WO2019085909A1 - 一种混合动力汽车的扭矩调节方法及装置 - Google Patents

一种混合动力汽车的扭矩调节方法及装置 Download PDF

Info

Publication number
WO2019085909A1
WO2019085909A1 PCT/CN2018/112773 CN2018112773W WO2019085909A1 WO 2019085909 A1 WO2019085909 A1 WO 2019085909A1 CN 2018112773 W CN2018112773 W CN 2018112773W WO 2019085909 A1 WO2019085909 A1 WO 2019085909A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
front axle
requested
compensation
motor
Prior art date
Application number
PCT/CN2018/112773
Other languages
English (en)
French (fr)
Inventor
魏文彬
冉姗姗
申苗苗
Original Assignee
长城汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长城汽车股份有限公司 filed Critical 长城汽车股份有限公司
Priority to EP18872361.3A priority Critical patent/EP3677482B1/en
Priority to US16/760,615 priority patent/US11603089B2/en
Publication of WO2019085909A1 publication Critical patent/WO2019085909A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/30Control strategies involving selection of transmission gear ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/34Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles
    • B60K17/354Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having separate mechanical assemblies for transmitting drive to the front or to the rear wheels or set of wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/34Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles
    • B60K17/356Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having fluid or electric motor, for driving one or more wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K23/00Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for
    • B60K23/08Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for changing number of driven wheels, for switching from driving one axle to driving two or more axles
    • B60K23/0808Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for changing number of driven wheels, for switching from driving one axle to driving two or more axles for varying torque distribution between driven axles, e.g. by transfer clutch
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/448Electrical distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/52Driving a plurality of drive axles, e.g. four-wheel drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/19Improvement of gear change, e.g. by synchronisation or smoothing gear shift
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K23/00Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for
    • B60K23/08Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for changing number of driven wheels, for switching from driving one axle to driving two or more axles
    • B60K23/0808Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for changing number of driven wheels, for switching from driving one axle to driving two or more axles for varying torque distribution between driven axles, e.g. by transfer clutch
    • B60K2023/0816Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for changing number of driven wheels, for switching from driving one axle to driving two or more axles for varying torque distribution between driven axles, e.g. by transfer clutch for varying front-rear torque distribution with a central differential
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K6/485Motor-assist type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0043Signal treatments, identification of variables or parameters, parameter estimation or state estimation
    • B60W2050/0052Filtering, filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0657Engine torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/08Electric propulsion units
    • B60W2510/083Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/10Change speed gearings
    • B60W2510/105Output torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/40Torque distribution
    • B60W2720/403Torque distribution between front and rear axle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present application relates to the field of vehicle technology, and in particular, to a torque adjustment method and apparatus for a hybrid vehicle.
  • the main purpose of hybrid vehicles is to reduce the fuel consumption of the entire vehicle and provide the dynamic performance of the entire vehicle.
  • the dynamic conditions affecting the entire vehicle for example, the torque loss during the shifting process, are generally not considered, resulting in poor power of the entire vehicle.
  • the present application aims to propose a torque adjustment method for a hybrid vehicle to compensate for torque loss during shifting and improve the dynamic performance of the entire vehicle.
  • the method further includes:
  • a second compensation torque is determined based on the requested torque of the filtered front axle engine and the requested torque of the front axle engine.
  • the step of determining a target torque of the rear axle motor according to the first compensation torque and the requested torque of the rear axle motor includes:
  • the first compensation torque, the second compensation torque, and the requested torque of the rear axle motor are added to obtain a target torque of the rear axle motor.
  • the step of determining the first compensation torque according to the requested torque of the filtered front axle engine and the actual output torque of the front axle transmission comprises:
  • the product between the first difference and the compensation coefficient is subjected to filtering processing to obtain a first compensation torque.
  • the step of determining the second compensation torque according to the requested torque of the filtered front axle engine and the requested torque of the front axle engine includes:
  • the second difference is determined as the second compensation torque.
  • the method further includes:
  • the target torque of the rear axle motor is less than the maximum torque of the motor and greater than the minimum torque of the motor, the target torque of the rear axle motor is filtered to obtain a final torque corresponding to the rear axle motor.
  • the torque adjustment method of the hybrid vehicle described in the present application has the following advantages:
  • the torque adjustment method of the hybrid vehicle described in the present application filters the target torque of the rear axle motor to avoid the direct jump of the torque to the target torque, thereby causing the vehicle to vibrate and improving the driver's experience.
  • Another object of the present application is to provide a torque adjusting device for a hybrid vehicle to compensate for torque loss during shifting and improve the dynamic performance of the vehicle.
  • a torque adjustment device for a hybrid vehicle comprising:
  • Requesting a torque acquisition module configured to obtain a requested torque of the front axle engine and a requested torque of the rear axle motor
  • a first compensation torque determining module configured to determine a first compensation torque according to a requested torque of the filtered front axle engine and an actual output torque of the front axle transmission;
  • the target torque determination module is configured to determine a target torque of the rear axle motor based on the first compensation torque and the requested torque of the rear axle motor.
  • the device further comprises:
  • the second compensation torque determination module is configured to determine the second compensation torque based on the requested torque of the filtered front axle engine and the requested torque of the front axle engine.
  • the target torque determination module comprises:
  • the target torque calculation module is configured to add the first compensation torque, the second compensation torque, and the requested torque of the rear axle motor to obtain a target torque of the rear axle motor.
  • the first compensation torque determination module comprises:
  • a first difference obtaining module configured to acquire a first difference between the requested torque of the filtered front axle engine and an actual output torque of the front axle transmission when a shift request is received;
  • the first compensation torque calculation module is configured to filter the product between the first difference and the compensation coefficient to obtain a first compensation torque.
  • the second compensation torque determining module comprises:
  • a second difference obtaining module configured to acquire a second difference between the requested torque of the front axle engine and the requested torque of the filtered front axle engine
  • a first determining module configured to determine whether the second difference is less than a maximum supporting torque and greater than a minimum supporting torque
  • a second determining module configured to determine whether an absolute value of the second difference is less than a dynamic acceptable torque when the second difference is less than a maximum support torque and greater than a minimum support torque
  • the second compensation torque calculation module is configured to determine the second difference as the second compensation torque when an absolute value of the second difference is less than a dynamic acceptable torque.
  • the device further comprises:
  • a determining module configured to determine whether a target torque of the rear axle motor is less than a maximum torque of the motor and greater than a minimum torque of the motor
  • a final torque determining module configured to filter a target torque of the rear axle motor to obtain a final torque corresponding to the rear axle motor when a target torque of the rear axle motor is less than a maximum torque of the motor and greater than a minimum torque of the motor .
  • the torque adjusting device of the hybrid vehicle and the above-described torque adjusting method of the hybrid vehicle have the same advantages as those of the prior art, and are not described herein again.
  • Another object of the present application is to provide a computer readable medium storing a computer program for executing the above-described torque adjustment method of a hybrid vehicle to compensate for torque loss during shifting and improve the dynamic performance of the entire vehicle. .
  • FIG. 1 is a flowchart of a torque adjustment method of a hybrid vehicle according to Embodiment 1 of the present application;
  • FIG. 2 is a flowchart of a torque adjustment method of a hybrid vehicle according to Embodiment 2 of the present application;
  • FIG. 3 is a schematic diagram of a calculation process of a first compensation torque according to Embodiment 2 of the present application.
  • FIG. 4 is a structural block diagram of a torque adjustment device for a hybrid vehicle according to Embodiment 3 of the present application.
  • FIG. 5 is a structural block diagram of another torque adjusting device for a hybrid vehicle according to Embodiment 3 of the present application.
  • the hybrid vehicle described in the embodiments of the present application includes an engine and a transmission of a front axle, and a motor of a rear axle.
  • a first embodiment of the present application provides a flowchart of a torque adjustment method for a hybrid vehicle, which may specifically include the following steps:
  • step 101 the requested torque of the front axle engine and the requested torque of the rear axle motor are obtained.
  • the vehicle request torque is determined by detecting the current vehicle speed of the hybrid vehicle and the opening degree of the accelerator pedal, and then the vehicle request torque is appropriately distributed to the engine of the front axle and the motor of the rear axle.
  • the proportion of the requested torque of the rear axle motor is increased correspondingly; when the battery amount corresponding to the rear axle motor is less than the preset amount, the rear axle motor is correspondingly reduced.
  • the ratio of the requested torque is allocated; when the load of the current bridge engine is lower than the preset load, the proportion of the requested torque of the front axle engine is increased correspondingly; when the load of the current bridge engine is higher than the preset load, the front axle engine is correspondingly reduced.
  • the ratio of the requested torque is allocated; when the efficiency of the current bridge engine is lower than the maximum efficiency, the distribution ratio of the requested torque of the front axle engine is correspondingly increased.
  • the requested torque of the front axle engine and the requested torque of the rear axle motor are obtained.
  • the hybrid vehicle described in the embodiment of the present application further includes a BSG (Belt Driven Starter Generator) motor of the front axle, and the BSG motor is connected with the front axle engine.
  • BSG Belt Driven Starter Generator
  • the BSG motor quickly starts the front axle engine.
  • the automatic start and stop of the front axle engine is realized.
  • the BSG motor starts the front axle engine to effectively reduce power consumption and improve emissions; after the current bridge engine is in normal operation, the BSG motor is no longer involved in the complete vehicle. Power driven.
  • Step 102 Determine a first compensation torque according to a requested torque of the filtered front axle engine and an actual output torque of the front axle transmission.
  • the requested torque of the front axle engine needs to be filtered to obtain the requested torque of the filtered front axle engine.
  • the request torque of the front axle engine will not directly jump from 500 Nm to 1000 Nm. Rather, the request torque of the front axle engine is gradually increased from 500Nm to 1000Nm within a certain period of time, and the request torque of the front axle engine can be increased by 100Nm within 1s.
  • the requested torque of the filtered front axle engine is respectively It is 500 Nm ⁇ 600 Nm ⁇ 700 Nm ⁇ 800 Nm ⁇ 900 Nm ⁇ 1000 Nm.
  • Step 103 Determine a target torque of the rear axle motor according to the first compensation torque and the requested torque of the rear axle motor.
  • the first compensation torque that needs to be compensated is compensated by the rear axle motor.
  • the rear axle motor also needs to provide partial power of the vehicle, according to the first compensation torque and the assigned rear axle.
  • the requested torque of the motor determines the target torque of the rear axle motor.
  • the target torque of the rear axle motor is the torque that the rear axle motor actually needs to provide.
  • the torque adjustment method of the hybrid vehicle described in the present application has the following advantages:
  • the front axle transmission since the front axle transmission has a deviation between the requested torque of the filtered front axle engine and the actual output torque of the front axle transmission during the shifting process, the deviation is By compensating the rear axle motor, it is possible to eliminate the working conditions that affect the power of the vehicle, and to coordinate the torques according to the state of the vehicle, and improve the dynamic performance of the vehicle based on the original fuel economy.
  • a second embodiment of the present application provides a flowchart of a torque adjustment method for a hybrid vehicle, which may specifically include the following steps:
  • step 201 the requested torque of the front axle engine and the requested torque of the rear axle motor are obtained.
  • This step is similar to the principle of step 101 in the first embodiment, and will not be described in detail herein.
  • Step 202 Determine a first compensation torque according to a requested torque of the filtered front axle engine and an actual output torque of the front axle transmission.
  • the requested torque of the filtered front axle engine due to the transmission torque interference, there is a deviation between the requested torque of the filtered front axle engine and the actual output torque of the front axle transmission, according to the filtered front axle engine.
  • the requested torque and the actual output torque of the front axle transmission determine the first compensation torque that needs to be compensated.
  • a shift request when a shift request is received, acquiring a first difference between the requested torque of the filtered front axle engine and an actual output torque of the front axle transmission; and the first difference and the compensation
  • the product between the coefficients is subjected to filtering processing to obtain a first compensation torque.
  • FIG. 3 is a schematic flow chart showing the calculation of the first compensation torque according to the second embodiment of the present application.
  • the shift flag When the whole vehicle does not have a shift request, the shift flag is 0, then the first compensation torque is 0Nm; when the whole vehicle has a shift request, the shift flag is 1, and the whole vehicle request torque needs to follow the front axle transmission.
  • Interference torque, and the actual output torque of the front axle transmission should be consistent with the interference torque of the front axle transmission, but due to the interruption of the clutch during the shifting of the front axle transmission and the hysteresis during the torque calculation, the front axle transmission During the shifting process, the requested torque of the filtered front axle engine is subtracted from the actual output torque of the front axle transmission, and the first difference between the requested torque of the filtered front axle engine and the actual output torque of the front axle transmission is obtained. .
  • the driver may have jitter during the actual driving process, it is necessary to multiply the first difference by a compensation coefficient to obtain the corresponding shift compensation torque; in practical applications, in order to avoid the direct shift of the shift compensation torque For vehicle vibration, it is also necessary to filter the shift compensation torque to obtain the first compensation torque.
  • the compensation coefficient is a calibration value.
  • the compensation coefficient table is different.
  • the compensation coefficient corresponding to different vehicle speeds and/or vehicle request torque state is measured in advance, thereby forming The compensation coefficient table corresponding to different types of vehicles.
  • the corresponding compensation coefficient is found based on the vehicle speed of the vehicle and the vehicle request torque.
  • Step 203 Determine a second compensation torque according to the requested torque of the filtered front axle engine and the requested torque of the front axle engine.
  • the requested torque of the filtered front axle engine is relative to the requested torque of the front axle engine during the torque loading process, part of the torque is filtered, so that the requested torque of the filtered front axle engine is obtained. There is a deviation from the requested torque of the front axle engine. In order to satisfy the driver's requirements for the vehicle's power to the utmost extent, it is determined that compensation is required based on the requested torque of the filtered front axle engine and the requested torque of the front axle engine. The second compensation torque.
  • obtaining a second difference between the requested torque of the front axle engine and the requested torque of the filtered front axle engine determining whether the second difference is less than a maximum support torque and greater than a minimum support torque; Determining whether an absolute value of the second difference is less than a dynamic acceptable torque when the second difference is less than a maximum support torque and greater than a minimum support torque; when an absolute value of the second difference is less than a dynamic acceptable torque And determining the second difference as the second compensation torque.
  • the driver can control the opening degree of the accelerator pedal.
  • the torque of the corresponding front axle engine also changes.
  • the vehicle vibration is caused.
  • the filtered front axle The requested torque of the engine will also change.
  • the requested torque of the front axle engine is subtracted from the requested torque of the filtered front axle engine to obtain a second difference between the requested torque of the front axle engine and the requested torque of the filtered front axle engine.
  • the requested torque of the front axle engine needs to be changed from the current 1000Nm to 2000Nm, but in practical applications, in order to avoid the direct jump of the torque, the vehicle vibration will not occur.
  • the second difference After calculating the second difference, determining whether the second difference is less than the maximum support torque and greater than the minimum support torque, and determining whether the absolute value of the second difference is when the second difference is less than the maximum support torque and greater than the minimum support torque Less than the dynamic acceptable torque, when the absolute value of the second difference is less than the dynamic acceptable torque, the second difference is determined as the second compensation torque, and when the absolute value of the second difference is greater than or equal to the dynamic acceptable torque, Then the second compensation torque is 0Nm.
  • the maximum support torque, minimum support torque and dynamic acceptable torque are all calibration values.
  • the maximum support torque and the minimum support torque are calibrated according to the battery temperature corresponding to the rear axle motor, the remaining battery power, the current ambient temperature, the accelerator pedal opening degree, etc.; when the second difference is greater than the maximum support torque, or the second difference is less than the minimum support In torque, there is no need to compensate for the torque loss during torque loading, and the corresponding second compensation torque is 0Nm.
  • the dynamic acceptable torque corresponding to the different vehicle speeds and/or the requested torque state of the front axle engine is measured in advance to form a dynamic acceptable torque table, and the dynamic acceptable torque is determined when the vehicle speed of the vehicle and the requested torque of the front axle engine are determined.
  • the corresponding dynamic acceptable torque is found based on the vehicle speed of the vehicle and the requested torque of the front axle engine.
  • the requested torque of the front axle engine can be changed from high to low during the torque loading process, or from low to high, the requested torque of the front axle engine is reduced from low to high, and the requested torque of the front axle engine is subtracted from the filtered front.
  • the second difference obtained by the requested torque of the bridge engine is a positive number
  • the requested torque of the current axle engine is changed from high to low
  • the second difference obtained by the requested torque of the front axle engine minus the requested torque of the filtered front axle engine is Negative numbers, while the dynamic acceptable torque in the dynamic acceptable torque meter is positive, therefore, the absolute value of the second difference needs to be taken and the absolute value of the second difference is compared to the dynamic acceptable torque.
  • Step 204 Add the first compensation torque, the second compensation torque, and the requested torque of the rear axle motor to obtain a target torque of the rear axle motor.
  • the calculated first compensation torque, the second compensation torque, and the requested torque of the rear axle motor allocated to the rear axle motor are added to obtain the target torque of the rear axle motor.
  • Step 205 Determine whether the target torque of the rear axle motor is less than the maximum torque of the motor and greater than the minimum torque of the motor.
  • the target torque of the rear axle motor after calculating the target torque of the rear axle motor, it is also required to determine whether the target torque of the rear axle motor is less than the maximum torque of the motor and greater than the minimum torque of the motor.
  • the maximum torque of the motor and the minimum torque of the motor respectively indicate the maximum torque and minimum torque that the rear axle motor can output. Only in the range that the rear axle motor can withstand, the torque loss during the shifting process and during the torque loading can be compensated.
  • Step 206 When the target torque of the rear axle motor is less than the maximum torque of the motor and greater than the minimum torque of the motor, filter the target torque of the rear axle motor to obtain a final torque corresponding to the rear axle motor.
  • the target torque of the rear axle motor is less than the maximum torque of the motor and greater than the minimum torque of the motor, in order to avoid the direct jump of the torque to the target torque and cause the vehicle to vibrate, the target torque of the rear axle motor needs to be filtered.
  • the final torque corresponding to the rear axle motor is obtained, which is the actual output torque of the rear axle motor.
  • the torque adjustment method of the hybrid vehicle described in the present application has the following advantages:
  • the torque adjustment method of the hybrid vehicle described in the present application filters the target torque of the rear axle motor to avoid the direct jump of the torque to the target torque, thereby causing the vehicle to vibrate and improving the driver's experience.
  • a third embodiment of the present application provides a structural block diagram of a torque adjustment apparatus for a hybrid vehicle, and the apparatus 400 may include:
  • a request torque acquisition module 401 configured to acquire a requested torque of the front axle engine and a requested torque of the rear axle motor
  • the first compensation torque determination module 402 is configured to determine the first compensation torque according to the requested torque of the filtered front axle engine and the actual output torque of the front axle transmission;
  • the target torque determination module 403 is configured to determine a target torque of the rear axle motor based on the first compensation torque and the requested torque of the rear axle motor.
  • a third embodiment of the present application provides a structural block diagram of another torque adjustment device for a hybrid vehicle.
  • the apparatus 400 may further include:
  • the second compensation torque determination module 404 is configured to determine the second compensation torque based on the requested torque of the filtered front axle engine and the requested torque of the front axle engine.
  • the target torque determination module 403 includes:
  • the target torque calculation module 4031 is configured to add the first compensation torque, the second compensation torque, and the requested torque of the rear axle motor to obtain a target torque of the rear axle motor.
  • the first compensation torque determination module 402 includes:
  • the first difference obtaining module 4021 is configured to acquire a first difference between the requested torque of the filtered front axle engine and the actual output torque of the front axle transmission when a shift request is received;
  • the first compensation torque calculation module 4022 is configured to perform a filtering process on the product between the first difference value and the compensation coefficient to obtain a first compensation torque.
  • the second compensation torque determination module 404 includes:
  • a second difference obtaining module 4041 configured to acquire a second difference between the requested torque of the front axle engine and the requested torque of the filtered front axle engine
  • the first determining module 4042 is configured to determine whether the second difference is less than a maximum supporting torque and greater than a minimum supporting torque
  • the second determining module 4043 is configured to determine whether an absolute value of the second difference is less than a dynamic acceptable torque when the second difference is less than a maximum support torque and greater than a minimum support torque;
  • the second compensation torque calculation module 4044 is configured to determine the second difference as the second compensation torque when the absolute value of the second difference is less than the dynamic acceptable torque.
  • the device 400 may further include:
  • the determining module 405 is configured to determine whether the target torque of the rear axle motor is less than the maximum torque of the motor and greater than the minimum torque of the motor;
  • the final torque determining module 406 is configured to filter the target torque of the rear axle motor when the target torque of the rear axle motor is less than the maximum torque of the motor and greater than the minimum torque of the motor, to obtain a final corresponding to the rear axle motor. Torque.
  • the torque adjusting device of the above hybrid vehicle is similar to the torque adjusting method of the above hybrid vehicle, and the related description will not be repeated here.
  • the torque adjusting device of the hybrid vehicle described above has the same advantages as the prior art torque adjusting method of the hybrid vehicle, and details are not described herein again.
  • the embodiment of the present application further provides a computer readable medium storing a computer program for executing the torque adjustment method of the hybrid vehicle as described in the first embodiment.
  • the computer readable medium includes any mechanism for storing or transmitting information in a computer readable form.
  • a computer readable medium includes a read only memory (ROM), a random access memory (RAM), a magnetic disk storage medium, an optical storage medium, a flash storage medium, electricity, light, sound, or Other forms of propagation signals (eg, carrier waves, infrared signals, digital signals, etc.).

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

一种混合动力汽车的扭矩调节方法及装置(400)。调节方法包括:获取前桥发动机的请求扭矩和后桥电机的请求扭矩,根据滤波后的前桥发动机的请求扭矩与前桥变速器的实际输出扭矩,确定第一补偿扭矩,根据第一补偿扭矩与后桥电机的请求扭矩,确定后桥电机的目标扭矩。混合动力汽车的扭矩调节方法,由于前桥变速器在换挡过程中,滤波后的前桥发动机的请求扭矩与前桥变速器的实际输出扭矩之间会存在偏差,将这部分偏差通过后桥电机进行补偿,能够消除影响整车动力性的工况,能够根据整车的状态进行扭矩之间的相互协调,在原有节油的基础上,提高整车的动力性能。

Description

一种混合动力汽车的扭矩调节方法及装置
本申请要求在2017年10月31日提交中国专利局、申请号为201711046632.1、申请名称为“一种混合动力汽车的扭矩调节方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及车辆技术领域,特别涉及一种混合动力汽车的扭矩调节方法及装置。
背景技术
随着能源的日益缺乏和环境污染问题的日益严重,各汽车制造企业把目光转向了纯电动汽车和混合动力汽车,由于纯电动汽车电池技术比能量和比功率尚有待提高,导致纯电动车行驶距离以及售价还不能被大部分消费者所认同,为此,开发混合动力汽车的意义非常重大。
目前,混合动力汽车的主要目的是为了降低整车的燃油消耗,提供整车的动力性能。
但是,在现有的混合动力汽车的扭矩架构中,通常没有考虑影响整车的动力性工况,例如,换挡过程中的扭矩损失等,从而导致整车的动力性较差。
发明内容
有鉴于此,本申请旨在提出一种混合动力汽车的扭矩调节方法,以补偿换挡过程中的扭矩损失,提高整车的动力性能。
为达到上述目的,本申请的技术方案是这样实现的:
一种混合动力汽车的扭矩调节方法,所述混合动力汽车包括前桥的发动机和变速器,以及后桥的电机,所述方法包括:
获取前桥发动机的请求扭矩和后桥电机的请求扭矩;
根据滤波后的前桥发动机的请求扭矩与前桥变速器的实际输出扭矩,确定第一补偿扭矩;
根据所述第一补偿扭矩与所述后桥电机的请求扭矩,确定所述后桥电机的目标扭矩。
优选地,在所述根据所述第一补偿扭矩与所述后桥电机的请求扭矩,确定所述后桥电机的目标扭矩的步骤之前,还包括:
根据所述滤波后的前桥发动机的请求扭矩与所述前桥发动机的请求扭矩,确定第二补偿扭矩。
优选地,所述根据所述第一补偿扭矩与所述后桥电机的请求扭矩,确定所述后桥电机的目标扭矩的步骤,包括:
将所述第一补偿扭矩、所述第二补偿扭矩和所述后桥电机的请求扭矩相加,得到所述后桥电机的目标扭矩。
优选地,所述根据滤波后的前桥发动机的请求扭矩与前桥变速器的实际输出扭矩,确定第一补偿扭矩的步骤,包括:
当接收到换挡请求时,获取所述滤波后的前桥发动机的请求扭矩与所述前桥变速器的实际输出扭矩之间的第一差值;
将所述第一差值与补偿系数之间的乘积进行滤波处理,得到第一补偿扭矩。
优选地,所述根据所述滤波后的前桥发动机的请求扭矩与所述前桥发动机的请求扭矩,确定第二补偿扭矩的步骤,包括:
获取所述前桥发动机的请求扭矩与所述滤波后的前桥发动机的请求扭矩之间的第二差值;
确定所述第二差值是否小于最大支撑扭矩且大于最小支撑扭矩;
当所述第二差值小于最大支撑扭矩且大于最小支撑扭矩时,确定所述第二差值的绝对值是否小于动态可接受扭矩;
当所述第二差值的绝对值小于动态可接受扭矩时,将所述第二差值确定为第二补偿扭矩。
优选地,在所述根据所述第一补偿扭矩与所述后桥电机的请求扭矩,确定所述后桥电机的目标扭矩的步骤之后,还包括:
确定所述后桥电机的目标扭矩是否小于电机最大扭矩且大于电机最小扭矩;
当所述后桥电机的目标扭矩小于电机最大扭矩且大于电机最小扭矩时,对所述后桥电机的目标扭矩进行滤波处理,得到所述后桥电机对应的最终扭矩。
相对于现有技术,本申请所述的混合动力汽车的扭矩调节方法具有以下优势:
(1)本申请所述的混合动力汽车的扭矩调节方法,由于前桥变速器在换挡过程中,滤波后的前桥发动机的请求扭矩与前桥变速器的实际输出扭矩之间会存在偏差,将这部分偏差通过后桥电机进行补偿,能够消除影响整车动力性的工况,能够根据整车的状态进行扭矩之间的相互协调,在原有节油的基础上,提高整车的动力性能。
(2)本申请所述的混合动力汽车的扭矩调节方法,由于在扭矩加载过程中,滤波后的前桥发动机的请求扭矩相对于前桥发动机的请求扭矩来说,会过滤掉部分扭矩,使得滤波后的前桥发动机的请求扭矩与前桥发动机的请求扭矩之间也会存在偏差,这部分偏差会直接影响驾驶员对整车动力性的要求,因此将这部分偏差通过后桥电机进行补偿,能够消除影响整车动力性的工况,能够根据整车的状态进行扭矩之间的相互协调,在原有节油的基础上,提高整车的动力性能。
(3)本申请所述的混合动力汽车的扭矩调节方法,通过对滤波后的前桥发动机的请求扭矩与前桥变速器的实际输出扭矩之间的第一差值,乘以对应的补偿系数,避免驾驶员在实际驾驶过程中存在抖动导致的第一补偿扭矩不准确,精确提高整车的动力性能。
(4)本申请所述的混合动力汽车的扭矩调节方法,通过对后桥电机的目标扭矩进行滤波处理,避免扭矩直接阶跃跳转到目标扭矩导致汽车震动,提高驾驶员的体验效果。
本申请的另一目的在于提出一种混合动力汽车的扭矩调节装置,以补偿换 挡过程中的扭矩损失,提高整车的动力性能。
为达到上述目的,本申请的技术方案是这样实现的:
一种混合动力汽车的扭矩调节装置,包括:
请求扭矩获取模块,配置为获取前桥发动机的请求扭矩和后桥电机的请求扭矩;
第一补偿扭矩确定模块,配置为根据滤波后的前桥发动机的请求扭矩与前桥变速器的实际输出扭矩,确定第一补偿扭矩;
目标扭矩确定模块,配置为根据所述第一补偿扭矩与所述后桥电机的请求扭矩,确定所述后桥电机的目标扭矩。
优选地,所述装置还包括:
第二补偿扭矩确定模块,配置为根据所述滤波后的前桥发动机的请求扭矩与所述前桥发动机的请求扭矩,确定第二补偿扭矩。
优选地,所述目标扭矩确定模块,包括:
目标扭矩计算模块,配置为将所述第一补偿扭矩、所述第二补偿扭矩和所述后桥电机的请求扭矩相加,得到所述后桥电机的目标扭矩。
优选地,所述第一补偿扭矩确定模块,包括:
第一差值获取模块,配置为当接收到换挡请求时,获取所述滤波后的前桥发动机的请求扭矩与所述前桥变速器的实际输出扭矩之间的第一差值;
第一补偿扭矩计算模块,配置为将所述第一差值与补偿系数之间的乘积进行滤波处理,得到第一补偿扭矩。
优选地,所述第二补偿扭矩确定模块,包括:
第二差值获取模块,配置为获取所述前桥发动机的请求扭矩与所述滤波后的前桥发动机的请求扭矩之间的第二差值;
第一判断模块,配置为确定所述第二差值是否小于最大支撑扭矩且大于最小支撑扭矩;
第二判断模块,配置为当所述第二差值小于最大支撑扭矩且大于最小支撑扭矩时,确定所述第二差值的绝对值是否小于动态可接受扭矩;
第二补偿扭矩计算模块,配置为当所述第二差值的绝对值小于动态可接受扭矩时,将所述第二差值确定为第二补偿扭矩。
优选地,所述装置还包括:
判断模块,配置为确定所述后桥电机的目标扭矩是否小于电机最大扭矩且大于电机最小扭矩;
最终扭矩确定模块,配置为当所述后桥电机的目标扭矩小于电机最大扭矩且大于电机最小扭矩时,对所述后桥电机的目标扭矩进行滤波处理,得到所述后桥电机对应的最终扭矩。
所述混合动力汽车的扭矩调节装置与上述混合动力汽车的扭矩调节方法相对于现有技术所具有的优势相同,在此不再赘述。
本申请的另一目的在于提出一种计算机可读介质,其中存储了用于执行上述的混合动力汽车的扭矩调节方法的计算机程序,以补偿换挡过程中的扭矩损失,提高整车的动力性能。
附图说明
构成本申请的一部分的附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1为本申请实施例一所述的一种混合动力汽车的扭矩调节方法的流程图;
图2为本申请实施例二所述的一种混合动力汽车的扭矩调节方法的流程图;
图3为本申请实施例二所述的第一补偿扭矩的计算流程示意图;
图4为本申请实施例三所述的一种混合动力汽车的扭矩调节装置的结构框图;
图5为本申请实施例三所述的另一种混合动力汽车的扭矩调节装置的结构框图。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
下面将参考附图并结合实施例来详细说明本申请。
本申请实施例所述的混合动力汽车包括前桥的发动机和变速器,以及后桥的电机。
实施例一
参照图1所示,本申请实施例一提供了一种混合动力汽车的扭矩调节方法的流程图,具体可以包括如下步骤:
步骤101,获取前桥发动机的请求扭矩和后桥电机的请求扭矩。
在本申请实施例中,通过检测混合动力汽车当前的车速和加速踏板的开度,确定整车请求扭矩,然后将整车请求扭矩合理地分配给前桥的发动机和后桥的电机。
此时,需要检测前桥发动机和后桥电机的工作状态,根据整车请求扭矩、以及前桥发动机和后桥电机的工作状态,确定前桥发动机的请求扭矩和后桥电机的请求扭矩。
例如,当后桥电机对应的电池量大于预设量时,相应增大后桥电机的请求扭矩的分配比例;当后桥电机对应的电池量小于预设量时,相应减小后桥电机的请求扭矩的分配比例;当前桥发动机的负载低于预设负载时,相应增大前桥发动机的请求扭矩的分配比例;当前桥发动机的负载高于预设负载时,相应减小前桥发动机的请求扭矩的分配比例;当前桥发动机的效率低于最高效率时,相应增大前桥发动机的请求扭矩的分配比例。
将整车请求扭矩合理地分配给前桥的发动机和后桥的电机后,获取前桥发动机的请求扭矩和后桥电机的请求扭矩。
本申请实施例所述的混合动力汽车还包括前桥的BSG(Belt Driven Starter Generator,皮带启动传动发电机)电机,BSG电机与前桥发动机连接,在车辆起步阶段,BSG电机快速启动前桥发动机,实现前桥发动机的自动启停,相对于前桥发动机直接启动来说,由BSG电机启动前桥发动机能够有效降低功耗和 改善排放;当前桥发动机正常运转后,BSG电机不再参与整车的动力驱动。
步骤102,根据滤波后的前桥发动机的请求扭矩与前桥变速器的实际输出扭矩,确定第一补偿扭矩。
在本申请实施例中,在实际应用中,需要对前桥发动机的请求扭矩进行滤波处理,得到滤波后的前桥发动机的请求扭矩。
例如,若需要将前桥发动机的请求扭矩从500Nm提升至1000Nm时,在实际应用中,为了避免扭矩直接跳转导致汽车震动,不会直接将前桥发动机的请求扭矩从500Nm跳转至1000Nm,而是在一定时间段内将前桥发动机的请求扭矩逐步从500Nm提升至1000Nm,可以在1s内将前桥发动机的请求扭矩提升100Nm,则在5s内,滤波后的前桥发动机的请求扭矩分别为500Nm→600Nm→700Nm→800Nm→900Nm→1000Nm。
变速器在换挡过程中,由于存在离合器的中断以及在扭矩计算过程中存在滞后,所以滤波后的前桥发动机的请求扭矩与前桥变速器的实际输出扭矩之间会存在偏差,根据滤波后的前桥发动机的请求扭矩与前桥变速器的实际输出扭矩,确定需要进行补偿的第一补偿扭矩。
步骤103,根据所述第一补偿扭矩与所述后桥电机的请求扭矩,确定所述后桥电机的目标扭矩。
在本申请实施例中,将需要进行补偿的第一补偿扭矩通过后桥电机进行补偿,在实际应用中,后桥电机还需要提供汽车的部分动力性,根据第一补偿扭矩与分配的后桥电机的请求扭矩,确定后桥电机的目标扭矩。后桥电机的目标扭矩为后桥电机实际需要提供的扭矩。
相对于现有技术,本申请所述的混合动力汽车的扭矩调节方法具有如下优势:
本申请所述的混合动力汽车的扭矩调节方法,由于前桥变速器在换挡过程中,滤波后的前桥发动机的请求扭矩与前桥变速器的实际输出扭矩之间会存在偏差,将这部分偏差通过后桥电机进行补偿,能够消除影响整车动力性的工况,能够根据整车的状态进行扭矩之间的相互协调,在原有节油的基础上,提高整 车的动力性能。
实施例二
参照图2所示,本申请实施例二提供了一种混合动力汽车的扭矩调节方法的流程图,具体可以包括如下步骤:
步骤201,获取前桥发动机的请求扭矩和后桥电机的请求扭矩。
此步骤与实施例一中的步骤101原理类似,在此不再详述。
步骤202,根据滤波后的前桥发动机的请求扭矩与前桥变速器的实际输出扭矩,确定第一补偿扭矩。
在本申请实施例中,变速器在换挡过程中,由于变速器扭矩干涉,所以滤波后的前桥发动机的请求扭矩与前桥变速器的实际输出扭矩之间会存在偏差,根据滤波后的前桥发动机的请求扭矩与前桥变速器的实际输出扭矩,确定需要进行补偿的第一补偿扭矩。
具体的,当接收到换挡请求时,获取所述滤波后的前桥发动机的请求扭矩与所述前桥变速器的实际输出扭矩之间的第一差值;将所述第一差值与补偿系数之间的乘积进行滤波处理,得到第一补偿扭矩。
图3示出了本申请实施例二所述的第一补偿扭矩的计算流程示意图。
当整车没有换挡请求时,换挡标识位为0,则第一补偿扭矩为0Nm;当整车有换挡请求时,换挡标识位为1,整车请求扭矩需要跟随前桥变速器的干涉扭矩,且前桥变速器的实际输出扭矩应该与前桥变速器的干涉扭矩一致,但是由于前桥变速器在换挡过程中,存在离合器的中断以及在扭矩计算过程中存在滞后,所以在前桥变速器换挡过程中,将滤波后的前桥发动机的请求扭矩减去前桥变速器的实际输出扭矩,得到滤波后的前桥发动机的请求扭矩与前桥变速器的实际输出扭矩之间的第一差值。
由于驾驶员在实际驾驶过程中可能会存在抖动,因此,需要对第一差值乘以一个补偿系数,得到对应的换挡补偿扭矩;在实际应用中,为了避免换挡补偿扭矩直接跳转导致汽车震动,还需要对换挡补偿扭矩进行滤波处理,得到第 一补偿扭矩。
需要说明的是,补偿系数为标定值,对于不同型号的车辆,补偿系数表不同,预先针对每一种型号的车辆,测量不同车速和/或整车请求扭矩状态下对应的补偿系数,从而形成不同型号车辆对应的补偿系数表。当确定了车辆的车速和整车请求扭矩时,从该车辆型号对应的补偿系数表中,根据车辆的车速和整车请求扭矩查找对应的补偿系数。
步骤203,根据所述滤波后的前桥发动机的请求扭矩与所述前桥发动机的请求扭矩,确定第二补偿扭矩。
在本申请实施例中,由于在扭矩加载过程中,滤波后的前桥发动机的请求扭矩相对于前桥发动机的请求扭矩来说,会过滤掉部分扭矩,使得滤波后的前桥发动机的请求扭矩与前桥发动机的请求扭矩之间存在偏差,为了能够最大限度的满足驾驶员对整车动力性的要求,根据滤波后的前桥发动机的请求扭矩与前桥发动机的请求扭矩,确定需要进行补偿的第二补偿扭矩。
具体的,获取所述前桥发动机的请求扭矩与所述滤波后的前桥发动机的请求扭矩之间的第二差值;确定所述第二差值是否小于最大支撑扭矩且大于最小支撑扭矩;当所述第二差值小于最大支撑扭矩且大于最小支撑扭矩时,确定所述第二差值的绝对值是否小于动态可接受扭矩;当所述第二差值的绝对值小于动态可接受扭矩时,将所述第二差值确定为第二补偿扭矩。
驾驶员可以控制加速踏板的开度,当加速踏板的开度有变化时,对应的前桥发动机的扭矩也会发生变化,为了避免扭矩直接跳转导致汽车震动,相应的,滤波后的前桥发动机的请求扭矩也会发生变化。
在扭矩加载过程中,将前桥发动机的请求扭矩减去滤波后的前桥发动机的请求扭矩,得到前桥发动机的请求扭矩与滤波后的前桥发动机的请求扭矩之间的第二差值。
例如,当加速踏板的开度从30%变化至40%时,前桥发动机的请求扭矩需要从当前的1000Nm变化至2000Nm,但是在实际应用中,为了避免扭矩直接跳转导致汽车震动,不会直接将前桥发动机的请求扭矩从1000Nm跳转至 2000Nm,而是在一定时间段内将前桥发动机的请求扭矩逐步从1000Nm提升至2000Nm,若在10s内将前桥发动机的请求扭矩逐步从1000Nm提升至2000Nm,当在第5s时,对应的滤波后的前桥发动机的请求扭矩为1600Nm,则相对于前桥发动机的请求扭矩2000Nm,第二差值为400Nm。
在计算得到第二差值后,判断第二差值是否小于最大支撑扭矩且大于最小支撑扭矩,当第二差值小于最大支撑扭矩且大于最小支撑扭矩时,确定第二差值的绝对值是否小于动态可接受扭矩,当第二差值的绝对值小于动态可接受扭矩时,将第二差值确定为第二补偿扭矩,当第二差值的绝对值大于或等于动态可接受扭矩时,则第二补偿扭矩为0Nm。
其中,最大支撑扭矩、最小支撑扭矩和动态可接受扭矩均为标定值。
最大支撑扭矩和最小支撑扭矩根据后桥电机对应的电池温度、电池剩余电量、当前环境温度、加速踏板开度等进行标定;当第二差值大于最大支撑扭矩,或者第二差值小于最小支撑扭矩时,则无需对扭矩加载过程中的扭矩损失进行补偿,对应的第二补偿扭矩为0Nm。
预先测量不同车速和/或前桥发动机的请求扭矩状态下对应的动态可接受扭矩,从而形成动态可接受扭矩表,当确定了车辆的车速和前桥发动机的请求扭矩时,从动态可接受扭矩表中,根据车辆的车速和前桥发动机的请求扭矩查找对应的动态可接受扭矩。
由于在扭矩加载过程中,前桥发动机的请求扭矩可以从高变低,也可以从低变高,当前桥发动机的请求扭矩从低变高时,前桥发动机的请求扭矩减去滤波后的前桥发动机的请求扭矩得到的第二差值为正数,当前桥发动机的请求扭矩从高变低,前桥发动机的请求扭矩减去滤波后的前桥发动机的请求扭矩得到的第二差值为负数,而动态可接受扭矩表中的动态可接受扭矩均为正数,因此,需要对第二差值取绝对值,将第二差值的绝对值与动态可接受扭矩进行对比。
步骤204,将所述第一补偿扭矩、所述第二补偿扭矩和所述后桥电机的请求扭矩相加,得到所述后桥电机的目标扭矩。
在本申请实施例中,将计算得到的第一补偿扭矩、第二补偿扭矩,以及为 后桥电机分配的后桥电机的请求扭矩相加,得到后桥电机的目标扭矩。
步骤205,确定所述后桥电机的目标扭矩是否小于电机最大扭矩且大于电机最小扭矩。
在本申请实施例中,在计算得到后桥电机的目标扭矩后,还需要判断后桥电机的目标扭矩是否小于电机最大扭矩且大于电机最小扭矩。
电机最大扭矩和电机最小扭矩分别表示后桥电机能够输出的最大扭矩和最小扭矩,只有在后桥电机能够承受的范围内,才能对换挡过程中和扭矩加载过程中的扭矩损失进行补偿。
步骤206,当所述后桥电机的目标扭矩小于电机最大扭矩且大于电机最小扭矩时,对所述后桥电机的目标扭矩进行滤波处理,得到所述后桥电机对应的最终扭矩。
在实际应用中,当后桥电机的目标扭矩小于电机最大扭矩且大于电机最小扭矩时,为了避免扭矩直接阶跃跳转到目标扭矩导致汽车震动,需要对后桥电机的目标扭矩进行滤波处理,得到后桥电机对应的最终扭矩,也就是后桥电机的实际输出扭矩。
当后桥电机对应的最终扭矩等于后桥电机的目标扭矩时,后桥电机的扭矩变化过程结束,相应的,滤波处理过程也结束。
相对于现有技术,本申请所述的混合动力汽车的扭矩调节方法具有如下优势:
(1)本申请所述的混合动力汽车的扭矩调节方法,由于前桥变速器在换挡过程中,滤波后的前桥发动机的请求扭矩与前桥变速器的实际输出扭矩之间会存在偏差,将这部分偏差通过后桥电机进行补偿,能够消除影响整车动力性的工况,能够根据整车的状态进行扭矩之间的相互协调,在原有节油的基础上,提高整车的动力性能。
(2)本申请所述的混合动力汽车的扭矩调节方法,由于在扭矩加载过程中,滤波后的前桥发动机的请求扭矩相对于前桥发动机的请求扭矩来说,会过滤掉部分扭矩,使得滤波后的前桥发动机的请求扭矩与前桥发动机的请求扭矩之间 也会存在偏差,这部分偏差会直接影响驾驶员对整车动力性的要求,因此将这部分偏差通过后桥电机进行补偿,能够消除影响整车动力性的工况,能够根据整车的状态进行扭矩之间的相互协调,在原有节油的基础上,提高整车的动力性能。
(3)本申请所述的混合动力汽车的扭矩调节方法,通过对滤波后的前桥发动机的请求扭矩与前桥变速器的实际输出扭矩之间的第一差值,乘以对应的补偿系数,避免驾驶员在实际驾驶过程中存在抖动导致的第一补偿扭矩不准确,精确提高整车的动力性能。
(4)本申请所述的混合动力汽车的扭矩调节方法,通过对后桥电机的目标扭矩进行滤波处理,避免扭矩直接阶跃跳转到目标扭矩导致汽车震动,提高驾驶员的体验效果。
实施例三
参照图4所示,本申请实施例三提供了一种混合动力汽车的扭矩调节装置的结构框图,所述装置400可以包括:
请求扭矩获取模块401,配置为获取前桥发动机的请求扭矩和后桥电机的请求扭矩;
第一补偿扭矩确定模块402,配置为根据滤波后的前桥发动机的请求扭矩与前桥变速器的实际输出扭矩,确定第一补偿扭矩;
目标扭矩确定模块403,配置为根据所述第一补偿扭矩与所述后桥电机的请求扭矩,确定所述后桥电机的目标扭矩。
参照图5所示,本申请实施例三提供了另一种混合动力汽车的扭矩调节装置的结构框图。
在图4的基础上,优选地,所述装置400还可以包括:
第二补偿扭矩确定模块404,配置为根据所述滤波后的前桥发动机的请求扭矩与所述前桥发动机的请求扭矩,确定第二补偿扭矩。
优选地,所述目标扭矩确定模块403,包括:
目标扭矩计算模块4031,配置为将所述第一补偿扭矩、所述第二补偿扭矩和所述后桥电机的请求扭矩相加,得到所述后桥电机的目标扭矩。
优选地,所述第一补偿扭矩确定模块402,包括:
第一差值获取模块4021,配置为当接收到换挡请求时,获取所述滤波后的前桥发动机的请求扭矩与所述前桥变速器的实际输出扭矩之间的第一差值;
第一补偿扭矩计算模块4022,配置为将所述第一差值与补偿系数之间的乘积进行滤波处理,得到第一补偿扭矩。
优选地,所述第二补偿扭矩确定模块404,包括:
第二差值获取模块4041,配置为获取所述前桥发动机的请求扭矩与所述滤波后的前桥发动机的请求扭矩之间的第二差值;
第一判断模块4042,配置为确定所述第二差值是否小于最大支撑扭矩且大于最小支撑扭矩;
第二判断模块4043,配置为当所述第二差值小于最大支撑扭矩且大于最小支撑扭矩时,确定所述第二差值的绝对值是否小于动态可接受扭矩;
第二补偿扭矩计算模块4044,配置为当所述第二差值的绝对值小于动态可接受扭矩时,将所述第二差值确定为第二补偿扭矩。
优选地,所述装置400还可以包括:
判断模块405,配置为确定所述后桥电机的目标扭矩是否小于电机最大扭矩且大于电机最小扭矩;
最终扭矩确定模块406,配置为当所述后桥电机的目标扭矩小于电机最大扭矩且大于电机最小扭矩时,对所述后桥电机的目标扭矩进行滤波处理,得到所述后桥电机对应的最终扭矩。
上述混合动力汽车的扭矩调节装置与上述混合动力汽车的扭矩调节方法类似,相关描述这里不再赘述。
上述混合动力汽车的扭矩调节装置与上述混合动力汽车的扭矩调节方法现有技术所具有的优势相同,在此不再赘述。
本申请实施例还提供了一种计算机可读介质,其中存储了用于执行如实施 例一所述的混合动力汽车的扭矩调节方法的计算机程序。
所述计算机可读介质包括用于以计算机可读的形式存储或传送信息的任何机制。例如,计算机可读介质包括只读存储器(Read Only Memory Image,ROM)、随机存取存储器(Random Access Memory,RAM)、磁盘存储介质、光存储介质、闪速存储介质、电、光、声或其他形式的传播信号(例如,载波、红外信号、数字信号等)等。
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (11)

  1. 一种混合动力汽车的扭矩调节方法,其特征在于,所述混合动力汽车包括前桥的发动机和变速器,以及后桥的电机,所述方法包括:
    获取前桥发动机的请求扭矩和后桥电机的请求扭矩;
    根据滤波后的前桥发动机的请求扭矩与前桥变速器的实际输出扭矩,确定第一补偿扭矩;
    根据所述第一补偿扭矩与所述后桥电机的请求扭矩,确定所述后桥电机的目标扭矩。
  2. 根据权利要求1所述的方法,其特征在于,在所述根据所述第一补偿扭矩与所述后桥电机的请求扭矩,确定所述后桥电机的目标扭矩的步骤之前,还包括:
    根据所述滤波后的前桥发动机的请求扭矩与所述前桥发动机的请求扭矩,确定第二补偿扭矩。
  3. 根据权利要求2所述的方法,其特征在于,所述根据所述第一补偿扭矩与所述后桥电机的请求扭矩,确定所述后桥电机的目标扭矩的步骤,包括:
    将所述第一补偿扭矩、所述第二补偿扭矩和所述后桥电机的请求扭矩相加,得到所述后桥电机的目标扭矩。
  4. 根据权利要求1所述的方法,其特征在于,所述根据滤波后的前桥发动机的请求扭矩与前桥变速器的实际输出扭矩,确定第一补偿扭矩的步骤,包括:
    当接收到换挡请求时,获取所述滤波后的前桥发动机的请求扭矩与所述前桥变速器的实际输出扭矩之间的第一差值;
    将所述第一差值与补偿系数之间的乘积进行滤波处理,得到第一补偿扭矩。
  5. 根据权利要求2所述的方法,其特征在于,所述根据所述滤波后的前桥发动机的请求扭矩与所述前桥发动机的请求扭矩,确定第二补偿扭矩的步骤,包括:
    获取所述前桥发动机的请求扭矩与所述滤波后的前桥发动机的请求扭矩之 间的第二差值;
    确定所述第二差值是否小于最大支撑扭矩且大于最小支撑扭矩;
    当所述第二差值小于最大支撑扭矩且大于最小支撑扭矩时,确定所述第二差值的绝对值是否小于动态可接受扭矩;
    当所述第二差值的绝对值小于动态可接受扭矩时,将所述第二差值确定为第二补偿扭矩。
  6. 根据权利要求1所述的方法,其特征在于,在所述根据所述第一补偿扭矩与所述后桥电机的请求扭矩,确定所述后桥电机的目标扭矩的步骤之后,还包括:
    确定所述后桥电机的目标扭矩是否小于电机最大扭矩且大于电机最小扭矩;
    当所述后桥电机的目标扭矩小于电机最大扭矩且大于电机最小扭矩时,对所述后桥电机的目标扭矩进行滤波处理,得到所述后桥电机对应的最终扭矩。
  7. 一种混合动力汽车的扭矩调节装置,其特征在于,包括:
    请求扭矩获取模块,配置为获取前桥发动机的请求扭矩和后桥电机的请求扭矩;
    第一补偿扭矩确定模块,配置为根据滤波后的前桥发动机的请求扭矩与前桥变速器的实际输出扭矩,确定第一补偿扭矩;
    目标扭矩确定模块,配置为根据所述第一补偿扭矩与所述后桥电机的请求扭矩,确定所述后桥电机的目标扭矩。
  8. 根据权利要求7所述的装置,其特征在于,还包括:
    第二补偿扭矩确定模块,配置为根据所述滤波后的前桥发动机的请求扭矩与所述前桥发动机的请求扭矩,确定第二补偿扭矩。
  9. 根据权利要求8所述的装置,其特征在于,所述目标扭矩确定模块,包括:
    目标扭矩计算模块,配置为将所述第一补偿扭矩、所述第二补偿扭矩和所述后桥电机的请求扭矩相加,得到所述后桥电机的目标扭矩。
  10. 根据权利要求7所述的装置,其特征在于,所述第一补偿扭矩确定模 块,包括:
    第一差值获取模块,配置为当接收到换挡请求时,获取所述滤波后的前桥发动机的请求扭矩与所述前桥变速器的实际输出扭矩之间的第一差值;
    第一补偿扭矩计算模块,配置为将所述第一差值与补偿系数之间的乘积进行滤波处理,得到第一补偿扭矩。
  11. 一种计算机可读介质,其中存储了用于执行如权利要求1所述的混合动力汽车的扭矩调节方法的计算机程序。
PCT/CN2018/112773 2017-10-31 2018-10-30 一种混合动力汽车的扭矩调节方法及装置 WO2019085909A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18872361.3A EP3677482B1 (en) 2017-10-31 2018-10-30 Hybrid vehicle torque adjusting method and device
US16/760,615 US11603089B2 (en) 2017-10-31 2018-10-30 Hybrid vehicle torque adjusting method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711046632.1A CN109720331A (zh) 2017-10-31 2017-10-31 一种混合动力汽车的扭矩调节方法及装置
CN201711046632.1 2017-10-31

Publications (1)

Publication Number Publication Date
WO2019085909A1 true WO2019085909A1 (zh) 2019-05-09

Family

ID=66294429

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/112773 WO2019085909A1 (zh) 2017-10-31 2018-10-30 一种混合动力汽车的扭矩调节方法及装置

Country Status (4)

Country Link
US (1) US11603089B2 (zh)
EP (1) EP3677482B1 (zh)
CN (1) CN109720331A (zh)
WO (1) WO2019085909A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114312345A (zh) * 2021-10-26 2022-04-12 浙江零跑科技股份有限公司 一种四驱纯电动车前后轴扭矩动态平滑补偿分配控制方法
CN114435148A (zh) * 2022-03-23 2022-05-06 东风汽车集团股份有限公司 一种电机扭矩的调整方法、装置及电子设备
CN114633634A (zh) * 2022-02-24 2022-06-17 一汽解放汽车有限公司 电机摘档控制方法、装置、计算机设备和存储介质
GB2594292B (en) * 2020-04-21 2022-10-26 Jaguar Land Rover Ltd Torque request modification strategies for vehicles

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111976708B (zh) * 2019-05-24 2022-02-01 北京车和家信息技术有限公司 发电机控制方法、装置、车辆及计算机可读存储介质
CN110171425B (zh) * 2019-05-24 2020-11-06 海博瑞德(北京)汽车技术有限公司 混合动力汽车amt换挡过程动力中断补偿控制方法
CN112572406B (zh) * 2019-09-27 2022-06-10 比亚迪股份有限公司 控制车辆的方法、装置、存储介质及车辆
CN110843763B (zh) * 2019-11-28 2021-03-30 安徽江淮汽车集团股份有限公司 变速箱的换档控制方法、装置和可读存储介质
CN113043913B (zh) * 2019-12-27 2022-07-19 长城汽车股份有限公司 混动汽车的低温控制方法和装置
GB2594281B (en) * 2020-04-21 2022-10-26 Jaguar Land Rover Ltd Compensation method for shortfall of engine torque
KR20220048509A (ko) * 2020-10-12 2022-04-20 현대자동차주식회사 하이브리드 자동차 및 그 제어 방법
CN112644453B (zh) * 2020-12-28 2021-12-10 长城汽车股份有限公司 混动车辆扭矩控制方法、装置、存储介质及电子设备
CN114714919B (zh) * 2021-01-05 2024-03-26 广汽埃安新能源汽车有限公司 一种纯电动四驱车辆扭矩驾驶性滤波方法和装置
CN115465253A (zh) * 2021-01-13 2022-12-13 浙江吉利控股集团有限公司 车辆的控制方法及控制系统
CN113580951A (zh) * 2021-07-09 2021-11-02 武汉格罗夫氢能汽车有限公司 一种氢能源汽车电机扭矩加载方法及装置
KR20230055427A (ko) * 2021-10-18 2023-04-26 현대자동차주식회사 하이브리드 자동차 및 그를 위한 모터 제어 방법
CN114347974B (zh) * 2022-01-24 2023-12-19 神龙汽车有限公司 混合动力汽车制动扭矩控制方法、存储介质
CN115214599A (zh) * 2022-03-10 2022-10-21 长城汽车股份有限公司 四驱混动车辆控制方法、装置及车辆
CN115476701B (zh) * 2022-10-17 2024-06-18 潍柴动力股份有限公司 一种电机扭矩确定方法及装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101066674A (zh) * 2007-02-09 2007-11-07 联合汽车电子有限公司 混合动力汽车的扭矩控制安全监控系统的架构及系统
CN201592648U (zh) * 2010-01-28 2010-09-29 上海海马汽车研发有限公司 混合动力汽车的动力组件
CN101982360A (zh) * 2010-11-08 2011-03-02 苏州海格新能源汽车电控系统科技有限公司 一种混合动力系统汽车的动态转矩协调方法
CN102381311A (zh) * 2011-09-27 2012-03-21 奇瑞汽车股份有限公司 一种四驱强混汽车amt协调控制方法及其系统
CN105774799A (zh) * 2016-04-22 2016-07-20 北京新能源汽车股份有限公司 混合动力汽车的扭矩补偿方法及系统
CN106553634A (zh) * 2015-09-28 2017-04-05 长城汽车股份有限公司 通过bsg电机启动发动机的控制方法、系统及车辆
JP2017177877A (ja) * 2016-03-28 2017-10-05 トヨタ自動車株式会社 ハイブリッド自動車

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000299904A (ja) * 1999-04-13 2000-10-24 Fuji Heavy Ind Ltd ハイブリッド車
FR2907409B1 (fr) * 2006-10-23 2009-06-05 Peugeot Citroen Automobiles Sa Procede et dispositif de compensation d'interruption du couple fourni par le groupe motopropulseur d'un vehicule hybride au cours d'un changement de vitesse.
FR2935660B1 (fr) * 2008-09-08 2011-05-20 Peugeot Citroen Automobiles Sa Procede et dispositif de compensation de rupture du couple fourni par le groupe motopropulseur d'un vehicule hybride au cours d'un changement de vitesse
GB2468630B (en) * 2009-03-10 2015-11-18 Gm Global Tech Operations Inc Controller for reducing torque pulsation
DE102010015424B4 (de) 2010-04-19 2016-02-18 Audi Ag Antriebsvorrichtung für ein allradgetriebenes Fahrzeug
DE102013016756B4 (de) * 2013-10-10 2015-07-09 Audi Ag Verfahren zum Betreiben eines Triebstrangs für einen allradbetreibbaren Kraftwagen
US9168914B2 (en) * 2014-01-14 2015-10-27 Ford Global Technologies, Llc Vehicle engine and electric machine control
CN104828087B (zh) 2014-11-24 2017-08-04 北汽福田汽车股份有限公司 四驱车辆的前后轴驱动力调节控制方法、系统和四驱车辆
KR101619663B1 (ko) * 2014-12-09 2016-05-18 현대자동차주식회사 하이브리드 차량의 능동형 진동 저감 제어장치 및 그 방법
FR3035843B1 (fr) 2015-05-04 2017-05-19 Peugeot Citroen Automobiles Sa Procede de gestion des pentes de l’agrement preventif en deceleration
CN106696945B (zh) * 2015-07-16 2019-09-03 广州汽车集团股份有限公司 一种防止混合动力汽车中bsg电机传动皮带打滑的方法
CN106800019B (zh) * 2015-11-20 2019-11-01 上海汽车集团股份有限公司 一种hcu及扭矩补偿的控制方法
CN106476643A (zh) * 2016-10-25 2017-03-08 湖南大学 一种增程式电动汽车的电量轨迹规划系统及控制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101066674A (zh) * 2007-02-09 2007-11-07 联合汽车电子有限公司 混合动力汽车的扭矩控制安全监控系统的架构及系统
CN201592648U (zh) * 2010-01-28 2010-09-29 上海海马汽车研发有限公司 混合动力汽车的动力组件
CN101982360A (zh) * 2010-11-08 2011-03-02 苏州海格新能源汽车电控系统科技有限公司 一种混合动力系统汽车的动态转矩协调方法
CN102381311A (zh) * 2011-09-27 2012-03-21 奇瑞汽车股份有限公司 一种四驱强混汽车amt协调控制方法及其系统
CN106553634A (zh) * 2015-09-28 2017-04-05 长城汽车股份有限公司 通过bsg电机启动发动机的控制方法、系统及车辆
JP2017177877A (ja) * 2016-03-28 2017-10-05 トヨタ自動車株式会社 ハイブリッド自動車
CN105774799A (zh) * 2016-04-22 2016-07-20 北京新能源汽车股份有限公司 混合动力汽车的扭矩补偿方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3677482A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2594292B (en) * 2020-04-21 2022-10-26 Jaguar Land Rover Ltd Torque request modification strategies for vehicles
CN114312345A (zh) * 2021-10-26 2022-04-12 浙江零跑科技股份有限公司 一种四驱纯电动车前后轴扭矩动态平滑补偿分配控制方法
CN114312345B (zh) * 2021-10-26 2024-02-13 浙江零跑科技股份有限公司 一种四驱纯电动车前后轴扭矩动态平滑补偿分配控制方法
CN114633634A (zh) * 2022-02-24 2022-06-17 一汽解放汽车有限公司 电机摘档控制方法、装置、计算机设备和存储介质
CN114633634B (zh) * 2022-02-24 2023-08-18 一汽解放汽车有限公司 电机摘档控制方法、装置、计算机设备和存储介质
CN114435148A (zh) * 2022-03-23 2022-05-06 东风汽车集团股份有限公司 一种电机扭矩的调整方法、装置及电子设备
CN114435148B (zh) * 2022-03-23 2023-08-15 东风汽车集团股份有限公司 一种电机扭矩的调整方法、装置及电子设备

Also Published As

Publication number Publication date
EP3677482A1 (en) 2020-07-08
EP3677482B1 (en) 2023-04-05
CN109720331A (zh) 2019-05-07
US20200346635A1 (en) 2020-11-05
EP3677482A4 (en) 2020-12-02
US11603089B2 (en) 2023-03-14

Similar Documents

Publication Publication Date Title
WO2019085909A1 (zh) 一种混合动力汽车的扭矩调节方法及装置
CN105844061B (zh) 生成换挡map的方法和装置
US20120309585A1 (en) Method and apparatus for executing a transmission shift in a powertrain system including a torque machine and an engine
EP4108503B1 (en) Motor torque filtering control method and system, and hybrid vehicle
CN104071152A (zh) 一种利用坡度传感器调整整车动力的补偿方法
JP2012116457A (ja) ハイブリッド車両の加速トルク制御方法及び装置
KR100829311B1 (ko) 하이브리드 전기자동차의 변속중 토크 저감 제어 방법
CN112265535B (zh) 一种扭矩的确定方法、装置、设备和存储介质
JP2022077768A (ja) ハイブリッド車両のエンジン失火検出装置
CN113682291A (zh) 一种离合器控制方法、系统、电子设备及存储介质
CN104044576B (zh) 混合动力车辆
CN110962855A (zh) 一种增程式汽车发动机扭矩控制系统及其方法
CN107891864B (zh) 并联混合动力系统的等效油电折算系数获取方法及装置
JP2015528278A (ja) 回転速度及び加速ペダルの押下げの関数として自動車両のトラクションモーターのトルクを制御するためのシステム及び方法
WO2023169321A1 (zh) 发动机负载点分配控制方法、装置、存储介质及车辆
CN108909528B (zh) 一种p2架构混动怠速控制方法
CN108583560B (zh) 一种混合动力车辆的电机发电控制方法及系统
WO2016097522A1 (fr) Procede de determination de la consommation de carburant d'un groupe motopropulseur thermique de puissance equivalente a celle d'un groupe motopropulseur hybride
CN112896139B (zh) 混动汽车用能量管理方法
CN112606815B (zh) 一种混合动力车辆电机储备扭矩的确定方法、装置及车辆
CN111717208B (zh) 扭矩补偿方法及系统、混合动力汽车及机器可读存储介质
WO2024187986A1 (zh) 混动车辆的目标驱动模式判定方法、装置、车辆、介质及设备
CN115946694A (zh) 蠕行控制方法、装置及车辆
Jun et al. Mode transition dynamic control for dual-motor hybrid driving system
CN115434817B (zh) 一种发动机扭矩控制方法、装置、电子设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18872361

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018872361

Country of ref document: EP

Effective date: 20200330

NENP Non-entry into the national phase

Ref country code: DE