WO2019087265A1 - クラッド板 - Google Patents

クラッド板 Download PDF

Info

Publication number
WO2019087265A1
WO2019087265A1 PCT/JP2017/039188 JP2017039188W WO2019087265A1 WO 2019087265 A1 WO2019087265 A1 WO 2019087265A1 JP 2017039188 W JP2017039188 W JP 2017039188W WO 2019087265 A1 WO2019087265 A1 WO 2019087265A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
clad plate
bonding interface
rolling
less
Prior art date
Application number
PCT/JP2017/039188
Other languages
English (en)
French (fr)
Inventor
奥井 利行
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to CN201780096466.8A priority Critical patent/CN111372770B/zh
Priority to JP2018510530A priority patent/JP6347312B1/ja
Priority to PCT/JP2017/039188 priority patent/WO2019087265A1/ja
Priority to KR1020207008080A priority patent/KR102288611B1/ko
Publication of WO2019087265A1 publication Critical patent/WO2019087265A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/012Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of aluminium or an aluminium alloy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2311/00Metals, their alloys or their compounds
    • B32B2311/24Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2311/00Metals, their alloys or their compounds
    • B32B2311/30Iron, e.g. steel

Definitions

  • the present invention relates to a clad plate.
  • a clad plate in which ferritic stainless steel and aluminum are joined is widely used as a press-forming material for pot pots used for products such as IH (Induction Heating) cookers and IH rice cookers.
  • IH Induction Heating
  • the stainless steel which is a constituent material of this clad plate has excellent IH heat generation characteristics, and aluminum has excellent heat transfer characteristics.
  • a clad plate capable of withstanding a more complex and heavy-duty pressing process and a clad plate capable of withstanding a thicker and larger-pressing process are required to improve product performance.
  • Patent Document 1 the method of joining a raw material aluminum coil and a stainless steel coil by rolling is excellent because the production efficiency in industrial production of this clad plate is high.
  • Patent Document 2 discloses, as bonding conditions, that the coils before bonding are preheated at a specific temperature and then rolled at a predetermined rolling reduction.
  • the clad plate manufactured in this manner is in a state in which the processing strain at the time of joining by rolling is inherent, and both the aluminum layer and the stainless steel layer are in a state of work hardening.
  • pressing the clad plate into a complicated shape or when pressing a thick clad plate with a high press load it is effective to enhance the press processability and reduce the press load. For this reason, a process of reducing deformation resistance is performed by performing softening heat treatment on the clad plate before pressing.
  • Patent Document 3 two or more layers of an aluminum plate or an aluminum alloy plate and a stainless steel plate are laminated in advance, this is heated under a specific heating condition, hot rolling is performed immediately, and then this hot rolled material is A method is disclosed for producing a forming clad plate by annealing at a temperature of 350 to 550 ° C. for 0.5 to 6 hours.
  • Patent Document 4 discloses an invention in which the annealing temperature of the annealing treatment performed to increase the bonding strength of a clad plate having an aluminum alloy layer and a stainless steel layer manufactured by cold rolling or hot rolling is 150 to 400 ° C. Is disclosed.
  • Patent Document 5 an aluminum plate manufactured under specific conditions is superposed on a stainless steel strip, the aluminum plate is maintained at a temperature of 250 ° C. or less, and the aluminum plate is joined to the stainless steel strip by rolling,
  • the invention of manufacturing a clad plate excellent in processability by softening heat treatment at ⁇ 330 ° C is disclosed.
  • Patent Document 3 aims to increase the bonding strength by utilizing the diffusion of atoms at the metal bonding portion when the bonding strength is not sufficient as it is in hot rolling. Therefore, Patent Document 3 does not disclose a method for preventing peeling or cracking even when subjected to strong processing by press processing, and preventing roughening after press processing.
  • Patent Document 4 aims to form a surface oxide film having a thickness of 15 nm or more on the surface of an aluminum alloy layer. Therefore, Patent Document 4 does not disclose a method for preventing peeling or cracking even when subjected to strong processing by press processing, and preventing roughening after press processing.
  • Patent Document 5 aims at making the deformation anisotropy of a clad board small by controlling rolling texture. Therefore, Patent Document 5 does not disclose a method for preventing peeling or cracking even when subjected to strong processing by press processing, and preventing surface roughening after press processing.
  • the inventors of the present invention have investigated in detail the changes in the metallographic structure that occur in the aluminum layer due to the softening heat treatment of the clad plate.
  • A In the clad plate joined by rolling under specific conditions, large shear strain can be concentrated and given to the aluminum layer especially in the vicinity of the joint interface, and
  • B large shear strain is generated intensively
  • the aluminum layer in the region started to recrystallize at a lower temperature than the aluminum layer in the other regions, and that the crystal grains did not grow easily even by the softening heat treatment at high temperatures for a long time, and the fine grained state was maintained did.
  • the present inventor suppresses the growth of crystal grains in the aluminum layer in the vicinity of the bonding interface, and recrystallizes only the vicinity of the bonding interface of the aluminum layer to improve the ductility.
  • the present invention is as listed below.
  • a clad plate comprising a first layer and a second layer bonded via a bonding interface
  • the first layer is made of any of ferritic stainless steel, austenitic stainless steel, titanium or carbon steel
  • the second layer is made of aluminum
  • the area ratio of crystal grains having an aspect ratio of 2.0 or less, which is the ratio of the major axis to the minor axis, is 85% or more in a range from the bonding interface to a position 100 ⁇ m away from the bonding interface in the second layer.
  • the largest grain size is 50 ⁇ m or less
  • the cladding board whose area ratio of the crystal grain whose said aspect ratio is 2.0 or less is less than 50% in the position of 1/2 of the plate
  • a first layer, a second layer and a third layer are provided, and the first layer and the second layer are joined via a first junction interface, and the second layer and the third layer are a second junction. It is a clad plate joined via an interface, and The first layer and the third layer are made of any of ferritic stainless steel, austenitic stainless steel, titanium or carbon steel,
  • the second layer is made of aluminum, In the second layer, in the range from the first bonding interface to a position 100 ⁇ m away from the first bonding interface, and in the second layer from the second bonding interface in the range 100 ⁇ m away from the second bonding interface, The area ratio of crystal grains having an aspect ratio of 2.0 or less, which is the ratio of the major axis to the minor axis, is 85% or more, and the maximum crystal grain size is 50 ⁇ m or less,
  • the cladding board whose area ratio of the crystal grain whose said aspect ratio is 2.0 or less is less than 50% in the position of 1/2 of the plate
  • the clad material which is excellent in the surface property after press molding which the metal material layer and the aluminum layer joined firmly by rolling can be provided.
  • This clad plate does not cause peeling or cracking even when subjected to severe processing by press processing. Furthermore, this clad plate does not cause surface roughening after pressing on the surface of the metal material layer due to the aluminum layer in which the crystal grains are largely grown by the softening heat treatment.
  • FIG. 1 is a cross-sectional view showing a two-layer clad plate of the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing a three-layer clad plate according to a second embodiment of the present invention.
  • FIGS. 3a to 3d are photographs showing the metal structure in the vicinity of the first bonding interface of the two-layer clad plate softened and heat treated under various conditions.
  • FIG. 3 a shows a two-layer clad plate as it is joined
  • FIG. 3 b shows a two-layer clad plate subjected to a softening heat treatment at 300 ° C. ⁇ 50 minutes after joining
  • FIG. 3 c shows a softening heat treatment at 300 ° C. ⁇ 500 minutes after joining
  • FIG. 3 a shows a two-layer clad plate as it is joined
  • FIG. 3 b shows a two-layer clad plate subjected to a softening heat treatment at 300 ° C. ⁇ 50 minutes
  • FIG. 3 d shows a two-layer clad plate subjected to a softening heat treatment at 350 ° C. for 50 minutes after bonding.
  • FIG. 4 shows the first of a two-layer clad plate softened and heat-treated under various conditions with respect to a two-layer clad plate in which a large shear strain is generated concentrated under a specific rolling condition, in particular, near the first bonding interface. It is a graph which shows the measurement result of the breaking load of a joining interface.
  • FIG. 5 is an explanatory view schematically showing a manufacturing process of the two-layer clad plate.
  • FIG. 6 is an explanatory view schematically showing a manufacturing process of a three-layer clad plate.
  • % related to the chemical composition means “% by mass” unless otherwise noted.
  • FIG. 1 is a cross-sectional view showing a two-layer clad plate 1 according to a first embodiment of the present invention.
  • the two-layer clad plate 1 in the first embodiment includes a first layer 3 and a second layer 4 joined to each other via a first joining interface 6.
  • the first layer 3 is made of any of ferritic stainless steel, austenitic stainless steel, titanium or carbon steel.
  • the second layer 4 is made of aluminum (so-called industrial pure aluminum; hereinafter simply referred to as aluminum) having an Al content of 99.00% or more. Details of the configuration of the two-layer clad plate 1 will be described later.
  • the constituent material in the vicinity of the bonding interface be rich in stretchability, thereby being able to absorb the shear strain generated at the bonding interface during pressing, and thereby to prevent breakage of the bonding interface.
  • the clad plate which has been joined by rolling is inferior in ductility to the annealed material because the individual constituent materials are work-hardened.
  • the softening temperature of the first layer 3 is higher than the melting point of the second layer 4. Therefore, the first layer 3 can not be sufficiently annealed.
  • the second layer 4 can be softened and heat-treated without affecting the first layer 3. Therefore, performing the softening heat treatment of the second layer 4 is effective to improve the press formability of the clad plate 1.
  • the second layer 4 When the second layer 4 is sufficiently softened and heat treated, the second layer 4 necessarily recrystallizes. In particular, when a pure metal such as aluminum having an Al content of 99.00% or more is subjected to softening heat treatment at a high temperature for a long time, crystal grains of the second layer 4 grow large. When the clad plate 1 having the second layer 4 in which crystal grains are coarsened is pressed as described above, the crystal grains of the second layer 4 are transferred to the surface of the first layer 3 by the press load. Causes rough skin on the surface of
  • the second layer 4 is in a state where it is easy to generate nuclei of recrystallization with movement and annihilation of a large amount of accumulated dislocations.
  • FIGS. 3a to 3d are photographs showing the metal structure in the vicinity of the first bonding interface 6 of the two-layer clad plate 1 softened and heat treated under various conditions.
  • FIG. 3 a shows the as-bonded two-layer clad plate 1
  • FIG. 3 b shows the two-layer clad plate 1 subjected to softening heat treatment at 300 ° C. ⁇ 50 minutes after bonding
  • FIG. 3 c shows 300 ° C. ⁇ 500 minutes after bonding
  • the two-layer clad plate 1 subjected to the softening heat treatment is shown
  • FIG. 3d shows the two-layer clad plate 1 subjected to the softening heat treatment at 350 ° C. for 50 minutes after bonding.
  • the lower side than the first bonding interface 6 is the first layer 3
  • the upper side than the first bonding interface 6 is the second layer 4.
  • the first bonding interface 6 is shown by the straight part between the first layer 3 and the second layer 4.
  • FIGS. 3 b to 3 d are attributable to a phenomenon which occurs characteristically in the vicinity of the first bonding interface 6 when the two-layer clad plate 1 is joined by rolling under certain conditions. That is, due to the large strain difference caused by the simultaneous deformation of the hard first layer 3 and the soft second layer 4 and the large frictional force generated at the first bonding interface 6, the first bonding interface particularly at the time of rolling bonding Large shear deformation occurs locally near 6.
  • a surface film such as an oxide present on the surface of the material of the two-layer clad plate 1 is present as an impurity, and a part thereof penetrates the surface of the metal. Therefore, in the vicinity of the first bonding interface 6, the growth of crystal grains is inhibited, and the crystal grains are unlikely to become large even if the softening heat treatment at a high temperature for a long time is performed.
  • the two-layer clad plate 1 is subjected to heat treatment to change the metallographic structure by heat treatment, and the second layer 4 has the extensibility necessary to absorb the shear strain generated at the first bonding interface 6 during pressing. It increases locally near the first bonding interface 6. Furthermore, in the part which is separated from the vicinity of the first bonding interface 6, the growth of crystal grains is controlled within a certain range. This prevents the surface of the first layer 3 from being roughened due to the coarsening of the crystal grain size of the second layer 4.
  • the breaking load of the first bonding interface 6 is increased.
  • the bonding interface during pressing by improving the stretchability of only the vicinity of the first bonding interface 6 of the second layer 4 while referring to the result of measurement of the breaking load of the first bonding interface 6 shown in FIG. 4. It is explained that the shear strain generated in is effectively absorbed.
  • FIG. 4 is a two-layer clad softened and heat-treated under various conditions with respect to the two-layer clad plate 1 in which a large shear strain is generated intensively in the vicinity of the first bonding interface 6 under specific rolling conditions described later. It is a graph which shows the measurement result of the breaking load of the 1st bonded interface 6 of board 1.
  • the rolling conditions used were SUS430J1L stainless steel specified by JIS G4305 (2012) with a thickness of 0.6 mm and A1100 aluminum specified by JIS H 4000 (2006) with a thickness of 3.7 mm as materials. It was completely softened by heating A1100 aluminum to 460 ° C. prior to rolling. Thereafter, using a work roll having a maximum height Ry of 1.15 ⁇ m as surface roughness in the axial direction, rolling was performed at a temperature of 250 ° C. to obtain a two-layer clad plate having a thickness of 2.5 mm. The winding angle of SUS430J1L stainless steel with respect to the work roll at this time was 8 degrees, the winding angle of A1100 aluminum was 0 degrees, and the peripheral speeds of the upper and lower work rolls were the same and 10 m / min.
  • the crystal structure in the vicinity of the first bonding interface 6 is a fine grained crystal structure.
  • all of the soft heat-treated materials were non-recrystallized processed structures for 5 to 50 minutes, and the soft heat-treated materials were large crystal structures of crystal grains for 500 minutes.
  • the breaking load of the first bonding interface 6 of the two-layer clad plate 1 is mainly affected by the processing characteristics of the second layer 4 near the first bonding interface 6.
  • the processing characteristics of the two layers 4 have almost no influence.
  • the press processability of the two-layer clad plate 1 can be sufficiently improved if only the process characteristics of the second layer 4 in the vicinity of the first bonding interface 6 are improved. That is, the change in the breaking load of the first bonding interface 6 due to the heat treatment is determined only by the softening of the second layer 4 in the vicinity of the first bonding interface 6, and recrystallization or recrystallization at a position separated by 200 ⁇ m or more from the first bonding interface 6. The softening does not affect the change in the breaking load of the first bonding interface 6.
  • the two-layer clad plate 1 of the present embodiment has a first layer 3 and a second layer 4 joined to each other via a first junction interface 6.
  • the first layer 3 is made of any of ferritic stainless steel, austenitic stainless steel, titanium or carbon steel.
  • the second layer 4 is made of aluminum.
  • First layer 3 For the first layer 3, it is preferable to use a metal that can compensate for the flaw resistance and corrosion resistance, which are the defects of the aluminum of the second layer 4, and that can be rolled and joined with aluminum.
  • a metal that can compensate for the flaw resistance and corrosion resistance, which are the defects of the aluminum of the second layer 4, and that can be rolled and joined with aluminum.
  • austenitic stainless steel or titanium, further carbon steel or the like is preferable for general container applications such as pot pots, and it is desirable to use ferritic stainless steel particularly when used for induction heating cooker vessels.
  • metals used for the first layer 3 will be described.
  • austenitic stainless steel (A) Chemical composition
  • the chemical composition of austenitic stainless steel is, for example, C: 0-0.15%, Si: 0-1.70%, Mn: 0-5.00%, P: 0.050% or less S: 0.040% or less, Ni: 6.0-22.0%, Cr: 11.0-26.0%, Mo: 0-3.50%, Cu: 0-3.5%, N : 0-0.30%, Nb: 0-1.00%, V: 0-1.00%, Ti: 0-1.00%, B: 0-0.10%, Al: 0-0. 50%, balance: steel of Fe and impurities.
  • an austenitic stainless steel is a steel which satisfy
  • the thickness after each bonding is, for example, 0.2 to 1.0 mm.
  • the lower limit of the thickness may be 0.4 mm, and the upper limit may be 0.8 mm.
  • Austenitic stainless steel is responsible for the strength and corrosion resistance of deep drawn products, but its effect can be obtained if the thickness is 0.2 mm or more. If the thickness is less than 0.2 mm, there is a possibility that buckling deformation may occur at the time of joining by rolling to inhibit joining. On the other hand, if the thickness exceeds 1.0 mm, it is unsuitable for deep drawing processing targeted by the present invention.
  • titanium (A) Chemical composition
  • the chemical composition of titanium is, for example, N: 0-0.03%, C: 0-0.08%, H: 0-0.013%, Fe: 0-0.25%, O : 0-0.20%, Mn: 0-0.50%, Si: 0-0.30%, elements other than the above and Ti: 0-0.2% respectively, and the total is 0-0.5 %, Balance: Ti.
  • Standard example titanium is specifically 1 type or 2 types of JISH4600: 2012, and TP270C and TP340C are specifically illustrated.
  • the thickness after bonding is, for example, 0.2 to 1.0 mm.
  • the lower limit of the thickness may be 0.4 mm, and the upper limit may be 0.8 mm.
  • Titanium is responsible for the strength and corrosion resistance of deep drawn products, but its effect can be obtained if the thickness is 0.2 mm or more. If the thickness is less than 0.2 mm, there is a possibility that buckling deformation may occur at the time of joining by rolling to inhibit joining. On the other hand, if the thickness exceeds 1.0 mm, it is unsuitable for deep drawing processing targeted by the present invention.
  • Carbon steel (A) Chemical composition
  • the chemical composition of carbon steel is, for example, C: 0-0.12%, Si: 0.50% or less, Mn: 0.10-1.00%, P: 0. 100% or less, S: 0.035% or less, Cu: 0-0.25%, Ni: 0-0.25%, Cr: 0-0.25%, Mo: 0-0.08%, Nb: 0-0. 050%, V: 0-0.05%, Ti: 0-0.02%, B: 0-0.0050%, N: 0-0.0080%, O: 0-0.0080%, Al: 0 to 0.080%, balance: Fe and impurities.
  • the carbon steel according to the present invention is a cold-rolled steel plate such as a steel plate cold deep drawn (SPCD) according to JIS G 3141: 2017 or a steel plate cold deep drawn extra (SPCE) and a cold steel.
  • SPCD steel plate cold deep drawn
  • SPCE steel plate cold deep drawn extra
  • TS The strength
  • the thickness after bonding is, for example, 0.2 to 1.0 mm.
  • the lower limit of the thickness may be 0.4 mm, and the upper limit may be 0.8 mm.
  • Carbon steel is responsible for the strength and corrosion resistance of deep drawn products, but its effect can be obtained if the thickness is 0.2 mm or more. If the thickness is less than 0.2 mm, there is a possibility that buckling deformation may occur at the time of joining to inhibit joining. On the other hand, if the thickness exceeds 1.0 mm, it is unsuitable for deep drawing processing targeted by the present invention.
  • the chemical composition of the ferritic stainless steel is, for example, C: 0-0.12%, Si: 0-1.00%, Mn: 0-1.00%, P: 0.050% or less S: 0.040% or less, Ni: 0 to 0.50%, Cr: 11.0 to 32.0%, Mo: 0 to 2.50%, Cu: 0 to 1.0%, N: 0 -0.025%, Nb: 0-1.00%, V: 0-1.00%, Ti: 0-1.00%, B: 0-0.10%, Al: 0-0.50% , Remainder: Fe and impurities.
  • Example Ferritic stainless steel is a steel that satisfies the chemical components specified in Table 5 of JIS G4305: 2012, and specifically exemplified SUS430, SUS430LX, SUSU430J1L, and SUS444 according to JIS G4305: 2012. Ru.
  • the thickness after bonding is, for example, 0.2 to 1.0 mm.
  • the lower limit of the thickness may be 0.4 mm, and the upper limit may be 0.8 mm.
  • Ferritic stainless steel is responsible for the strength and corrosion resistance of deep drawn products, but its effect can be obtained if the thickness is 0.2 mm or more. If the thickness is less than 0.2 mm, there is a possibility that buckling deformation may occur at the time of joining by rolling to inhibit joining. On the other hand, if the thickness exceeds 1.0 mm, it is unsuitable for deep drawing processing targeted by the present invention.
  • the two-layer clad plate 1 according to the present invention preferably uses aluminum defined by JIS A1100 or A1050 as the second layer 4.
  • the reason why aluminum is used as the second layer 4 is that it is excellent in product performance such as heat transfer performance and lightness.
  • the ductility in the vicinity of the bonding interface can be improved by the softening heat treatment particularly after the rolling bonding, and the press formability and the surface roughening resistance after the pressing can be improved.
  • the aluminum used for the second layer 4 will be described below.
  • Al is, for example, aluminum having an Al content of 99.00% or more, and in addition to Al, Si, Fe, Cu, Mn, Mg, Cr, Zr, Ga, V as impurities. , N, Ni, B, Zr, Ti, etc. may be contained. However, the total content of these elements is 1.00% or less. Although it is not necessary to define the lower limit of the total content of these elements, the lower limit may be 0%.
  • (B) Standard Example Aluminum is specifically exemplified by aluminum satisfying JIS H4000: 2014 alloy numbers 1085, 1080, 1070, 1060, 1050, 1050A, 1100, and 1100A.
  • the thickness of aluminum after bonding is, for example, 0.5 to 3.0 mm.
  • the lower limit of the thickness may be 1.5 mm, and the upper limit may be 2.5 mm.
  • Aluminum is responsible for heat transfer in the final product, but if its thickness is less than 0.5 mm, sufficient heat transfer characteristics can not be obtained. When the thickness of the aluminum layer exceeds 3.0 mm, it becomes unsuitable for deep drawing to which the present invention is directed.
  • the feature of the present invention lies in the control of the material properties and the crystal structure of the second layer 4 in the two-layer clad plate 1.
  • a recrystallization structure is obtained in the range from the first bonding interface 6 to the position separated by 100 ⁇ m toward the second layer 4 side.
  • the area ratio of crystal grains having an aspect ratio of 2.0 or less, which is the ratio of the major axis to the minor axis, is 85% or more, and the largest crystal grain size is 50 ⁇ m or less Become an organization.
  • the largest crystal grain size refers to the crystal grain size of the top 2% when the crystal grain sizes of 100 or more are measured and arranged in the order of the largest grain size. For example, when 150 crystal grain sizes are measured, the third largest crystal grain size is taken as the maximum crystal grain size.
  • the area ratio of crystal grains having an aspect ratio of 2.0 or less is 50 at a half position of the thickness direction of the second layer 4 in the cross section parallel to the rolling direction. Less than%.
  • the crystal grains having an aspect ratio of 2.0 or less at a half of the thickness of the second layer 4.
  • the area ratio is less than 50%.
  • the metallographic structure in the above range of the second layer 4 is a recrystallized structure because the area ratio of crystal grains having the aspect ratio of 2.0 or less is 85% or more and the largest crystal It is confirmed that the particle size is 50 ⁇ m or less.
  • the metallographic structure at a half position of the thickness of the second layer 4 has an area ratio of crystal grains having an aspect ratio of 2.0 or less less than 50%, as described below. Is confirmed by the following method. That is, a half of the thickness of the second layer 4 is observed with a 100 ⁇ photomicrograph, and the metallographic structure observed in the range of 0.5 mm 2 or more (field of view) has an aspect ratio of 2.0 or less This is confirmed by the fact that the area ratio of crystal grains is less than 50%.
  • the area of 50% or more of the metal structure other than the above range in the second layer 4 is occupied by expanded grains, so a coarse crystal structure which causes roughening of the surface of the first layer 3 after pressing is at least not exist.
  • FIG. 5 is an explanatory view schematically showing a manufacturing process of the two-layer clad plate 1. That the deformability of the first layer 3 and the second layer 4 constituting the two-layer clad plate 1 is largely different, and that a large shear stress is applied to the first bonding interface 6, in the vicinity of the first bonding interface 6 It is important to cause local metallographic changes.
  • the two-layer clad plate 1 in the first embodiment is preferably manufactured through the following steps (4-1) to (4-3).
  • any of the above-described ferritic stainless steel, austenitic stainless steel, titanium or carbon steel is used as the material 12, and the above-described aluminum is used as the material 13.
  • the components of the first layer 3 and the second layer 4 in the two-layer clad plate 1 manufactured through the steps (4-1) to (4-3) are equivalent to the components of the material 13 and the material 12 .
  • the material 13 subjected to the softening and heat treatment and the material 12 are joined by hot rolling using the work rolls 10 and 11.
  • the temperature during bonding rolling is preferably 200 ° C. to 350 ° C., more preferably 200 ° C. to 300 ° C.
  • the surface roughness of the work roll 10 in direct contact with the material 12 of the first layer 3 is at least the maximum height Ry ⁇ 1.0 ⁇ m, preferably the arithmetic average roughness, at least in the normal direction of the surface of the work roll 10 It is assumed that Ra ⁇ 0.2 ⁇ m.
  • the polishing eye of the work roll 10 is polished parallel to the axial direction of the work roll 10.
  • the work roll 10 is made a dull surface by shot blasting or laser processing. By any of these, it is preferable to set the maximum height Ry ⁇ 0.5 ⁇ m, preferably the arithmetic average roughness Ra ⁇ 0.1 ⁇ m, at least in the normal direction of the surface of the work roll 10.
  • the surface roughness of the work roll 11 in direct contact with the material 13 of the second layer 4 does not have to be taken into consideration, but may have the same surface roughness as the work roll 10, It is preferable from the simplicity in production.
  • the target plate thickness t (mm) and the reduction amount ⁇ h (mm) of the two-layer clad plate 1 are shown by R ⁇ (16 ⁇ t 2 ) / ⁇ h between the target plate thickness t and the radius R (mm) of the work roll 10 Satisfy the relationship Such conditions are preferable in order to effectively increase the coefficient of friction between each material 12 and the work roll 10.
  • the contact length (also referred to as contact arc length) of the work roll 10 during rolling is equivalent to the thickness of the two-layer clad plate 1 after rolling (target thickness t) If the length is short, the effect of increasing the coefficient of friction can not be obtained effectively. The reason is that slippage easily occurs between the material 12 and the work roll 10, and if the contact length of the work roll 10 is short, the slip can not be sufficiently suppressed and the friction coefficient can not be effectively increased. It is.
  • the length of contact between the work roll 10 and the material 12 is increased, for example, the condition of (iii) or the condition of (iv) described later. Satisfaction is illustrated.
  • the speed of the material 12 is slower than the circumferential speed of the work roll 10. For this reason, if the winding angle ⁇ 1 is set excessively, the speed difference between the work roll 10 and the material 12 can not be eliminated, and the material 12 is deformed in a wrinkled shape and can not be rolled flat. Therefore, it is preferable that an upper limit on the winding angle theta 1.
  • the angle theta 2 wrapped against the material 13 is set as small as possible in a practical range.
  • a direction perpendicular to a line connecting the centers of the work rolls is taken as a pass line of the rolling mill, and the material 12 introduced to the entry side of the rolling mill and the pass line
  • the winding angle ⁇ 1 (rad) represented by the forming angle is set so that R ⁇ ( ⁇ 1 ) 2 / ⁇ h is in the range of 1.0 to 4.0, and is introduced to the entry side of the rolling mill.
  • the winding angle ⁇ 2 (rad) represented by the angle between the material 13 and the pass line is preferably set such that R ⁇ ( ⁇ 2 ) 2 / ⁇ h is in the range of 1.0 or less.
  • JP-B 2-19758 a soft material out of a soft material and a hard material constituting a clad plate is wound around a rolling roll, and the peripheral speed of the rolling roll is set to that of the other rolling roll.
  • the method of adjusting the rolling reduction of each raw material by making it slower than circumferential speed is disclosed.
  • this method can not increase the shear strain of the bonding interface.
  • different circumferential speed rolling in which the circumferential speeds of the pair of rolling rolls 10 and 11 are different is not performed, but the same circumferential speed rolling in which the circumferential speeds of the pair of rolling rolls 10 and 11 are the same is performed.
  • the two-layer clad plate 1 rolled and joined by the work rolls 10 and 11 is subjected to the softening heat treatment.
  • the conditions of the softening heat treatment after bonding are preferably 250 ° C. to 300 ° C. and 50 minutes or less. The details of the softening heat treatment after bonding will be described below.
  • a large shear strain can be accumulated in the vicinity of the first bonding interface 6 of the second layer 4 in the two-layer clad plate 1 manufactured by rolling and joining under the conditions (i) to (iv).
  • Softening heat treatment is performed on the two-layer clad plate 1 under the conditions of 250 ° C. to 300 ° C. and 50 minutes or less. Thereby, the second layer 4 in the vicinity of the first bonding interface 6 is selectively softened. Further, at least the second layer 4 in contact with the first bonding interface 6 has a fine grained recrystallized structure in the range from the first bonding interface 6 to 100 ⁇ m, and the crystal grain growth in the second layer 4 is suppressed outside this range Be done.
  • the breaking load of the bonding interface is increased, and the grain size of the second layer 4 is decreased. Therefore, even if pressing to a complicated shape or pressing with a high load is performed on the two-layer clad plate 1, peeling at the first bonding interface 6 is suppressed, and the surface roughness of the first layer 3 after pressing is performed. Can be prevented.
  • FIG. 2 is a cross-sectional view showing a three-layer clad plate 2 according to a second embodiment of the present invention.
  • the three-layer clad plate 2 in the second embodiment includes the first layer 3, the second layer 4, and the third layer 5, and the first layer 3 and the second layer 4 are the first Bonding is performed via the bonding interface 6, and the second layer 4 and the third layer 5 are bonded via the second bonding interface 7.
  • the three-layer clad plate 2 is obtained by adding a third layer 5 to the two-layer clad plate 1. For this reason, the same as the two-layer clad plate 1 by setting the rolling bonding conditions and the heat treatment conditions for the three-layer clad plate 2 to predetermined conditions according to the same principle as the two-layer clad plate 1 also for the three-layer clad plate 2 The effect of
  • the three-layer cladding plate 2 of the present embodiment has a first layer 3, a second layer 4 and a third layer 5 in the thickness direction.
  • the first layer 3 and the second layer 4 are bonded to each other through the first bonding interface 6, and the second layer 4 and the third layer 5 are bonded to each other through the second bonding interface 7.
  • the first layer 3 and the third layer 5 are made of any of ferritic stainless steel, austenitic stainless steel, titanium or carbon steel.
  • the second layer 4 is made of aluminum.
  • First layer 3 and third layer 5 For the first layer 3 and the third layer 5, it is preferable to use a metal that can compensate for the flaw resistance and corrosion resistance, which are the disadvantages of the aluminum of the second layer 4, and that can be rolled and joined with aluminum.
  • a metal that can compensate for the flaw resistance and corrosion resistance, which are the disadvantages of the aluminum of the second layer 4, and that can be rolled and joined with aluminum.
  • austenitic stainless steel or titanium, further carbon steel or the like is preferable for general container applications such as pot pots, and it is desirable to use ferritic stainless steel particularly when used for induction heating cooker vessels.
  • the chemical composition, thickness, and mechanical properties of the metals used for the first layer 3 and the third layer 5 of the three-layer clad plate 2 are the same as the metals described above for the first layer 3 of the two-layer clad plate 1. Therefore, the description of the metals used for the first layer 3 and the third layer 5 of the three-layer clad plate 2 is omitted.
  • Second layer 4 The chemical composition, thickness, and mechanical properties of the metal used for the second layer 4 of the three-layer clad plate 2 are the same as the above-mentioned metals used for the second layer 4 of the two-layer clad plate 1. Therefore, the description of the metal used for the second layer 4 of the three-layer clad plate 2 is omitted.
  • (6-3) Metallographic Structure of Second Layer 4 The feature of the present invention lies in the control of the material properties and the crystal structure of the second layer 4 in the three-layer clad plate 2.
  • a recrystallized structure is obtained in a range from the first bonding interface 6 and the second bonding interface 7 to the second layer 4 side by 100 ⁇ m. .
  • the area ratio of crystal grains having an aspect ratio of 2.0 or less, which is the ratio of the major axis to the minor axis, is 85% or more, and the largest crystal grain size is 50 ⁇ m or less Become an organization.
  • the maximum crystal grain size is determined in the same manner as the two-layer clad plate 1.
  • the stretchability of aluminum necessary to absorb the shear strain generated at the first bonding interface 6 and the second bonding interface 7 during the press forming process is referred to as the first bonding interface 6 and the second It can be increased locally in the vicinity of the two-junction interface 7.
  • the coarser recrystallized grains tend to grow as the distance from the first bonding interface 6 or the second bonding interface 7 increases. Therefore, the observation of the metallographic structure at a distance of 200 ⁇ m or more from the first bonding interface 6 and the second bonding interface 7 to the second layer 4 side is half of the thickness of the second layer 4 in the cross section parallel to the rolling direction. It will be done at the position.
  • the crystal grains having an aspect ratio of 2.0 or less at a half of the thickness direction of the second layer.
  • the area ratio is less than 50%.
  • the metallographic structure in the above range of the second layer 4 is confirmed by the same measurement method as the metallographic structure in the above range of the second layer 4 of the two-layer clad plate 1. Specifically, the metallographic structure in the above range of the second layer 4 is a recrystallized structure because the area ratio of crystal grains having the aspect ratio of 2.0 or less is 85% or more and the largest crystal It is confirmed that the particle size is 50 ⁇ m or less.
  • the area ratio of crystal grains having an aspect ratio of 2.0 or less at a position 1 ⁇ 2 of the thickness of the second layer 4 is less than 50%.
  • the area ratio of crystal grains having an aspect ratio of 2.0 or less It is confirmed by being less than 50%.
  • FIG. 6 is an explanatory view schematically showing a manufacturing process of the three-layer clad plate 2.
  • the deformability of the first layer 3 and the third layer 5 and the second layer 4 constituting the three-layer clad plate 2 is largely different, and a large shear stress is applied to the first bonding interface 6 and the second bonding interface 7 It is important to cause local changes in the metallographic structure in the vicinity of the first bonding interface 6 and the second bonding interface 7.
  • the three-layer clad plate 2 in the second embodiment is preferably manufactured through the following steps (7-1) to (7-3).
  • any of the above-described ferritic stainless steel, austenitic stainless steel, titanium or carbon steel is used as the materials 12 and 14, and the above-described aluminum is used as the material 13.
  • the components of the first layer 3, the second layer 4 and the third layer 5 in the three-layer clad plate 2 manufactured through the steps (7-1) to (7-3) are the material 13, the material 12 and components of the material 14 are equivalent.
  • the material 13 subjected to the softening and heat treatment and the materials 12 and 14 are joined by hot rolling using the work rolls 10 and 11.
  • the temperature during bonding rolling is preferably 200 ° C. to 350 ° C., more preferably 200 ° C. to 300 ° C.
  • the surface roughness of the work rolls 10 and 11 in direct contact with the materials 12 and 14 of the first layer 3 and the third layer 5 has a maximum height Ry at least in the normal direction of the surfaces of the work rolls 10 and 11 ⁇ 1.0 ⁇ m, preferably arithmetic mean roughness Ra ⁇ 0.2 ⁇ m.
  • the polishing eyes of the work rolls 10, 11 are polished parallel to the axial direction of the work rolls 10, 11.
  • the work rolls 10 and 11 are made a dull surface by shot blasting or laser processing.
  • the contact length (also referred to as contact arc length) of the work rolls 10 and 11 during rolling is the thickness of the clad plate 1 after rolling (target thickness t
  • target thickness t the thickness of the clad plate 1 after rolling
  • the effect of increasing the coefficient of friction can not be obtained effectively.
  • the reason for this is that slippage is likely to occur between the material 12, 14 and the work rolls 10, 11, and when the contact length of the work rolls 10, 11 is short, this slip can not be sufficiently suppressed and the coefficient of friction is effectively reduced. It is because it can not be increased.
  • the length of contact between the workpiece rolls 10 and 11 and the workpieces 12 and 14 should be increased, for example, the condition of (iii) or It is exemplified that the conditions of (iv) described later are satisfied, and it is particularly preferable to combine the conditions of (iii) and the conditions of (iv).
  • the speed of the blanks 12 and 14 is slower than the circumferential speed of the work rolls 10 and 11. For this reason, if the winding angles ⁇ 1 and ⁇ 3 are set excessively, the speed difference between the work rolls 10 and 11 and the materials 12 and 14 can not be eliminated, and the materials 12 and 14 are deformed into wrinkles and become flat. It can not be rolled. Therefore, it is preferable to set an upper limit on the winding angles ⁇ 1 and ⁇ 3 .
  • the angle theta 2 wrapped against the material 13 is set as small as possible in a practical range.
  • a direction perpendicular to a line connecting the centers of the work rolls is taken as a pass line of the rolling mill, and the materials 12, 14 and pass lines introduced to the entry side of the rolling mill
  • the winding angles ⁇ 1 and ⁇ 3 (rad) represented by the angle between them and R ⁇ ( ⁇ 1 ) 2 / ⁇ h are 1.0 to 4.0, and R ⁇ ( ⁇ 3 ) 2 / ⁇ h is 1.
  • the winding angle ⁇ 2 (rad) represented by the angle between the pass line and the material 13 introduced to the entry side of the rolling mill is set to be in the range of 0 to 4.0, and R ⁇ ( ⁇ ) 2 ) It is preferable to set so that 2 / ⁇ h is in the range of 1.0 or less.
  • the three-layer clad plate 2 of the present embodiment does not perform different peripheral speed rolling in which the peripheral speeds of the pair of rolling rolls 10 and 11 are different, and the peripheral speeds of the pair of rolling rolls 10 and 11 are the same. Perform the same circumferential speed rolling.
  • the three-layer clad plate 2 rolled and joined by the work rolls 10 and 11 is subjected to the softening heat treatment.
  • the conditions of the softening heat treatment after bonding are preferably 250 ° C. to 300 ° C. and 50 minutes or less. The details of the softening heat treatment after bonding will be described below.
  • a large shear strain is accumulated in the vicinity of the first bonding interface 6 and the second bonding interface 7 of the second layer 4 Can.
  • Softening heat treatment is performed on the three-layer clad plate 2 under the conditions of 250 ° C. to 300 ° C. and 50 minutes or less.
  • the second layer 4 in the vicinity of the first bonding interface 6 and in the vicinity of the second bonding interface 7 is selectively softened.
  • the second layer 4 in contact with at least the first bonding interface 6 and the second bonding interface 7 has a fine-grained recrystallized structure in the range from the bonding interface of the first bonding interface 6 or the second bonding interface 7 to 100 ⁇ m, Outside this range, grain growth in the second layer 4 is suppressed.
  • the breaking load of the bonding interface is increased.
  • the particle size of the three-layer clad plate 2 is subjected to pressing to a complicated shape or pressing at a high load, peeling at the first bonding interface 6 and the second bonding interface 7 is suppressed, and after pressing Roughening of the surface of the first layer 3 and the third layer 5 can be prevented.
  • A1100 P Si: 0.10%, Fe: 0.58%, Cu: 0.13%, Mn: 0.01%, balance Al and impurities
  • A1050P Si: A coil of 2.5 mm or 3.7 mm in thickness of an aluminum plate of 0.08%, Fe: 0.32%, Cu: 0.02%, Mn: 0.01%, balance Al and impurities
  • a rolling facility for rolling and bonding was used, and coils of each material were respectively installed and wound on two or three reels disposed on the rolling mill entrance side.
  • the coil of the aluminum plate was heated in an in-line furnace. Thereafter, it is overlapped with a coil of an austenitic stainless steel plate, a ferritic stainless steel plate, a titanium plate or a cold-rolled steel plate for deep drawing, adjusted to a predetermined temperature, and joined by rolling to obtain a clad plate.
  • the components of each layer in the clad plate are equivalent to the components of the material before bonding.
  • Table 1 shows the rolling conditions of the clad plate prepared as an example of the present invention and a comparative example, which were carried out to confirm the effect of the present invention.
  • a disk having a radius of 350 mm was cut out as a sample and subjected to a softening heat treatment at various temperatures, and then a cylindrical deep drawing press test was performed to evaluate the success or failure.
  • the punch diameter used at this time is 200 mm
  • the bending radius of the punch shoulder is 20 mm
  • the bending radius of the flange shoulder is 15 mm.
  • the deep drawing press was performed with the first layer as the outer surface side and a flange remaining shape with a height of 150 mm.
  • this press forming in particular, since the bending radius of the flange shoulder is small, the joint interface is easily broken at the flange. For this reason, when the crack in the vicinity of a flange part and the exfoliation in a flange part were observed, it evaluated that press formability was inferior.
  • the presence or absence of surface roughening due to the transfer of the crystal grains of the second layer was determined.
  • Table 1 shows the softening heat treatment conditions after joining by rolling for the clad plates of the invention example and the comparative example.
  • Table 2 summarizes the observation results of the metal structure of the second and third layers, the test results of press formability, and the presence or absence of rough skin.
  • the press formability in Table 2 shows that A: good, B: slight wrinkles on the flange, C: flange crack, D: flange peel, and C and D have poor press formability. Moreover, the rough skin in Table 2 shows that A: good, B: slight rough skin, C: bad skin rough, C was judged to be poor.
  • the numbers 1 to 17 in Table 1 are all inventive examples satisfying all the conditions of the present invention.
  • Numbers 1 to 12 are two-layer clad plates, and numbers 13 to 17 are three-layer clad plates.
  • a parallel polishing roll whose surface was polished parallel to the roll axis direction was used.
  • the number 9 used the roll which shot-blasted the surface as a work roll which contacts the material of the 1st layer directly.
  • the numbers 1 to 17 have good press formability because all metal structures ranging from the bonding interface to a position 100 ⁇ m away from the bonding interface have a crystal grain size of 50 ⁇ m or less.
  • the metallographic structure at a depth position which is half the thickness of the second layer remains as a machined structure or has an aspect ratio of 2.0 or less even if part of it is recrystallized. Since the ratio of the area of crystal grains (recrystallized grains) to the total area is less than 50%, coarse recrystallized grains are not transferred to the first layer, and surface roughening of the surface of the first layer does not occur. Or was minor.
  • Nos. 18 to 38 are comparative examples not satisfying the conditions of the present invention.
  • No. 20 a roll whose surface was shot-blasted was used as a work roll in direct contact with the material of the first layer.
  • the surface roughness of the work roll in direct contact with the material of the first layer during rolling is in the vicinity of the bonding interface of the second layer because the surface roughness of the work roll is directly below the lower limit of the above range as the maximum height Ry.
  • the recrystallized structure was not obtained, and the flange part peeled off during press molding.
  • the numbers 25 and 26 are particularly joined in the second layer because R ⁇ ( ⁇ 1 ) 2 / ⁇ h with respect to the winding angle ⁇ 1 of the material on the work roll at the rolling mill entrance during rolling is below the lower limit of the above range.
  • the recrystallized structure was not obtained in the vicinity of the interface, and the flange part peeled off during press molding.
  • No. 27 was not joined to the second layer because R ⁇ ( ⁇ 1 ) 2 / ⁇ h with respect to the winding angle ⁇ 1 of the material on the work roll at the rolling mill inlet side exceeded the upper limit of the above-described range during rolling.
  • No. 28 was not joined to the second layer because R ⁇ ( ⁇ 2 ) 2 / ⁇ h with respect to the winding angle ⁇ 2 of the material on the work roll at the rolling mill inlet side exceeded the upper limit of the above-described range during rolling.
  • the winding angle ⁇ 1 of the material of the second layer on the work roll remains 180 degrees
  • the different circumferential speed rolling was performed such that the circumferential speed of the work roll in contact with the first layer was 10 m / min and the circumferential speed of the work roll in contact with the second layer was 7.7 m / min.
  • the material of the second layer could be joined to the first layer without being deformed in a wrinkled manner.
  • the numbers 31 to 33 exceeded the upper limit of the above-mentioned range of the temperature or time of the softening heat treatment applied to the clad plate after bonding. For this reason, recrystallization of the metal structure proceeds in the second range of the second layer, and the ratio of the area of crystal grains (recrystallized grains) having an aspect ratio of 2.0 or less to all the areas is 50% or more became. For this reason, the coarse recrystallized grains of the second layer were transferred to the first layer, and the surface of the first layer was roughened.
  • No. 34 to 36 did not perform the softening heat treatment to be applied to the clad plates after bonding, or the temperature or time of the softening heat treatment fell below the lower limit of the above-mentioned range. For this reason, the metallographic structure in the first range of the second layer did not recrystallize as it was in the machined structure. As a result, the flange portion was broken without being able to withstand the shear stress during press working.
  • the surface roughness of the work roll used in the bonding of three layers is below the lower limit of the above range as the maximum height Ry, and the range where the value ⁇ R ( ⁇ 1 ) 2 / ⁇ h ⁇ is above Exceeded the upper limit of For this reason, the material of the first layer was deformed in the shape of wrinkles so that flat rolling was not possible, and it was not joined to the second layer.
  • Reference Signs List 1 two-layer clad plate 2 three-layer clad plate 3 first layer 4 second layer 5 third layer 6 first bonding interface 7 second bonding interface 10, 11 work rolls 12 to 14 material

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)
  • Laminated Bodies (AREA)

Abstract

金属材料層3とアルミニウム層4が圧延により強固に接合し、軟化熱処理によって結晶粒が大きく成長したアルミニウム層4に起因する、金属材料層3の表面におけるプレス加工後の肌荒れを生じないクラッド板1は、第1層3および第2層4を備える。第1層3はフェライト系ステンレス鋼からなり、第2層4はアルミニウムからなる。第1接合界面6から板厚方向へ100μm離れた位置までの第2層4の範囲において、長径と短径の比であるアスペクト比が2.0以下である結晶粒の面積率が85%以上であり、かつ、最大の結晶粒径が50μm以下である。さらに、第2層4の板厚方向の1/2の位置において、アスペクト比が2.0以下である結晶粒の面積率が50%未満である。

Description

クラッド板
 本発明はクラッド板に関する。
 例えばフェライト系ステンレス鋼とアルミニウムを接合したクラッド板は、IH(Induction Heating)調理器やIH炊飯器等の製品に用いる鍋釜のプレス成形素材として、広く利用されている。
 このクラッド板の構成材料であるステンレス鋼は優れたIH発熱特性を有し、アルミニウムは優れた熱伝達特性を有する。近年、より複雑で負荷の大きなプレス加工に耐え得るクラッド板や、より厚肉でプレス荷重の大きなプレス加工に耐え得るクラッド板が、製品の性能を高めるために求められる。
 特許文献1に開示されるように、素材となるアルミニウムコイルとステンレス鋼コイルを圧延により接合する方法が、このクラッド板の工業的な製造での製造効率が高いため、優れる。特許文献2には、接合前のコイルを特定の温度で予熱した後に所定の圧下率で圧延することが接合条件として開示されている。
 このようにして製造されたクラッド板は、圧延による接合時の加工歪みが内在したままの状態にあり、アルミニウム層およびステンレス鋼層のいずれもが加工硬化した状態にある。クラッド板を複雑な形状にプレス加工する場合や、厚肉のクラッド板を高いプレス荷重でプレス加工する場合には、プレス加工性を高めるとともにプレス荷重を低減することが有効である。このため、プレス加工前のクラッド板に軟化熱処理を施すことにより変形抵抗を低減する処理を行う。
 しかし、軟化熱処理によってアルミニウム層が充分に軟化し、その結晶粒が大きくなったクラッド板をプレス加工すると、プレス荷重によってアルミニウム層の結晶粒がステンレス鋼層の表面に転写されて肌荒れ模様(以下、単に「肌荒れ」という)を生じることがある。
 このため、表面の美観を重視する製品では、従来、軟化熱処理を行わずに圧延により接合したままのクラッド板をプレス加工していた。また、特に複雑な形状へのプレス加工や、高いプレス荷重でプレス加工を行う場合には、軟化熱処理を行われたクラッド板をプレス加工した後に、肌荒れが生じたステンレス鋼層の表面を研磨加工することにより肌荒れを消す工程や、この表面を塗装して肌荒れを隠す工程等を経る必要があった。
 特許文献3には、アルミニウム板もしくはアルミニウム合金板とステンレス鋼板とを予め2層以上積層し、これを特定の加熱条件で加熱し、直ちに熱間圧延を行い、次いで、この熱間圧延材を、350~550℃の温度で0.5~6時間焼鈍することにより、成形加工用クラッド板を製造する方法が開示されている。
 特許文献4には、冷間圧延または熱間圧延により製造したアルミニウム合金層とステンレス鋼層とを有するクラッド板の接合強度を増大させるために行う焼鈍処理の焼鈍温度を150~400℃とする発明が開示されている。
 さらに、特許文献5には、特定の条件で製造したアルミニウム板をステンレス鋼帯に重ね合わせ、アルミニウム板を250℃以下の温度に維持してアルミニウム板をステンレス鋼帯に圧延により接合し、次いで250~330℃で軟化熱処理することによって、加工性に優れたクラッド板を製造する発明が開示されている。
特開平5-146880号公報 特許第2783170号明細書 特開昭61-42498号公報 特開平9-70918号公報 特開平10-244620号公報
 特許文献3により開示された発明は、熱間圧延のままでは接合強度が充分でない場合に金属結合部での原子の拡散を利用して接合強度を高めることを目的とする。このため、特許文献3には、プレス加工による強加工を受けても剥離や割れを生じず、かつプレス加工後の肌荒れを防止する方法は開示されていない。
 特許文献4により開示された発明は、アルミニウム合金層の表面に厚さが15nm以上の表面酸化被膜を形成することを目的とする。このため、特許文献4には、プレス加工による強加工を受けても剥離や割れを生じず、かつプレス加工後の肌荒れを防止する方法は開示されていない。
 さらに、特許文献5により開示された発明は、圧延集合組織を制御することによってクラッド板の変形異方性を小さくすることを目的とする。このため、特許文献5には、プレス加工による強加工を受けても剥離や割れを生じず、かつプレス加工後の肌荒れを防止する方法は開示されていない。
 本発明者は、クラッド板の軟化熱処理によってアルミニウム層に生じる金属組織の変化を詳細に調査した結果、
 (A)特定の条件下で圧延により接合したクラッド板では、特に接合界面の近傍のアルミニウム層に大きなせん断歪みを集中して与えることができること、および
 (B)大きなせん断歪みが集中して発生した部位のアルミニウム層は、他の部位のアルミニウム層に比べて低温で再結晶を開始し、また高温かつ長時間の軟化熱処理によっても結晶粒が成長し難く、細粒の状態を維持すること
を知見した。
 本発明者は、これらの新規な知見A,Bに基づき、接合界面の近傍のアルミニウム層での結晶粒の成長を抑制して、アルミニウム層の接合界面の近傍のみを再結晶させて延性を向上させることにより、上述した課題を解決できることを知見し、本発明を完成した。本発明は以下に列記の通りである。
 (1)接合界面を介して接合された第1層および第2層を備えるクラッド板であって、
 前記第1層は、フェライト系ステンレス鋼、オーステナイト系ステンレス鋼、チタンまたは炭素鋼のいずれかからなり、
 前記第2層は、アルミニウムからなり、
 前記第2層における、前記接合界面から板厚方向へ100μm離れた位置までの範囲において、長径と短径の比であるアスペクト比が2.0以下である結晶粒の面積率が85%以上であり、かつ、最大の結晶粒径が50μm以下であり、
 前記第2層の板厚方向の1/2の位置において、前記アスペクト比が2.0以下である結晶粒の面積率が50%未満である、クラッド板。
 (2)第1層、第2層および第3層を備え、前記第1層および前記第2層は第1接合界面を介して接合され、前記第2層および前記第3層は第2接合界面を介して接合されるクラッド板であって、
 前記第1層および前記第3層は、フェライト系ステンレス鋼、オーステナイト系ステンレス鋼、チタンまたは炭素鋼のいずれかからなり、
 前記第2層は、アルミニウムからなり、
 前記第2層における、前記第1接合界面から板厚方向へ100μm離れた位置までの範囲、および前記第2層における、前記第2接合界面から板厚方向へ100μm離れた位置までの範囲において、長径と短径の比であるアスペクト比が2.0以下である結晶粒の面積率が85%以上であり、かつ、最大の結晶粒径が50μm以下であり、
 前記第2層の板厚方向の1/2の位置において、前記アスペクト比が2.0以下である結晶粒の面積率が50%未満である、クラッド板。
 (3)前記第1層の厚さが0.2~1.0mm、前記第2層の厚さが0.5~3.0mmである、1項に記載のクラッド板。
 (4)前記第1層および前記第3層の厚さが0.2~1.0mm、前記第2層の厚さが0.5~3.0mmである、2項に記載のクラッド板。
 本発明により、金属材料層とアルミニウム層が圧延により強固に接合した、プレス成形後の表面性状に優れるクラッド板を提供できる。このクラッド板は、プレス加工による強加工を受けても剥離や割れを生じない。さらに、このクラッド板は、軟化熱処理によって結晶粒が大きく成長したアルミニウム層に起因する、金属材料層の表面におけるプレス加工後の肌荒れを生じない。
図1は、本発明における第1の実施形態の2層クラッド板を示す断面図である。 図2は、本発明における第2の実施形態の3層クラッド板を示す断面図である。 図3a~図3dは、様々な条件で軟化熱処理した2層クラッド板の第1接合界面付近の金属組織を観察した写真である。図3aは接合したままの2層クラッド板を示し、図3bは接合後に300℃×50分間の軟化熱処理を施した2層クラッド板を示し、図3cは接合後に300℃×500分間の軟化熱処理を施した2層クラッド板を示し、図3dは接合後に350℃×50分間の軟化熱処理を施した2層クラッド板を示す。 図4は、特定の圧延条件下において、特に第1接合界面の近傍に大きなせん断歪みを集中して発生させた2層クラッド板に対し、様々な条件で軟化熱処理した2層クラッド板の第1接合界面の破壊荷重の測定結果を示すグラフである。 図5は、2層クラッド板の製造工程を模式的に示す説明図である。 図6は、3層クラッド板の製造工程を模式的に示す説明図である。
 本発明を説明する。以降の説明では、化学組成に関する「%」は特に断りがない限り「質量%」を意味する。
1.第1の実施形態におけるクラッド板
 図1は、本発明における第1の実施形態の2層クラッド板1を示す断面図である。図1に示すように、第1の実施の形態における2層クラッド板1は、第1接合界面6を介して相互に接合された第1層3と第2層4を備える。第1層3は、フェライト系ステンレス鋼、オーステナイト系ステンレス鋼、チタンまたは炭素鋼のいずれかからなる。第2層4は、Al含有量が99.00%以上のアルミニウム(所謂、工業用純アルミニウム。以下、単にアルミニウムと称する)からなる。2層クラッド板1の構成の詳細については、後述する。
2.本発明の原理
(2-1)第2層4の軟化熱処理と、プレス加工後の第1層3の肌荒れとの関係
 加工特性が異なる異種の金属材料を備えるクラッド板をプレス加工する場合、これらの異種の金属材料が一体に変形することが重要である。
 そのためには、クラッド板の圧延による接合により充分な接合強度を得ることが重要である。これに加えて、接合界面の近傍の構成材料が展伸性に富むことにより、プレス加工中の接合界面に生じるせん断歪みを吸収でき、これにより、接合界面の破壊を防止できることが重要である。
 圧延により接合したままのクラッド板は、個々の構成材料が加工硬化しているため、焼鈍材よりも延性が劣る。第1層3の軟化温度は第2層4の融点よりも高い。このため、第1層3を十分に焼き鈍すことはできない。これに対し、第2層4は、第1層3に影響を与えることなく軟化熱処理できる。このため、第2層4の軟化熱処理を行うことは、クラッド板1のプレス成形性の改善に有効である。
 第2層4に充分に軟化熱処理を行うと、第2層4は必然的に再結晶する。特にAl含有量が99.00%以上のアルミニウムのような純金属に高温かつ長時間の軟化熱処理を行うと、第2層4の結晶粒が大きく成長する。このように結晶粒が粗大化した第2層4を有するクラッド板1をプレス加工すると、プレス荷重によって第2層4の結晶粒が第1層3の表面に転写されるため、第1層3の表面に肌荒れを生じる。
(2-2)クラッド板1の軟化熱処理による金属組織の変化(第1接合界面6の近傍での大きなせん断歪みの集中)
 本発明者は、クラッド板1の軟化熱処理による金属組織の変化を詳細に検討した結果、以下の知見を得た。
 先ず、圧延による接合の際に第2層4の内部で発生する歪み量に注目して様々な解析を行った。その結果、特定の圧延条件下では、特に第1接合界面6の近傍に大きなせん断歪みが集中して発生することが判明した。このような大きなせん断歪みの局部的な集中は、第1層3の変形抵抗と第2層4の変形抵抗が大きく異なり、かつ高圧下および高摩擦の条件下で圧延により接合した場合に、発現する。
 大きなせん断歪みが集中して蓄積された部位を含む第2層4に、通常の焼きなまし温度である345℃~400℃程度よりも低温の軟化熱処理、具体的には250℃~300℃で50分間以下の条件で熱処理を行うと、大きなせん断歪みが蓄積された部位だけが選択的に再結晶する。この理由は、第2層4が、多量に蓄積された転位の移動と消滅を伴って再結晶の核を生成し易い状態にあるため、と考えられる。
 図3a~図3dは、様々な条件で軟化熱処理した2層クラッド板1の第1接合界面6付近の金属組織を観察した写真である。
 図3aは接合したままの2層クラッド板1を示し、図3bは接合後に300℃×50分間の軟化熱処理を施した2層クラッド板1を示し、図3cは接合後に300℃×500分間の軟化熱処理を施した2層クラッド板1を示し、図3dは接合後に350℃×50分間の軟化熱処理を施した2層クラッド板1を示す。図3a~3dでは、第1接合界面6より下側が第1層3であり、第1接合界面6より上側が第2層4である。また、第1接合界面6は第1層3および第2層4の間の直線部分により示される。
 図3aに示すように、圧延により接合したままの2層クラッド板1の第2層4には、接合界面6からおよそ150μmまでの範囲に、圧延時に受けたせん断歪みが特に強く観察されるせん断強加工域が確認される。
 図3bに示すように、図3aにおけるせん断強加工域に相当する部分のみが再結晶して、細粒組織が形成される。この細粒組織よりも第1接合界面6からより離れた部位の金属組織は、加工組織のままであり、所定の時間の軟化熱処理を施しても再結晶しない。
 図3c,3dに示すように、図3bよりもさらに高温または長時間の軟化熱処理を行うと、細粒組織よりも第1接合界面6から離れた部位も再結晶する。また、図3aにおけるせん断強加工域に相当する部分は細粒組織を保ったままであり、結晶粒の成長が見られなかった。しかし、細粒組織よりも第1接合界面6より離れた部位では結晶粒が大きく成長した。
 図3b~3dに示される現象は、2層クラッド板1を一定の条件下で圧延により接合した場合に、特に第1接合界面6の近傍で特徴的に生じる現象に起因する。すなわち、硬質な第1層3と軟質な第2層4が同時に変形することによって生じた大きな歪み差と、第1接合界面6に生じる大きな摩擦力とによって、特に圧延接合時の第1接合界面6の近傍に大きなせん断変形が局部的に生じる。
 その結果、強いせん断歪みが蓄積された領域が第2層4の第1接合界面6の近傍に生じる。この2層クラッド板1に軟化熱処理を施すと、第2層の第1接合界面6の近傍は多量に蓄積された転位の移動と消滅を伴って、再結晶の核を生成し易い状態にあるため、他の部位よりも低温の軟化熱処理により再結晶が選択的に進行する。
 第1接合界面6の近傍には、2層クラッド板1の素材の表面に存在した酸化物などの表面皮膜が不純物として存在し、その一部は地金表面に浸透する。そのため、第1接合界面6の近傍では、結晶粒の成長が阻害され、高温かつ長時間の軟化熱処理を行っても結晶粒が大きくなり難い。
(2-3)2層クラッド板1のプレス加工性および肌荒れの改善
 本発明では、接合圧延後の軟化熱処理条件に基づく金属組織の変化を、2層クラッド板1のプレス加工性の改善に有効に活用する。具体的には、先ず、後述する特定の圧延条件下において、第1接合界面6の近傍に大きなせん断歪みを集中して発生させて2層クラッド板1を作製する。
 続いて、2層クラッド板1に対し、熱処理によって金属組織に変化を与え、プレス加工中の第1接合界面6に生じるせん断歪みを吸収させるために必要な第2層4の展伸性を、第1接合界面6の近傍で局部的に増大させる。さらに、第1接合界面6の近傍よりも離れた部位では、結晶粒の成長を一定範囲内に制御する。これにより、第2層4の結晶粒径の粗大化に起因する第1層3の表面の肌荒れを防止する。
 また、本発明では、第1接合界面6の近傍における第2層4の軟化を選択的に行うことにより、第1接合界面6の破壊荷重を増大させる。図4に示す第1接合界面6の破壊荷重を測定した結果を参照しながら、第2層4の第1接合界面6の近傍だけの展伸性を改善することにより、プレス加工中の接合界面に生じるせん断歪みが有効に吸収されることを説明する。
 図4は、後述する特定の圧延条件下において、特に第1接合界面6の近傍に大きなせん断歪みを集中して発生させた2層クラッド板1に対し、様々な条件で軟化熱処理した2層クラッド板1の第1接合界面6の破壊荷重の測定結果を示すグラフである。
 この際の圧延条件は、素材として、厚さ0.6mmのJIS G4305(2012)に規定されたSUS430J1Lステンレス鋼と、厚さ3.7mmのJIS H 4000(2006)に規定されたA1100アルミニウムを用い、圧延に先立ってA1100アルミニウムを460℃に加熱することによって完全軟化した。その後、軸方向の表面粗さとして最大高さRyが1.15μmのワークロールを用い、250℃の温度で圧延することによって厚さ2.5mmの2層クラッド板を得た。この際のワークロールに対するSUS430J1Lステンレス鋼の巻き付け角度は8度とし、A1100アルミニウムの巻き付け角度は0度とするとともに、上下ワークロールの周速度は同一で10m/minとした。
 2層クラッド板1の第1接合界面6の破壊荷重の測定方法は様々知られるが、この測定では、測定対象となるクラッド板1から幅10mm、長さ150mmのサンプルを切り出し、長手方向の端面の一方を機械的に剥離した後に、その両端を引張試験装置に保持してクロスヘッド速度150mm/minで引っ張った際のクロスヘッド荷重を試験片幅で除した値により、単位幅当たりの剥離強度とする方法を用いた。
 図4のグラフに示すように、2層クラッド板1の接合後の熱処理温度が200℃を超えると、第1接合界面6の破壊に要する荷重が増大し始める。軟化熱処理温度が300℃である場合、軟化熱処理時間が5~500分間である場合のいずれであっても、第1接合界面6の破壊荷重は変わらない。
 この条件では、図3b,3cに示されるように、第1接合界面6の近傍の結晶組織は、いずれも細粒の結晶組織である。第1接合界面6の近傍よりも離れた部位では、5~50分間軟化熱処理材のいずれもが未再結晶の加工組織であり、500分間軟化熱処理材が結晶粒の大きな結晶組織であった。
 すなわち、2層クラッド板1の第1接合界面6の破壊荷重には、主に第1接合界面6の近傍の第2層4の加工特性が影響し、第1接合界面6の近傍以外の第2層4の加工特性は殆ど影響しない。
 つまり、2層クラッド板1のプレス加工性は、第1接合界面6の近傍の第2層4の加工特性だけを改善すれば、充分に改善できる。つまり、熱処理による第1接合界面6の破壊荷重の変化は、第1接合界面6の近傍の第2層4の軟化のみによって決定され、第1接合界面6から200μm以上離れた位置の再結晶や軟化は、第1接合界面6の破壊荷重の変化に影響を及ぼさない。
3.第1の実施形態の2層クラッド板1の構成
 本実施形態の2層クラッド板1は、第1接合界面6を介して相互に接合された第1層3および第2層4を有する。第1層3は、フェライト系ステンレス鋼、オーステナイト系ステンレス鋼、チタンまたは炭素鋼のいずれかからなる。第2層4はアルミニウムからなる。
(3-1)第1層3
 第1層3には、第2層4のアルミニウムの欠点である耐疵付き性や耐食性を補うものであってアルミニウムと圧延接合が可能な金属を使用することが好ましい。例えば、鍋釜など一般器物用途にはオーステナイト系ステンレス鋼やチタン、さらには炭素鋼等が好ましく、特に誘導加熱調理器の器物に用いる場合にはフェライト系ステンレス鋼を用いることが望ましい。以下、第1層3に用いる金属を説明する。
[オーステナイト系ステンレス鋼]
 (A)化学組成
 オーステナイト系ステンレス鋼の化学組成は、例えば、C:0-0.15%、Si:0-1.70%、Mn:0-5.00%、P:0.050%以下、S:0.040%以下、Ni:6.0-22.0%、Cr:11.0-26.0%、Mo:0-3.50%、Cu:0-3.5%、N:0-0.30%、Nb:0-1.00%、V:0-1.00%、Ti:0-1.00%、B:0-0.10%、Al:0-0.50%、残部:Feおよび不純物の鋼である。
 (B)規格例
 オーステナイト系ステンレス鋼は、JIS G4305:2012の表3に規定された化学組成を満たす鋼であることが好ましい。具体的には、JIS G4305:2012のSUS301,SUS304,SUS304N2,SUS304L、SUSU316,SUS316Lが例示される。
 (C)厚さ
 オーステナイト系ステンレス鋼を第1層3および第3層5に用いた場合、それぞれの接合後の厚さは、例えば、0.2~1.0mmである。厚さの下限は0.4mmでもよく、上限は0.8mmでもよい。
 オーステナイト系ステンレス鋼は、深絞り成形した製品の強度や耐食性を担うが、その効果は厚さが0.2mm以上あれば得られる。厚さが0.2mmを下回ると、圧延による接合時に座屈変形して接合性を阻害するおそれがある。一方、厚さが1.0mmを超えると、本発明が対象とする深絞り加工には不適当となる。
[チタン]
 (A)化学組成
 チタンの化学組成は、例えば、N:0-0.03%、C:0-0.08%、H:0-0.013%、Fe:0-0.25%、O:0-0.20%、Mn:0-0.50%、Si:0-0.30%、上記およびTiを除く元素:各々0-0.2%、且つその合計は0-0.5%、残部:Tiである。
 (B)規格例
 チタンは、具体的には、JIS H4600:2012の1種または2種であり、具体的にはTP270C、TP340Cが例示される。
 (C)厚さ
 チタンを第1層3に用いた場合、接合後の厚さは、例えば、0.2~1.0mmである。厚さの下限は0.4mmでもよく、上限は0.8mmでもよい。
 チタンは、深絞り成形した製品の強度や耐食性を担うが、その効果は厚さが0.2mm以上あれば得られる。厚さが0.2mmを下回ると、圧延による接合時に座屈変形して接合性を阻害するおそれがある。一方、厚さが1.0mmを超えると、本発明が対象とする深絞り加工には不適当となる。
[炭素鋼]
 (A)化学組成
 炭素鋼の化学組成は、例えば、C:0-0.12%、Si:0.50%以下、Mn:0.10-1.00%、P:0.100%以下、S:0.035%以下、Cu:0-0.25%、Ni:0-0.25%、Cr:0-0.25%、Mo:0-0.08%、Nb:0-0.050%、V:0-0.05%、Ti:0-0.02%、B:0-0.0050%、N:0-0.0080%、O:0-0.0080%、Al:0-0.080%、残部:Feおよび不純物である。
 (B)規格例
 本発明に係る炭素鋼は、具体的には、JIS G3141:2017のSPCD(Steel Plate Cold Deep drawn)またはSPCE(Steel Plate Cold deep drawn Extra)のような冷間圧延鋼板と冷間圧延鋼帯が例示される。強度(TS)は270-490MPaが好ましい。
 (C)厚さ
 チタンを第1層3に用いた場合、接合後の厚さは、例えば、0.2~1.0mmである。厚さの下限は0.4mmでもよく、上限は0.8mmでもよい。炭素鋼は、深絞り成形した製品の強度や耐食性を担うが、その効果は厚さが0.2mm以上あれば得られる。厚さが0.2mmを下回ると、接合時に座屈変形して接合性を阻害するおそれがある。一方、厚さが1.0mmを超えると、本発明が対象とする深絞り加工には不適当となる。
[フェライト系ステンレス鋼]
 (A)化学組成
 フェライト系ステンレス鋼の化学組成は、例えば、C:0-0.12%、Si:0-1.00%、Mn:0-1.00%、P:0.050%以下、S:0.040%以下、Ni:0-0.50%、Cr:11.0-32.0%、Mo:0-2.50%、Cu:0-1.0%、N:0-0.025%、Nb:0-1.00%、V:0-1.00%、Ti:0-1.00%、B:0-0.10%、Al:0-0.50%、残部:Feおよび不純物である。
 (B)規格例
 フェライト系ステンレス鋼は、具体的には、JIS G4305:2012の表5に規定された化学成分を満たす鋼であり、JIS G4305:2012のSUS430,SUS430LX、SUSU430J1L,SUS444が例示される。
 (C)厚さ
 フェライト系ステンレス鋼を第1層3に用いた場合、接合後の厚さは、例えば、0.2~1.0mmである。厚さの下限は0.4mmでもよく、上限は0.8mmでもよい。
 フェライト系ステンレス鋼は、深絞り成形した製品の強度や耐食性を担うが、その効果は厚さが0.2mm以上あれば得られる。厚さが0.2mmを下回ると、圧延による接合時に座屈変形して接合性を阻害するおそれがある。一方、厚さが1.0mmを超えると、本発明が対象とする深絞り加工には不適当となる。
(3-2)第2層4
 本発明に係る2層クラッド板1は、第2層4として、JIS A1100やA1050などで規定されるアルミニウムを用いることが好ましい。第2層4としてアルミニウムを用いる理由は、熱伝達性能や軽量性など製品としての性能に優れるためである。また、特に圧延接合後の軟化熱処理によって接合界面の近傍の延性を改善でき、プレス成形性とプレス加工後の耐肌荒れ性を改善できるためである。以下、第2層4に用いるアルミニウムについて説明する。
[アルミニウム]
 (A)化学組成
 アルミニウムの化学組成は、例えば、Al含有量が99.00%以上のアルミニウムであり、Al以外に、不純物としてSi,Fe,Cu,Mn,Mg,Cr,Zr,Ga,V,N,Ni,B,Zr,Tiなどを含有してもよい。ただし、これらの元素の含有量の合計は1.00%以下である。これらの元素の含有量の合計の下限を規定する必要はないが、下限を0%としてもよい。
 (B)規格例
 アルミニウムは、具体的には、JIS H4000:2014の合金番号1085,1080,1070,1060,1050,1050A,1100,1100Aを満足するアルミニウムが例示される。
 (C)厚さ
 接合後のアルミニウムの厚さは、例えば、0.5~3.0mmである。厚さの下限は1.5mmでもよく、上限は2.5mmでもよい。
 アルミニウムは、最終製品での熱伝達を担うが、その厚さが0.5mmを下回ると、充分な熱伝達特性が得られない。アルミニウム層の厚さが3.0mmを超えると、本発明が対象とする深絞り加工に不適当になる。
(3-3)第2層4の金属組織
 本発明の特徴は、2層クラッド板1における第2層4の材料特性ならびに結晶組織の制御にある。本実施形態の2層クラッド板1では、圧延方向に平行な断面において、第1接合界面6から第2層4側へ100μm離れた位置までの範囲において、再結晶組織となる。具体的には、この範囲において、長径と短径の比であるアスペクト比が2.0以下である結晶粒の面積率が85%以上であり、かつ、最大の結晶粒径が50μm以下の金属組織となる。
 ここで、最大の結晶粒径とは、100個以上の結晶粒径を測定し、粒径が大きい順に並べた場合、上位2%の順位の結晶粒径とする。例えば、150個の結晶粒径を測定した場合、3番目に大きい結晶粒径を、最大結晶粒径とする。
 このような組織となった場合、プレス成形加工中の第1接合界面6に生じるせん断歪みを吸収させるために必要なアルミニウムの展伸性を、第1接合界面6で局部的に増大させることができる。
 さらに、本実施形態のクラッド板は、圧延方向に平行な断面において、第2層4の板厚方向の1/2の位置において、アスペクト比が2.0以下である結晶粒の面積率が50%未満である。
 一般的には、第2層4において、第1接合界面6から離れれば離れるほど、粗大な再結晶粒が成長し易い傾向にある。そこで、第1接合界面6から第2層側へ200μm以上離れた金属組織の観察は、第2層4の板厚方向の1/2の位置で行うこととする。
 具体的には、本発明に係る2層クラッド板1では、第2層4において、第2層4の厚さの1/2の位置にて、アスペクト比が2.0以下である結晶粒の面積率が50%未満である。これにより、第2層4のアルミニウムの結晶粒に起因した、プレス成形後における第1層3の表面の肌荒れを抑制することができる。
 第2層4の前記範囲の金属組織は、この範囲の金属組織を100倍の顕微鏡写真で観察し、接合界面6,7に沿った長さ5mmにわたる合計100μm×5.0mm=0.5mm以上の範囲(視野)に観察される各々の結晶粒(ただし、測定した結晶粒の個数は100個以上とする。)について、長辺と短辺のアスペクト比が2.0以下である結晶粒の面積率および、最大の結晶粒径を測定することにより、確認される。
 具体的には、第2層4の前記範囲の金属組織が再結晶組織であることは、上記アスペクト比が2.0以下である結晶粒の面積率が85%以上であるとともに、最大の結晶粒径が50μm以下であることによって、確認される。
 第2層4において、第2層4の厚さの1/2の位置の金属組織が、アスペクト比が2.0以下である結晶粒の面積率が50%未満であることは、以下に説明する手法により確認される。すなわち、第2層4の厚さの1/2の位置を100倍の顕微鏡写真で観察し、0.5mm以上の範囲(視野)に観察される金属組織において、アスペクト比が2.0以下である結晶粒の面積率が50%未満であることにより、確認される。
 これにより、第2層4における上記範囲以外の金属組織のうち50%以上の面積が展伸粒で占められるため、少なくともプレス加工後の第1層3の肌荒れの原因になる粗大な結晶組織が存在しない。
4.第1の実施形態の2層クラッド板1の製造方法
 図5は、2層クラッド板1の製造工程を模式的に示す説明図である。
 2層クラッド板1を構成する第1層3と第2層4の変形能が大きく異なること、および、第1接合界面6に大きなせん断応力が加わることが、第1接合界面6の近傍での局所的な金属組織の変化を生じるために、重要である。
 第1の実施の形態における2層クラッド板1は、以下の(4-1)~(4-3)の工程を経て製造されることが好ましい。なお、本発明では、素材12として上述のフェライト系ステンレス鋼、オーステナイト系ステンレス鋼、チタンまたは炭素鋼のいずれかを用い、素材13として、上述のアルミニウムを用いる。なお、(4-1)~(4-3)の工程を経て製造された2層クラッド板1における第1層3および第2層4の成分は、素材13および素材12の成分と同等である。
(4-1)素材13に対する軟化熱処理
 第1層3と第2層4とのそれぞれの変形能の差異を最大化するために、第2層4を形成する素材13の完全軟化が有効である。本発明では、
 (i)圧延による接合の前に、素材13に対し、350℃以上、望ましくは400℃以上での軟化熱処理を施すこと
が好ましい。
(4-2)熱間圧延接合
 軟化熱処理された素材13と、素材12とをワークロール10、11を用いた熱間圧延により接合する。接合圧延時の温度は、200℃~350℃、さらに好ましくは200℃~300℃、とすることが好ましい。又、接合の際、第1接合界面6におけるせん断応力を増大させるためには、ワークロール10,11と素材12,13の間の摩擦係数を増大することが有効である。
 しかし、圧延による接合時におけるワークロール10,11と素材12,13の間の摩擦係数を測定することは技術的に困難である。このため、摩擦係数の増大に有効な種々の圧延条件で圧延試験を行い、第2層4の第1接合界面6の近傍に所望のせん断歪みが導入される条件を検討した。その結果、第2層4の第1接合界面6の近傍に大きなせん断歪みが導入される条件の一例として、上述の条件(i)に加え、以下に列記の条件(ii)~(iv)を見出した。これらの条件を順次説明する。
 (ii)第1層3の素材12に直接接触するワークロール10の表面粗度を、少なくともワークロール10の表面の法線方向において、最大高さRy≧1.0μm、好ましくは算術平均粗さRa≧0.2μmとする。または、ワークロール10の研磨目をワークロール10の軸方向と平行に研磨する。もしくはワークロール10をショットブラストもしくはレーザー加工によりダル表面とする。これらのいずれかにより、少なくともワークロール10の表面の法線方向において、最大高さRy≧0.5μm、好ましくは算術平均粗さRa≧0.1μmとすることが好ましい。
 2層クラッド板1の製造では、第2層4の素材13に直接接触するワークロール11の表面粗度は、考慮する必要はないが、ワークロール10と同様の表面粗度とすることが、製造上の簡便さから好ましい。
 (iii)2層クラッド板1の目標板厚t(mm)および圧下量Δh(mm)が、ワークロール10の半径R(mm)との間にR≧(16×t)/Δhにより示される関係を満足する。このような条件は、各素材12とワークロール10の間の摩擦係数を有効に増大させるために、好ましい。
 ワークロール10の表面粗度を粗くしても、圧延時のワークロール10の接触長さ(接触弧長とも称す)が、圧延後の2層クラッド板1の板厚(目標板厚tに相当)に対して短い場合には、摩擦係数を増大する効果を有効に得られない。この理由は、素材12とワークロール10の間では滑りが生じ易く、ワークロール10の接触長さが短い場合、この滑りを十分に抑制できず、摩擦係数を効果的に増大させることができないためである。
 素材12とワークロール10の間での滑りを抑制するためには、ワークロール10と素材12が接触する長さを長くすること、例えば、(iii)の条件や後述する(iv)の条件を満足することが例示される。
 (iv)圧延機の入側において、素材12のワークロール10に対する巻き付け角度θを規定することが好ましい。巻き付け角度θを設けることにより、素材12がワークロール10に対して巻き付き、素材12に対する拘束力が高まり、素材12とワークロール10の間での滑りが抑制される。
 圧延機の入側では、素材12の速度がワークロール10の周速度よりも遅くなる。このため、巻き付け角度θを過大に設定すると、ワークロール10と素材12との間の速度差を解消できず、素材12がシワ状に変形して平坦に圧延できなくなる。このため、巻き付け角度θに上限を設けることが好ましい。
 素材12よりも軟質な素材13では、素材13の速度とワークロール11の周速度との差が顕著であるとともに素材13の座屈限界も小さい。このため、素材13に対する巻き付け角度θは実用的な範囲でできるだけ小さく設定することが好ましい。
 例えば、ワークロール10,11の軸方向と直交する断面において、各々の中心を結ぶ線に垂直な方向を圧延機のパスラインとし、圧延機の入側へ導入される素材12とパスラインとのなす角度で表される巻き付け角度θ(rad)が、R×(θ/Δhが1.0~4.0の範囲となるように設定するとともに、圧延機の入側へ導入される素材13とパスラインとのなす角度で表される巻き付け角度θ(rad)が、R×(θ/Δhが1.0以下の範囲となるように設定することが好ましい。
 なお、例えば特公平2-19758号公報には、クラッド板を構成する軟質な素材および硬質な素材のうちの軟質な素材を圧延ロールに巻き付け、その圧延ロールの周速度を、他方の圧延ロールの周速度よりも低速とすることによって、各素材の圧下率を調整する方法が開示されている。
 しかし、この方法では、軟質な素材の圧下率が硬質の素材の圧下率よりも大きいために、入側速度が遅くなる素材と同調する方向で、圧延ロールの周速度が遅く調整されている。このため、圧延ロールと素材との間のせん断歪みが緩和され、これにより、対向する位置にある接合界面においてもせん断歪みが小さくなる。
 このため、この方法では、接合界面のせん断歪みを高めることはできない。このため、本発明では、一対の圧延ロール10,11の周速度を異ならせる異周速圧延は行わず、一対の圧延ロール10,11の周速度を同じとする同周速圧延を行う。
(4-3)接合後の軟化熱処理
 ワークロール10、11により圧延接合された2層クラッド板1に対して、軟化熱処理を行う。接合後の軟化熱処理の条件は、250℃~300℃、かつ50分間以下であることが好ましい。以下、接合後の軟化熱処理の詳細を説明する。(i)~(iv)の条件により圧延接合して製造された2層クラッド板1では、第2層4の第1接合界面6の近傍に大きなせん断ひずみを蓄積させることができる。
 この2層クラッド板1に対して、250℃~300℃、かつ50分間以下の条件で軟化熱処理を行う。これにより、第1接合界面6の近傍における第2層4が選択的に軟化される。又、少なくとも第1接合界面6と接する第2層4は、第1接合界面6から100μmまでの範囲において細粒の再結晶組織となり、この範囲以外では第2層4での結晶粒成長が抑制される。
 このように、本発明では、第1接合界面6の近傍における第2層4の軟化を選択的に行うため、接合界面の破壊荷重が高まるとともに、第2層4の粒径が小さくなる。これにより、2層クラッド板1に複雑な形状へのプレス加工や高い荷重のプレス加工を行っても、第1接合界面6における剥離が抑制されるとともに、プレス加工後の第1層3の肌荒れを防止できる。
5.第2の実施形態におけるクラッド板
 図2は、本発明における第2の実施形態の3層クラッド板2を示す断面図である。図2に示すように、第2の実施の形態における3層クラッド板2は、第1層3、第2層4、第3層5を備え、第1層3と第2層4は第1接合界面6を介して接合され、第2層4と第3層5は、第2接合界面7を介して接合される。
 3層クラッド板2は、2層クラッド板1に第3層5を追加したものである。このため、3層クラッド板2についても2層クラッド板1と同様の原理により、圧延接合条件および、3層クラッド板2に対する熱処理条件を所定の条件とすることにより、2層クラッド板1と同様の効果が得られる。
 すなわち、3層クラッド板2においても、接合界面の破壊荷重が高まるために、複雑な形状へのプレス加工や高い荷重のプレス加工を行っても第1接合界面6および第2接合界面7に剥離が生じないとともに、第2層4の粒径が小さいことから、プレス加工後の第1層3および第3層5の肌荒れを防止できる。
6.第2の実施形態の3層クラッド板2の構成
 本実施形態の3層クラッド板2は、板厚方向へ順に第1層3、第2層4および第3層5を有する。第1層3と第2層4は、第1接合界面6を介して相互に接合され、第2層4と第3層5は、第2接合界面7を介して接合される。第1層3および第3層5は、フェライト系ステンレス鋼、オーステナイト系ステンレス鋼、チタンまたは炭素鋼のいずれかからなる。第2層4はアルミニウムからなる。
(6-1)第1層3および第3層5
 第1層3および第3層5には、第2層4のアルミニウムの欠点である耐疵付き性や耐食性を補うものであってアルミニウムと圧延接合が可能な金属を使用することが好ましい。例えば、鍋釜など一般器物用途にはオーステナイト系ステンレス鋼やチタン、さらには炭素鋼等が好ましく、特に誘導加熱調理器の器物に用いる場合にはフェライト系ステンレス鋼を用いることが望ましい。
 3層クラッド板2の第1層3および第3層5に用いる金属の化学組成、厚さ、機械的特性は、2層クラッド板1の第1層3に用いる上述の金属と同じである。このため、3層クラッド板2の第1層3および第3層5に用いる金属の説明は省略する。
(6-2)第2層4
 3層クラッド板2の第2層4に用いる金属の化学組成、厚さ、機械的特性は、2層クラッド板1の第2層4に用いる上述の金属と同じである。このため、3層クラッド板2の第2層4に用いる金属の説明は省略する。
(6-3)第2層4の金属組織
 本発明の特徴は、3層クラッド板2における第2層4の材料特性ならびに結晶組織の制御にある。本実施形態の3層クラッド板2では、圧延方向に平行な断面において、第1接合界面6および第2接合界面7から第2層4側へ100μm離れた位置までの範囲で再結晶組織となる。具体的には、この範囲において、長径と短径の比であるアスペクト比が2.0以下である結晶粒の面積率が85%以上であり、かつ、最大の結晶粒径が50μm以下の金属組織となる。最大の結晶粒径は、2層クラッド板1と同様に求める。
 このような組織となった場合、プレス成形加工中の第1接合界面6および第2接合界面7に生じるせん断歪みを吸収させるために必要なアルミニウムの展伸性を、第1接合界面6および第2接合界面7の近傍で局部的に増大させることができる。
 一般的に、第2層4において、第1接合界面6、又は第2接合界面7から離れれば離れるほど、粗大な再結晶粒が成長し易い傾向にある。そこで、第1接合界面6、第2接合界面7から第2層4側へ200μm以上離れた金属組織の観察は、圧延方向に平行な断面において、第2層4の厚さの1/2の位置で行うこととする。
 具体的には、本実施形態の3層クラッド板2では、第2層4において、第2層の板厚方向の1/2の位置にて、アスペクト比が2.0以下である結晶粒の面積率が50%未満である。これにより、第2層4のアルミニウムの結晶粒に起因した、プレス成形後における第1層3、第3層5の表面の肌荒れを抑制することができる。
 第2層4の前記範囲の金属組織は、2層クラッド板1の第2層4の前記範囲の金属組織の測定法と同じ測定法により、確認される。具体的には、第2層4の前記範囲の金属組織が再結晶組織であることは、上記アスペクト比が2.0以下である結晶粒の面積率が85%以上であるとともに、最大の結晶粒径が50μm以下であることによって、確認される。
 第2層4において、第2層4の厚さの1/2の位置における、アスペクト比が2.0以下である結晶粒の面積率が50%未満であることは、第2層4の厚さの1/2の位置を100倍の顕微鏡写真で観察し、0.5mm以上の範囲(視野)に観察される金属組織において、アスペクト比が2.0以下である結晶粒の面積率が50%未満であることにより、確認される。
 これにより、第2層4における上記範囲以外の金属組織のうち50%以上の面積が展伸粒で占められるため、少なくともプレス加工後の第1層3および第3層5の肌荒れの原因になる粗大な結晶組織が存在しない。
7.第2の実施形態の3層クラッド板2の製造方法
 図6は、3層クラッド板2の製造工程を模式的に示す説明図である。
 3層クラッド板2を構成する第1層3および第3層5と第2層4との変形能が大きく異なること、および、第1接合界面6および第2接合界面7に大きなせん断応力が加わることが、第1接合界面6および第2接合界面7の近傍での局所的な金属組織の変化を生じるために、重要である。
 第2の実施の形態における3層クラッド板2は、以下の(7-1)~(7-3)の工程を経て製造されることが好ましい。なお、本発明では、素材12、14として上述のフェライト系ステンレス鋼、オーステナイト系ステンレス鋼、チタンまたは炭素鋼のいずれかを用い、素材13として、上述のアルミニウムを用いる。
 なお、(7-1)~(7-3)の工程を経て製造された3層クラッド板2における第1層3、第2層4および第3層5のそれぞれの成分は、素材13、素材12、および素材14の成分と同等である。
(7-1)素材13に対する軟化熱処理
 第1層3および第3層5と第2層4のそれぞれの変形能の差異を最大化するために、第2層4を形成する素材13の完全軟化が有効である。本発明では、(i)圧延による接合の前に、素材13に対し、350℃以上、望ましくは400℃以上での軟化熱処理を施すことが好ましい。
(7-2)熱間圧延接合
 軟化熱処理された素材13と、素材12、14とをワークロール10、11を用いた熱間圧延により接合する。接合圧延時の温度は、200℃~350℃、さらに好ましくは200℃~300℃とすることが好ましい。又、接合の際、第1接合界面6および第2接合界面7におけるせん断応力を増大させるためには、ワークロール10,11と素材12,14の間の摩擦係数を増大することが有効である。
 しかし、圧延による接合時におけるワークロール10,11と素材12,14の間の摩擦係数を測定することは技術的に困難である。このため、摩擦係数の増大に有効な種々の圧延条件で圧延試験を行い、第2層4の接合界面6,7の近傍に所望のせん断歪みが導入される条件を検討した。その結果、第2層4の第1接合界面6および第2接合界面7の近傍に大きなせん断歪みが導入される条件の一例として、上述の条件(i)に加え、以下に列記の条件(ii)~(iv)を見出した。これらの条件を順次説明する。
 (ii)第1層3,第3層5の素材12,14に直接接触するワークロール10,11の表面粗度を、少なくともワークロール10,11の表面の法線方向において、最大高さRy≧1.0μm、好ましくは算術平均粗さRa≧0.2μmとする。または、ワークロール10,11の研磨目をワークロール10,11の軸方向と平行に研磨する。もしくはワークロール10,11をショットブラストもしくはレーザー加工によりダル表面とする。これらのいずれかにより、少なくともワークロール10,11の表面の法線方向において、最大高さRy≧0.5μm、好ましくは算術平均粗さRa≧0.1μmとすることが好ましい。
 (iii)3層クラッド板2の目標板厚t(mm)および圧下量Δh(mm)が、ワークロール10,11の半径R(mm)との間にR≧(16×t)/Δhにより示される関係を満足する。このような条件は、各素材12,14とワークロール10,11の間の摩擦係数を有効に増大させるために、好ましい。
 ワークロール10,11の表面粗度を粗くしても、圧延時のワークロール10,11の接触長さ(接触弧長とも称す)が、圧延後のクラッド板1の板厚(目標板厚tに相当)に対して短い場合には、摩擦係数を増大する効果を有効に得られない。この理由は、素材12,14とワークロール10,11の間では滑りが生じ易く、ワークロール10,11の接触長さが短い場合、この滑りを十分に抑制できず、摩擦係数を効果的に増大させることができないためである。
 素材12,14とワークロール10,11の間での滑りを抑制するためには、ワークロール10,11と素材12,14が接触する長さを長くすること、例えば、(iii)の条件や後述する(iv)の条件を満足することが例示され、(iii)の条件および(iv)の条件を組み合わせることが特に好ましい。
 (iv)圧延機の入側において、素材12,14のワークロール10,11に対する巻き付け角度θ,θを規定することが好ましい。巻き付け角度θ,θを設けることにより、素材12,14がワークロール10,11に対して巻き付き、素材12、14に対する拘束力が高まり、素材12,14とワークロール10,11との間での滑りが抑制される。
 圧延機の入側では、素材12,14の速度がワークロール10,11の周速度よりも遅くなる。このため、巻き付け角度θ,θを過大に設定すると、ワークロール10,11と素材12,14との間の速度差を解消できず、素材12,14がシワ状に変形して平坦に圧延できなくなる。このため、巻き付け角度θ,θに上限を設けることが好ましい。
 素材12,14よりも軟質な素材13では、素材13の速度とワークロール10,11の周速度との差が顕著であるとともに素材13の座屈限界も小さい。このため、素材13に対する巻き付け角度θは実用的な範囲でできるだけ小さく設定することが好ましい。
 例えば、ワークロール10,11の軸方向と直交する断面において、各々の中心を結ぶ線に垂直な方向を圧延機のパスラインとし、圧延機の入側へ導入される素材12,14とパスラインとのなす角度で表される巻き付け角度θ,θ(rad)が、R×(θ/Δhが1.0~4.0,R×(θ/Δhが1.0~4.0の範囲となるように設定するとともに、圧延機の入側へ導入される素材13とパスラインとのなす角度で表される巻き付け角度θ(rad)が、R×(θ/Δhが1.0以下の範囲となるように設定することが好ましい。
 本実施形態の3層クラッド板2は、上述したように、一対の圧延ロール10,11の周速度を異ならせる異周速圧延は行わず、一対の圧延ロール10,11の周速度を同じとする同周速圧延を行う。
(7-3)接合後の軟化熱処理
 ワークロール10、11により圧延接合された3層クラッド板2に対して、軟化熱処理を行う。接合後の軟化熱処理の条件は、250℃~300℃、かつ50分間以下であることが好ましい。以下、接合後の軟化熱処理の詳細を説明する。(i)~(iv)の条件により圧延接合して製造された3層クラッド板2では、第2層4の第1接合界面6および第2接合界面7の近傍に大きなせん断ひずみを蓄積させることができる。
この3層クラッド板2に対して、250℃~300℃、かつ50分間以下の条件で軟化熱処理を行う。これにより、第1接合界面6近傍および第2接合界面7近傍における第2層4が選択的に軟化される。又、少なくとも第1接合界面6および第2接合界面7と接する第2層4は、第1接合界面6または第2接合界面7の接合界面から100μmまでの範囲において細粒の再結晶組織となり、この範囲以外では第2層4での結晶粒成長が抑制される。
 このように、本発明では、第1接合界面6の近傍および第2接合界面7の近傍における第2層4の軟化を選択的に行うため、接合界面の破壊荷重が高まるとともに、第2層4の粒径が小さくなる。これにより、3層クラッド板2に複雑な形状へのプレス加工や高い荷重のプレス加工を行っても、第1接合界面6および第2接合界面7における剥離が抑制されるとともに、プレス加工後の第1層3および第3層5の肌荒れを防止できる。
 本発明の効果を確認するためのクラッド板の素材13として、
 JIS H 4000(2006)に規定されたA1100P(Si:0.10%,Fe:0.58%、Cu:0.13%、Mn:0.01%、残部Alおよび不純物)およびA1050P(Si:0.08%,Fe:0.32%、Cu:0.02%、Mn:0.01%、残部Alおよび不純物)のアルミニウム板の厚さ2.5mmもしくは3.7mmのコイルを用いた。
 また、本発明の効果を確認するためのクラッド板の素材12又は素材14として、
(a)JIS G4305(2012)に規定されたSUS304L(C:0.008%、Si:0.28%、Mn:0.95%、P:0.020%、S:0.001%、Ni:9.55%、Cr:18.8%、N:0.010%、残部Feおよび不純物)のオーステナイト系ステンレス鋼板の厚さ0.6mmのコイル、
(b)JIS G4305(2012)に規定されたSUS430J1L(C:0.008%、Si:0.55%、Mn:0.45%、P:0.025%、S:0.002%、Cr:16.4%、Cu:0.32%、Nb:0.54%,N:0.011%、残部Feおよび不純物)のフェライト系ステンレス鋼板の厚さ0.5mmもしくは0.6mmのコイル、
(c)JIS H4600(2012)に規定されたTC270C(C:0.003%、O:0.04%、Fe:0.03%、N:0.005%、H:0.003%、残部Tiおよび不純物)のチタン板の厚さ0.6mmのコイル、
(d)JIS G3141(2011) に規定されたSPCE(C:0.045%、Si:0.01%、Mn:0.25%、P:0.020%、S:0.013%、残部Feおよび不純物)の深絞り用冷間圧延鋼板の厚さ0.6mmのコイル
のいずれかを用いた。なお、(a)~(d)の素材は、接合面を砥粒ブラシで予めブラッシング処理することにより表面を清浄化した。
 これらの各々一種ずつを用いて、2層クラッド板または3層クラッド板を製造した。クラッド板の製造には、圧延接合用の圧延設備を用い、圧延機入側に配した2つもしくは3つのリールに各素材のコイルを各々設置して巻き出した。次に、アルミニウム板のコイルをインライン炉で加熱した。その後、オーステナイト系ステンレス鋼板、フェライト系ステンレス鋼板、チタン板または深絞り用冷間圧延鋼板のコイルと重ねて所定の温度に調整し、圧延により接合することによって、クラッド板を得た。なお、クラッド板における各層の成分は、接合前の素材の成分と同等であることは言うまでもない。
 表1に、本発明の効果を確認するために行なった本発明例ならびに比較例として作成したクラッド板の圧延条件を示す。
Figure JPOXMLDOC01-appb-T000001
 得られたクラッド板からサンプルを切り出して軟化熱処理を施した後に、その金属組織の観察を行うとともにプレス成形試験を行うことにより、クラッド板の性能を評価した。
 金属組織の観察では、上述した方法によって、圧延方向に平行な断面において、接合界面から第2層側へ100μm離れた位置までの範囲と、第2層の厚さの1/2の深さ位置について、アスペクト比が2.0以下である結晶粒の面積率を測定した。
 プレス成形試験では、半径350mmの円盤を切り出してサンプルとし、種々の温度で軟化熱処理を施した後に、円筒状の深絞りプレス試験を行い、その成否によって評価した。この際に用いたポンチ直径は200mmであり、ポンチ肩部の曲げ半径は20mmであり、フランジ肩部の曲げ半径は15mmである。
 深絞りプレスは、第1層を外面側とし、高さ150mmのフランジ残し形状として、行った。このプレス成形では、特にフランジ肩部の曲げ半径が小さいことからフランジ部で接合界面が破壊し易い。このため、フランジ部の近傍での割れやフランジ部での剥離が観察された場合にプレス成形性が不良であると評価した。
 さらに、深絞りプレス成形材の外面に相当する第1層の非接合面を目視観察することにより、第2層の結晶粒の転写による肌荒れの有無を判定した。
 表1に、本発明例ならびに比較例のクラッド板について、圧延による接合後の軟化熱処理条件を示す。表2に、第2,3層の金属組織の観察結果と、プレス成形性の試験結果および肌荒れの有無をまとめて示す。
Figure JPOXMLDOC01-appb-T000002
 表2におけるプレス成形性は、A:良好、B:フランジ部に軽微なシワ、C:フランジ部割れ、D:フランジ部はく離を示し、C,Dをプレス成形性が不良であると判定した。また、表2における肌荒れは、A:良好、B:軽微な肌荒れ、C:肌荒れ不良を示し、Cを肌荒れが不良であると判定した。
 表1における番号1~17は、いずれも、本発明の条件を全て満足する本発明例である。番号1~12は2層クラッド板であり、番号13~17は3層クラッド板である。番号8では、第1層の素材と直接接触するワークロールとして、その表面をロール軸方向と平行に研磨した平行研磨ロールを使用した。さらに、番号で9は、第1層の素材と直接接触するワークロールとして、その表面をショットブラスト処理したロールを使用した。
 番号1~17は、接合界面から第2層側へ100μm離れた位置までの範囲の金属組織がいずれも結晶粒径50μm以下の再結晶組織となっているため、プレス成形性は良好である。また、番号1~17は、第2層の厚さの1/2の深さ位置の金属組織は加工組織のままか、一部が再結晶していてもアスペクト比が2.0以下である結晶粒(再結晶粒)の面積が全ての面積に占める割合が50%未満であるために、粗大な再結晶粒が第1層に転写せず、第1層の表面の肌荒れは、生じず、または軽微であった。
 これに対し、番号18~38は、本発明の条件を満足しない比較例である。番号20では、第1層の素材と直接接触するワークロールとして、その表面をショットブラスト処理したロールを使用した。
 番号18~20は、圧延時に第1層の素材と直接接触するワークロールの表面粗さが最大高さRyとしていずれも、上述した範囲の下限を下回るため、第2層の接合界面の近傍で再結晶組織が得られず、プレス成形の際にフランジ部が剥離した。
 番号21、22は、第2層の素材の事前加熱温度が上述した範囲の下限を下回るため、第2層の特に接合界面の近傍で再結晶組織が得られず、プレス成形の際にフランジ部が剥離した。
 番号23,24は、圧延時のワークロール半径が上述した範囲の下限を下回るため、第2層の特に接合界面の近傍で再結晶組織が得られず、プレス成形の際にフランジ部が剥離した。
 番号25,26は、圧延時に圧延機入側における素材のワークロールへの巻き付け角度θに対するR×(θ/Δhが、上述した範囲の下限を下回るため、第2層の特に接合界面の近傍で再結晶組織が得られず、プレス成形の際にフランジ部が剥離した。
 番号27は、圧延時に圧延機入側における素材のワークロールへの巻き付け角度θに対するR×(θ/Δhが上述した範囲の上限を上回ったため、第2層と接合しなかった。
 番号28は、圧延時に圧延機入側における素材のワークロールへの巻き付け角度θに対するR×(θ/Δhが上述した範囲の上限を上回ったため、第2層と接合しなかった。
 番号29,30は、2層クラッド板の接合圧延時に圧延機入側における第2層の素材のワークロールへの巻き付け角度θを180度とした例である。この際、一対のワークロール周速度を同速度として圧延すると、第2層の素材入側速度と、これに直接接触するワークロールの周速度が大きく異なるうえに接触距離が長い。このため、第2層がワークロールに追従できずにシワ状に変形し、平坦に圧延できず、第1層と接合しなかった。
 そこで、第2層の入側速度と、これに直接接触するワークロールとの速度差を緩和するために、第2層の素材のワークロールへの巻き付け角度θを180度としたままで、第1層と接触するワークロールの周速度を10m毎分、第2層と接触するワークロールの周速度を7.7m毎分とする異周速圧延を行った。その結果、第2層の素材がシワ状に変形することなく第1層と接合できた。
 しかし、第2層とワークロールとの速度差が緩和されたため、第2層とワークロールとの間のせん断歪み、ならびに第1層および第2層の間のせん断歪みが大幅に緩和された。このため、第2層の特に接合界面の近傍で再結晶組織を得られず、プレス成形の際にフランジ部が剥離した。
 番号31~33は、接合後のクラッド板に施す軟化熱処理の温度または時間が上述した範囲の上限を上回った。このため、第2層の第2範囲において金属組織の再結晶が進行し、アスペクト比が2.0以下である結晶粒(再結晶粒)の面積が全ての面積に占める割合が50%以上となった。このため、第2層の粗大な再結晶粒が第1層に転写して、第1層の表面に肌荒れが生じた。
 番号34~36は、接合後のクラッド板に施す軟化熱処理を行わないか、あるいは、軟化熱処理の温度または時間が上述した範囲の下限を下回った。このため、第2層の第1範囲の金属組織がいずれも加工組織のままで再結晶しなかった。これにより、プレス加工の際のせん断応力に耐えられず、フランジ部が割れた。
 番号37は、3層の接合において使用したワークロールの表面粗さが、最大高さRyとしていずれも上述した範囲の下限を下回るうえ、値{R(θ/Δh}が上述した範囲の上限を上回った。このため、第1層の素材がシワ状に変形して平坦な圧延ができなくなり、第2層と接合しなかった。
 さらに、番号38は、第1~3層の接合が達成されたものの、接合後のクラッド板に施す軟化熱処理の時間が上述した範囲の上限を上回った。このため、第2層の第2範囲において金属組織の再結晶が進行し、第2層の粗大な再結晶粒が第1層に転写して、第1層の表面に肌荒れが生じた。
1 2層クラッド板
2 3層クラッド板
3 第1層
4 第2層
5 第3層
6 第1接合界面
7 第2接合界面
10,11 ワークロール
12~14 素材

 

Claims (4)

  1.  接合界面を介して接合された第1層および第2層を備えるクラッド板であって、
     前記第1層は、フェライト系ステンレス鋼、オーステナイト系ステンレス鋼、チタンまたは炭素鋼のいずれかからなり、
     前記第2層は、アルミニウムからなり、
     前記第2層における、前記接合界面から板厚方向へ100μm離れた位置までの範囲において、長径と短径の比であるアスペクト比が2.0以下である結晶粒の面積率が85%以上であり、かつ、最大の結晶粒径が50μm以下であり、
     前記第2層の板厚方向の1/2の位置において、前記アスペクト比が2.0以下である結晶粒の面積率が50%未満である、クラッド板。
  2.  第1層、第2層および第3層を備え、前記第1層および前記第2層は第1接合界面を介して接合され、前記第2層および前記第3層は第2接合界面を介して接合されるクラッド板であって、
     前記第1層および前記第3層は、フェライト系ステンレス鋼、オーステナイト系ステンレス鋼、チタンまたは炭素鋼のいずれかからなり、
     前記第2層は、アルミニウムからなり、
     前記第2層における、前記第1接合界面から板厚方向へ100μm離れた位置までの範囲、および前記第2層における、前記第2接合界面から板厚方向へ100μm離れた位置までの範囲において、長径と短径の比であるアスペクト比が2.0以下である結晶粒の面積率が85%以上であり、かつ、最大の結晶粒径が50μm以下であり、
     前記第2層の板厚方向の1/2の位置において、前記アスペクト比が2.0以下である結晶粒の面積率が50%未満である、クラッド板。
  3.  前記第1層の厚さが0.2~1.0mm、前記第2層の厚さが0.5~3.0mmである、請求項1に記載のクラッド板。
  4.  前記第1層および前記第3層の厚さが0.2~1.0mm、前記第2層の厚さが0.5~3.0mmである、請求項2に記載のクラッド板。

     
PCT/JP2017/039188 2017-10-30 2017-10-30 クラッド板 WO2019087265A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780096466.8A CN111372770B (zh) 2017-10-30 2017-10-30 复合板
JP2018510530A JP6347312B1 (ja) 2017-10-30 2017-10-30 クラッド板
PCT/JP2017/039188 WO2019087265A1 (ja) 2017-10-30 2017-10-30 クラッド板
KR1020207008080A KR102288611B1 (ko) 2017-10-30 2017-10-30 클래드판

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/039188 WO2019087265A1 (ja) 2017-10-30 2017-10-30 クラッド板

Publications (1)

Publication Number Publication Date
WO2019087265A1 true WO2019087265A1 (ja) 2019-05-09

Family

ID=62706334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/039188 WO2019087265A1 (ja) 2017-10-30 2017-10-30 クラッド板

Country Status (4)

Country Link
JP (1) JP6347312B1 (ja)
KR (1) KR102288611B1 (ja)
CN (1) CN111372770B (ja)
WO (1) WO2019087265A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7440755B2 (ja) 2020-03-26 2024-02-29 日本製鉄株式会社 クラッド

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110662377B (zh) * 2018-06-29 2022-03-15 比亚迪股份有限公司 一种壳体及其制备方法和一种电子产品
CN110662376B (zh) * 2018-06-29 2022-03-18 比亚迪股份有限公司 一种壳体及其制备方法和一种电子产品
CN111850354A (zh) * 2020-07-29 2020-10-30 青岛科技大学 一种铝合金与不锈钢复合材料及其制备方法与应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6142498A (ja) * 1984-08-06 1986-02-28 Kobe Steel Ltd 成形加工用アルミニウム−ステンレス鋼クラツド板の製造方法
JPS63171277A (ja) * 1987-01-07 1988-07-15 Nippon Stainless Steel Co Ltd チタンとアルミニウムとの複合板の製造方法
JPH0839269A (ja) * 1994-07-26 1996-02-13 Sumitomo Metal Ind Ltd ステンレス鋼・アルミニウムクラッド材の製造方法
JPH08309561A (ja) * 1995-05-18 1996-11-26 Kobe Steel Ltd 成形性が優れたクラッド板の製造方法
JPH08332581A (ja) * 1995-06-08 1996-12-17 Kobe Steel Ltd 成形性が優れたクラッド板の製造方法
JPH10244620A (ja) * 1997-03-06 1998-09-14 Nisshin Steel Co Ltd 成形性に優れたステンレス鋼/アルミクラッド板の製造方法
JP2002336973A (ja) * 2001-05-11 2002-11-26 Mitsubishi Heavy Ind Ltd クラッド構造材及びクラッド構造材の製造方法
US20060113353A1 (en) * 2001-02-27 2006-06-01 Zwickel Gerald O Method of manufacturing metallic composite material

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05146880A (ja) 1991-11-28 1993-06-15 Nippon Stainless Steel Co Ltd Al/ステンレス鋼クラツドコイル材の製造方法
JP2783170B2 (ja) 1994-10-24 1998-08-06 住友金属工業株式会社 アルミニウムとステンレス鋼とのクラッド板の製造方法
JPH0970918A (ja) 1995-09-04 1997-03-18 Kobe Steel Ltd フッ素加工性が優れたアルミニウム合金/ステンレス鋼クラッド材及びその製造方法
JPH11319970A (ja) * 1998-05-21 1999-11-24 Nisshin Steel Co Ltd 深絞り成形性に優れたフェライト系ステンレス鋼/アルミニウムクラッド板
JP2008264299A (ja) * 2007-04-23 2008-11-06 Tiger Vacuum Bottle Co Ltd 電気炊飯器
CN100421830C (zh) * 2007-05-09 2008-10-01 中国科学院金属研究所 一种制备异种合金层状复合材料的方法
JP5219689B2 (ja) * 2008-08-12 2013-06-26 新日鐵住金ステンレス株式会社 加工肌荒れの小さいフェライト系ステンレス鋼板およびその製造方法
BR112015028766B1 (pt) * 2013-05-14 2019-05-14 Uacj Corporation Material à base de liga de alumínio com função de ligação térmica em uma única camada, método para sua fabricação e corpo ligado por alumínio usando-se o material à base de liga de alumínio
JP6058050B2 (ja) * 2015-03-04 2017-01-11 株式会社神戸製鋼所 負圧缶蓋用アルミニウム合金板
KR102114022B1 (ko) * 2016-03-09 2020-05-22 히다찌긴조꾸가부시끼가이사 마텐자이트계 스테인리스 강박 및 그 제조 방법

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6142498A (ja) * 1984-08-06 1986-02-28 Kobe Steel Ltd 成形加工用アルミニウム−ステンレス鋼クラツド板の製造方法
JPS63171277A (ja) * 1987-01-07 1988-07-15 Nippon Stainless Steel Co Ltd チタンとアルミニウムとの複合板の製造方法
JPH0839269A (ja) * 1994-07-26 1996-02-13 Sumitomo Metal Ind Ltd ステンレス鋼・アルミニウムクラッド材の製造方法
JPH08309561A (ja) * 1995-05-18 1996-11-26 Kobe Steel Ltd 成形性が優れたクラッド板の製造方法
JPH08332581A (ja) * 1995-06-08 1996-12-17 Kobe Steel Ltd 成形性が優れたクラッド板の製造方法
JPH10244620A (ja) * 1997-03-06 1998-09-14 Nisshin Steel Co Ltd 成形性に優れたステンレス鋼/アルミクラッド板の製造方法
US20060113353A1 (en) * 2001-02-27 2006-06-01 Zwickel Gerald O Method of manufacturing metallic composite material
JP2002336973A (ja) * 2001-05-11 2002-11-26 Mitsubishi Heavy Ind Ltd クラッド構造材及びクラッド構造材の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7440755B2 (ja) 2020-03-26 2024-02-29 日本製鉄株式会社 クラッド

Also Published As

Publication number Publication date
KR20200042925A (ko) 2020-04-24
CN111372770B (zh) 2021-10-26
CN111372770A (zh) 2020-07-03
KR102288611B1 (ko) 2021-08-11
JPWO2019087265A1 (ja) 2019-11-14
JP6347312B1 (ja) 2018-06-27

Similar Documents

Publication Publication Date Title
WO2019087265A1 (ja) クラッド板
JP7165202B2 (ja) オーステナイト系ステンレス鋼板及びその製造方法
CN107847993B (zh) 热轧用钛坯料
TW201313348A (zh) 高強度高加工性罐用鋼板及其製造方法
JP2017128750A (ja) クラッド板および誘導加熱調理器用器物
CA2741139C (en) Methods for the manufacture of a titanium alloy for use in combustion engine exhaust systems
Kawase et al. Development of aluminum-clad steel sheet by roll-bonding
JP6813132B2 (ja) 缶用鋼板およびその製造方法
JP4256203B2 (ja) アルミニウム・ニッケル・ステンレス鋼クラッド材の製造方法
JP2009256734A (ja) 積層鋼板及びその製造方法
JP4155124B2 (ja) 金属クラッド板およびその製造方法
JP5019857B2 (ja) 面内異方性が小さく,深絞り性に優れたクラッド鍋用フェライト系ステンレス鋼板およびその製造方法
JP3168836B2 (ja) ステンレス鋼・アルミニウムクラッド材の製造方法
JP6631750B2 (ja) クラッド鋼板
US3326647A (en) Rolled carbon steel clad with stainless steel
JPH06248332A (ja) 容器用鋼板の製造方法
JP2000117461A (ja) アルミニウムとステンレス鋼とからなるクラッド板の製造方法
JP2020007599A (ja) フェライト系ステンレス鋼板、クラッド材及びフェライト系ステンレス鋼板の製造方法
JPH11222647A (ja) 耐時効性に優れかつ耳発生率の小さい表面処理鋼板用原板およびその製造方法
WO2023136038A1 (ja) クラッド板用フェライト系ステンレス鋼板及びその製造方法、並びにクラッド板
JPH11319970A (ja) 深絞り成形性に優れたフェライト系ステンレス鋼/アルミニウムクラッド板
JP6881696B1 (ja) 缶用鋼板およびその製造方法
JP2649590B2 (ja) Fe―Al合金薄板の製造法
JPS5935664A (ja) 冷延性にすぐれたα+β型チタン合金熱延板の製造方法
JPH08309561A (ja) 成形性が優れたクラッド板の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018510530

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17930367

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207008080

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17930367

Country of ref document: EP

Kind code of ref document: A1