WO2016097522A1 - Procede de determination de la consommation de carburant d'un groupe motopropulseur thermique de puissance equivalente a celle d'un groupe motopropulseur hybride - Google Patents

Procede de determination de la consommation de carburant d'un groupe motopropulseur thermique de puissance equivalente a celle d'un groupe motopropulseur hybride Download PDF

Info

Publication number
WO2016097522A1
WO2016097522A1 PCT/FR2015/053283 FR2015053283W WO2016097522A1 WO 2016097522 A1 WO2016097522 A1 WO 2016097522A1 FR 2015053283 W FR2015053283 W FR 2015053283W WO 2016097522 A1 WO2016097522 A1 WO 2016097522A1
Authority
WO
WIPO (PCT)
Prior art keywords
equivalent
consumption
vehicle
hybrid vehicle
torque
Prior art date
Application number
PCT/FR2015/053283
Other languages
English (en)
Inventor
Loïc LE ROY
Jean-Martin RUEL
Original Assignee
Renault S.A.S
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault S.A.S filed Critical Renault S.A.S
Publication of WO2016097522A1 publication Critical patent/WO2016097522A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/12Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to parameters of the vehicle itself, e.g. tyre models
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2409Addressing techniques specially adapted therefor
    • F02D41/2422Selective use of one or more tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F9/00Measuring volume flow relative to another variable, e.g. of liquid fuel for an engine
    • G01F9/001Measuring volume flow relative to another variable, e.g. of liquid fuel for an engine with electric, electro-mechanic or electronic means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0019Control system elements or transfer functions
    • B60W2050/0026Lookup tables or parameter maps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0019Control system elements or transfer functions
    • B60W2050/0028Mathematical models, e.g. for simulation
    • B60W2050/0037Mathematical models of vehicle sub-units
    • B60W2050/0039Mathematical models of vehicle sub-units of the propulsion unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0019Control system elements or transfer functions
    • B60W2050/0028Mathematical models, e.g. for simulation
    • B60W2050/0037Mathematical models of vehicle sub-units
    • B60W2050/0041Mathematical models of vehicle sub-units of the drive line
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0062Adapting control system settings
    • B60W2050/0075Automatic parameter input, automatic initialising or calibrating means
    • B60W2050/0083Setting, resetting, calibration
    • B60W2050/0088Adaptive recalibration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0614Position of fuel or air injector
    • B60W2510/0623Fuel flow rate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0638Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0657Engine torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0666Engine power
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/08Electric propulsion units
    • B60W2510/083Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/08Electric propulsion units
    • B60W2510/085Power
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/30Auxiliary equipments
    • B60W2510/305Power absorbed by auxiliaries
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0625Fuel consumption, e.g. measured in fuel liters per 100 kms or miles per gallon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning

Definitions

  • a method of determining the fuel consumption of a power train of power equivalent to that of a hybrid power train is a method of determining the fuel consumption of a power train of power equivalent to that of a hybrid power train.
  • the technical field of the invention is hybrid powertrain control, and in particular the determination of the fuel consumption of a thermal power train of equivalent power, for estimating the consumption gain of the hybridization.
  • a hybrid vehicle is a vehicle that has at least two torque producing components, one of which is reversible. By reversible means that it can produce a driving torque or a braking torque. In the latter case, the organ most often generates electrical energy that can be stored or reused by other vehicle components.
  • One of the main interests of a hybrid vehicle is that at equivalent performance, the associated fuel consumption is lower compared to a vehicle with a single engine.
  • the battery and the electric machine have a power of about 10 kW.
  • a fairly standard system in the current automotive industry is to replace the alternator with an electric alternator-starter type machine, which will meet part of the demand for acceleration, and recover energy in deceleration.
  • the gear ratio is fixed by the drive belt.
  • Figure 1 illustrates such a hybrid vehicle. It can be seen that it includes a "high voltage" electrical network (eg 48V) that connects the Lithium-ion battery, the electric machine as well as a DCDC converter to power the 14V on-board network.
  • a "high voltage” electrical network eg 48V
  • the object of the invention is a method for determining the fuel consumption of a power train power unit equivalent to that of a hybrid power train comprising a heat engine and an electric machine.
  • the method comprises the following steps:
  • an equivalent thermal torque is calculated equal to the sum of the torque of the hybrid vehicle engine and the torque product of the electric vehicle of the hybrid vehicle by the driving ratio, the drive ratio being ideal then
  • a weighting coefficient of the instantaneous fuel consumption of the heat engine of the hybrid vehicle can be determined
  • the instantaneous fuel consumption of the equivalent vehicle heat engine can be determined by multiplying the instantaneous fuel consumption of the hybrid vehicle heat engine by the weighting coefficient.
  • the weighting coefficient of the instantaneous consumption may be equal to the equivalent thermal torque divided by the torque of the heat engine of the hybrid vehicle.
  • the weighting coefficient of the instantaneous consumption may be equal to the sum of the equivalent thermal torque with a correction term of the electrical consumption of the on-board electrical system divided by the torque of the heat engine of the hybrid vehicle,
  • the correction term being equal to the power consumed by the multip onboard network linked by a difference in efficiency between a first set of components of the hybrid vehicle and a second set of components of the equivalent vehicle, and divided by the output rotation speed powertrain,
  • the first set of components of the hybrid vehicle including the alternator / starter, the alternator / starter drive belt, the DCDC converter and the battery and a second set of equivalent vehicle components including an alternator, the drive belt; starter drive and a battery.
  • the rotational speed of the power train of the hybrid vehicle can be determined and the instantaneous fuel consumption of the equivalent heat engine can be estimated, such as the consumption resulting from an equivalent specific consumption mapping as a function of the equivalent thermal torque and the speed of the engine. rotation of the power train of the hybrid vehicle.
  • the equivalent thermal torque can be corrected to account for the difference in electrical efficiency of the hybrid vehicle's onboard system and the equivalent vehicle by adding a term equal to the electrical power consumed by the onboard system divided by the rotational speed of the vehicle.
  • power train of the hybrid and multip vehicle linked by a difference in efficiency between a first set of components of the hybrid vehicle and a second set of components of the equivalent vehicle, the first set of components of the hybrid vehicle including the alternator / starter, the alternator / starter drive belt, the DCDC converter and the battery and a second set of equivalent vehicle components including an alternator, the drive belt; starter drive and a battery.
  • the consumption can be linearly extrapolated as a function of the values of the specific consumption mapping equivalent to the rotational speed of the powertrain.
  • the equivalent consumption can be corrected by adding a compensation term related to the presence or absence of "start and stop” functionality in the reference thermal vehicle or the hybrid vehicle.
  • the calculated error is memorized as a function of the equivalent thermal torque and the rotation speed in an additional mapping, the same dimension as the equivalent specific consumption mapping, and for the same operating point, the error is integrated over a stored time or distance, and in parallel, the deviation of the consumption resulting from the mapping is subtracted.
  • the control method has the advantage of simply estimating in a hybrid vehicle (excluding ZEV) the instantaneous, average consumption of a thermal vehicle of equivalent performance with a view to a display on a HMI, which makes it possible to highlight the contribution of the hybridization
  • FIG. 1 illustrates the main steps of the control method according to a first embodiment
  • FIG. 2 illustrates the main steps of the control method according to a second embodiment
  • FIG. 3 illustrates the main steps of the control method according to a third embodiment
  • FIG. 4 illustrates the main steps of the control method according to a fourth embodiment.
  • the control unit of the hybrid vehicle comprises measurements, instructions or estimates necessary for the determination process, in particular the instantaneous fuel consumption of the thermal engine, conso, the setpoint of the electric machine CME, the torque setpoint. indicated by the C Mth heat engine, the instantaneous electrical power consumption PA dc of the onboard network if the vehicle has a DC / DC converter, also called DCDC converter, and the speed of rotation of the heat engine Q MUI.
  • the determination process begins with a first step 1 during which the contribution of the engine is calculated, to the global power ale spent by the hybrid vehicle at any time.
  • the indicated power of the heat engine P Mth is the product of the indicated torque setpoint CMth by its measured rotation speed Q MUI.
  • the indicated power of the electric machine PME is produced from the torque setpoint of the electric machine C ME by measured speed of rotation ⁇ ⁇
  • the thermal power unit comprising the heat engine and the electric machine, its equivalent power P eq is written in this way. p - p, p
  • k the drive ratio of the electric machine.
  • the drive ratio k is considered constant, neglecting any slippage of the belt, for example. We have an ideal transmission efficiency equal to 100%.
  • a second step 2 the instantaneous fuel consumption of a conventional vehicle, which would have only a heat engine to provide the equivalent overall power, is determined. For this, we can use three different methods described below.
  • a first method of determining the equivalent consumption is based on the actual instantaneous consumption measurement of the heat engine alone.
  • the instantaneous consumption of the conventional powertrain is estimated as follows:
  • Consoeq The estimated instantaneous consumption of a thermal vehicle with the same performance
  • the K eq coefficient represents the contribution of the heat engine to the overall power provided by the hybrid powertrain. It is determined as follows:
  • steps 1 and 2 can be seen. It can also be seen that during a first substep 3a, the instantaneous consumption of the hybrid engine of the hybrid vehicle is determined and then determined during the first step. a second sub-step 3b the weighting coefficient, and then determines in the third substep 3 c the estimated instantaneous consumption of an equivalent vehicle.
  • Another method for determining the equivalent consumption is based on the use of the map of the equivalent specific consumption C SE as a function of the torque and the speed of rotation of the internal combustion engine. Such mapping is present in the control of powertrains and makes it possible to obtain the specific consumption of the heat engine on each operating point. This cartography can be informed thanks to measurements on a test bench.
  • a third method makes it possible to take into account the consumption of the onboard network in the calculation of the equivalent consumption.
  • the electrical efficiency of the system comprising the alternator-starter, the belt, the DCDC converter and the 48V battery is better than that of the conventional system comprising an alternator, a belt and a 12V battery, present on a thermal vehicle.
  • the electrical power PA cc consumed by the on-board network which is the product of the voltage measurement UBT of the on-board network is determined by the current measurement IBT of the on-board network at the output of the converter DCDC (low voltage side).
  • ⁇ ⁇ ⁇ overall electrical efficiency deviation between a first set of components of the mild-hybrid vehicle including the alternator-starter, the alternator-starter drive belt, the DCDC converter and the battery and a second set of equivalent vehicle components including an alternator, an alternator drive belt and a battery.
  • the equivalent instantaneous consumption has been calculated, it is also possible to determine the average consumption, or the gain on a given trajectory, of the hybrid vehicle compared with a conventional vehicle.
  • the first method is likely to be significantly different, because of the initial approximation, for the operating point.
  • the difference is subtracted by subtracting the difference in estimated consumption.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Human Computer Interaction (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

Procédé de détermination de la consommation de carburant d'un groupe motopropulseur thermique de puissance équivalente à celle d'un groupe motopropulseur hybride comprenant un moteur thermique et une machine électrique. Le procédé comprend les étapes suivantes: on calcule un couple thermique équivalent égal à la somme du couple du moteur thermique du véhicule hybride et du produit du couple de la machine électrique du véhicule hybride par le ratio d'entraînement, puis on détermine la consommation instantanée de carburant d'un véhicule équivalent muni uniquement d'un moteur thermique développant le couple thermique équivalent déterminé.

Description

Procédé de détermination de la consommation de carburant d' un groupe motopropulseur thermique de puissance équivalente à celle d' un groupe motopropulseur hybride.
L 'invention a pour domaine technique la commande de groupe motopropulseur hybride, et notamment la détermination de la consommation de carburant d'un groupe motopropulseur thermique de puissance équivalente, pour estimer le gain de consommation de l ' hybridation.
Un véhicule hybride est un véhicule qui dispose d' au mo ins deux organes produisant du couple et dont l 'un est réversible. Par réversible, on entend qu ' il peut produire un couple moteur ou un couple de freinage. Dans ce dernier cas, l ' organe génère le plus souvent une énergie électrique qui peut être stockée ou réutilisée par d' autres organes du véhicule. L 'un des principaux intérêts d 'un véhicule hybride, est qu' à performance équivalente, la consommation de carburant associé est moindre par rapport à un véhicule pourvu d'un moteur thermique seul. Sur un véhicule à hybridation légère (« mild- hybrid » en langue anglaise), la batterie et la machine électrique ont une puissance de l ' ordre de 10 kW environ. Un système assez classique dans l' industrie automobile actuelle consiste à remplacer l' alternateur par une machine électrique type alterno-démarreur, qui permettra de répondre à une partie de la demande d' accélération, et de récupérer de l ' énergie en décélération. Le ratio de démultiplication est fixé par la courroie d' entraînement.
La figure 1 illustre un tel véhicule hybride. On peut voir qu ' il comprend un réseau électrique « haute tension » (par ex. 48V) qui relie la batterie Lithium-ion, la machine électrique ainsi qu 'un convertisseur DCDC permettant d' alimenter le réseau de bord 14V.
Afin de mettre cette caractéristique en valeur, il peut être intéressant d' afficher sur une interface homme machine (acronyme IHM), le gain de consommation du véhicule hybride, par rapport à un véhicule conventionnel de même performance.
Toutefois, il n' existe pas de méthode d' estimation de la consommation d'un moteur thermique équivalent en performance à un groupe motopropulseur à hybridation légère, à partir des informations disponibles dans un tel groupe motopropulseur hybride.
En effet, l ' état de la technique antérieur ne comprend pas d' enseignement relatif à ce problème technique. Tout au plus connaît on le document WO20 1 1 125085A 1 toutefois assez éloigné du problème considéré.
L 'invention a pour obj et un procédé de détermination de la consommation de carburant d'un groupe motopropulseur thermique de puissance équivalente à celle d'un groupe motopropulseur hybride comprenant un moteur thermique et une machine électrique. Le procédé comprend les étapes suivantes :
on calcule un couple thermique équivalent égal à la somme du couple du moteur thermique du véhicule hybride et du produit du couple de la machine électrique du véhicule hybride par le ratio d' entraînement, le ratio d' entraînement étant idéal puis
on détermine la consommation instantanée de carburant d 'un véhicule équivalent muni uniquement d'un moteur thermique développant le couple thermique équivalent déterminé.
Pour déterminer la consommation instantanée de carburant du moteur thermique du véhicule équivalent, on peut déterminer la consommation instantanée de carburant du moteur thermique du véhicule hybride,
on peut déterminer un coefficient de pondération de la consommation instantanée de carburant du moteur thermique du véhicule hybride, et
on peut déterminer la consommation instantanée de carburant du moteur thermique du véhicule équivalent, en multipliant la consommation instantanée de carburant du moteur thermique du véhicule hybride par le coefficient de pondération. Le coefficient de pondération de la consommation instantanée peut être égal au couple thermique équivalent divisé par le couple du moteur thermique du véhicule hybride.
Le coefficient de pondération de la consommation instantanée peut être égal à la somme du couple thermique équivalent avec un terme de correction de la consommation électrique du réseau de bord divisée par le couple du moteur thermique du véhicule hybride,
le terme de correction étant égal à la puissance consommée par le réseau de bord multip liée par un écart de rendement entre un premier ensemble de composants du véhicule hybride et un deuxième ensemble de composants du véhicule équivalent, et divisée par la vitesse de rotation en sortie du groupe motopropulseur,
le premier ensemble de composants du véhicule hybride comprenant l ' alterno-démarreur, la courroie d ' entraînement de l' alterno-démarreur, le convertisseur DCDC et la batterie et un deuxième ensemble de composants du véhicule équivalent comprenant un alternateur, la courroie d ' entraînement du démarreur et une batterie.
On peut déterminer la vitesse de rotation du groupe motopropulseur du véhicule hybride et on peut estimer la consommation instantanée de carburant du moteur thermique équivalent, comme la consommation issue d'une cartographie de consommation spécifique équivalente en fonction du couple thermique équivalent et de la vitesse de rotation du groupe motopropulseur du véhicule hybride.
On peut corriger le couple thermique équivalent pour tenir compte de la différence d' efficacité électrique du réseau de bord du véhicule hybride et du véhicule équivalent en ajoutant un terme égal à la puissance électrique consommée par le réseau de bord divisée par la vitesse de rotation du groupe motopropulseur du véhicule hybride et multip liée par un écart de rendement entre un premier ensemble de composants du véhicule hybride et un deuxième ensemble de composants du véhicule équivalent, le premier ensemble de composants du véhicule hybride comprenant l ' alterno-démarreur, la courroie d ' entraînement de l' alterno-démarreur, le convertisseur DCDC et la batterie et un deuxième ensemble de composants du véhicule équivalent comprenant un alternateur, la courroie d ' entraînement du démarreur et une batterie.
Lorsque le couple thermique équivalent n' est pas compris dans la cartographie de consommation spécifique équivalente, on peut extrapoler linéairement la consommation en fonction des valeurs de la cartographie de consommation spécifique équivalente à la vitesse de rotation du groupe motopropulseur.
On peut corriger la consommation équivalente, en ajoutant un terme de compensation lié à la présence ou à l ' absence de fonctionnalité « Démarrage et arrêt » dans le véhicule thermique de référence ou le véhicule hybride.
On peut calculer l ' écart entre la mesure de consommation de carburant du moteur thermique du véhicule hybride et celle issue de la cartographie, puis on mémorise l ' erreur calculée en fonction du couple thermique équivalent et de la vitesse de rotation dans une cartographie supplémentaire, de même dimension que la cartographie de consommation spécifique équivalente, et, pour un même point de fonctionnement, on intègre l ' erreur sur une durée ou une distance mémorisée, et en parallèle, on soustraie l ' écart de la consommation issue de la cartographie.
Le procédé de commande présente l ' avantage d' estimer de façon simple dans un véhicule hybride (hors ZEV, acronyme anglais pour « zéro émission vehicle »), la consommation instantanée, moyenne, d'un véhicule thermique de performance équivalente en vue d'un affichage sur un IHM, ce qui permet de mettre en valeur l ' apport de l ' hybridation
D ' autres buts, caractéristiques et avantages de l 'invention apparaîtront à la lecture de la description suivante, donnée uniquement à titre d' exemple non limitatif et faite en référence aux dessins annexés sur lesquels : - la figure 1 illustre les principales étapes du procédé de commande selon un premier mode de réalisation,
- la figure 2 illustre les principales étapes du procédé de commande selon un deuxième mode de réalisation,
- la figure 3 illustre les principales étapes du procédé de commande selon un troisième mo de de réalisation, et
- la figure 4 illustre les principales étapes du procédé de commande selon un quatrième mo de de réalisation.
L ' unité de contrô le du véhicule hybride comprend des mesures , des consignes ou estimations nécessaires au procédé de détermination, notamment la consommation de carburant instantané du moteur thermique notée Conso , la consigne de coup le de la machine électrique CME, la consigne de couple indiqué du moteur thermique C Mth, la consommation de puissance électrique instantanée PAcc du réseau de bord si le véhicule dispose d ' un convertisseur continu-continu, également appelé convertisseur DCDC , et la vitesse de rotation du moteur thermique Q MUI .
Le procédé de détermination débute par une première étape 1 au cours de laquelle on calcule la contribution du moteur thermique, à la puissance glob ale dépensée par le véhicule hybride à tout instant.
La puissance indiquée du moteur thermique P Mth est le produit de la consigne de couple indiqué CMth par sa vitesse de rotation mesurée Q MUI .
Figure imgf000006_0001
La puissance indiquée de la machine électrique PME est produit de la consigne de couple de la machine électrique C ME par vitesse de rotation mesurée Ω ΜΕ
Figure imgf000006_0002
Le group e motopropulseur thermique comprenant le moteur thermique et la machine électrique, sa puissance équivalente Peq s ' écrit de la sorte . p — p , p
1 eq ~ 1 Mth ^ 1 ME (Eq. 3 )
Elle peut être reformulée en remplaçant PMth et PME par leurs expressions (Eq. 1 et 2) et en considérant que le moteur thermique et la machine électrique présentent la même vitesse de rotation en considérant le ratio d' entraînement k de la machine électrique :
Figure imgf000007_0001
On obtient alors :
Peq = (CMth + kCME )QMth = CeqQeq (Eq. 5)
Avec :
Ceq : le couple thermique équivalent
Q EQ : la vitesse de rotation équivalente
k : le ratio d' entraînement de la machine électrique.
On considère le ratio d' entraînement k constant, en négligeant un éventuel glissement de la courroie par exemple. On a un rendement de transmission idéal égal à 1 00 % .
Au cours d'une deuxième étape 2 , on détermine la consommation instantanée de carburant d'un véhicule conventionnel, qui disposerait uniquement d'un moteur thermique pour fournir la puissance globale équivalente. Pour cela, on peut utiliser trois méthodes différentes décrites ci-dessous.
Une première méthode de détermination de la consommation équivalente est basée sur la mesure de consommation instantanée réelle du moteur thermique seul.
On pose comme hypothèse, que la consommation spécifique équivalente (C SE en [g/kWh]) du moteur thermique de performances équivalentes est égale à la CSE du moteur thermique du groupe motopropulseur hybride à l ' instant t. C ' est une hypothèse forte qui n' est acceptable que dans la mesure où la contribution de la machine électrique est faible . On linéarise ainsi la variation de consommation, en fonction de la variation du couple. Il y a un risque de sous- estimation pour les fortes charges .
La consommation instantanée du groupe motopropulseur conventionnel est estimée de la façon suivante :
Consoeq = Conso * KEq (Eq 6)
Avec
Consoeq : La consommation instantanée estimée d'un véhicule thermique de même performance
Conso : La consommation instantanée mesurée du moteur thermique associé au groupe motopropulseur hybride
Keq : Coefficient de pondération de la consommation instantanée
Le coefficient Keq représente la contribution du moteur thermique à la puissance globale fournie par le groupe motopropulseur hybride. Il est déterminé de la façon suivante :
Figure imgf000008_0001
Sur la figure 1 , on peut voir les étapes 1 et 2. On peut également voir qu' au cours d'une première sous-étape 3 a, on détermine la consommation instantanée du moteur thermique du véhicule hybride, puis on détermine au cours d'une deuxième sous- étape 3b le coefficient de pondération, puis on détermine à la troisième sous-étape 3 c la consommation instantanée estimée d 'un véhicule équivalent.
Une autre méthode de détermination de la consommation équivalente repose sur l'utilisation de la cartographie de la consommation spécifique équivalente C SE en fonction du couple et de la vitesse de rotation du moteur à combustion interne. Une telle cartographie est présente dans le contrôle des groupes motopropulseurs et permet d'obtenir la consommation spécifique du moteur thermique sur chaque point de fonctionnement. Cette cartographie peut être renseignée grâce à des mesures sur un banc d' essai.
Après calcul du couple thermique équivalent Ceq dérivé de l ' équation Eq. 5 , on estime la consommation correspondante grâce à cette cartographie au cours d'une sous-étape 4. Ceci est illustré par la figure 2 sur laquelle on voit également les étapes 1 et 2.
Il est à noter que ce calcul n' est possible que si la somme des couples thermiques et électriques reste dans le champ du moteur thermique seul. Dans le cas d'un « surcouple » électrique, où l'on dépasse la performance du moteur thermique seul, on peut envisager d'utiliser la méthode n° l en complément, en extrapolant ainsi le surplus de consommation, à partir de la valeur obtenue en pleine charge. Le résultat obtenu aura cependant une certaine imprécision.
Une troisième méthode permet de prendre en compte la consommation du réseau de bord dans le calcul de la consommation équivalente.
Pour affiner le calcul de la consommation équivalente d 'un véhicule thermique, et ainsi le gain obtenu avec le groupe motopropulseur hybride, on peut prendre en compte la consommation du réseau de bord. En effet, le rendement électrique du système comprenant l' alterno-démarreur, la courroie, le convertisseur DCDC et la batterie 48V est meilleur que celui du système classique comprenant un alternateur, une courroie et une batterie 12V, présent sur un véhicule thermique. Ces caractéristiques peuvent être mesurées sur banc, et cartographiées dans le lo giciel de contrôle groupe motopropulseur.
On détermine la puissance électrique PAcc consommée par le réseau de bord qui est le produit de la mesure de tension UBT du réseau de bord par la mesure de courant IBT du réseau de bord en sortie du convertisseur DCDC (côté basse tension)
PACC ~ UBTIBT (Eq. 8) Le couple thermique équivalent prend alors l ' expression suivante :
(P * An )
Ceq = CMth + kCME + K ** ,Ele (Eq. 9)
Mth
Avec :
Δη Εΐεε : écart de rendement électrique global entre un premier ensemble de composants du véhicule mild-hybride comprenant l' alterno-démarreur, la courroie d ' entraînement de l' alterno- démarreur, le convertisseur DCDC et la batterie et un deuxième ensemble de composants du véhicule équivalent comprenant un alternateur, une courroie d ' entraînement de l' alternateur et une batterie.
Appliqué à la première méthode, au cours d'une sous-étape 5 s 'intercalant entre la sous-étape 3 a et la sous-étape 3 c, il permet de déterminer un nouveau coefficient Keq tenant compte de l ' efficacité du réseau de bord. La figure 3 illustre ces sous étapes ainsi que les étapes 1 et 2.
Figure imgf000010_0001
Appliqué à la seconde méthode au cours d'une sous étape 6 s 'intercalant entre l ' étape 1 et la sous étape 4, l ' expression du couple thermique équivalent tenant compte de l ' efficacité du réseau de bord (Eq. 9) permet de calculer la consommation par lecture dans la cartographie de consommation spécifique équivalente. Ceci est illustré par la figure 4 sur laquelle on peut également voir les étapes 1 et 2.
Quelle que soit la méthode utilisée, une fois calculée la consommation instantanée équivalente, il est possible de déterminer également la consommation moyenne, ou le gain sur un traj et donné, du véhicule hybride par rapport à un véhicule conventionnel. La première méthode risque de présenter un écart important, à cause de l ' approximation faite au départ, concernant le point de fonctionnement.
Les autres méthodes sont plus précises, mais peuvent présenter une dérive dans le temps, entre la valeur donnée par la cartographie de C SE, et la valeur mesurée de la consommation. Cette dérive peut avoir plusieurs origines, notamment un vieillissement des organes du véhicule, un remplacement de ces organes, ...
Si le véhicule thermique de référence ou le véhicule hybride a une fonctionnalité S&S (acronyme pour la « Start and Stop »), on peut ajouter un terme Cs&s dans le calcul de la consommation équivalente . Il s ' agit de compenser la présence ou l ' absence de fonctionnalité S &S qui modifie la consommation effective du véhicule dans lequel elle est installée.
Par ailleurs, il peut être pertinent de compenser la dérive entre consommation estimée et consommation réelle par une méthode d' apprentissage permettant de recaler la valeur cartographiée de consommation spécifique équivalente. Pour cela, on calcule l ' écart entre la mesure de consommation de carburant du moteur thermique du véhicule hybride et celle issue de la cartographie, puis on mémorise l ' erreur calculée en fonction du couple thermique équivalent et de la vitesse de rotation dans une cartographie supplémentaire, de même dimension que la cartographie de consommation spécifique équivalente. Le calcul d ' erreur peut être réalisé pour chaque point de fonctionnement (couple, vitesse de rotation) en intégrant les différences valeurs d' écarts sur une durée écoulée ou une distance parcourue mémorisée.
En parallèle de l ' apprentissage, on compense l ' écart par soustraction de l ' écart de la consommation estimée.

Claims

REVENDICATIONS
1 . Procédé de détermination de la consommation de carburant d'un groupe motopropulseur thermique de puissance équivalente à celle d'un groupe motopropulseur hybride comprenant un moteur thermique et une machine électrique,
caractérisé par le fait qu' il comprend les étapes suivantes : on calcule un couple thermique équivalent égal à la somme du couple du moteur thermique du véhicule hybride et du produit du couple de la machine électrique du véhicule hybride par le ratio d' entraînement, le ratio d' entraînement étant idéal puis
on détermine la consommation instantanée de carburant d 'un véhicule équivalent muni uniquement d'un moteur thermique développant le couple thermique équivalent déterminé.
2. Procédé selon la revendication 1 , dans lequel
on détermine la consommation instantanée de carburant du moteur thermique du véhicule hybride,
on détermine un coefficient de pondération de la consommation instantanée de carburant du moteur thermique du véhicule hybride, on détermine la consommation instantanée de carburant du moteur thermique du véhicule équivalent, en multip liant la consommation instantanée de carburant du moteur thermique du véhicule hybride par le coefficient de pondération.
3. Procédé selon la revendication 2, dans lequel le coefficient de pondération de la consommation instantanée est égal au couple thermique équivalent divisé par le couple du moteur thermique du véhicule hybride.
4. Procédé selon la revendication 2, dans lequel le coefficient de pondération de la consommation instantanée est égal à la somme du couple thermique équivalent avec un terme de correction de la consommation électrique du réseau de bord divisée par le couple du moteur thermique du véhicule hybride,
le terme de correction étant égal à la puissance consommée par le réseau de bord multip liée par un écart de rendement entre un premier ensemble de composants du véhicule hybride et un deuxième ensemble de composants du véhicule équivalent, et divisée par la vitesse de rotation en sortie du groupe motopropulseur,
le premier ensemble de composants du véhicule hybride comprenant l ' alterno-démarreur, la courroie d' entraînement de l' alterno-démarreur, le convertisseur DCDC et la batterie et un deuxième ensemble de composants du véhicule équivalent comprenant un alternateur, la courroie d ' entraînement du démarreur et une batterie.
5. Procédé selon la revendication 1 , dans lequel on détermine la vitesse de rotation du groupe motopropulseur du véhicule hybride et on estime la consommation instantanée de carburant du moteur thermique équivalent, comme la consommation issue d' une cartographie de consommation spécifique équivalente en fonction du couple thermique équivalent et de la vitesse de rotation du groupe motopropulseur du véhicule hybride.
6. Procédé selon la revendication 5 , dans lequel on corrige le couple thermique équivalent pour tenir compte de la différence d' efficacité électrique du réseau de bord du véhicule hybride et du véhicule équivalent en ajoutant un terme égal à la puissance électrique consommée par le réseau de bord divisée par la vitesse de rotation du groupe motopropulseur du véhicule hybride et multipliée par un écart de rendement entre un premier ensemble de composants du véhicule hybride et un deuxième ensemble de composants du véhicule équivalent,
le premier ensemble de composants du véhicule hybride comprenant l ' alterno-démarreur, la courroie d' entraînement de l' alterno-démarreur, le convertisseur DCDC et la batterie et un deuxième ensemble de composants du véhicule équivalent comprenant un alternateur, la courroie d' entraînement du démarreur et une batterie.
7. Procédé selon l'une quelconque des revendications 5 ou 6 , dans lequel, lorsque le couple thermique équivalent n' est pas compris dans la cartographie de consommation spécifique équivalente, on extrapole linéairement la consommation en fonction des valeurs de la cartographie de consommation spécifique équivalente à la vitesse de rotation du groupe motopropulseur.
8. Procédé selon l'une quelconque des revendications précédentes, dans lequel on corrige la consommation équivalente, en ajoutant un terme de compensation lié à la présence ou à l ' absence de fonctionnalité « Démarrage et arrêt » dans le véhicule thermique de référence ou le véhicule hybride.
9. Procédé selon l 'une quelconque des revendications précédentes, dans lequel
on calcule l ' écart entre la mesure de consommation de carburant du moteur thermique du véhicule hybride et celle issue de la cartographie, puis on mémorise l ' erreur calculée en fonction du couple thermique équivalent et de la vitesse de rotation dans une cartographie supplémentaire, de même dimension que la cartographie de consommation spécifique équivalente, et, pour un même point de fonctionnement, on intègre l ' erreur sur une durée ou une distance mémorisée, et en parallèle, on soustraie l ' écart de la consommation issue de la cartographie.
PCT/FR2015/053283 2014-12-18 2015-12-01 Procede de determination de la consommation de carburant d'un groupe motopropulseur thermique de puissance equivalente a celle d'un groupe motopropulseur hybride WO2016097522A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1462703 2014-12-18
FR1462703A FR3030424B1 (fr) 2014-12-18 2014-12-18 Procede de determination de la consommation de carburant d'un groupe motopropulseur thermique de puissance equivalente a celle d'un groupe motopropulseur hybride

Publications (1)

Publication Number Publication Date
WO2016097522A1 true WO2016097522A1 (fr) 2016-06-23

Family

ID=52589631

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2015/053283 WO2016097522A1 (fr) 2014-12-18 2015-12-01 Procede de determination de la consommation de carburant d'un groupe motopropulseur thermique de puissance equivalente a celle d'un groupe motopropulseur hybride

Country Status (2)

Country Link
FR (1) FR3030424B1 (fr)
WO (1) WO2016097522A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111559387A (zh) * 2020-04-09 2020-08-21 宁波吉利汽车研究开发有限公司 一种节能驾驶提示方法、装置、设备和存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4434455A1 (de) * 1994-09-27 1996-03-28 En Umwelt Beratung E V I Verfahren zur Bestimmung spezifischer Betriebskennwerte einer Maschine insbesondere spezifischer Verbrauchskennwerte einer Brennkraftmaschine mittels meßwertgestützter, induktiv selbstlernender Berechnung während des Fahrbetriebs
EP1447256A1 (fr) * 2003-02-04 2004-08-18 Peugeot Citroen Automobiles S.A. Procédé de commande de l'ensemble moteur d'un véhicule automobile de type hybride
WO2011125085A1 (fr) * 2010-04-07 2011-10-13 Beghelli S.P.A. Dispositif de mesure d'énergie pour véhicules à traction électrique

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4434455A1 (de) * 1994-09-27 1996-03-28 En Umwelt Beratung E V I Verfahren zur Bestimmung spezifischer Betriebskennwerte einer Maschine insbesondere spezifischer Verbrauchskennwerte einer Brennkraftmaschine mittels meßwertgestützter, induktiv selbstlernender Berechnung während des Fahrbetriebs
EP1447256A1 (fr) * 2003-02-04 2004-08-18 Peugeot Citroen Automobiles S.A. Procédé de commande de l'ensemble moteur d'un véhicule automobile de type hybride
WO2011125085A1 (fr) * 2010-04-07 2011-10-13 Beghelli S.P.A. Dispositif de mesure d'énergie pour véhicules à traction électrique

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KHODABAKHSHIAN M ET AL: "Improving fuel economy and robustness of an improved ECMS method", CONTROL AND AUTOMATION (ICCA), 2013 10TH IEEE INTERNATIONAL CONFERENCE ON, IEEE, 12 June 2013 (2013-06-12), pages 598 - 603, XP032438712, ISBN: 978-1-4673-4707-5, DOI: 10.1109/ICCA.2013.6564946 *
PAGANELLI G ET AL: "Equivalent consumption minimization strategy for parallel hybrid powertrains", VTC SPRING 2002. IEEE 55TH. VEHICULAR TECHNOLOGY CONFERENCE. PROCEEDINGS. BIRMINGHAM, AL, MAY 6 - 9, 2002; [IEEE VEHICULAR TECHNOLGY CONFERENCE], NEW YORK, NY : IEEE, US, vol. 4, 6 May 2002 (2002-05-06), pages 2076 - 2081, XP010622182, ISBN: 978-0-7803-7484-3, DOI: 10.1109/VTC.2002.1002989 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111559387A (zh) * 2020-04-09 2020-08-21 宁波吉利汽车研究开发有限公司 一种节能驾驶提示方法、装置、设备和存储介质
CN111559387B (zh) * 2020-04-09 2022-06-14 宁波吉利汽车研究开发有限公司 一种节能驾驶提示方法、装置、设备和存储介质

Also Published As

Publication number Publication date
FR3030424B1 (fr) 2016-12-09
FR3030424A1 (fr) 2016-06-24

Similar Documents

Publication Publication Date Title
FR2976888A1 (fr) Procede d'aide au pilotage d'un vehicule automobile en vue d'optimiser l'utilisation de la reserve d'energie
JP2007223530A (ja) バッテリの状態量演算装置
EP3314337B1 (fr) Procédé de commande d'un facteur d'équivalence énergétique pour un véhicule automobile hybride
US20110057618A1 (en) Discharge control device for secondary battery
EP2928716B1 (fr) Procédé de commande de couplage/découplage d'une machine de traction d'un véhicule automobile
US20140149024A1 (en) Method and system for controlling start of hybrid electric vehicle
EP3823871B1 (fr) Procédé de pilotage d'un groupe motopropulseur hybride d'un véhicule automobile
FR2980274A1 (fr) Procede d'estimation d'indicateurs de vieillissement d'une batterie de traction d'un vehicule automobile electrique ou hybride
FR3085331A1 (fr) Vehicule hybride
Griefnow et al. Next-generation low-voltage power nets impacts of advanced stop/start and sailing functionalities
WO2016097522A1 (fr) Procede de determination de la consommation de carburant d'un groupe motopropulseur thermique de puissance equivalente a celle d'un groupe motopropulseur hybride
EP3589519A1 (fr) Procede de calcul d'une consigne de pilotage d'un groupe motopropulseur hybride de vehicule automobile
FR3068322A1 (fr) Procede de gestion de la chaine de traction d'un vehicule hybride
FR3044993B1 (fr) Procede de gestion de puissance pour vehicule automobile hybride
EP2911904B1 (fr) Procede de commande de couplage/decouplage d'une machine de traction d'un vehicule automobile
WO2013060971A1 (fr) Procede de repartition de couples entre des trains avant et arriere d'un vehicule hybride
FR3053646A1 (fr) Dispositif de commande de passage de rapports pour vehicule
FR3075513A1 (fr) Procede de pilotage d’un dispositif de modulation de tension utilise dans un groupe motopropulseur hybride de vehicule automobile
FR3013019A1 (fr) Procede de selection de chaine de transmission cinematique et dispositif associe
EP2108558A1 (fr) Procede et dispositif de controle d'une surcharge energetique
FR3022345A1 (fr) Methode de determination de gain de consommation en carburant
EP3162612A1 (fr) Procédé de pilotage de l'alimentation d'un moteur de véhicule de transport et dispositif associé
FR3053300B1 (fr) Controle de l'etat de charge d'une batterie de machine motrice electrique d'une chaine de transmission hybride paralelle de vehicule
FR3075958A1 (fr) Systeme de calcul du couple minimum a la roue d'un vehicule automobile et systeme de determination de l'instant de leve de pied de l'accelerateur utilisant un tel systeme de calcul.
Sharma et al. Optimal Torque Handling in Hybrid Powertrain for Fuel Economy Improvement

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15821106

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15821106

Country of ref document: EP

Kind code of ref document: A1