee
株式会社Gsユアサ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Gsユアサ filed Critical 株式会社Gsユアサ
Priority to MYPI2020002088A priority Critical patent/MY196259A/en
Priority to CN201880071273.1A priority patent/CN111295792A/zh
Priority to EP18872969.3A priority patent/EP3680979A4/en
Priority to JP2019550934A priority patent/JP7111107B2/ja
Publication of WO2019087684A1 publication Critical patent/WO2019087684A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/12Construction or manufacture
    • H01M10/14Assembling a group of electrodes or separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/12Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/112Monobloc comprising multiple compartments
    • H01M50/114Monobloc comprising multiple compartments specially adapted for lead-acid cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • H01M50/466U-shaped, bag-shaped or folded
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane

Definitions

  • the present invention relates to a lead storage battery for idling stop.
  • Lead storage batteries are used in a variety of applications in addition to automotive and industrial applications.
  • the lead storage battery includes an electrode plate group including a negative electrode plate, a positive electrode plate, a separator interposed between the negative electrode plate and the positive electrode plate, and an electrolytic solution.
  • the electrode plate group and the electrolyte are accommodated in a cell chamber in a battery case of a lead storage battery.
  • Patent Document 1 proposes a liquid lead storage battery separator including a main rib and a mini rib formed on the surface opposite to the main rib.
  • the in-cell dimension d-plate group thickness t should be -2.0 mm to +5.0 mm. Is described.
  • Lead-acid batteries are sometimes used in an under-charged state called partial charge state (PSOC).
  • PSOC partial charge state
  • IS idling stop
  • lead storage batteries will be used at PSOC.
  • the separator may break and a short circuit may easily occur.
  • One aspect of the present invention comprises a cell chamber, and an electrode plate group and an electrolytic solution accommodated in the cell chamber
  • the electrode plate group includes a positive electrode plate, a negative electrode plate, and a separator interposed between the positive electrode plate and the negative electrode plate
  • the separator includes a first rib facing the positive electrode plate and a second rib facing the negative electrode plate
  • the difference D between the inner dimension of the cell chamber and the thickness of the electrode plate group is more than 0.4 mm and less than 3.5 mm
  • the lead-acid battery for idling stop relates to the inner dimension of the cell chamber, which is the minimum distance between the pair of inner side walls facing the positive electrode plate or the negative electrode plate in the cell chamber.
  • a lead storage battery for an idling stop (IS) includes a cell chamber, and an electrode plate group and an electrolytic solution accommodated in the cell chamber.
  • the electrode plate group includes a positive electrode plate, a negative electrode plate, and a separator interposed between the positive electrode plate and the negative electrode plate.
  • the separator includes a first rib facing the positive electrode plate and a second rib facing the negative electrode plate.
  • the difference D between the inner dimension of the cell chamber and the thickness of the electrode group is more than 0.4 mm and less than 3.5 mm.
  • the inner dimension of the cell chamber is the distance between the pair of inner side walls facing the positive electrode plate or the negative electrode plate in the cell chamber.
  • lead sulfate is generated from lead dioxide during discharge, and the reverse reaction occurs during charge.
  • the formation of lead sulfate during discharge increases the volumetric expansion of the positive electrode plate.
  • lead sulfate is likely to be accumulated, so the volume expansion of the positive electrode plate tends to be remarkable.
  • an ear for collecting current is formed on the positive electrode plate or the negative electrode plate, and this ear is fixed. Therefore, when the positive electrode plate is expanded in volume, the volume expansion is the thickness of the positive electrode plate It works in the direction and is easy to bend in the thickness direction.
  • the separator When the positive electrode plate is curved in the thickness direction, the separator is pressed by the highly oxidative positive electrode plate, so it is easily oxidized and deteriorated, and the separator is easily broken. A short circuit occurs when the separator breaks. From the viewpoint of suppressing the oxidation deterioration of the separator, it is conceivable to increase the thickness of the separator or to provide a rib on the positive electrode plate side of the separator to increase the height of the rib. However, in these cases, the resistance of the separator is increased, and the discharge performance and the chargeability are reduced.
  • ribs may be provided not only on the positive electrode plate side of the separator but also on the negative electrode plate side.
  • the permeation short circuit can be suppressed.
  • the rib is provided on the negative electrode plate side, the height of the rib on the positive electrode plate side needs to be relatively lowered, so the separator is easily oxidized and deteriorated, and the separator is easily torn.
  • the difference D between the inner dimension of the cell chamber and the thickness of the electrode plate group is set to 0.4 mm ⁇ D ⁇ 3.5 mm.
  • the separator by suppressing the deterioration of the separator, high PSOC life performance can be secured.
  • the difference D is 0.4 or less, even if the curve is slight, the contact of the positive electrode plate with the separator makes the oxidation deterioration remarkable, which increases the possibility of the occurrence of a break and a short circuit.
  • the difference D is 3.5 or more, the curvature of the positive electrode plate becomes too large, the end of the electrode plate becomes convex, and the possibility of contact with the base portion of the separator is increased. Sex is increased.
  • the cell chamber has a pair of inner side walls facing the electrode plates (positive electrode plate or negative electrode plate) positioned on both outer sides, and side end portions of the electrode plates included in the electrode plate group And a pair of opposed inner side walls.
  • the plate group is accommodated in the cell chamber in a state of being surrounded by these inner side walls.
  • the inner dimension W of the cell chamber is a distance between an electrode plate (a positive electrode plate or a negative electrode plate) located on both outer sides of the electrode plate group and a pair of inner side walls opposed to each other in the cell chamber.
  • the pair of adjacent partition walls facing each other is regarded as a pair of side walls of the cell chamber facing the electrode plate.
  • the distance between the opposing wall surfaces of the partition wall is defined as the inner dimension W of the cell chamber.
  • a rib also referred to as a battery case rib
  • the heights of the ribs on the pair of inner side walls are summed, and a value obtained by subtracting the total value from the distance between the inner side walls Let the inside dimension W of the room be.
  • the battery case is used as the cell chamber and the inner size of the battery case, that is, the positive electrode plate or the negative electrode plate of the electrode plate group Specifically, the distance between the inner side walls of the battery case facing the electrode plates located on both outer sides of the electrode plate group is taken as the inner dimension W of the cell chamber. If there is variation in the inner dimension of the cell chamber, including when the battery case has a taper, the minimum value of the inner dimension is taken as the inner dimension W when calculating the difference D.
  • the thickness T of the electrode group is determined as follows. First, the electrode plate group is taken out of the already-formed, fully charged lead storage battery, and disassembled into a positive electrode plate, a negative electrode plate, and a separator. Next, the thickness T of the electrode plate group is determined by measuring the thicknesses of the positive electrode plate, the negative electrode plate, and the separator and adding them in the stacking direction of the positive electrode plate, the negative electrode plate, and the separator.
  • the thickness of the positive electrode plate and the negative electrode plate is an average value of values measured at any five places in the region where the respective electrode materials exist.
  • the thickness of a separator be an average value of the value measured about arbitrary five places of the area
  • the thickness (average value) of the separator is the total thickness (average value) including the first rib and the second rib.
  • the separator generally includes a sheet-like base portion, a first rib protruding from one main surface of the base portion, and a second rib protruding from the other main surface. Therefore, the thickness of the base, the height of the first rib, and the height of the second rib may be respectively measured, and the value obtained by adding them may be used as the thickness of the separator.
  • the height direction of each of the first rib and the second rib is the direction along the thickness direction of the base portion (that is, the direction orthogonal to the plane direction of the base portion), and by adding these, the separator The total thickness of is determined.
  • the average thickness of the base portion can be obtained by measuring and averaging the thickness of the base portion at five arbitrarily selected locations in the cross-sectional photograph of the separator.
  • the height of the first rib refers to the maximum height of the first rib present in the region of the separator opposite to the region where the positive electrode material of the positive electrode plate is present.
  • the height of each first rib is the distance from one of the main surfaces of the base to the top of the first rib.
  • the separator When the main surface of the base portion is not flat, the separator is placed flat with the first rib side up, and viewed from the side, the first rib from the highest position of one main surface of the base portion
  • the distance to the highest position of the top of the first rib at the predetermined position of the first position is the height of the first rib.
  • the height of the second rib refers to the maximum height of the second rib present in the region of the separator opposite to the region where the negative electrode material of the negative electrode plate is present, as in the case of the first rib.
  • the height of each second rib is the distance from the other major surface of the base to the top of the second rib.
  • the height of the second rib is determined in the same manner as the first rib.
  • a rib (battery case rib) is formed on the inner side wall of the cell chamber, and a separator is present between the electrode plates on both outer sides of the electrode plate group and the inner side wall of the cell chamber facing the electrode plate. Ribs may also be formed on the main surface of the separator on the inner side wall side of the cell chamber.
  • the ribs on the inner side wall of the separator and the ribs on the inner side wall facing each other do not overlap (that is, the ribs of the separator enter between the adjacent case ribs)
  • a value obtained by subtracting the height of the rib on the inner wall side of the separator from the total thickness of the separator is taken as the thickness of the separator.
  • the height of the rib of the separator is usually smaller than the height of the container rib.
  • the average thickness of the base portion and the height of the ribs are obtained from a separator which has already been formed and is fully charged and removed from the lead storage battery, washed and vacuum dried (dried under a pressure lower than atmospheric pressure) as described later. I assume.
  • the fully charged state of the lead-acid battery means that constant current charging is performed at a current of 0.2 CA to reach 2.5 V / cell in a water tank at 25 ° C., and then 0.2 CA for 2 hours.
  • Constant current charging In the present specification, 1CA is a current value (A) of the same numerical value as the nominal capacity (Ah) of the battery. For example, for a battery with a nominal capacity of 30 Ah, 1CA is 30A and 1mCA is 30mA.
  • the lead-acid battery for IS is a liquid lead-acid battery.
  • the lead-acid battery for IS refers to a lead-acid battery assumed to be used repeatedly in PSOC (that is, less than 100% state of charge (SOC)).
  • SOC state of charge
  • the lead-acid battery for IS has a higher utilization of the electrolyte than general lead-acid batteries such as for engine start-up and backup, the usage of the electrolyte makes it possible to use other applications (for example, repeated charging until full charge). It can also be distinguished from the expected lead storage battery (lead storage battery for engine start, etc.)).
  • the utilization factor of the electrolyte solution of the lead storage battery for IS is, for example, 70% or more and 90% or less, and preferably 75% or more and 90% or less.
  • the utilization factor of the electrolytic solution is in such a range, it is possible to secure a sufficient amount of electrode material for maintaining a high PSOC life.
  • lead-acid batteries for other applications are usually used at a utilization rate of less than 70% of the electrolyte.
  • the lead-acid battery for IS may temporarily have a charge / discharge balance of 100% or more due to the recovery charge, charge / discharge under SOC 100% is usually repeated.
  • the IS lead-acid battery is preferably used at an SOC of 85% or more and less than 100%, and may be used at an SOC of less than 85%.
  • the fully charged lead-acid battery is assumed to be 100% SOC.
  • the utilization rate of the electrolytic solution is the solution theory obtained by determining the theoretical solution capacity (sulfated amount (g) /3.657) from the amount of sulfate solution calculated from the amount of electrolyte solution and sulfuric acid concentration in a single cell. It means the value (%) calculated by dividing the effective 20-hour rate capacity by the capacity.
  • An effective 20 hour rate capacity, JIS D 5301: refers to a value measured by testing and substituting 5-hour rate of 5-hour rate capacity test current I 5 as defined in 2006 to 20 hour-rate current I 20 .
  • the utilization factor of the electrolytic solution and the effective 20-hour rate capacity are values obtained from the battery in a fully charged state by the low current charging method 1 or 2 defined in JIS D 5301: 2006.
  • Another aspect of the present invention also includes the use of the above-described lead-acid battery for IS at PSOC (that is, less than 100% charged). It is preferable to make the electrolyte solution utilization factor at this time into 70% or more and 90% or less, and it is more preferable to be 75% or more and 90% or less. Further, the lead storage battery for IS is preferably used at a SOC of 85% or more and less than 100%, and may be used at a SOC of less than 85%.
  • Yet another aspect of the present invention includes a charge / discharge system including the above-described lead storage battery for IS and a control unit connected to the lead storage battery for IS and controlling charging / discharging of the lead storage battery for IS.
  • the control unit is a charge control unit for controlling conditions (for example, current, voltage, etc.) when charging the lead-acid battery for IS, and conditions (for example, current, voltage, etc.) for discharging the lead-acid battery for IS
  • a discharge control unit for controlling the The charge control unit controls the IS lead storage battery to be charged to an SOC of less than 100%.
  • An idling stop vehicle is connected to the lead storage battery for IS as a load device which consumes the power supplied from the lead storage battery for IS at the time of idling stop.
  • the IS lead-acid battery is preferably controlled to be charged to an SOC of 85% or more and less than 100%, and may be controlled to be charged to an SOC of less than 85%.
  • the difference D between the inner dimension of the cell chamber and the thickness of the electrode plate group is preferably 0.5 mm or more and 3.0 mm or less. In this case, the effect of reducing the breakage of the separator can be further enhanced.
  • the height of the first rib is preferably 0.3 mm or more.
  • PSOC life performance the life performance in the cycle test under PSOC conditions.
  • stratification occurs in which the concentration of the electrolyte solution is thin at the top of the battery case and thick at the bottom. When the stratification progresses, the charge and discharge reaction varies and the battery life is shortened.
  • the PSOC life performance can be improved by providing the second rib in addition to providing the first rib of such height to the separator, Since the electrolyte is easily secured in the vicinity of the positive electrode plate and in the vicinity of the negative electrode plate, it is considered that the diffusion of the electrolyte solution is improved, thereby suppressing stratification.
  • the height of the second rib is preferably 0.05 mm or more and 0.2 mm or less.
  • the second rib makes it easy to secure the electrolytic solution in the vicinity of the negative electrode plate.
  • the first rib having a certain height can be provided, the electrolyte can be easily secured in the vicinity of the positive electrode plate. Therefore, stratification is suppressed by the improvement of the diffusivity of the electrolytic solution, so that the PSOC life performance can be improved.
  • the separator may be in the form of a bag.
  • a bag-like separator When a bag-like separator is used, the electrolytic solution tends to stay, but the diffusion property of the electrolytic solution is enhanced by providing ribs on the inside and the outside of the bag-like separator while setting 0.4 mm ⁇ D ⁇ 3.5 mm. , PSOC life performance can be further improved.
  • the negative electrode plate When the negative electrode plate is accommodated in the bag-like separator, the influence of the curvature is less likely to occur, so the occurrence rate of separator breakage can be further reduced.
  • the positive electrode plate When the positive electrode plate is accommodated in the bag-like separator, the effect of improving the diffusivity of the electrolytic solution on the positive electrode side is easily exhibited, so that the PSOC life performance is further improved.
  • the lead storage battery for IS according to one embodiment of the present invention will be described for each major constituent feature, but the present invention is not limited to the following embodiment.
  • a lead storage battery for IS includes a battery case, and the battery case is usually divided into a plurality of cell chambers by a partition wall.
  • the plate group and the electrolytic solution are accommodated in the cell chamber.
  • one plate group is accommodated per cell chamber.
  • the battery case is formed of a resin material having high resistance to sulfuric acid (for example, polypropylene, an acrylonitrile butadiene styrene copolymer, etc.).
  • the difference D is adjusted, for example, by adjusting the inner dimension W of the cell chamber, the thickness of the positive electrode plate, the thickness of the negative electrode plate, the thickness of the base of the separator, the height of the first rib, and / or the height of the second rib.
  • the inner dimension of the cell chamber can be adjusted, for example, by providing a battery case rib on the inner wall of the cell chamber or adjusting the height of the battery case rib.
  • the electrode plate group includes a positive electrode plate, a negative electrode plate, and a separator interposed therebetween.
  • a positive electrode plate a positive electrode plate
  • a negative electrode plate a negative electrode plate
  • a separator interposed therebetween.
  • the separator includes a base portion formed of a microporous film, a rib protruding from one main surface of the base portion, and a rib protruding from the other main surface of the base portion.
  • the separator is disposed such that a rib protruding from one main surface is located on the positive electrode plate side and a rib protruding from the other main surface is located on the negative electrode plate side.
  • the rib located on the positive electrode plate side is called a first rib
  • the rib located on the negative electrode plate side is called a second rib.
  • the height of the first rib needs to be relatively lowered, so the separator is easily oxidized and deteriorated, but by setting 0.4 mm ⁇ D ⁇ 3.5 mm, the separator Oxidative deterioration can be suppressed to reduce breakage of the separator.
  • the diffusivity of the electrolytic solution in the vicinity of the positive electrode plate can be enhanced by the first rib, and the diffusivity of the electrolytic solution in the vicinity of the negative electrode plate can be enhanced by the second rib. Therefore, it becomes easy to ensure high PSOC life performance.
  • the separator is formed of a polymeric material (but different from the fibers). At least the base portion is a porous sheet and can also be referred to as a porous film.
  • the separator may comprise a filler (eg, particulate filler such as silica, and / or fibrous filler) dispersed in a matrix formed of a polymeric material.
  • the separator is preferably made of a polymer material having acid resistance. As such a polymer material, polyolefins such as polyethylene and polypropylene are preferable.
  • the average thickness of the base portion is, for example, 100 ⁇ m or more and 300 ⁇ m or less, and preferably 150 ⁇ m or more and 250 ⁇ m or less.
  • the average thickness of the base portion is in such a range, the heights of the first rib and the second rib can be easily secured while securing high charge and discharge characteristics.
  • the first rib is formed on the surface of the separator opposite to the positive electrode plate.
  • the height of the first rib is, for example, 0.25 mm or more. When the height of the first rib is in such a range, it is easy to suppress the oxidation deterioration of the separator.
  • the height of the first rib is preferably 0.3 mm or more (or 0.30 mm or more). In this case, the occurrence rate of separator breakage can be further improved, and PSOC life performance can be improved. From the viewpoint of securing high charge and discharge characteristics, the height of the first rib is, for example, 1.0 mm or less, and preferably 0.7 mm or less. These lower limit value and upper limit value can be arbitrarily combined.
  • the pattern of the first rib is not particularly limited on one main surface of the base portion, and the first rib may be randomly formed, and may be formed in a stripe shape, a curved shape, a lattice shape, or the like. From the viewpoint of facilitating the diffusion of the electrolytic solution, it is preferable to form the plurality of first ribs in a stripe shape on one main surface of the base portion.
  • the orientation of the stripe-shaped first rib is not particularly limited.
  • the plurality of first ribs may be formed along the height direction or the width direction of the negative electrode plate.
  • an ear portion for extracting current from the electrode plate group is formed at one end of the negative electrode plate and the positive electrode plate.
  • the vertical direction of the negative electrode plate or the positive electrode plate in a state in which the ear portion is up will be referred to as the height direction of the negative electrode plate or the positive electrode plate.
  • the width direction of the negative electrode plate or the positive electrode plate is a direction perpendicular to the height direction and crossing the main surfaces of the negative electrode plate or the positive electrode plate.
  • the average pitch of the stripe-shaped or grid-shaped first ribs is, for example, 1 mm or more and 15 mm or less, and preferably 5 mm or more and 10 mm or less.
  • the separator includes a region in which the first rib is formed with an average pitch in such a range, the effect of suppressing the oxidative deterioration of the separator is further enhanced.
  • the first ribs be formed at such an average pitch in a region facing the positive electrode plate (preferably a region where a positive electrode material is present).
  • the first rib having such an average pitch is formed on 70% or more of the area of the region facing the positive electrode plate of the separator.
  • the first rib may or may not be formed in a region not facing the positive electrode plate or a region facing the region where the positive electrode material of the positive electrode plate does not exist, such as the end of the separator. May be densely formed (for example, with an average pitch of 0.5 mm or more and 5 mm or less).
  • the pitch of the first ribs is the distance between the tops of the adjacent first ribs (more specifically, the distance between the centers of the adjacent first ribs in the direction across the first ribs).
  • the average pitch of the first ribs can be obtained by averaging the pitches of the first ribs measured at 10 arbitrarily selected points.
  • the average pitch can be calculated excluding this region. Just do it.
  • the average pitch of such partially densely formed first ribs can be calculated in the same manner as described above for this region.
  • the second rib is formed on the surface of the separator opposite to the negative electrode plate.
  • the height of the second rib is preferably, for example, 0.05 mm or more. When the height of the second rib is in such a range, the electrolyte can be more easily diffused in the vicinity of the negative electrode plate.
  • the height of the second rib is, for example, preferably 0.50 mm or less from the viewpoint of securing high charge and discharge characteristics, and is 0.40 mm or less from the viewpoint of easily securing the height of the first rib. Is preferred.
  • the height of the second rib is 0.20 mm or less, excellent PSOC life performance can be easily obtained.
  • the pattern and orientation of the second rib are not particularly limited, and may be selected from those described for the first rib, for example.
  • the average pitch of the stripe-like or lattice-like second ribs is, for example, 0.3 mm or more and 10 mm or less, and preferably 0.5 mm or more and 5 mm or less.
  • the second ribs be formed at such an average pitch in a region facing the negative electrode plate (preferably a region facing the region where the negative electrode material is present).
  • the second rib of such an average pitch is formed on 70% or more of the area of the region facing the negative electrode plate of the separator.
  • the second rib may or may not be formed in a region not facing the negative electrode plate such as an end of the separator or a region facing the region where the negative electrode material of the negative electrode plate does not exist, and a plurality of second ribs May be densely formed (for example, with an average pitch of 0.5 mm or more and 5 mm or less).
  • the pitch of the second ribs is the distance between the tops of the adjacent second ribs (more specifically, the distance between the centers of the adjacent second ribs in the direction across the second ribs).
  • the average pitch of the second ribs can be calculated according to the average pitch of the first ribs.
  • the average pitch of the first rib and the second rib shall be determined for the separator which has been taken out of the lead storage battery after formation and fully charged, washed and vacuum dried (dried under a pressure lower than the atmospheric pressure) as described above. .
  • a sheet-like separator may be sandwiched between the negative electrode plate and the positive electrode plate, or the separator may be interposed between the negative electrode plate and the positive electrode plate by accommodating the negative electrode plate or the positive electrode plate in the bag-like separator.
  • the electrolytic solution is difficult to diffuse, but the diffusivity is improved by providing the first rib and the second rib.
  • the negative electrode plate is accommodated by the bag-like separator, the occurrence rate of separator breakage can be further reduced.
  • PSOC life performance can be further improved.
  • the separator is formed, for example, by extruding a resin composition containing a pore forming agent (solid pore forming agent such as polymer powder, and / or liquid pore forming agent such as oil) and a polymer material into a sheet. It is obtained by removing the pore forming agent and forming pores in the matrix of the polymeric material.
  • the ribs may be formed, for example, during extrusion molding, or may be formed by pressing with a roller having grooves corresponding to the ribs after being formed into a sheet or after removing the pore forming agent. When using a filler, adding to a resin composition is preferable.
  • the positive electrode plate of the lead storage battery is classified into a paste type and a clad type.
  • the paste type positive electrode plate comprises a positive electrode current collector and a positive electrode material.
  • the positive electrode material is held by the positive electrode current collector.
  • the positive electrode material is obtained by removing the positive electrode current collector from the positive electrode plate.
  • the positive electrode current collector may be formed in the same manner as the negative electrode current collector, and can be formed by casting of lead or lead alloy or processing of lead or lead alloy sheet.
  • the clad positive electrode plate includes a plurality of porous tubes, a cored bar inserted into each tube, a positive electrode material filled in the tube into which the cored bar is inserted, and a seat connecting the plurality of tubes. Equipped with In the clad type positive electrode plate, the positive electrode material is one obtained by removing the tube, the core metal and the seat from the positive electrode plate.
  • a Pb—Ca based alloy and a Pb—Ca—Sn based alloy are preferable in terms of corrosion resistance and mechanical strength.
  • the positive electrode current collector may have lead alloy layers different in composition, and a plurality of alloy layers may be provided. It is preferable to use a Pb--Ca-based alloy or a Pb--Sb-based alloy as the core metal.
  • the positive electrode material contains a positive electrode active material (lead dioxide or lead sulfate) which develops a capacity by a redox reaction.
  • the positive electrode material may optionally contain other additives.
  • the unformed paste type positive electrode plate is obtained by filling the positive electrode current collector with the positive electrode paste, aging and drying according to the case of the negative electrode plate. Thereafter, the unformed positive electrode plate is formed.
  • the positive electrode paste is prepared by kneading lead powder, an additive, water, and sulfuric acid.
  • the clad positive electrode plate is formed by filling a tube into which a core metal is inserted with lead powder or lead powder in a slurry form, and bonding a plurality of tubes in a coordinated manner.
  • the negative electrode plate of the lead storage battery is composed of a negative electrode current collector and a negative electrode material.
  • the negative electrode material is obtained by removing the negative electrode current collector from the negative electrode plate.
  • the negative electrode current collector may be formed by casting of lead (Pb) or lead alloy, or may be formed by processing a lead or lead alloy sheet. Examples of the processing method include expand processing and punching processing. It is preferable to use a negative electrode grid as the negative electrode current collector because it is easy to support the negative electrode material.
  • the lead alloy used for the negative electrode current collector may be any of a Pb—Sb based alloy, a Pb—Ca based alloy, and a Pb—Ca—Sn based alloy. These lead or lead alloys may further contain at least one selected from the group consisting of Ba, Ag, Al, Bi, As, Se, Cu and the like as an additive element.
  • the negative electrode material contains a negative electrode active material (lead or lead sulfate) which develops capacity by an oxidation-reduction reaction, and may contain a shrink-proof agent, a carbonaceous material such as carbon black, barium sulfate, etc. And other additives may be included.
  • a negative electrode active material lead or lead sulfate
  • a shrink-proof agent a carbonaceous material such as carbon black, barium sulfate, etc.
  • other additives may be included.
  • the negative electrode active material in a charged state is cancellous lead, but an unformed negative electrode plate is usually produced using lead powder.
  • the negative electrode plate can be formed by filling the negative electrode current collector with the negative electrode paste, ripening and drying to prepare an unformed negative electrode plate, and then forming the unformed negative electrode plate.
  • the negative electrode paste is prepared by adding and kneading water and sulfuric acid to lead powder, an organic shrinkproofing agent and, if necessary, various additives.
  • the unformed negative electrode plate is preferably aged at a temperature higher than room temperature and a high humidity.
  • the formation can be performed by charging the electrode group in a state in which the electrode group including the unformed negative electrode plate is immersed in an electrolytic solution containing sulfuric acid in the battery case of the lead storage battery. However, the formation may be performed before the assembly of the lead storage battery or the plate group. Formation leads to the production of spongy lead.
  • Electrode solution An aqueous solution containing sulfuric acid is used as the electrolytic solution.
  • the electrolyte may be gelled if necessary.
  • the electrolyte can contain, if necessary, an additive used for a lead-acid battery. Additives also include, for example, metal salts (sodium salts such as sodium sulfate, aluminum salts such as aluminum sulfate, etc.).
  • the lead-acid battery 1 for IS comprises a battery case 12 containing an electrode plate group 11 and an electrolytic solution (not shown).
  • the inside of the battery case 12 is partitioned into a plurality of cell chambers 14 by a partition wall 13.
  • One electrode plate group 11 is accommodated in each cell chamber 14.
  • the opening of the battery case 12 is closed by a lid 15 having a negative electrode terminal 16 and a positive electrode terminal 17.
  • the lid 15 is provided with a liquid plug 18 for each cell chamber. At the time of rehydration, the liquid plug 18 is removed and refilling solution is replenished.
  • the liquid plug 18 may have a function of discharging the gas generated in the cell chamber 14 out of the battery.
  • the electrode plate group 11 is configured by laminating a plurality of negative electrode plates 2 and positive electrode plates 3 with a separator 4 interposed therebetween.
  • the bag-like separator 4 which accommodates the negative electrode plate 2 is shown, the form of a separator is not specifically limited.
  • the negative electrode shelf 6 connecting the plurality of negative electrode plates 2 in parallel is connected to the through connection body 8 and the positive electrode shelf connecting the plurality of positive electrode plates 3 in parallel 5 are connected to the positive pole 7.
  • the positive electrode column 7 is connected to the external positive electrode terminal 17 of the lid 15.
  • the negative electrode post 9 is connected to the negative electrode shelf 6, and the through connection body 8 is connected to the positive electrode shelf 5.
  • the negative electrode post 9 is connected to the external negative electrode terminal 16 of the lid 15.
  • the through connection members 8 pass through the through holes provided in the partition walls 13 to connect the electrode plate groups 11 of the adjacent cell chambers 14 in series.
  • the positive electrode shelf portion 5 is formed by welding the ear portions provided on the upper portions of the respective positive electrode plates 3 by a cast on strap method or a burning method.
  • the negative electrode shelf 6 is also formed by welding the ear parts provided on the top of each negative electrode plate 2 according to the case of the positive electrode shelf 5.
  • Each unformed negative electrode plate is accommodated in a bag-like separator formed of a microporous polyethylene film, and six unformed negative electrode plates and unformed positive electrode plate 6 per cell.
  • a plate group was formed with the sheet.
  • the separator has a first rib on the outside of the bag and a second rib on the inside of the bag.
  • the separator includes a plurality of stripe-shaped first ribs and a plurality of second ribs, and the plurality of first ribs and the plurality of second ribs are formed along the height direction of the positive electrode plate and the negative electrode plate, respectively. It had been.
  • the heights of the first and second ribs were set to the values shown in Table 1, and the average thickness of the base portion of the separator was 0.2 mm.
  • the total thickness of the separator corresponding to the sum of the heights of the first and second ribs and the average thickness of the base portion is 0.7 mm.
  • the average pitch of the first ribs was 10 mm in the region facing the positive electrode plate, and the average pitch of the second ribs was 1 mm in the region facing the negative electrode plate.
  • the height of the rib of a separator, the average thickness of a base part, and the average pitch of a rib are the values calculated
  • the electrode plate group is inserted into a polypropylene battery case, an electrolytic solution is injected, and formation is performed in the battery case, and a lead for IS liquid of a nominal voltage of 12 V and a nominal capacity of 30 Ah (5 hour rate)
  • Storage batteries A1-1 to A1-3, A2-1 to A2-3, A3-1 to A3-3, B1-1 to B1-3, and B2-1 to B2-3 were assembled.
  • As the electrolyte a sulfuric acid aqueous solution having a specific gravity of 1.28 at 20 ° C. was used. Adjust the inner dimension W of the cell chamber by providing a battery rib on the inner wall of the cell chamber for each lead storage battery so that the difference D determined by the above-described procedure becomes the value of Table 1. And / or the height of the second rib was adjusted.
  • the utilization rate of the electrolyte solution of the lead storage battery was 80%.
  • Lead storage batteries for IS A4-1 to A4-3, A5-1 to A5-3, B3-1 to B3-3, and B4-1 to B4-3 >> The heights of the first and second ribs and the difference D were set to values shown in Table 2, and the total thickness of the separator was set to 0.6 mm. Other than these, the lead acid batteries A4-1 to A4-3, A5-1 to A5-3, B3-1 to B3-3, and B4-1 to B4- are the same as the lead acid batteries A1-1 for IS. 3 was produced.
  • the difference D is adjusted by adjusting the inner dimension W of the cell chamber, or adjusting the height of the first rib and / or the height of the second rib. I adjusted it.
  • Lead storage batteries for IS A6-1 to A6-3, A7-1 to A7-3, B5-1 to B5-3, and B6-1 to B6-3 >> The heights of the first and second ribs and the difference D were set to values shown in Table 3, and the total thickness of the separator was set to 0.8 mm. Other than the above, the lead acid batteries A6-1 to A6-3, A7-1 to A7-3, B5-1 to B5-3, and B6-1 to B6- are similar to the lead acid batteries A1-1 for IS. 3 was produced.
  • the difference D is adjusted by adjusting the inner dimension W of the cell chamber, or adjusting the height of the first rib and / or the height of the second rib. I adjusted it.
  • Lead storage batteries for IS A8-1 to A8-4, A9-1 to A9-4, B7-1 to B7-4, and B8-1 to B8-4 >> The heights of the first and second ribs and the difference D were set to values shown in Table 4, and the total thickness of the separator was set to 0.9 mm. Other than these, lead acid batteries A8-1 to A8-4, A9-1 to A9-4, B7-1 to B7-4, and B8-1 to B8- are similar to the lead acid batteries A1-1 for IS. 4 was produced.
  • the difference D is adjusted by adjusting the inner dimension W of the cell chamber, or adjusting the height of the first rib and / or the height of the second rib. I adjusted it.
  • Lead storage batteries for IS A10-1 to A10-3, A11-1 to A11-3, B9-1 to B9-3, and B10-1 to B10-3 Each unformed positive electrode plate was accommodated in a bag-like separator.
  • the separator has a first rib on the inside of the bag and a second rib on the outside of the bag.
  • the heights of the first and second ribs and the difference D were set to the values shown in Table 5.
  • the lead acid batteries A10-1 to A10-3, A11-1 to A11-3, B9-1 to B9-3, and B10-1 to B10- are similar to the lead acid batteries A1-1 for IS. 3 was produced.
  • the difference D is adjusted by adjusting the inner dimension W of the cell chamber, or adjusting the height of the first rib and / or the height of the second rib. I adjusted it.
  • Lead storage batteries for IS A12-1 to A12-3, A13-1 to A13-3, B11-1 to B11-3, and B12-1 to B12-3 >> The heights of the first and second ribs and the difference D were set to values shown in Table 6, and the total thickness of the separator was set to 0.6 mm.
  • Lead storage batteries for IS other than these are the same as lead storage batteries for IS A10-1 and lead storage batteries for IS A12-1 to A12-3, A13-1 to A13-3, B11-1 to B11-3, and B12-1 to B12-3 was produced.
  • the difference D is adjusted by adjusting the inner dimension W of the cell chamber, or adjusting the height of the first rib and / or the height of the second rib. I adjusted it.
  • Lead storage batteries for IS A14-1 to A14-4, A15-1 to A15-4, B13-1 to B13-4, and B14-1 to B14-4 >> The heights of the first and second ribs and the difference D were set to values shown in Table 7, and the total thickness of the separator was set to 0.9 mm. Other than these, the lead acid batteries A14-1 to A14-4, A15-1 to A15-4, B13-1 to B13-4, and B14-1 to B14- are similar to the lead acid batteries A10-1 for IS. 4 was produced.
  • the difference D is adjusted by adjusting the inner dimension W of the cell chamber, or adjusting the height of the first rib and / or the height of the second rib. I adjusted it.
  • the increase in the rate of occurrence of separator breakage is due to the increase in the curvature of the positive electrode plate, resulting in a convex portion at the end of the positive electrode plate and contact with the separator. It is considered that the oxidation deterioration is remarkable.
  • the separator breakage is reduced. This is considered to be because the oxidation deterioration of the separator was suppressed by suppressing the curvature of the positive electrode plate in the case of 0.4 mm ⁇ D ⁇ 3.5 mm.
  • the height of the first rib is preferably 0.3 mm or more. From the same viewpoint, it is also preferable to set the height of the second rib to 0.05 mm or more and 0.2 mm or less. In addition, when the height of the first rib is 0.3 mm or more, PSOC life performance is greatly improved as compared with the case where the height is less than 0.3 mm. It is considered that this is because the diffusibility of the electrolytic solution is improved by easily securing the electrolytic solution in the vicinity of the positive electrode plate and in the vicinity of the negative electrode plate, and thereby stratification is suppressed.
  • the lead storage battery according to one aspect of the present invention is a liquid lead storage battery, and is used as a lead storage battery for IS charged and discharged under PSOC conditions.
  • Lead storage batteries for IS are suitable for idling stop vehicles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Cell Separators (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

アイドリングストップ用鉛蓄電池は、セル室と、前記セル室に収容された極板群および電解液と、を備える。前記極板群は、正極板と、負極板と、前記正極板および前記負極板の間に介在するセパレータと、を備える。前記セパレータは、前記正極板と対向する第1リブと、前記負極板と対向する第2リブとを備える。前記セル室の内寸と前記極板群の厚みとの差Dは、0.4mmを超え3.5mm未満である。前記セル室の内寸は、前記セル室において前記正極板または前記負極板と対向する一対の内側壁間の距離である。

Description

アイドリングストップ用鉛蓄電池
 本発明は、アイドリングストップ用鉛蓄電池に関する。
 鉛蓄電池は、車載用、産業用の他、様々な用途で使用されている。鉛蓄電池は、負極板と、正極板と、負極板および正極板の間に介在するセパレータとを備える極板群と、電解液とを含む。極板群と電解液とは、鉛蓄電池の電槽内のセル室に収容されている。
 セパレータとしては、リブを有するものが使用されることがある。特許文献1では、主リブと、主リブの反対側の面に形成されたミニリブとを備える液式鉛蓄電池用セパレータが提案されている。
 一方、特許文献2では、過放電時のデンドライドショートを抑制する観点から、制御弁式鉛蓄電池において、セル内寸d-極板群厚tを、-2.0mm~+5.0mmとすることが記載されている。
特開2015-216125号公報 特開2008-186654号公報
 鉛蓄電池は、部分充電状態(PSOC)と呼ばれる充電不足状態で使用されることがある。例えば、アイドリングストップ(IS)車では、鉛蓄電池がPSOCで使用されることになる。PSOC条件下で充放電を繰り返すと、セパレータの破れが生じて、短絡が起こり易くなることがある。
 本発明の一側面は、セル室と、前記セル室に収容された極板群および電解液と、を備え、
 前記極板群は、正極板と、負極板と、前記正極板および前記負極板の間に介在するセパレータと、を備え、
 前記セパレータは、前記正極板と対向する第1リブと、前記負極板と対向する第2リブとを備え、
 前記セル室の内寸と前記極板群の厚みとの差Dは、0.4mmを超え3.5mm未満であり、
 前記セル室の内寸は、前記セル室において前記正極板または前記負極板と対向する一対の内側壁間の最小距離である、アイドリングストップ用鉛蓄電池に関する。
 アイドリングストップ用鉛蓄電池において、セパレータの破れを低減することができる。
本発明の一側面に係る鉛蓄電池の外観と内部構造を示す、一部を切り欠いた分解斜視図である。
 本発明の一側面に係るアイドリングストップ(IS)用鉛蓄電池は、セル室と、セル室に収容された極板群および電解液と、を備える。極板群は、正極板と、負極板と、正極板および負極板の間に介在するセパレータと、を備える。セパレータは、正極板と対向する第1リブと、負極板と対向する第2リブとを備える。セル室の内寸と極板群の厚みとの差Dは、0.4mmを超え3.5mm未満である。ここで、セル室の内寸は、セル室において正極板または負極板と対向する一対の内側壁間の距離である。
 鉛蓄電池の正極板では、放電時に二酸化鉛から硫酸鉛が生成し、充電時にはこの逆の反応が起こる。放電時に硫酸鉛が生成することで、正極板の体積膨張は大きくなる。特に、PSOC条件下で充放電を行なうと、硫酸鉛が蓄積し易くなるため、正極板の体積膨張が顕著になり易い。鉛蓄電池では、通常、正極板や負極板の上部には集電のための耳部が形成され、この耳部は固定されているため、正極板が体積膨張すると、体積膨張が正極板の厚み方向に働いて、厚み方向に湾曲し易い。正極板が厚み方向に湾曲すると、セパレータが酸化性の高い正極板に圧迫されることになるため、酸化劣化し易くなり、セパレータの破れが生じ易くなる。セパレータが破れると短絡が起こる。セパレータの酸化劣化を抑制する観点から、セパレータの厚みを大きくしたり、セパレータの正極板側にリブを設け、このリブの高さを高くしたりすることが考えられる。しかし、これらの場合、セパレータの抵抗が大きくなり、放電性能や充電受入性が低下する。
 一方、セパレータの正極板側だけでなく、負極板側にもリブを設ける場合がある。このようにセパレータの両面にリブを設けると、浸透短絡を抑制することができる。しかし、負極板側にリブを設けると、相対的に、正極板側のリブの高さを低くする必要があるため、セパレータが酸化劣化し易くなり、セパレータが破れ易くなる。
 本発明の上記側面によれば、IS用鉛蓄電池において、セル室の内寸と極板群の厚みとの差Dを、0.4mm<D<3.5mmとする。これにより、正極板の湾曲を効果的に抑制することができ、両面にリブ(第1リブおよび第2リブ)を有するセパレータを用いるにも拘わらず、正極板によるセパレータの酸化劣化を抑制することができる。そのため、正極板の湾曲が顕著になり易いPSOC条件下で充放電を行う場合に、セパレータの破れを低減できる。従って、セパレータ破れによる短絡の発生を抑制できる。また、セパレータの劣化が抑制されることで、高いPSOC寿命性能を確保することもできる。差Dが0.4以下の場合には、わずかな湾曲でも正極板のセパレータとの接触により、酸化劣化が顕著になり、これにより破れ短絡が生じる可能性が高まる。差Dが3.5以上の場合には、正極板の湾曲が大きくなり過ぎて、極板端部が凸状となりセパレータのベース部と接触する可能性が高まるため、セパレータの破れ短絡が生じる可能性が高まる。
 差Dは、セル室の内寸Wから極板群の厚みTを減じた値(=W-T)である。
 セル室は、極板群に含まれる極板のうち両外側に位置する極板(正極板または負極板)と対向する一対の内側壁と、極板群に含まれる極板の側端部に対向する一対の内側壁とを備えている。極板群は、これらの内側壁により取り囲まれた状態でセル室内に収容されている。セル室の内寸Wは、セル室において、極板群の両外側に位置する極板(正極板または負極板)と対向する一対の内側壁間の距離である。例えば、電槽が隔壁で区切られた複数のセル室を有する場合には、隣接して対向する一対の隔壁を、セル室の、極板と対向する一対の側壁と見なし、隔壁間(具体的には、隔壁の対向する壁面間)の距離をセル室の内寸Wとする。なお、セル室には、内側壁にリブ(電槽リブとも呼ばれる)が設けられる場合がある。セル室の極板と対向する内側壁にリブが設けられている場合には、この一対の内側壁のリブの高さを合計し、合計値を内側壁間の距離から差し引いた値を、セル室の内寸Wとする。
 鉛蓄電池がセル室を備えず、電槽に極板群が収容されている場合には、電槽をセル室とし、電槽の内寸、つまり、極板群の正極板または負極板(具体的には、極板群の両外側に位置する極板)と対向する電槽の内側壁間の距離を、セル室の内寸Wとする。
 電槽がテーパを有する場合なども含めて、セル室の内寸にばらつきがあるときは、内寸の最小値を、差Dを算出する際の内寸Wとする。
 極板群の厚みTは、次のようにして求められる。まず、極板群を、既化成で満充電状態の鉛蓄電池から取り出し、正極板、負極板、セパレータに分解する。次いで、正極板、負極板、およびセパレータの厚みをそれぞれ計測し、正極板、負極板およびセパレータの積層方向に合算することによって極板群の厚みTが求められる。ここで、正極板および負極板の厚みは、それぞれの電極材料が存在する領域の任意の5箇所について計測した値の平均値とする。セパレータの厚みは、正極板および負極板の電極材料が存在する領域と対向する領域の任意の5箇所について計測した値の平均値とする。セパレータの厚み(平均値)は、第1リブおよび第2リブを含めた総厚み(平均値)である。セパレータは、通常、シート状のベース部とベース部の一方の主面から突出する第1リブと他方の主面から突出する第2リブとを備えている。そのため、ベース部の厚みと、第1リブの高さと、第2リブの高さとを、それぞれ計測し、合算した値をセパレータの厚みとしてもよい。なお、第1リブおよび第2リブのそれぞれの高さ方向は、ベース部の厚み方向に沿った方向(つまり、ベース部の面方向と直交する方向)であり、これらを合算することで、セパレータの総厚みが求められる。
 ベース部の平均厚みは、セパレータの断面写真において、任意に選択した5箇所についてベース部の厚みを計測し、平均化することにより求められる。
 第1リブの高さとは、セパレータの、正極板の正極電極材料が存在する領域と対向する領域に存在する第1リブの最大高さを言うものとする。なお、各第1リブの高さは、ベース部の一方の主面から第1リブの頂部までの距離である。ベース部の主面が平面でない場合には、セパレータを、第1リブ側を上にして平置きし、横から見たときに、ベース部の一方の主面の最も高い位置から、第1リブの所定の位置における第1リブの頂部の最も高い位置までの距離を第1リブの高さとする。
 第2リブの高さは、第1リブの場合に準じて、セパレータの、負極板の負極電極材料が存在する領域と対向する領域に存在する第2リブの最大高さを言うものとする。各第2リブの高さは、ベース部の他方の主面から第2リブの頂部までの距離である。第2リブの高さは、第1リブの場合に準じて求められる。
 なお、セル室の内側壁にリブ(電槽リブ)が形成されており、極板群の両外側の極板とこの極板と対向するセル室の内側壁との間にセパレータが存在し、セル室の内側壁側のセパレータの主面にもリブが形成されていることがある。極板群がセル室内に収容されているときに、セパレータの内側壁側のリブと対向する内側壁のリブとが重ならない場合(つまり、セパレータのリブが隣接する電槽リブ間の間に入り込んでいる場合)には、この内側壁と対向するセパレータについては、セパレータの総厚みからセパレータの内側壁側のリブの高さを差し引いた値をセパレータの厚みとする。なお、セパレータのリブの高さは、通常、電槽リブの高さに比べると小さい。
 なお、ベース部の平均厚み、およびリブの高さは、後述のように既化成で満充電後の鉛蓄電池から取り出して洗浄、真空乾燥(大気圧より低い圧力下で乾燥)したセパレータについて求めるものとする。
 本明細書中、鉛蓄電池の満充電状態とは、25℃の水槽中で、0.2CAの電流で2.5V/セルに達するまで定電流充電を行った後、さらに0.2CAで2時間、定電流充電を行った状態である。
 なお、本明細書中、1CAとは電池の公称容量(Ah)と同じ数値の電流値(A)である。例えば、公称容量が30Ahの電池であれば、1CAは30Aであり、1mCAは30mAである。
 本発明の上記側面に係るIS用鉛蓄電池は、液式の鉛蓄電池である。IS用鉛蓄電池とは、PSOC(つまり、100%未満の充電状態(SOC))での繰り返し使用が想定される鉛蓄電池を言う。IS用鉛蓄電池は、エンジン始動用やバックアップ用といった一般的な鉛蓄電池に比べて電解液の利用率が大きいため、電解液の利用率で他の用途(例えば、満充電までの充電の繰り返しが想定される鉛蓄電池(エンジン始動用鉛蓄電池など))の鉛蓄電池と区別することもできる。上記側面に係るIS用鉛蓄電池の電解液の利用率は、例えば、70%以上90%以下であり、75%以上90%以下が好ましい。電解液の利用率がこのような範囲である場合、PSOC寿命を高く維持するための電極材料の量を十分に確保することができる。それに対し、他の用途の鉛蓄電池(特に、満充電までの充電の繰り返しが想定される鉛蓄電池)は、通常、電解液の利用率70%未満で使用される。IS用鉛蓄電池は、回復充電により一時的に充放電収支が100%以上になることもあるが、通常、SOC100%未満での充放電が繰り返される。IS用鉛蓄電池は、85%以上100%未満のSOCで使用されることが好ましく、85%未満のSOCで使用されるものであってもよい。なお、満充電状態の鉛蓄電池をSOC100%とする。
 電解液の利用率とは、単セル内の電解液量および硫酸濃度から計算される硫酸根量から、液理論容量(硫酸根量(g)/3.657)を求め、得られた液理論容量で有効20時間率容量を除することにより算出される値(%)を意味する。有効20時間率容量とは、JIS D 5301:2006で規定される5時間率容量試験の5時間率電流Iを20時間率電流I20に置き換えて試験することで測定される値を意味する。電解液の利用率および有効20時間率容量は、JIS D 5301:2006に規定される低電流充電法1または2で満充電された状態の電池から求めた値である。
 本発明の他の側面には、上記のIS用鉛蓄電池をPSOC(つまり、100%未満の充電状態)で使用する使用方法も含まれる。このときの電解液利用率を、70%以上90%以下とすることが好ましく、75%以上90%以下とすることがさらに好ましい。また、IS用鉛蓄電池は、85%以上100%未満のSOCで使用することが好ましく、85%未満のSOCで使用されるものであってもよい。 
 本発明のさらに他の側面には、上記のIS用鉛蓄電池と、IS用鉛蓄電池に接続し、かつIS用鉛蓄電池の充放電を制御する制御ユニットと、備える充放電システムも含まれる。制御ユニットは、IS用鉛蓄電池を充電する際の条件(例えば、電流、電圧など)を制御するための充電制御ユニットと、IS用鉛蓄電池を放電する際の条件(例えば、電流、電圧など)を制御するための放電制御ユニットとを含む。充電制御ユニットにより、IS用鉛蓄電池が100%未満のSOCまで充電されるように制御される。IS用鉛蓄電池には、アイドリングストップ時にIS用鉛蓄電池から供給される電力を消費する負荷機器としてアイドリングストップ車が接続されている。IS用鉛蓄電池は、85%以上100%未満のSOCに充電されるように制御されることが好ましく、85%未満のSOCに充電されるように制御してもよい。
 IS用鉛蓄電池において、セル室の内寸と極板群の厚みとの差Dは、0.5mm以上3.0mm以下であることが好ましい。この場合、セパレータの破れを低減する効果をさらに高めることができる。
 第1リブの高さは、0.3mm以上であることが好ましい。この場合、セパレータ破れの発生率をさらに低減できるとともに、PSOC条件下でのサイクル試験における寿命性能(以下、PSOC寿命性能と言う)を向上できる。なお、鉛蓄電池において、PSOC条件下で充放電を繰り返すと、電解液の濃度が、電槽の上部では薄く、下部では濃くなる成層化が起こる。成層化が進行すると、充放電反応にばらつきが生じて、電池寿命が短くなる。第1リブの高さを0.3mm以上とすることで、PSOC寿命性能が向上するのは、セパレータにこのような高さの第1リブを設けることに加え、第2リブを設けることで、正極板近傍および負極板近傍に電解液を確保し易くなるため、電解液の拡散性が向上し、これにより成層化が抑制されるためと考えられる。
 第2リブの高さは、0.05mm以上0.2mm以下であることが好ましい。第2リブの高さがこのような範囲である場合、第2リブにより負極板近傍に電解液を確保し易くなる。また、ある程度の高さの第1リブを設けることができるため、正極板近傍に電解液を確保し易くなる。よって、電解液の拡散性が向上することで、成層化が抑制されるため、PSOC寿命性能を向上できる。
 セパレータは、袋状であってもよい。袋状のセパレータを用いる場合、電解液が滞留し易くなるが、0.4mm<D<3.5mmとするとともに、袋状のセパレータの内外にリブを設けることで、電解液の拡散性が高まり、PSOC寿命性能をさらに向上できる。袋状のセパレータで負極板を収容すると、湾曲による影響が出にくいため、セパレータ破れの発生率をさらに低減できる。袋状のセパレータで正極板を収容すると、正極側の電解液の拡散性の向上効果が発揮され易くなるため、PSOC寿命性能がさらに向上する。
 以下、本発明の一実施形態に係るIS用鉛蓄電池について、主要な構成要件ごとに説明するが、本発明は以下の実施形態に限定されるものではない。
(電槽)
 IS用鉛蓄電池は、電槽を備えており、電槽は、通常、隔壁により、複数のセル室に仕切られている。極板群および電解液は、セル室に収容される。通常、1つのセル室につき1つの極板群が収容される。電槽は、硫酸に対する耐性が高い樹脂材料(例えば、ポリプロピレン、アクリロニトリルブタジエンスチレン共重合体など)で形成される。
 本発明の上記側面では、セル室の内寸と極板群との厚みの差Dを、0.4mm<D<3.5mmとすることで、上述のようにセパレータの破れを抑制できる。セパレータの破れ抑制効果がさらに高まる観点からは、0.5mm≦D≦3.0mmとすることが好ましい。
 差Dは、例えば、セル室の内寸W、正極板の厚み、負極板の厚み、セパレータのベース部の厚み、第1リブの高さ、および/または第2リブの高さを調節することにより調節できる。セル室の内寸は、例えば、セル室の内壁に電槽リブを設けたり、電槽リブの高さを調節したりすることにより、調節できる。
(極板群)
 極板群は、正極板と負極板とこれらの間に介在するセパレータとを含む。
 以下、極板群の構成についてより具体的に説明する。
 (セパレータ)
 セパレータは、微多孔膜で構成されたベース部と、ベース部の一方の主面から突出するリブと、ベース部の他方の主面から突出するリブとを備えている。セパレータは、一方の主面から突出するリブが正極板側に位置し、他方の主面から突出するリブが負極板側に位置するように配置される。正極板側に位置するリブを第1リブと呼び、負極板側に位置するリブを第2リブと呼ぶ。セパレータに第2リブを設けると相対的に第1リブの高さを低くする必要が生じるため、セパレータが酸化劣化し易くなるが、0.4mm<D<3.5mmとすることで、セパレータの酸化劣化を抑制してセパレータの破れを低減できる。また、第1リブにより正極板近傍における電解液の拡散性を高めることができるとともに、第2リブにより負極板近傍における電解液の拡散性を高めることができる。よって、高いPSOC寿命性能を確保し易くなる。
 セパレータは、ポリマー材料(ただし、繊維とは異なる)で形成される。少なくともベース部は、多孔性のシートであり、多孔性のフィルムと呼ぶこともできる。セパレータは、ポリマー材料で形成されたマトリックス中に分散した充填剤(例えば、シリカなどの粒子状充填剤、および/または繊維状充填剤)を含んでもよい。セパレータは、耐酸性を有するポリマー材料で構成することが好ましい。このようなポリマー材料としては、ポリエチレン、ポリプロピレンなどのポリオレフィンが好ましい。
 ベース部の平均厚みは、例えば、100μm以上300μm以下であり、150μm以上250μm以下であることが好ましい。ベース部の平均厚みがこのような範囲である場合、高い充放電特性を確保しながら、第1リブおよび第2リブの高さを確保し易くなる。
 第1リブは、セパレータの、正極板と対向する側の面に形成されている。第1リブの高さは、例えば、0.25mm以上である。第1リブの高さがこのような範囲である場合、セパレータの酸化劣化を抑制し易くなる。第1リブの高さは、0.3mm以上(または0.30mm以上)であることが好ましい。この場合、セパレータ破れの発生率をさらに向上できるとともに、PSOC寿命性能を向上できる。高い充放電特性を確保する観点から、第1リブの高さは、例えば、1.0mm以下であり、0.7mm以下であることが好ましい。これらの下限値と上限値とは任意に組み合わせることができる。
 ベース部の一方の主面において第1リブのパターンは特に制限されず、第1リブは、ランダムに形成されていてもよく、ストライプ状、曲線状、格子状などに形成されていてもよい。電解液をより拡散し易くする観点からは、ベース部の一方の主面において、複数の第1リブがストライプ状に並ぶように形成することが好ましい。ストライプ状の第1リブの向きは特に制限されず、例えば、複数の第1リブは、負極板の高さ方向や幅方向に沿って形成してもよい。
 なお、負極板および正極板の一端部には、通常、極板群から電流を取り出すための耳部が形成されている。この耳部を上にした状態における負極板や正極板の鉛直方向を、負極板や正極板の高さ方向と言うものとする。負極板や正極板の幅方向とは、高さ方向と直交し、負極板や正極板の主面を横切る方向である。
 ストライプ状や格子状の第1リブの平均ピッチは、例えば、1mm以上15mm以下であり、5mm以上10mm以下であることが好ましい。セパレータが、このような範囲の平均ピッチで第1リブが形成されている領域を含む場合、セパレータの酸化劣化を抑制する効果がさらに高まる。セパレータにおいて、正極板(好ましくは正極電極材料が存在する領域)と対向する領域にこのような平均ピッチで第1リブが形成されていることが好ましい。例えば、セパレータの正極板と対向する領域の面積の70%以上にこのような平均ピッチの第1リブが形成されていることが好ましい。セパレータの端部など、正極板と対向しない領域や正極板の正極電極材料が存在しない領域と対向する領域には、第1リブを形成しても形成しなくてもよく、複数の第1リブを密に(例えば、0.5mm以上5mm以下の平均ピッチで)形成してもよい。
 なお、第1リブのピッチとは、隣接する第1リブの頂部間距離(より具体的には、第1リブを横切る方向における隣接する第1リブの中心間距離)である。
 第1リブの平均ピッチは、任意に選択される10箇所において計測した第1リブのピッチを平均化することにより求められる。なお、セパレータの正極板と対向しない領域や正極板の正極電極材料が存在しない領域と対向する領域に第1リブが密に形成されている場合には、この領域を除いて平均ピッチを算出すればよい。このような部分的に密に形成された第1リブの平均ピッチは、この領域について上記と同様に算出できる。
 第2リブは、セパレータの、負極板と対向する側の面に形成されている。第2リブの高さは、例えば、0.05mm以上であることが好ましい。第2リブの高さがこのような範囲である場合、負極板近傍において電解液をより拡散し易くなる。第2リブの高さは、例えば、高い充放電特性を確保する観点からは0.50mm以下であることが好ましく、第1リブの高さを確保し易い観点からは0.40mm以下であることが好ましい。また、第2リブの高さを0.20mm以下とすると、優れたPSOC寿命性能が得られ易い。
 第2リブのパターンや向きは、特に制限されず、例えば、第1リブについて記載したものから選択すればよい。ストライプ状や格子状の第2リブの平均ピッチは、例えば、0.3mm以上10mm以下であり、0.5mm以上5mm以下であることが好ましい。第2リブの平均ピッチがこのような範囲である場合、負極板近傍の電解液の拡散性を向上する効果が得られ易い。セパレータにおいて、負極板と対向する領域(好ましくは負極電極材料が存在する領域と対向する領域)にこのような平均ピッチで第2リブが形成されていることが好ましい。例えば、セパレータの負極板と対向する領域の面積の70%以上にこのような平均ピッチの第2リブが形成されていることが好ましい。セパレータの端部など、負極板と対向しない領域や負極板の負極電極材料が存在しない領域と対向する領域には、第2リブを形成しても形成しなくてもよく、複数の第2リブを密に(例えば、0.5mm以上5mm以下の平均ピッチで)形成してもよい。
 なお、第2リブのピッチとは、隣接する第2リブの頂部間距離(より具体的には、第2リブを横切る方向における隣接する第2リブの中心間距離)である。第2リブの平均ピッチは、第1リブの平均ピッチに準じて算出できる。
 第1リブおよび第2リブの平均ピッチは、上記と同様に、既化成で満充電後の鉛蓄電池から取り出して洗浄、真空乾燥(大気圧より低い圧力下で乾燥)したセパレータについて求めるものとする。
 シート状のセパレータを、負極板と正極板との間に挟んでもよく、袋状のセパレータに負極板または正極板を収容することで、負極板と正極板との間にセパレータを介在させてもよい。袋状のセパレータを用いる場合には電解液が拡散しにくくなるが、第1リブおよび第2リブを設けることで拡散性が向上する。袋状のセパレータで負極板を収容すると、セパレータ破れの発生率をさらに低減できる。袋状のセパレータで正極板を収容すると、PSOC寿命性能をさらに向上できる。
 セパレータは、例えば、造孔剤(ポリマー粉末などの固形造孔剤、および/またはオイルなどの液状造孔剤など)とポリマー材料などとを含む樹脂組成物を、シート状に押し出し成形した後、造孔剤を除去して、ポリマー材料のマトリックス中に細孔を形成することにより得られる。リブは、例えば、押出成形する際に形成してもよく、シート状に成形した後または造孔剤を除去した後に、リブに対応する溝を有するローラで押圧することにより形成してもよい。充填剤を用いる場合には、樹脂組成物に添加することが好ましい。
 (正極板)
 鉛蓄電池の正極板には、ペースト式とクラッド式がある。
 ペースト式正極板は、正極集電体と、正極電極材料とを具備する。正極電極材料は、正極集電体に保持されている。ペースト式正極板では、正極電極材料は、正極板から正極集電体を除いたものである。正極集電体は、負極集電体と同様に形成すればよく、鉛または鉛合金の鋳造や、鉛または鉛合金シートの加工により形成することができる。
 クラッド式正極板は、複数の多孔質のチューブと、各チューブ内に挿入される芯金と、芯金が挿入されたチューブ内に充填される正極電極材料と、複数のチューブを連結する連座とを具備する。クラッド式正極板では、正極電極材料は、正極板から、チューブ、芯金、および連座を除いたものである。
 正極集電体に用いる鉛合金としては、耐食性および機械的強度の点で、Pb-Ca系合金、Pb-Ca-Sn系合金が好ましい。正極集電体は、組成の異なる鉛合金層を有してもよく、合金層は複数でもよい。芯金には、Pb-Ca系合金やPb-Sb系合金を用いることが好ましい。
 正極電極材料は、酸化還元反応により容量を発現する正極活物質(二酸化鉛もしくは硫酸鉛)を含む。正極電極材料は、必要に応じて、他の添加剤を含んでもよい。
 未化成のペースト式正極板は、負極板の場合に準じて、正極集電体に、正極ペーストを充填し、熟成、乾燥することにより得られる。その後、未化成の正極板を化成する。正極ペーストは、鉛粉、添加剤、水、硫酸を練合することで調製される。
 クラッド式正極板は、芯金が挿入されたチューブに鉛粉または、スラリー状の鉛粉を充填し、複数のチューブを連座で結合することにより形成される。
 (負極板)
 鉛蓄電池の負極板は、負極集電体と、負極電極材料とで構成されている。負極電極材料は、負極板から負極集電体を除いたものである。負極集電体は、鉛(Pb)または鉛合金の鋳造により形成してもよく、鉛または鉛合金シートを加工して形成してもよい。加工方法としては、例えば、エキスパンド加工や打ち抜き(パンチング)加工が挙げられる。負極集電体として負極格子を用いると、負極電極材料を担持させ易いため好ましい。
 負極集電体に用いる鉛合金は、Pb-Sb系合金、Pb-Ca系合金、Pb-Ca-Sn系合金のいずれであってもよい。これらの鉛もしくは鉛合金は、更に、添加元素として、Ba、Ag、Al、Bi、As、Se、Cuなどからなる群より選択された少なくとも1種を含んでもよい。
 負極電極材料は、酸化還元反応により容量を発現する負極活物質(鉛もしくは硫酸鉛)を含んでおり、防縮剤、カーボンブラックのような炭素質材料、硫酸バリウムなどを含んでもよく、必要に応じて、他の添加剤を含んでもよい。
 充電状態の負極活物質は、海綿状鉛であるが、未化成の負極板は、通常、鉛粉を用いて作製される。
 負極板は、負極集電体に、負極ペーストを充填し、熟成および乾燥することにより未化成の負極板を作製し、その後、未化成の負極板を化成することにより形成できる。負極ペーストは、鉛粉と有機防縮剤および必要に応じて各種添加剤に、水と硫酸を加えて混練することで作製する。熟成工程では、室温より高温かつ高湿度で、未化成の負極板を熟成させることが好ましい。
 化成は、鉛蓄電池の電槽内の硫酸を含む電解液中に、未化成の負極板を含む極板群を浸漬させた状態で、極板群を充電することにより行うことができる。ただし、化成は、鉛蓄電池または極板群の組み立て前に行ってもよい。化成により、海綿状鉛が生成する。
(電解液)
 電解液としては、硫酸を含む水溶液が使用される。電解液は、必要に応じてゲル化させてもよい。
 電解液は、必要に応じて、鉛蓄電池に利用される添加剤を含むことができる。添加剤には、例えば、金属塩(硫酸ナトリウムなどのナトリウム塩、硫酸アルミニウムなどのアルミニウム塩など)も含まれる。
 化成後で満充電状態の鉛蓄電池における電解液の20℃における比重は、例えば、1.10g/cm3以上1.35g/cm3以下である。
 図1に、本発明の実施形態に係るIS用鉛蓄電池の一例の外観を示す。
 IS用鉛蓄電池1は、極板群11と電解液(図示せず)とを収容する電槽12を具備する。電槽12内は、隔壁13により、複数のセル室14に仕切られている。各セル室14には、極板群11が1つずつ収納されている。電槽12の開口部は、負極端子16および正極端子17を具備する蓋15で閉じられる。蓋15には、セル室毎に液口栓18が設けられている。補水の際には、液口栓18を外して補水液が補給される。液口栓18は、セル室14内で発生したガスを電池外に排出する機能を有してもよい。
 極板群11は、それぞれ複数枚の負極板2および正極板3を、セパレータ4を介して積層することにより構成されている。ここでは、負極板2を収容する袋状のセパレータ4を示すが、セパレータの形態は特に限定されない。電槽12の一方の端部に位置するセル室14では、複数の負極板2を並列接続する負極棚部6が貫通接続体8に接続され、複数の正極板3を並列接続する正極棚部5が正極柱7に接続されている。正極柱7は蓋15の外部の正極端子17に接続されている。電槽12の他方の端部に位置するセル室14では、負極棚部6に負極柱9が接続され、正極棚部5に貫通接続体8が接続される。負極柱9は蓋15の外部の負極端子16と接続されている。各々の貫通接続体8は、隔壁13に設けられた貫通孔を通過して、隣接するセル室14の極板群11同士を直列に接続している。
 正極棚部5は、各正極板3の上部に設けられた耳部同士をキャストオンストラップ方式やバーニング方式で溶接することにより形成される。負極棚部6も、正極棚部5の場合に準じて各負極板2の上部に設けられた耳部同士を溶接することにより形成される。
[実施例]
 以下、本発明を実施例および比較例に基づいて具体的に説明するが、本発明は以下の実施例に限定されるものではない。
《IS用鉛蓄電池A1-1~A1-3、A2-1~A2-3、A3-1~A3-3、B1-1~B1-3、およびB2-1~B2-3》
(1)負極板の作製
 鉛粉、水、希硫酸、カーボンブラック、有機防縮剤を混合して、負極ペーストを得た。負極ペーストを、負極集電体としてのPb-Ca-Sn系合金製のエキスパンド格子の網目部に充填し、熟成、乾燥し、未化成の負極板を得た。有機防縮剤には、リグニンスルホン酸ナトリウムを用いた。カーボンブラックおよび有機防縮剤は、それぞれ、負極電極材料100質量%に含まれる含有量が0.3質量%および0.2質量%となるように、添加量を調整して、負極ペーストに配合した。
(2)正極板の作製
 鉛粉と、水と、硫酸とを混練させて、正極ペーストを作製した。正極ペーストを、正極集電体としてのPb-Ca-Sn系合金製のエキスパンド格子の網目部に充填し、熟成、乾燥し、未化成の正極板を得た。
(3)IS用鉛蓄電池の作製
 未化成の各負極板を、ポリエチレン製の微多孔膜で形成された袋状セパレータに収容し、セル当たり未化成の負極板6枚と未化成の正極板6枚とで極板群を形成した。セパレータは、袋の外側に第1リブを、袋の内側に第2リブを有する。セパレータは、ストライプ状の複数の第1リブおよび複数の第2リブを備えており、複数の第1リブおよび複数の第2リブは、それぞれ、正極板および負極板の高さ方向に沿って形成されていた。第1リブおよび第2リブの高さは、表1に示す値とし、セパレータのベース部の平均厚みは、0.2mmとした。第1リブおよび第2リブの高さとベース部の平均厚みの合計に相当するセパレータの総厚みは0.7mmである。正極板に対向する領域において第1リブの平均ピッチは、10mmであり、負極板に対向する領域において第2リブの平均ピッチは、1mmであった。なお、セパレータのリブの高さ、ベース部の平均厚み、リブの平均ピッチは、鉛蓄電池作製前のセパレータについて求めた値であるが、作製後の鉛蓄電池から取り出したセパレータについて既述の手順で測定した値とほぼ同じである。
 極板群をポリプロピレン製の電槽に挿入し、電解液を注液して、電槽内で化成を施して、公称電圧12Vおよび公称容量が30Ah(5時間率)の液式のIS用鉛蓄電池A1-1~A1-3、A2-1~A2-3、A3-1~A3-3、B1-1~B1-3、およびB2-1~B2-3を組み立てた。電解液としては、20℃における比重が1.28の硫酸水溶液を用いた。既述の手順で求められる差Dが、表1の値となるように、各鉛蓄電池についてセル室の内壁に電槽リブを設けることでセル室の内寸Wを調節したり、第1リブの高さ、および/または第2リブの高さを調節したりした。
 鉛蓄電池の電解液の利用率は、80%とした。
《IS用鉛蓄電池A4-1~A4-3、A5-1~A5-3、B3-1~B3-3、およびB4-1~B4-3》
 第1リブおよび第2リブの高さ、ならびに差Dを、表2に示す値とし、セパレータの総厚みを0.6mmとした。これら以外は、IS用鉛蓄電池A1-1と同様にしてIS用鉛蓄電池A4-1~A4-3、A5-1~A5-3、B3-1~B3-3、およびB4-1~B4-3を作製した。セル室の内壁に電槽リブを設けることでセル室の内寸Wを調節したり、第1リブの高さ、および/または第2リブの高さを調節したりすることで、差Dを調節した。
《IS用鉛蓄電池A6-1~A6-3、A7-1~A7-3、B5-1~B5-3、およびB6-1~B6-3》
 第1リブおよび第2リブの高さ、ならびに差Dを、表3に示す値とし、セパレータの総厚みを0.8mmとした。これら以外は、IS用鉛蓄電池A1-1と同様にしてIS用鉛蓄電池A6-1~A6-3、A7-1~A7-3、B5-1~B5-3、およびB6-1~B6-3を作製した。セル室の内壁に電槽リブを設けることでセル室の内寸Wを調節したり、第1リブの高さ、および/または第2リブの高さを調節したりすることで、差Dを調節した。
《IS用鉛蓄電池A8-1~A8-4、A9-1~A9-4、B7-1~B7-4、およびB8-1~B8-4》
 第1リブおよび第2リブの高さ、ならびに差Dを、表4に示す値とし、セパレータの総厚みを0.9mmとした。これら以外は、IS用鉛蓄電池A1-1と同様にしてIS用鉛蓄電池A8-1~A8-4、A9-1~A9-4、B7-1~B7-4、およびB8-1~B8-4を作製した。セル室の内壁に電槽リブを設けることでセル室の内寸Wを調節したり、第1リブの高さ、および/または第2リブの高さを調節したりすることで、差Dを調節した。
《IS用鉛蓄電池A10-1~A10-3、A11-1~A11-3、B9-1~B9-3、およびB10-1~B10-3》
 袋状セパレータで未化成の各正極板を収容した。セパレータは、袋の内側に第1リブを、袋の外側に第2リブを有する。第1リブおよび第2リブの高さ、ならびに差Dを、表5に示す値とした。これら以外は、IS用鉛蓄電池A1-1と同様にしてIS用鉛蓄電池A10-1~A10-3、A11-1~A11-3、B9-1~B9-3、およびB10-1~B10-3を作製した。セル室の内壁に電槽リブを設けることでセル室の内寸Wを調節したり、第1リブの高さ、および/または第2リブの高さを調節したりすることで、差Dを調節した。
《IS用鉛蓄電池A12-1~A12-3、A13-1~A13-3、B11-1~B11-3、およびB12-1~B12-3》
 第1リブおよび第2リブの高さ、ならびに差Dを、表6に示す値とし、セパレータの総厚みを0.6mmとした。これら以外は、IS用鉛蓄電池A10-1と同様にしてIS用鉛蓄電池鉛蓄電池A12-1~A12-3、A13-1~A13-3、B11-1~B11-3、およびB12-1~B12-3を作製した。セル室の内壁に電槽リブを設けることでセル室の内寸Wを調節したり、第1リブの高さ、および/または第2リブの高さを調節したりすることで、差Dを調節した。
《IS用鉛蓄電池A14-1~A14-4、A15-1~A15-4、B13-1~B13-4、およびB14-1~B14-4》
 第1リブおよび第2リブの高さ、ならびに差Dを、表7に示す値とし、セパレータの総厚みを0.9mmとした。これら以外は、IS用鉛蓄電池A10-1と同様にしてIS用鉛蓄電池A14-1~A14-4、A15-1~A15-4、B13-1~B13-4、およびB14-1~B14-4を作製した。セル室の内壁に電槽リブを設けることでセル室の内寸Wを調節したり、第1リブの高さ、および/または第2リブの高さを調節したりすることで、差Dを調節した。
[評価1:セパレータ破れ発生率]
 PSOC条件下での正極板の湾曲をより短い期間で再現するため、正極活物質の膨張および収縮の繰り返しが顕著になる条件下で試験を行なった。具体的には、JISD 5301:2006に規定される5時間率容量試験に準じて、IS用鉛蓄電池の充放電を繰り返した。ただし、初回は、JIS D 5301:2006に規定される満充電状態から開始し、充放電サイクルにおける回復充電条件としては、独自に考案した条件を採用した。具体的には、下記の(a)および(b)を1サイクルとして、20サイクルを繰り返した時点でのセパレータ破れの有無を調べた。複数個の電池で試験をおこない、全体の電池数に占めるセパレータ破れが発生した電池の個数比率をセパレータ破れの発生率(%)として求めた。
 (a)5時間率放電:6Aで終止電圧10.5Vまで放電する。
 (b)回復充電:14.8V(最大電流50A)で18時間充電する。
[評価2:PSOC寿命性能]
 SBA S 0101:2014に準拠して、アイドリングストップ条件で、IS用鉛蓄電池の充放電を行った。具体的には、25℃において、下記の(a)~(c)を1サイクルとして、放電末電圧が7.2V以下になるまで繰り返し、このときのサイクル数を求めた。IS用鉛蓄電池B1-3におけるサイクル数を100としたときの比率でPSOC寿命性能を評価した。なお、充放電時には、3600サイクル毎に40時間~48時間休止した。
 (a)放電1:32Aの電流値で59秒放電する。
 (b)放電2:300Aの電流値で1秒間放電する。
 (c)充電:制限電流100Aおよび14.0Vの電圧で60秒間充電する。
 評価結果を表1~表7に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 表1~表7に示すように、差Dが0.4mm<D<3.5mmの場合に比べて、差Dが0.4mmや3.5mmになると、セパレータ破れの発生率が多くなる場合が増える。IS用鉛蓄電池B1-1~B1-3でセパレータ破れの発生率が多くなるのは、差D以下の場合にはわずかな湾曲でも正極板がセパレータと接触し易くなるため、セパレータの酸化劣化が顕著になったためと考えられる。IS用鉛蓄電池B2-1~B2-3でセパレータ破れの発生率が多くなるのは、正極板の湾曲が大きくなることで、正極板の端部に凸状の部分ができ、セパレータと接触して酸化劣化が顕著になったためと考えられる。それに対し、0.4mm<D<3.5mmの場合にはセパレータ破れが低減されている。これは、0.4mm<D<3.5mmの場合には、正極板の湾曲が抑制されることで、セパレータの酸化劣化が抑制されたためと考えられる。
 セパレータ破れの低減効果がさらに高まる観点からは、第1リブの高さを0.3mm以上とすることが好ましい。同様の観点から、第2リブの高さを0.05mm以上0.2mm以下とすることも好ましい。また、第1リブの高さを0.3mm以上とすると、高さが0.3mm未満の場合と比べてPSOC寿命性能が大きく向上する。これは、正極板近傍および負極板近傍に電解液を確保し易くなることで、電解液の拡散性が向上し、これにより成層化が抑制されることによるものと考えられる。
 表1、表2および表4と表5~表7との比較から、袋状セパレータで負極板を収容する場合には、正極板を収容する場合と比べてセパレータ破れの発生率がより低減される。これは、袋状セパレータが正極板の湾曲による影響を受け難くなるためと考えられる。また、袋状セパレータで正極板を収容する場合には、負極板を収容する場合と比べてPSOC寿命性能の向上効果が高まる。これは、正極側の電解液の拡散性の向上効果が発揮され易くなることによるものと考えられる。
 本発明の一側面に係る鉛蓄電池は、液式の鉛蓄電池であり、PSOC条件下で充放電されるIS用鉛蓄電池として利用される。IS用鉛蓄電池は、アイドリングストップ車に適している。
 1:IS用鉛蓄電池
 2:負極板
 3:正極板
 4:セパレータ
 5:正極棚部
 6:負極棚部
 7:正極柱
 8:貫通接続体
 9:負極柱
 11:極板群
 12:電槽
 13:隔壁
 14:セル室
 15:蓋
 16:負極端子
 17:正極端子
 18:液口栓

Claims (6)

  1.  セル室と、前記セル室に収容された極板群および電解液と、を備え、
     前記極板群は、正極板と、負極板と、前記正極板および前記負極板の間に介在するセパレータと、を備え、
     前記セパレータは、前記正極板と対向する第1リブと、前記負極板と対向する第2リブとを備え、
     前記セル室の内寸と前記極板群の厚みとの差Dは、0.4mmを超え3.5mm未満であり、
     前記セル室の内寸は、前記セル室において前記正極板または前記負極板と対向する一対の内側壁間の距離である、アイドリングストップ用鉛蓄電池。
  2.  前記差Dは、0.5mm以上3.0mm以下である、請求項1に記載のアイドリングストップ用鉛蓄電池。
  3.  前記第1リブの高さは、0.3mm以上である、請求項1または2に記載のアイドリングストップ用鉛蓄電池。
  4.  前記第2リブの高さは、0.05mm以上0.20mm以下である、請求項1~3のいずれか1項に記載のアイドリングストップ用鉛蓄電池。
  5.  前記セパレータは、袋状であり、前記負極板を収容している、請求項1~4のいずれか1項に記載のアイドリングストップ用鉛蓄電池。
  6.  前記セパレータは、袋状であり、前記正極板を収容している、請求項1~4のいずれか1項に記載のアイドリングストップ用鉛蓄電池。
PCT/JP2018/037303 2017-10-31 2018-10-05 アイドリングストップ用鉛蓄電池 WO2019087684A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
MYPI2020002088A MY196259A (en) 2017-10-31 2018-10-05 Lead-Acid Battery for Idling Stop
CN201880071273.1A CN111295792A (zh) 2017-10-31 2018-10-05 怠速停止用铅蓄电池
EP18872969.3A EP3680979A4 (en) 2017-10-31 2018-10-05 LEADED BATTERY FOR A STANDBY SYSTEM
JP2019550934A JP7111107B2 (ja) 2017-10-31 2018-10-05 アイドリングストップ用鉛蓄電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017211362 2017-10-31
JP2017-211362 2017-10-31

Publications (1)

Publication Number Publication Date
WO2019087684A1 true WO2019087684A1 (ja) 2019-05-09

Family

ID=66331695

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/037303 WO2019087684A1 (ja) 2017-10-31 2018-10-05 アイドリングストップ用鉛蓄電池

Country Status (5)

Country Link
EP (1) EP3680979A4 (ja)
JP (1) JP7111107B2 (ja)
CN (1) CN111295792A (ja)
MY (1) MY196259A (ja)
WO (1) WO2019087684A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110724817A (zh) * 2019-09-25 2020-01-24 双登集团股份有限公司 一种铅酸蓄电池废极板回用处理方法
JP2021111617A (ja) * 2020-01-09 2021-08-02 古河電池株式会社 液式鉛蓄電池

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07105929A (ja) * 1993-09-30 1995-04-21 Matsushita Electric Ind Co Ltd 鉛蓄電池
JP2004259522A (ja) * 2003-02-25 2004-09-16 Matsushita Electric Ind Co Ltd 鉛蓄電池
JP2007134109A (ja) * 2005-11-09 2007-05-31 Matsushita Electric Ind Co Ltd 鉛蓄電池
JP2008186654A (ja) 2007-01-29 2008-08-14 Matsushita Electric Ind Co Ltd 鉛蓄電池
JP2010170939A (ja) * 2009-01-26 2010-08-05 Furukawa Battery Co Ltd:The 鉛蓄電池
JP2015216125A (ja) 2015-07-27 2015-12-03 日本板硝子株式会社 液式鉛蓄電池用セパレータおよび液式鉛蓄電池
JP2017033662A (ja) * 2015-07-29 2017-02-09 株式会社Gsユアサ 鉛蓄電池

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9935302B2 (en) * 2009-10-20 2018-04-03 Daramic, Llc Battery separators with cross ribs and related methods
CN104067414B (zh) * 2012-12-21 2016-07-06 松下知识产权经营株式会社 铅蓄电池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07105929A (ja) * 1993-09-30 1995-04-21 Matsushita Electric Ind Co Ltd 鉛蓄電池
JP2004259522A (ja) * 2003-02-25 2004-09-16 Matsushita Electric Ind Co Ltd 鉛蓄電池
JP2007134109A (ja) * 2005-11-09 2007-05-31 Matsushita Electric Ind Co Ltd 鉛蓄電池
JP2008186654A (ja) 2007-01-29 2008-08-14 Matsushita Electric Ind Co Ltd 鉛蓄電池
JP2010170939A (ja) * 2009-01-26 2010-08-05 Furukawa Battery Co Ltd:The 鉛蓄電池
JP2015216125A (ja) 2015-07-27 2015-12-03 日本板硝子株式会社 液式鉛蓄電池用セパレータおよび液式鉛蓄電池
JP2017033662A (ja) * 2015-07-29 2017-02-09 株式会社Gsユアサ 鉛蓄電池

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110724817A (zh) * 2019-09-25 2020-01-24 双登集团股份有限公司 一种铅酸蓄电池废极板回用处理方法
JP2021111617A (ja) * 2020-01-09 2021-08-02 古河電池株式会社 液式鉛蓄電池
JP7079830B2 (ja) 2020-01-09 2022-06-02 古河電池株式会社 液式鉛蓄電池

Also Published As

Publication number Publication date
EP3680979A4 (en) 2021-06-16
MY196259A (en) 2023-03-24
CN111295792A (zh) 2020-06-16
JPWO2019087684A1 (ja) 2020-11-12
JP7111107B2 (ja) 2022-08-02
EP3680979A1 (en) 2020-07-15

Similar Documents

Publication Publication Date Title
AU2013342282A1 (en) Secondary zinc-manganese dioxide batteries for high power applications
JP7255492B2 (ja) 鉛蓄電池
WO2019087678A1 (ja) 鉛蓄電池
WO2019087684A1 (ja) アイドリングストップ用鉛蓄電池
WO2019087683A1 (ja) 鉛蓄電池
JP6525167B2 (ja) 鉛蓄電池
WO2019087682A1 (ja) 鉛蓄電池
WO2019087680A1 (ja) 鉛蓄電池
JP5994545B2 (ja) 鉛蓄電池
JP7424371B2 (ja) 液式鉛蓄電池用セパレータおよび液式鉛蓄電池
US20220407083A1 (en) Active material having oxidized fiber additive & electrode and battery having same
WO2017110585A1 (ja) 鉛蓄電池
WO2019087679A1 (ja) 鉛蓄電池
WO2019116704A1 (ja) 制御弁式鉛蓄電池
WO2023210636A1 (ja) 鉛蓄電池
JP7294057B2 (ja) 鉛蓄電池
JP7331410B2 (ja) 液式鉛蓄電池用セパレータおよび液式鉛蓄電池
JP2017069022A (ja) 鉛蓄電池
JP2022152913A (ja) 鉛蓄電池
JP2023154163A (ja) 鉛蓄電池
JP2022152914A (ja) 鉛蓄電池
JP2024044865A (ja) 鉛蓄電池
JP2024005293A (ja) 鉛蓄電池
JP2024044863A (ja) 鉛蓄電池
JP2024048118A (ja) 鉛蓄電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18872969

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019550934

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018872969

Country of ref document: EP

Effective date: 20200407

NENP Non-entry into the national phase

Ref country code: DE