WO2019085777A1 - 含磷分子筛及其制备方法和应用 - Google Patents

含磷分子筛及其制备方法和应用 Download PDF

Info

Publication number
WO2019085777A1
WO2019085777A1 PCT/CN2018/111166 CN2018111166W WO2019085777A1 WO 2019085777 A1 WO2019085777 A1 WO 2019085777A1 CN 2018111166 W CN2018111166 W CN 2018111166W WO 2019085777 A1 WO2019085777 A1 WO 2019085777A1
Authority
WO
WIPO (PCT)
Prior art keywords
molecular sieve
phosphorus
weight
acid
containing molecular
Prior art date
Application number
PCT/CN2018/111166
Other languages
English (en)
French (fr)
Inventor
毛以朝
李明丰
龙湘云
张润强
赵阳
Original Assignee
中国石油化工股份有限公司
中国石油化工股份有限公司石油化工科学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201711046549.4A external-priority patent/CN109721075B/zh
Priority claimed from CN201711048395.2A external-priority patent/CN109718846B/zh
Application filed by 中国石油化工股份有限公司, 中国石油化工股份有限公司石油化工科学研究院 filed Critical 中国石油化工股份有限公司
Priority to RU2020117474A priority Critical patent/RU2782564C2/ru
Priority to US16/760,562 priority patent/US11524281B2/en
Priority to KR1020207015134A priority patent/KR102593164B1/ko
Publication of WO2019085777A1 publication Critical patent/WO2019085777A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/02Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
    • C10G47/10Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used with catalysts deposited on a carrier
    • C10G47/12Inorganic carriers
    • C10G47/16Crystalline alumino-silicate carriers
    • C10G47/20Crystalline alumino-silicate carriers the catalyst containing other metals or compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/82Phosphates
    • B01J29/84Aluminophosphates containing other elements, e.g. metals, boron
    • B01J29/85Silicoaluminophosphates (SAPO compounds)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/883Molybdenum and nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/888Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/084Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/085Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/82Phosphates
    • B01J35/50
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/28Phosphorising
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/20Faujasite type, e.g. type X or Y
    • C01B39/24Type Y
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/54Phosphates, e.g. APO or SAPO compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/02Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
    • C10G47/10Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used with catalysts deposited on a carrier
    • C10G47/12Inorganic carriers
    • C10G47/16Crystalline alumino-silicate carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J2029/081Increasing the silica/alumina ratio; Desalumination
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/16After treatment, characterised by the effect to be obtained to increase the Si/Al ratio; Dealumination
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/186After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/37Acid treatment
    • B01J35/615
    • B01J35/617
    • B01J35/633
    • B01J35/635
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/77Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by unit-cell parameters, atom positions or structure diagrams
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/86Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by NMR- or ESR-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/107Atmospheric residues having a boiling point of at least about 538 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1077Vacuum residues
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/301Boiling range
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/302Viscosity
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/308Gravity, density, e.g. API
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4006Temperature
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4012Pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4018Spatial velocity, e.g. LHSV, WHSV
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/70Catalyst aspects

Definitions

  • the invention relates to the technical field of molecular sieves, and more particularly to a phosphorus-containing molecular sieve and a preparation method and application thereof.
  • Industrial hydrocracking feeds include 350-540 ° C fractions such as VGO, which contain large amounts of polycyclic aromatic hydrocarbons and naphthenes.
  • VGO polycyclic aromatic hydrocarbons
  • naphthenes are highly reactive hydrocarbons
  • the ⁇ bond in the cycloalkane is in the vertical direction of the cycloalkane carbon ion empty p orbital, it is not easy for the two to form a coplanar conformation, which requires a more acidic condition for the cycloalkane ring opening.
  • Molecular sieves have high acidity and are widely used in hydrocracking reactions.
  • the structure of the conventional HY molecular sieve is unstable, and the skeleton dealuminization is liable to occur during the preparation and use of the catalyst.
  • the non-framework aluminum formed during the preparation of the molecular sieve is generally weakly acidic, shielding the B acid center, and the catalyst performance is lowered.
  • the molecular sieve structure can be stabilized by superheating treatment by hydrothermal treatment, introduction of a second component, etc., wherein the second component introduced generally includes an olefin component and a phosphorus component.
  • the composite Since the phosphorus and the non-framework aluminum removed from the molecular sieve form a phosphorus-aluminum oxide composite having a larger molecular weight during the calcination process, the composite has higher thermal stability and is beneficial for preventing the framework from being dealuminated, so that it is to some extent It can replace the action of the olefin component.
  • Citri Patent Application Publication No. CN1279130A discloses a preparation method of a phosphorus-containing Y-type molecular sieve, which comprises a phosphorus content of 0.5 to 5% by weight (based on P 2 O 5 ) and a Na 2 O content of 0.5 to 6% by weight.
  • the P-NH 4 NaY molecular sieve having a unit cell constant of 2.460-2.475 nm is hydrothermally calcined at 450-700 ° C for 0.5-4 h in a roasting furnace under a 100% steam atmosphere; the calcined product is subjected to liquid phase aluminum extraction. The silicon reaction; then filtered and washed to obtain a phosphorus-containing ultrastable Y type molecular sieve.
  • Citride No. CN1727280A discloses a phosphorus-containing molecular sieve containing 85-99.9 wt% of molecular sieves and, based on P 2 O 5 , about 0.1-15 wt% of phosphorus.
  • the peak area of the peak having a chemical shift of 0 ⁇ 1.0 ppm accounts for less than 1% of the total peak area.
  • the preparation method of the molecular sieve comprises: introducing phosphorus into a molecular sieve, and washing the molecular sieve with an aqueous solution containing an acid, wherein the acid is selected from one or more of a water-soluble organic acid and an inorganic acid, and the acid content is 0.0001- 10.0 moles/liter, the temperature of washing is from room temperature to 95 °C.
  • the phosphorus-containing molecular sieves are usually post-treated in the prior art to further improve the stability and acidity of the molecular sieves.
  • These post-treatment methods generally include heat treatment and pickling treatment.
  • heat treatment and hydrothermal treatment are often included, both of which can remove a certain amount of unstable aluminum species and improve the stability of the molecular sieve.
  • the hydrothermal atmosphere is used to form silicon water species in the molecular sieve to form a silicon water species at a high temperature, thereby enhancing the mobility, thereby overcoming the reaction energy difference of 10-30 kJ/mol between desiliconization and dealumination, so-called The “de-aluminum-silicon supplementation” balance ultimately makes the molecular sieve skeleton structure more complete.
  • the introduction of water during hydrothermal treatment involves two modes, namely, the introduction of water vapor during the roasting process and the release of water from the thermal roasting of the material.
  • the reaction system forms a gas-liquid-solid three-phase reaction as the temperature exceeds the vaporization temperature at the pressure of the water, so that the desiliconization reaction is heterogeneous on a microscopic scale.
  • the water vapor pressure is drastically increased, which causes the molecular sieve reaction material to be carried out of the reaction system during the actual molecular sieve preparation process. This further makes the molecular sieve reaction severity have great non-uniformity with the microscopic atmosphere, and finally the distribution of the framework aluminum in the molecular sieve is not uniform, thereby reducing the reactivity.
  • An object of the present application is to provide a phosphorus-containing molecular sieve, a preparation method thereof and an application thereof, the molecular sieve having a specific combination of characteristics, in particular, a combination of a high B acid acid amount and an L acid amount ratio and other specific characteristics, such that It exhibits higher hydrocracking activity and ring opening selectivity when used in the preparation of hydrocracking catalysts.
  • Another object of the present application is to provide a hydrocracking catalyst comprising the phosphorus-containing molecular sieve of the present invention, and a process for the preparation thereof and use thereof.
  • the present application provides a phosphorus-containing molecular sieve having a phosphorus content of about 0.3 to 5% by weight and a pore volume of about 0.2 to 0.95 ml/g, based on an oxide.
  • the ratio of the amount of acid to the amount of L acid is about 2-10.
  • I 60 ppm / I -1 ppm is about 5-40, and I -1 ppm / I ⁇ 6 ppm is about 0.4-2.
  • the present application provides a method of preparing a phosphorus-containing molecular sieve, comprising the steps of:
  • the hydrothermally treated molecular sieve is slurried, wherein the ratio of the weight of water in the obtained molecular sieve slurry to the dry weight of the phosphorus-containing molecular sieve raw material is from about 14:1 to about 5:1;
  • the pickling treatment of the step iii) is carried out by adding an acid solution to the molecular sieve slurry at a temperature of about 40-95 ° C at a temperature of about 40-95 ° C, based on 1 L of the molecular sieve slurry, in terms of H + ,
  • the acid solution is added at a rate of about 0.05-10 mol/hr, and after the acid is added, the reaction is kept at a constant temperature for about 0.5-20 h, wherein the ratio of the weight of the acid in the acid solution to the dry basis weight of the phosphorus-containing molecular sieve raw material is From about 0.01:1 to about 0.6:1.
  • the phosphorus-containing molecular sieve raw material has a phosphorus content of about 0.1 to 15% by weight and a sodium content of about 0.5 to 4.5% by weight based on the oxide based on the dry basis weight of the phosphorus-containing molecular sieve raw material.
  • the phosphorus-containing molecular sieve raw material is a phosphorus-containing Y-type molecular sieve having a unit cell constant of 2.425-2.470 nm, a specific surface area of about 250-750 m 2 /g, and a pore volume of about 0.2-0.95 ml/g.
  • the phosphorus-containing molecular sieve raw material is in the form of particles, and the phosphorus-containing molecular sieve raw material having a particle size ranging from about 1 to 500 mm is contained in an amount of about 10 to 100% by weight based on the total weight of the phosphorus-containing molecular sieve raw material, and the particle size is externally cut. Round diameter gauge.
  • the present application provides a phosphorus-containing molecular sieve obtained by the process for preparing a phosphorus-containing molecular sieve according to the present invention.
  • the present application provides a hydrocracking catalyst comprising, on a dry basis and based on the weight of the catalyst, the catalyst comprising from about 45 to 90% by weight of the support, from about 1 to about 40 weight percent of the metal oxide % of the first metal component, and from about 1 to 15% by weight of the second metal component, based on the metal oxide, wherein:
  • the carrier comprises a phosphorus-containing molecular sieve and a heat-resistant inorganic oxide according to the present invention, wherein a weight ratio of the phosphorus-containing molecular sieve to the heat-resistant inorganic oxide is from about 0.03:1 to about 20:1; a metal selected from Group VIB; said second metal being a metal selected from Group VIII.
  • the heat resistant inorganic oxide is selected from the group consisting of alumina, silica, amorphous silicoalumino compounds, zirconia, magnesia, cerium oxide, cerium oxide, boron oxide, cadmium oxide, and combinations thereof;
  • One metal is molybdenum and/or tungsten; the second metal is selected from the group consisting of iron, nickel, cobalt, and combinations thereof.
  • the present application provides the use of the phosphorus-containing molecular sieve of the present invention in the preparation of a hydrocracking catalyst.
  • the present application provides a method of preparing a hydrocracking catalyst, comprising the steps of: impregnating a support with an impregnation liquid containing a metal precursor, and drying the material obtained after the impregnation, wherein:
  • the carrier comprises a phosphorus-containing molecular sieve and a heat-resistant inorganic oxide according to the present invention, the metal precursor comprising a first metal precursor and a second metal precursor, the first metal being a metal selected from Group VIB, The second metal is a metal selected from the group VIII;
  • the method further comprises the steps of mixing the phosphorus-containing molecular sieve and the heat resistant inorganic oxide with a peptizing agent, and optionally a lubricant, and then shaping, drying and calcining to obtain the carrier.
  • the first metal precursor is selected from the group consisting of a mineral of a first metal, an inorganic salt of a first metal, a first metal organic compound, and combinations thereof;
  • the inorganic salt is preferably selected from the group consisting of nitrates and carbonates a basic carbonate, a hypophosphite, a phosphate, a sulfate, a chloride, and a combination thereof;
  • the organic substituent in the first organometallic compound is selected from the group consisting of a hydroxyl group, a carboxyl group, an amine group, a ketone group, and an ether Base, alkyl group, and combinations thereof;
  • the second metal precursor is selected from the group consisting of a mineral of a second metal, an inorganic salt of a second metal, a second metal organic compound, and combinations thereof; the inorganic salt is selected from the group consisting of nitrates, carbonates, and basic carbons.
  • the organic substituent in the second metal organic compound is selected from the group consisting of a hydroxyl group, a carboxyl group, an amine group, a ketone group, an ether group, and an alkyl group. , and their combination.
  • the present application provides the use of a phosphorus-containing molecular sieve of the present invention or a hydrocracking catalyst of the present invention in a hydrocracking reaction of a hydrocarbon feedstock.
  • the present application provides a hydrocracking process for a hydrocarbon feedstock comprising the step of hydrocracking the hydrocarbon feedstock in the presence of a phosphorus-containing molecular sieve of the present invention or a hydrocracking catalyst of the present invention.
  • a phosphorus-containing molecular sieve having excellent performance which has a specific combination of characteristics, in particular, a combination of a high B acid amount and an L acid amount ratio and other specific characteristics.
  • the phosphorus-containing molecular sieve of the present invention exhibits higher hydrocracking activity and ring opening selectivity when used to prepare a hydrocracking catalyst relative to existing phosphorus-containing molecular sieves. Accordingly, the hydrocracking catalyst of the present invention using the phosphorus-containing molecular sieve exhibits higher hydrocracking activity and ring opening selectivity when used in the hydrocracking reaction.
  • any specific numerical values (including the endpoints of the numerical ranges) disclosed herein are not limited to the precise value of the numerical value, but should be understood to cover the value close to the precise value. Moreover, for the disclosed numerical range, one or more new ones can be obtained between the endpoint values of the range, the endpoint values and the specific point values in the range, and the specific point values. Numerical ranges, these new numerical ranges are also considered to be specifically disclosed herein.
  • any matters or matters not mentioned are directly applicable to those known in the art without any change other than those explicitly stated.
  • any of the embodiments described herein can be freely combined with one or more other embodiments described herein, and the resulting technical solution or technical idea is considered to be part of the original disclosure or original description of the present invention, and should not be It is considered to be new content that has not been disclosed or anticipated herein, unless it is apparent to those skilled in the art that the combination is clearly unreasonable.
  • the term "phosphorus molecular sieve feedstock" refers to a phosphorus-containing molecular sieve used as a starting material.
  • the phosphorus-containing molecular sieve raw material is used, the phosphorus-aluminum species outside the molecular sieve skeleton can improve the skeleton stability of the molecular sieve, thereby further improving the performance of the molecular sieve.
  • substantially uniform means that the acid solution is added substantially continuously to the molecular sieve slurry at a substantially constant rate until the weight of the acid in the added acid solution reaches a set amount, wherein said "substantially continuously “Addition” means continuous addition until the addition is completed, or multiple additions at intervals and in a continuous manner each time.
  • the invention adopts the method of substantially continuously adding acid, can realize the pickling reaction while adding acid, and the acid addition speed is slow, so that the dealumination process is more moderate, and the performance of the molecular sieve is improved.
  • the phrase "adding an acid solution substantially uniformly to the molecular sieve slurry” covers continuously and continuously adding an acid solution to the molecular sieve slurry at a substantially constant rate until a set amount is set at a time.
  • the rate of addition of the acid solution during each addition may be the same or different, and each independently is from about 0.05 to 10 moles per hour, preferably from about 0.2 to 3.0 moles per hour.
  • the present application provides a phosphorus-containing molecular sieve having a phosphorus content of from about 0.3 to 5% by weight, preferably from about 0.4 to 2.0% by weight, and a pore volume of from about 0.2 to 0.95 ml, based on the oxide. g, preferably from about 0.25 to 0.60 ml/g, the ratio of the amount of B acid to the amount of L acid is from about 2 to about 10, preferably from about 3.4 to about 9.5.
  • the phosphorus-containing molecular sieve provided by the present application has a higher ratio of the amount of B acid to the amount of L acid.
  • the phosphorus-containing molecular sieves provided herein not only retain a higher ratio of framework aluminum to non-framework aluminum, but also at non-framework aluminum sites, such as chemical shifts from -4 ppm to -6 ppm or from 3 to 7 ppm. A certain non-framework aluminum is also retained.
  • the peak height ratio of the framework aluminum at a position of 60 ⁇ 1 ppm and the non-framework aluminum at a position of -1 ⁇ 1 ppm is about 5 -40, preferably about 10.0-39; and non-framework aluminum has two distinct characteristic peaks, one at -1 ⁇ 1 ppm and the other at -5.5 ⁇ 2 ppm or 3-7 ppm, and the peak height ratio of the two is I -1 ppm /I ⁇ 6 ppm is about 0.4-2, preferably about 0.8-2, wherein I ⁇ 6 ppm takes a larger value of -5.5 ⁇ 2 ppm and a peak height at 3-7 ppm.
  • the phosphorus-containing molecular sieve of the present invention has a unit cell constant of 2.425-2.470 nm, preferably 2.430-2.458 nm, and a specific surface area of about 250-850 m 2 /g, preferably about 400-750 m 2 /g.
  • the phosphorus-containing molecular sieve of the present invention is a molecular sieve having a faujasite structure, preferably a Y-type molecular sieve, more preferably selected from the group consisting of NaY, HNaY, REY, USY molecular sieves, and combinations thereof.
  • the cationic sites of the phosphorus-containing molecular sieve of the present invention are occupied by one or more of sodium ions, ammonium ions, and hydrogen ions.
  • the phosphorus-containing molecular sieve of the present invention is prepared by a process comprising the following steps:
  • the hydrothermally treated molecular sieve is slurried, wherein the ratio of the weight of water in the obtained molecular sieve slurry to the dry weight of the phosphorus-containing molecular sieve raw material is from about 14:1 to about 5:1;
  • the pickling treatment of the step iii) is carried out by adding an acid solution to the molecular sieve slurry at a temperature of about 40-95 ° C, preferably about 50-85 ° C, at a temperature of about 1 L, using 1 L of the molecular sieve slurry.
  • the reference, in terms of H + the acid solution is added at a rate of about 0.05 to 10 moles per hour, preferably about 0.2 to 3.0 moles per hour, and after the addition of the acid, the reaction is carried out at a constant temperature for about 0.5 to 20 hours, preferably about 0.5 to 15 hours.
  • the ratio of the weight of the acid in the acid solution to the dry basis weight of the phosphorus-containing molecular sieve material is from about 0.01:1 to about 0.6:1.
  • the phosphorus-containing molecular sieve raw material may have a faujasite molecular sieve structure, preferably a phosphorus-containing Y-type molecular sieve, and its unit cell constant may be 2.425-2.470 nm, preferably 2.440-2.470 nm, specific surface area. It may be from about 250 to 750 m 2 /g, preferably from about 400 to 700 m 2 /g, and the pore volume may be from about 0.2 to 0.95 ml/g, preferably from about 0.2 to 0.5 ml/g.
  • the specific selection of the Y-type molecular sieve may be varied within a wide range as long as the phosphorus-containing molecular sieve raw material satisfies the above conditions.
  • the Y-type molecular sieve may be selected from the group consisting of NaY and HNaY (hydrogen Y type).
  • Molecular sieves REY (rare earth Y molecular sieve), USY (super stable Y molecular sieve), and the like.
  • the cation position of the phosphorus-containing Y-type molecular sieve may be occupied by one or more of sodium ions, ammonium ions, hydrogen ions; or it may be, before or after the introduction of phosphorus into the molecular sieve, by conventional Ion exchange, in which sodium ions, ammonium ions, hydrogen ions are all or partially replaced by other ions.
  • the phosphorus-containing molecular sieve raw material may be a commercially available product, or may be prepared by any prior art, for example, a method of preparing USY disclosed in Chinese Patent Application Publication No. CN1350886A, or a preparation of PUSY disclosed in Chinese Patent Application Publication No. CN1727280A. The method and the like are not described in the present invention.
  • the phosphorus-containing molecular sieve feedstock has a water content of from about 10% to about 40% by weight.
  • the phosphorus-containing molecular sieve raw material having the above water content can be obtained by adding water to the initial molecular sieve raw material, filtering, and drying.
  • the phosphorus-containing molecular sieve raw material is preferably in the form of particles, and the content of the phosphorus-containing molecular sieve raw material having a particle size ranging from about 1 to 500 mm may be from about 10 to 100% by weight, preferably about 30%, based on the total weight of the phosphorus-containing molecular sieve raw material. 100% by weight.
  • the content of the phosphorus-containing molecular sieve raw material having a particle size ranging from about 5 to 100 mm is from about 30 to 100% by weight based on the total weight of the phosphorus-containing molecular sieve raw material.
  • the hydrothermal treatment using the phosphorus-containing molecular sieve raw materials in the above particle size range can obviously improve the mass transfer effect of the hydrothermal treatment, reduce the material running loss, and improve the stability of the operation.
  • the method for controlling the particle size of the molecular sieve raw material may be conventional in the art, such as a sieving method, a squeezing method, a rolling ball method, or the like.
  • the hydrothermal treatment of step i) is carried out in the presence of water vapour, preferably in the presence of 30% to 100% water vapour, at a temperature of about 350-700 ° C and a pressure of about 0.1-2Mpa, the hydrothermal treatment time is about 0.5-10h.
  • the molecular sieve slurry is obtained by water-slurrying the hydrothermally treated molecular sieve material in step ii), wherein said "watering beating" has the meaning well known to those skilled in the art.
  • the ratio of the weight of water in the molecular sieve slurry obtained after beating to the dry basis weight of the phosphorus-containing molecular sieve material may range from about 14:1 to about 5:1.
  • step iii) the acid solution is added to the molecular sieve slurry substantially uniformly, once, i.e., continuously at the set acid addition rate until all The acid solution is added and then reacted at a constant temperature.
  • the acid solution is added in multiple portions in order to increase the utilization of the material and reduce waste production, and is continuously added to the molecular sieve slurry at a set acid addition rate each time. In the middle, each time the acid is added, the reaction is kept at a constant temperature for a certain period of time, and then the next acid addition is continued until the set amount of the acid solution is added.
  • the acid solution may be added to the times for 2-10 min, to the molecular sieve slurry 1L as a reference, in H +, each time the acid solution is from about 0.05 to 10 mol / hr, preferably from about 0.2
  • the rate in the range of 3.0 mol/hr is added substantially uniformly, and the reaction is kept constant for a period of time after each acid addition, so that the total constant temperature reaction time is about 0.5-20 h, preferably about 0.5-15 h.
  • the ratio of the weight of the acid in the acid solution to the dry basis weight of the phosphorus-containing molecular sieve material is from about 0.01:1 to about 0.3:1.
  • the acid solution may have an acid concentration of from about 0.01 to about 15.0 mol/L, preferably from about 0.02 to about 5.0 mol/L, and a pH of from about 0.01 to about 1-3.
  • the acid may be a conventional inorganic acid and/or organic or acid, for example, may be selected from the group consisting of phosphoric acid, sulfuric acid, nitric acid, hydrochloric acid, acetic acid, citric acid, tartaric acid, formic acid, acetic acid, and combinations thereof.
  • an ammonium salt is also added to the molecular sieve slurry during the addition of the acid solution, for example, the ammonium salt may be selected from the group consisting of ammonium nitrate, ammonium chloride, ammonium sulfate. And their combination.
  • the ratio of the weight of the ammonium salt to the dry basis weight of the phosphorus-containing molecular sieve material may range from about 0.1:1 to about 2.0:1.
  • the ammonium salt may be added to the molecular sieve slurry independently of the acid solution, or may be formulated as an aqueous solution containing an ammonium salt and an acid in an amount required, and the aqueous solution may be added to the molecular sieve slurry.
  • the collected solid product is washed with water and dried to obtain a phosphorus-containing molecular sieve.
  • the washing and drying are conventional steps for preparing a molecular sieve, and the present invention is not particularly limited.
  • the drying may be carried out by an oven, a mesh belt, a converter heating or the like, and the drying may be carried out at a temperature of about 50 to 350 ° C, preferably about 70 to 200 ° C; and the time is about 1 to 24 h, preferably about 2-6h.
  • the phosphorus-containing molecular sieve of the invention is prepared by a process comprising the steps of:
  • the hydrothermally treated molecular sieve material is watered and beaten to obtain a molecular sieve slurry, wherein the ratio of the weight of water in the obtained molecular sieve slurry to the dry weight of the phosphorus-containing molecular sieve raw material is from about 14:1 to about 5:1;
  • the present application provides a method of preparing a phosphorus-containing molecular sieve comprising the steps of:
  • the hydrothermally treated molecular sieve is slurried, wherein the ratio of the weight of water in the obtained molecular sieve slurry to the dry weight of the phosphorus-containing molecular sieve raw material is from about 14:1 to about 5:1;
  • the pickling treatment of the step iii) is carried out by adding an acid solution to the molecular sieve slurry at a temperature of about 40-95 ° C, preferably about 50-85 ° C, at a temperature of about 1 L, using 1 L of the molecular sieve slurry.
  • the reference, in terms of H + the acid solution is added at a rate of about 0.05 to 10 moles per hour, preferably about 0.2 to 3.0 moles per hour, and after the addition of the acid, the reaction is carried out at a constant temperature for about 0.5 to 20 hours, preferably about 0.5 to 15 hours.
  • the ratio of the weight of the acid in the acid solution to the dry basis weight of the phosphorus-containing molecular sieve material is from about 0.01:1 to about 0.6:1.
  • the phosphorus-containing molecular sieve raw material may have a faujasite molecular sieve structure, preferably a phosphorus-containing Y-type molecular sieve, and its unit cell constant may be 2.425-2.470 nm, preferably 2.440-2.470 nm, and the specific surface area may be It is from about 250 to 750 m 2 /g, preferably from about 400 to 700 m 2 /g, and the pore volume may be from about 0.2 to 0.95 ml/g, preferably from about 0.2 to 0.5 ml/g.
  • the specific selection of the Y-type molecular sieve may be varied within a wide range as long as the phosphorus-containing molecular sieve raw material satisfies the above conditions.
  • the Y-type molecular sieve may be selected from the group consisting of NaY and HNaY (hydrogen Y type).
  • Molecular sieves REY (rare earth Y molecular sieve), USY (super stable Y molecular sieve), and the like.
  • the cation position of the phosphorus-containing Y-type molecular sieve may be occupied by one or more of sodium ions, ammonium ions, hydrogen ions; or it may be, before or after the introduction of phosphorus into the molecular sieve, by conventional Ion exchange, in which sodium ions, ammonium ions, hydrogen ions are all or partially replaced by other ions.
  • the phosphorus-containing molecular sieve raw material may be a commercially available product, or may be prepared by any prior art, for example, a method of preparing USY disclosed in Chinese Patent Application Publication No. CN1350886A, or a preparation of PUSY disclosed in Chinese Patent Application Publication No. CN1727280A. The method and the like are not described in the present invention.
  • the phosphorus-containing molecular sieve feedstock has a water content of from about 10% to about 40% by weight.
  • the phosphorus-containing molecular sieve raw material having the above water content can be obtained by adding water to the initial molecular sieve raw material, filtering, and drying.
  • the phosphorus-containing molecular sieve raw material is preferably in the form of particles, and the content of the phosphorus-containing molecular sieve raw material having a particle size ranging from about 1 to 500 mm may be from about 10 to 100% by weight, preferably about 30%, based on the total weight of the phosphorus-containing molecular sieve raw material. 100% by weight.
  • the content of the phosphorus-containing molecular sieve raw material having a particle size ranging from about 5 to 100 mm is from about 30 to 100% by weight based on the total weight of the phosphorus-containing molecular sieve raw material.
  • the hydrothermal treatment using the phosphorus-containing molecular sieve raw materials in the above particle size range can obviously improve the mass transfer effect of the hydrothermal treatment, reduce the material running loss, and improve the stability of the operation.
  • the method for controlling the particle size of the molecular sieve raw material may be conventional in the art, such as a sieving method, a squeezing method, a rolling ball method, or the like.
  • the hydrothermal treatment of step i) is carried out in the presence of water vapour, preferably in the presence of 30% to 100% water vapour, at a temperature of about 350-700 ° C and a pressure of about 0.1. -2Mpa, hydrothermal treatment time is about 0.5-10h.
  • the molecular sieve slurry is obtained by adding water to the hydrothermally treated molecular sieve material in step ii), wherein the "watering beating" has the meaning well known to those skilled in the art, beating
  • the ratio of the weight of water in the molecular sieve slurry obtained to the dry weight of the phosphorus-containing molecular sieve material obtained may be from about 14:1 to about 5:1.
  • step iii) the acid solution is added to the molecular sieve slurry substantially uniformly, once, i.e., continuously at the set acid addition rate until all of the acid is added.
  • the solution is added, and then the reaction is carried out at a constant temperature.
  • the acid solution in multiple portions, and each time is continuously added to the molecular sieve slurry at a set acid addition rate.
  • the reaction is kept constant for a certain period of time, and then the next acid addition is continued until the set amount of the acid solution is added.
  • the acid solution may be added to the times for 2-10 min, to the molecular sieve slurry 1L as a reference, in H +, each time the acid solution is from about 0.05 to 10 mol / hr, preferably from about 0.2
  • the rate in the range of 3.0 mol/hr is added substantially uniformly, and the reaction is kept constant for a period of time after each acid addition, so that the total constant temperature reaction time is about 0.5-20 h, preferably about 0.5-15 h.
  • the ratio of the weight of the acid in the acid solution to the dry basis weight of the phosphorus-containing molecular sieve material is from about 0.01:1 to about 0.3:1.
  • the acid solution may have an acid concentration of from about 0.01 to 15.0 mol/L, preferably from about 0.02 to 5.0 mol/L, and a pH of from about 0.01 to about 1-3.
  • the acid may be a conventional inorganic acid and/or organic or acid, for example, may be selected from the group consisting of phosphoric acid, sulfuric acid, nitric acid, hydrochloric acid, acetic acid, citric acid, tartaric acid, formic acid, acetic acid, and combinations thereof.
  • the method of the present invention may further comprise, in step iii), adding an ammonium salt to the molecular sieve slurry during the addition of the acid solution, for example, the ammonium salt may be selected from the group consisting of ammonium nitrate and chlorine. Ammonium, ammonium sulfate, and combinations thereof.
  • the ratio of the weight of the ammonium salt to the dry basis weight of the phosphorus-containing molecular sieve material may range from about 0.1:1 to about 2.0:1.
  • the ammonium salt may be added to the molecular sieve slurry independently of the acid solution, or may be formulated as an aqueous solution containing an ammonium salt and an acid in an amount required, and the aqueous solution may be added to the molecular sieve slurry.
  • the process of the present invention may further comprise, after step iv), washing the collected solid product with water to obtain a phosphorus-containing molecular sieve.
  • the washing and drying are conventional steps for preparing a molecular sieve, and the present invention is not particularly limited.
  • the drying may be carried out by an oven, a mesh belt, a converter heating or the like, and the drying may be carried out at a temperature of about 50 to 350 ° C, preferably about 70 to 200 ° C; and the time is about 1 to 24 h, preferably about 2-6h.
  • the method of the invention comprises the steps of:
  • the hydrothermally treated molecular sieve material is water-slurryed to obtain a molecular sieve slurry, wherein the ratio of the weight of water in the obtained molecular sieve slurry to the dry weight of the phosphorus-containing molecular sieve raw material is from about 14:1 to about 5:1;
  • the present application provides a phosphorus-containing molecular sieve obtained by the method for producing a phosphorus-containing molecular sieve of the present invention.
  • the invention can produce a phosphorus-containing molecular sieve with excellent performance by special treatment of the phosphorus-containing molecular sieve raw material, which can exhibit higher hydrocracking activity and ring-opening selectivity when preparing the hydrocracking catalyst.
  • the phosphorus-containing molecular sieve provided by the invention is suitable for use in various acid-catalyzed catalysts for catalytic cracking, hydroisomerization, alkylation, hydrocracking, etc., and is particularly suitable for hydrocracking hydrocarbon raw materials.
  • hydrocarbon raw materials For produce a hydrocarbon fraction having a lower boiling point and a lower molecular weight.
  • the present application provides a hydrocracking catalyst comprising, on a dry basis and based on the weight of the catalyst, the catalyst comprising from about 45 to 90% by weight, preferably from about 55 to 85% by weight, of the support to the metal
  • the oxide is about 1 to 40% by weight, preferably about 12 to 35% by weight, of the first metal component, and the metal oxide is about 1 to 15% by weight, preferably about 2 to 10% by weight, of the second metal component.
  • the carrier comprises the phosphorus-containing molecular sieve of the present invention and the heat resistant inorganic oxide as described above, wherein the weight ratio of the phosphorus-containing molecular sieve to the heat resistant inorganic oxide is from about 0.03:1 to about 20:1, preferably about 0.03:1 to about 6:1; the first metal is a metal selected from Group VIB; and the second metal is a metal selected from Group VIII.
  • the heat resistant inorganic oxide can increase the strength of the catalyst and improve and adjust the physicochemical properties of the catalyst, such as to improve the pore structure of the catalyst.
  • the heat resistant inorganic oxide suitable for use in the present invention includes inorganic oxides commonly used in hydrogenation catalyst supports, such as alumina, silica, amorphous silicoalumino compounds, zirconia, magnesia, cerium oxide, cerium oxide, boron oxide, and Cadmium oxide and the like.
  • the refractory inorganic oxide may be alumina, and the alumina may include gibbsite, such as gibbsite, bayerite, nozos Aluminite (nordstrandite) and gibbsite, such as boehmite, diaspor, pseudoboehmite.
  • gibbsite such as gibbsite, bayerite, nozos Aluminite (nordstrandite) and gibbsite, such as boehmite, diaspor, pseudoboehmite.
  • the heat resistant inorganic oxide may be of other types or combinations.
  • the first metal may be molybdenum and/or tungsten; the second metal may be selected from the group consisting of iron, nickel, cobalt, and combinations thereof.
  • the present application provides the use of a phosphorus-containing molecular sieve according to the present invention for the preparation of a hydrocracking catalyst.
  • the present application provides a method of preparing a hydrocracking catalyst, the method comprising the steps of: impregnating a support with an impregnation liquid containing a metal precursor, and drying the material obtained after the impregnation, wherein:
  • the carrier comprises the phosphorus-containing molecular sieve of the present invention and the heat resistant inorganic oxide as described above, preferably, the weight ratio of the phosphorus-containing molecular sieve to the heat resistant inorganic oxide is from about 0.03:1 to about 20:1. Preferably from about 0.03:1 to about 6:1;
  • the metal precursor includes a first metal precursor and a second metal precursor, the first metal being a metal selected from Group VIB, and the second metal being a metal selected from Group VIII.
  • the method of contacting the impregnation liquid with the carrier may be carried out by any method known in the art, such as the group VIB metal component, the group VIII metal component and the organic as disclosed in Chinese Patent Application Publication No. CN101757931A.
  • Method 1 contacting the catalyst carrier with the first solution, then contacting the second solution, or contacting the catalyst carrier with the second solution, and then contacting the first solution, wherein the first solution contains the VIB metal component a compound and a compound of a Group VIII metal component, the second solution containing a compound of the Group VIB metal component but not containing a Group VIII metal component, the first solution and/or the second solution containing the organic additive;
  • Mode 2 contacting the catalyst carrier with the third solution, and then contacting the fourth solution, or contacting the catalyst carrier with the fourth solution, and then contacting the third solution, wherein the third solution contains the VIB group metal component a compound, a fourth solution containing a compound of a Group VIII metal component and an organic auxiliary agent but not a compound of a Group VIB metal component, and a third solution containing or not containing a compound of the Group VIII metal component and an organic additive,
  • the contacted catalyst carrier is heated.
  • the carrier used in the catalyst of the present invention can be prepared by means well known to those skilled in the art, and there is no particular limitation on this application.
  • a phosphorus-containing Y-type molecular sieve, a heat-resistant inorganic oxide, a solvent, and an optional auxiliary may be mixed, then molded and dried to obtain the carrier.
  • the molding method can be carried out by various conventional methods such as tablet molding, ball molding or extrusion molding.
  • the solvent is a common solvent in the molding process of the catalyst. When an extrusion molding method is employed, it is preferred to add an appropriate amount of an auxiliary agent to facilitate molding.
  • the carrier is prepared by mixing a phosphorus-containing Y-type molecular sieve, a heat-resistant inorganic oxide, a peptizing agent, and optionally a lubricant, followed by molding, drying and calcining to obtain the carrier.
  • the peptizing agent may be an acid-containing solution or an alkali-containing solution, and the acid may be selected from organic or inorganic acids familiar to those skilled in the art, and combinations thereof, such as phosphoric acid, sulfuric acid, nitric acid, hydrochloric acid, acetic acid, and the like.
  • Tungsten and/or molybdenum heteropoly acid, citric acid, tartaric acid, formic acid and acetic acid, and combinations thereof, and an acid solution may also be added with a cation such as ammonium, iron, cobalt, nickel or aluminum which makes it acidic; an alkali solution At least one of ammonia, an organic amine, and urea may be included.
  • the present application has no particular requirements on the shape of the carrier, and may be a spherical shape, a strip shape, a hollow strip shape, a spherical shape, a block shape, etc., and the strip-shaped carrier may be a clover shape such as a clover shape, a four-leaf clover shape or the like. Deformation.
  • the carrier can be prepared according to the method disclosed in Chinese Patent Application Publication No. CN107029779A, including: (1) a phosphorus-containing Y-type molecular sieve with a heat-resistant inorganic oxide, a peptizer, The lubricant and water are mixed to obtain a mixture, and the amount of each component is such that the ratio of the amount of the substance of the peptizing agent to the weight of the powder in the mixture is from 0.28 ⁇ 10 -4 to 4.8 ⁇ 10 -4 mol / g, and the weight of water
  • the ratio of the amount of the substance to the peptizing agent is 2.0 ⁇ 10 3 to 30 ⁇ 10 3 g / mol
  • the weight of the powder is the sum of the weight of the phosphorus-containing Y type molecular sieve and the heat resistant inorganic oxide, the gum
  • the amount of the solvent substance refers to the number of moles of the proton H in the peptizing agent; the lubricant is one
  • the metal precursor includes a first metal precursor and a second metal precursor, wherein the first metal precursor is a soluble compound containing the first metal, including a mineral acid of the first metal, An inorganic salt of a first metal and a first metal organic compound, and combinations thereof; the inorganic salt may be selected from the group consisting of nitrates, carbonates, basic carbonates, hypophosphites, phosphates, sulfates, and chlorides And a combination thereof; the organic substituent in the first metal organic compound may be selected from the group consisting of a hydroxyl group, a carboxyl group, an amine group, a ketone group, an ether group, an alkyl group, and a combination thereof.
  • the first metal precursor when the first metal is molybdenum, the first metal precursor may be selected from the group consisting of molybdic acid, paramolybdic acid, molybdate, secondary molybdate, and combinations thereof; when the first metal is In the case of tungsten, the first metal precursor may be selected from the group consisting of tungstic acid, metatungstic acid, ethyl metatungstic acid, tungstate, metatungstate, ethyl metatungstate, and combinations thereof.
  • the second metal precursor is a soluble compound containing the second metal, including a mineral of a second metal, an inorganic salt of a second metal, and a second metal organic compound, and combinations thereof;
  • the inorganic salt may be selected From nitrates, carbonates, basic carbonates, hypophosphites, phosphates, sulfates and chlorides, and combinations thereof;
  • the organic substituents in the second organometallic compound may be selected from the group consisting of hydroxyl groups and carboxyl groups , an amine group, a ketone group, an ether group, an alkyl group, and combinations thereof.
  • the impregnation liquid may further contain an organic additive; the concentration of the organic additive may be about 2 to 300 g/L.
  • the organic additive may be an oxygen-containing organic compound and/or a nitrogen-containing organic compound.
  • the oxygen-containing organic compound may be selected from the group consisting of ethylene glycol, glycerol, polyethylene glycol (molecular weight may be 200-1500), diethylene glycol, butanediol, acetic acid, maleic acid, oxalic acid, amino Triacetic acid, 1,2-cyclohexanediaminetetraacetic acid, citric acid, tartaric acid and malic acid, and combinations thereof;
  • the nitrogen-containing organic compound may be selected from the group consisting of ethylenediamine, diethylenetriamine, cyclohexyl Diaminetetraacetic acid, glycine, nitrilotriacetic acid, ethylenediaminetetraacetic acid, and ethylenediaminetetraacetate, and combinations thereof
  • the temperature of the contact immersion is not particularly limited, and may be various temperatures achievable by the immersion liquid.
  • the time of the impregnation is also not particularly limited as long as the catalyst carrier can be loaded with the desired amount of the metal active component precursor. In general, the higher the impregnation temperature, the greater the concentration of the impregnation liquid, and the shorter the time required to achieve the same impregnation amount (i.e., the difference in weight between the catalyst support after impregnation and the pre-impregnation); and vice versa.
  • the impregnation method which may be either a saturated impregnation or a supersaturation impregnation.
  • the environment for the impregnation is not particularly limited, and may be carried out under sealed conditions or in an open environment according to a conventional method in the art, and the lost water solvent may be replenished during the impregnation process or may not be replenished.
  • gases such as air, nitrogen, water vapor, etc. may be introduced during the impregnation process, and any new components may not be introduced.
  • the conditions for drying the material obtained after the immersion are not particularly limited, and may be various drying conditions commonly used in the art, for example, the temperature may be about 80-350 ° C. It is preferably about 100-300 ° C and the time is about 0.5-24 h, preferably about 1-12 h.
  • the step of calcining the contacted material after drying may be further included, and the calcination is a conventional step of preparing a catalyst, and the present application is not particularly limited.
  • the calcination conditions may be, for example, a temperature of about 350 to 600 ° C, preferably 400 to 550 ° C; and a time of about 0.2 to 12 h, preferably 1 to 10 h.
  • the hydrocracking catalyst provided by the present application can be used as a catalyst for various factors, such as catalytic cracking, hydroisomerization, alkylation, hydrocracking, etc., and is particularly suitable for hydrocracking hydrocarbon raw materials.
  • a hydrocarbon fraction having a lower boiling point and a lower molecular weight is produced.
  • the present application provides the use of a phosphorus-containing molecular sieve or a hydrocracking catalyst according to the present invention in a hydrocracking reaction of a hydrocarbon feedstock.
  • the present application provides a hydrocracking process for a hydrocarbon feedstock comprising the step of hydrocracking the hydrocarbon feedstock in the presence of a phosphorus-containing molecular sieve or hydrocracking catalyst of the present invention.
  • the hydrocarbon feedstock suitable for use in the present invention may be various heavy mineral oils or synthetic oils, or mixed distillates thereof, such as straight run gas oil, vacuum gas oil. , demetallized oils, atmospheric residues, deasphalted vacuum residues, coker distillates, cat craker distillates, Shale oil, tar sand oil, coal liquid, and the like.
  • the hydrocracking catalyst of the present invention is suitable for hydrocracking of heavy and inferior distillates to produce a hydrocracking process of a middle distillate having a distillation range of 149-371 ° C, especially a distillation range of 180-370 ° C. .
  • the hydrocracking reaction can be carried out in any reaction apparatus sufficient to cause the hydrocarbon feedstock to be contacted with the catalyst under hydrogenation reaction conditions, for example, in a fixed bed reactor, moving bed reaction.
  • the process is carried out in one or more of conventional hydrocracking units such as a fluidized bed reactor, a slurry bed reactor, and a suspended bed reactor.
  • the hydrocracking reaction can be carried out under conventional hydrocracking reaction conditions.
  • the conditions of the hydrocracking reaction may be: a reaction temperature of about 200-650 ° C, preferably about 300-510 ° C, a reaction pressure of about 3-24 MPa, preferably about 4-15 MPa, and a liquid hourly space velocity of about 0.1-10 h -1 . , preferably about 0.2-5h -1, hydrogen to oil volume ratio of from about 100-5000Nm 3 / m 3, preferably from about 200-1000Nm 3 / m 3.
  • hydrocracking catalysts disclosed herein may be used singly or in combination with hydrocracking catalysts having different compositions.
  • a portion of the fraction of the product resulting from the hydrocracking reaction can also be recycled back to the reactor inlet to increase the yield of the target product.
  • the hydrocracking process of the present application may further comprise using sulfur, hydrogen sulfide or a sulfur-containing feedstock at a temperature of about 140-370 ° C in the presence of hydrogen prior to use of the hydrocracking catalyst.
  • the hydrocracking catalyst is presulfided and converted to a sulfide form. This pre-vulcanization can be carried out outside the reactor or it can be vulcanized in situ in the reactor.
  • the present application provides the following technical solutions:
  • a phosphorus-containing molecular sieve characterized in that the molecular sieve has a phosphorus content of about 0.3 to 5% by weight, a pore volume of about 0.2 to 0.95 ml/g, a quantity of B acid and an amount of L acid. The ratio is about 2-10.
  • the phosphorus-containing molecular sieve raw material has a phosphorus content of about 0.1-15% by weight and a sodium content of about 0.5-4.5% by weight, based on the dry basis weight of the phosphorus-containing molecular sieve raw material;
  • step b) adding the hydrothermally treated molecular sieve material obtained in step a) to water to obtain a molecular sieve slurry, heating the molecular sieve slurry to about 40-95 ° C, then maintaining the temperature and continuously adding an acid solution to the molecular sieve slurry.
  • the ratio of the weight of the acid in the acid solution to the dry weight of the phosphorus-containing molecular sieve material is from about 0.01:1 to about 0.6:1, based on 1 L of the molecular sieve slurry, based on H + , the acid solution
  • the addition rate is about 0.05-10 mol/hr, and after the addition of the acid, the reaction is kept at a constant temperature for about 0.5-20 h, and the solid product is collected.
  • step a) the phosphorus-containing molecular sieve raw material is a phosphorus-containing Y-type molecular sieve, and the unit cell constant of the phosphorus-containing Y-type molecular sieve is 2.425-2.470 nm,
  • the surface area is from about 250 to 750 m 2 /g and the pore volume is from about 0.2 to 0.95 ml/g.
  • step a) the phosphorus-containing molecular sieve raw material has a water content of about 10-40% by weight;
  • the phosphorus-containing molecular sieve raw material is in the form of particles, and the content of the phosphorus-containing molecular sieve raw material having a particle size ranging from about 1 to 500 mm is about 10 to 100% by weight based on the total weight of the phosphorus-containing molecular sieve raw material, and the particle size is measured by the outer diameter of the particle. .
  • step b) The method according to item A3, wherein, in step b), the ratio of the weight of water in the molecular sieve slurry obtained after beating to the dry basis weight of the phosphorus-containing molecular sieve raw material is from about 14:1 to about 5:1. .
  • step b) adding an ammonium salt to the molecular sieve slurry during the addition of the acid solution, the ammonium salt being selected from the group consisting of ammonium nitrate, chlorination Ammonium, ammonium sulphate, and combinations thereof, the ratio of the weight of the ammonium salt to the dry basis weight of the phosphorus-containing molecular sieve material is from about 0.1:1 to about 2.0:1.
  • step b) the acid concentration of the acid solution is about 0.01-15.0 mol/L, and the acid is selected from the group consisting of phosphoric acid, sulfuric acid, nitric acid, hydrochloric acid, acetic acid, and citric acid. , tartaric acid, formic acid, acetic acid, and combinations thereof.
  • hydrocarbon raw material is selected from the group consisting of straight-run gas oil, vacuum gas oil, demetallized oil, atmospheric residue, deasphalted vacuum residue, coking distillate, Catalytic cracking distillate, shale oil, tar sand oil, coal liquefied oil, and combinations thereof;
  • the conditions of the hydrocracking reaction are: a reaction temperature of about 200-650 ° C, preferably about 300-510 ° C; a reaction pressure of about 3-24 MPa, preferably about 4-15 MPa; a liquid hourly space velocity of about 0.1-10 h. -1, preferably from about 0.2-5h -1; hydrogen to oil volume ratio of about 100-5000Nm 3 / m 3, preferably from about 200-1000Nm 3 / m 3.
  • a hydrocracking catalyst characterized in that the catalyst comprises from about 45 to 90% by weight, based on the dry weight of the catalyst, of from about 1% to about 40% by weight of the metal oxide. a first metal component, and a second metal component of from about 1% to about 15% by weight based on the metal oxide;
  • the carrier comprises a phosphorus-containing Y-type molecular sieve and a heat-resistant inorganic oxide, and the weight ratio of the phosphorus-containing Y-type molecular sieve to the heat-resistant inorganic oxide is from about 0.03:1 to about 20:1;
  • the first metal is selected from the group consisting of a metal of Group VIB;
  • said second metal component being selected from the group consisting of metals of Group VIII;
  • the phosphorus-containing Y-type molecular sieve has a phosphorus content of about 0.3 to 5% by weight, a pore volume of about 0.2 to 0.95 ml/g, and a ratio of pyridine infrared B acid to L acid of about 2 to 10, based on the oxide.
  • the catalyst according to item B1 wherein the catalyst comprises from about 55 to 85% by weight, based on the dry weight of the catalyst, of the carrier, and from about 12 to 35% by weight based on the metal oxide. a first metal component, and a second metal component of from about 2% to about 10% by weight based on the metal oxide;
  • the weight ratio of the phosphorus-containing Y type molecular sieve to the heat resistant inorganic oxide is from about 0.03:1 to about 6:1.
  • the phosphorus-containing molecular sieve raw material is hydrothermally treated at a temperature of about 350-700 ° C and a pressure of about 0.1-2 MPa in the presence of steam for about 0.5-10 h to obtain a molecular sieve material after hydrothermal treatment;
  • the phosphorus-containing molecular sieve raw material has a phosphorus content of about 0.1-15% by weight and a sodium content of about 0.5-4.5% by weight, based on the dry basis weight of the phosphorus-containing molecular sieve raw material;
  • step a The hydrothermally treated molecular sieve material obtained in step a is water-slurryed to obtain a molecular sieve slurry, and the molecular sieve slurry is heated to about 40-95 ° C, and then the temperature is maintained and an acid solution is continuously added to the molecular sieve slurry.
  • the ratio of the weight of the acid in the acid solution to the dry weight of the phosphorus-containing molecular sieve material is from about 0.01:1 to about 0.6:1, based on 1 L of the molecular sieve slurry, and the addition of the acid solution is based on H +
  • the speed is about 0.05-10 mol/hr, and after the addition of the acid, the reaction is kept at a constant temperature for about 0.5-20 h, and the solid product is collected.
  • the phosphorus-containing molecular sieve raw material is a phosphorus-containing Y-type molecular sieve
  • the phosphorus-containing Y-type molecular sieve has a unit cell constant of 2.425-2.47 nm, specific surface area. It is about 250-750 m 2 /g and has a pore volume of about 0.2-0.95 ml/g.
  • step a the phosphorus-containing molecular sieve raw material has a water content of about 10-40% by weight;
  • the phosphorus-containing molecular sieve raw material is in the form of particles, and the content of the phosphorus-containing molecular sieve raw material having a particle size ranging from 1 to 500 mm is from about 10 to 100% by weight based on the total weight of the phosphorus-containing molecular sieve raw material, and the particle size is based on the outer diameter of the particle.
  • the phosphorus-containing molecular sieve raw material having a particle size ranging from 5 to 100 mm is contained in an amount of from about 30 to 100% by weight based on the total weight of the phosphorus-containing molecular sieve raw material.
  • step b The catalyst according to item B4, wherein, in step b, the ratio of the weight of water in the molecular sieve slurry obtained after beating to the dry basis weight of the phosphorus-containing molecular sieve raw material is from about 14:1 to about 5:1.
  • step b adding an ammonium salt to the molecular sieve slurry during the addition of the acid solution, the ammonium salt Selected from ammonium nitrate, ammonium chloride, and ammonium sulfate, and combinations thereof, the ratio of the weight of the ammonium salt to the dry basis weight of the phosphorus-containing molecular sieve material is from about 0.1:1 to about 2.0:1.
  • step b the acid concentration of the acid solution is about 0.01-15.0 mol/L, and the acid is selected from the group consisting of phosphoric acid, sulfuric acid, nitric acid, hydrochloric acid, acetic acid, citric acid, Tartaric acid, formic acid and acetic acid, and combinations thereof.
  • the catalyst according to item B1 wherein the heat resistant inorganic oxide is selected from the group consisting of alumina, zirconia, magnesia, cerium oxide, cerium oxide, boron oxide, and cadmium oxide, and combinations thereof; One metal is molybdenum and/or tungsten; the second metal is selected from the group consisting of iron, nickel and cobalt, and combinations thereof.
  • a method for producing a hydrocracking catalyst according to any one of the items B1 to B12 characterized in that the method comprises: impregnating an impregnation liquid containing a metal precursor with a carrier, and then immersing the material obtained after the impregnation dry.
  • the method of item B13 wherein the method further comprises: mixing a phosphorus-containing Y-type molecular sieve, a heat-resistant inorganic oxide, a peptizing agent, and an optional lubricant, and then molding, drying, and roasting to obtain the Carrier.
  • the metal precursor comprises a first metal precursor and a second metal precursor
  • the first metal precursor is selected from the group consisting of inorganic acids of the first metal, first An inorganic salt of a metal and a first metal organic compound, and a combination thereof
  • the inorganic salt being selected from the group consisting of nitrates, carbonates, basic carbonates, hypophosphites, phosphates, sulfates, and chlorides, and a combination
  • the organic substituent in the first metal organic compound is selected from the group consisting of a hydroxyl group, a carboxyl group, an amine group, a ketone group, an ether group, an alkyl group, and combinations thereof;
  • the second metal precursor is selected from the group consisting of a mineral of a second metal, an inorganic salt of a second metal, and a second metal organic compound, and combinations thereof;
  • the inorganic salt is selected from the group consisting of nitrates, carbonates, and basic carbons.
  • the organic substituent in the second metal organic compound is selected from the group consisting of a hydroxyl group, a carboxyl group, an amine group, a ketone group, an ether group, and an alkyl group. , and their combination.
  • the immersion liquid further contains an organic additive; the organic additive has a concentration of about 2 to 300 g/L; and the organic additive is selected from the group consisting of ethylene glycol and glycerin.
  • the organic additive has a concentration of about 2 to 300 g/L; and the organic additive is selected from the group consisting of ethylene glycol and glycerin.
  • hydrocarbon raw material is selected from the group consisting of straight-run gas oil, vacuum gas oil, demetallized oil, atmospheric residue, deasphalted vacuum residue, coking distillate, Catalytic cracking of distillate, shale oil, tar sand oil and coal liquefied oil, and combinations thereof;
  • the conditions of the hydrocracking reaction are: a reaction temperature of about 200-650 ° C, preferably about 300-510 ° C; a reaction pressure of about 3-24 MPa, preferably about 4-15 MPa; a liquid hourly space velocity of about 0.1-10 h. -1, preferably from about 0.2-5h -1; hydrogen to oil volume ratio of about 100-5000Nm 3 / m 3, preferably from about 200-1000Nm 3 / m 3.
  • a phosphorus-containing molecular sieve wherein the molecular sieve has a phosphorus content of about 0.3 to 5% by weight, preferably about 0.4 to 2.0% by weight, and a pore volume of about 0.2 to 0.95 ml/g, preferably about 0.25.
  • the ratio of the amount of B acid to the amount of L acid is -0.60 ml/g, and is about 2-10, preferably about 3.4-9.5.
  • the phosphorus-containing molecular sieve according to any one of the preceding items, wherein the molecular sieve has a unit cell constant of 2.425-2.470 nm, preferably 2.430-2.458 nm, and a specific surface area of about 250-850 m 2 /g, preferably about 400. -750m 2 /g.
  • the molecular sieve is a molecular sieve having a faujasite structure, preferably a Y-type molecular sieve, more preferably selected from the group consisting of NaY, HNaY, REY, USY molecular sieves, and The combination.
  • the hydrothermally treated molecular sieve is slurried, wherein the ratio of the weight of water in the obtained molecular sieve slurry to the dry weight of the phosphorus-containing molecular sieve raw material is from about 14:1 to about 5:1;
  • the pickling treatment of the step iii) is carried out by adding an acid solution to the molecular sieve slurry at a temperature of about 40-95 ° C, preferably about 50-85 ° C, at a temperature of about 1 L, using 1 L of the molecular sieve slurry.
  • the reference, in terms of H + the acid solution is added at a rate of about 0.05 to 10 moles per hour, preferably about 0.2 to 3.0 moles per hour, and after the addition of the acid, the reaction is carried out at a constant temperature for about 0.5 to 20 hours, preferably about 0.5 to 15 hours.
  • the ratio of the weight of the acid in the acid solution to the dry basis weight of the phosphorus-containing molecular sieve material is from about 0.01:1 to about 0.6:1.
  • a method for preparing a phosphorus-containing molecular sieve comprising the steps of:
  • the hydrothermally treated molecular sieve is slurried, wherein the ratio of the weight of water in the obtained molecular sieve slurry to the dry weight of the phosphorus-containing molecular sieve raw material is from about 14:1 to about 5:1;
  • the pickling treatment of the step iii) is carried out by adding an acid solution to the molecular sieve slurry at a temperature of about 40-95 ° C, preferably about 50-85 ° C, at a temperature of about 1 L, using 1 L of the molecular sieve slurry.
  • the reference, in terms of H + the acid solution is added at a rate of about 0.05 to 10 moles per hour, preferably about 0.2 to 3.0 moles per hour, and after the addition of the acid, the reaction is carried out at a constant temperature for about 0.5 to 20 hours, preferably about 0.5 to 15 hours.
  • the ratio of the weight of the acid in the acid solution to the dry basis weight of the phosphorus-containing molecular sieve material is from about 0.01:1 to about 0.6:1.
  • the phosphorus-containing molecular sieve material is a phosphorus-containing Y-type molecular sieve having a unit cell constant of 2.425-2.470 nm, preferably 2.440-2.470 nm, and a specific surface area It is about 250-750 m 2 /g, preferably about 400-700 m 2 /g, and has a pore volume of about 0.2-0.95 ml/g, preferably about 0.2-0.5 ml/g.
  • the particle size is based on the circumscribed circle diameter; preferably, the content of the phosphorus-containing molecular sieve raw material having a particle size ranging from about 5 to 100 mm is the total weight of the phosphorus-containing molecular sieve raw material.
  • step i) The method according to any one of the items C7 to C11, wherein the hydrothermal treatment of step i) is carried out in the presence of steam, preferably in the presence of 30% to 100% of water vapor, under the following conditions: About 350-700 ° C, the pressure is about 0.1-2Mpa, and the hydrothermal treatment time is about 0.5-10h.
  • any one of items C7 to C12 further comprising: in the pickling treatment of step iii), adding an ammonium salt to the molecular sieve slurry during the addition of the acid solution, the ammonium salt It is preferably selected from the group consisting of ammonium nitrate, ammonium chloride, ammonium sulfate, and combinations thereof, and the ratio of the weight of the ammonium salt to the dry weight of the phosphorus-containing molecular sieve raw material is preferably from about 0.1:1 to about 2.0:1.
  • the acid is selected from the group consisting of phosphoric acid, sulfuric acid, nitric acid, hydrochloric acid, acetic acid, citric acid, tartaric acid, formic acid, acetic acid, and combinations thereof.
  • any one of items C7 to C14 further comprising: after step iv), washing and drying the obtained solid product to obtain the phosphorus-containing molecular sieve; the drying conditions are as follows: the temperature is about 50-350 ° C, preferably about 70-200 ° C; time is about 1-24 h, preferably about 2-6 h.
  • any one of items C7 to C15 wherein the addition of the acid solution in the pickling treatment of step iii) is carried out a plurality of times, preferably in 2 to 10 times, to 1 L of the molecular sieve slurry.
  • the acid solution is added substantially uniformly at a rate in the range of about 0.05 to 10 moles per hour, preferably about 0.2 to 3.0 moles per hour, in terms of H + , and each reaction is thermostated after each acid addition.
  • the total constant temperature reaction time is about 0.5-20 h, preferably about 0.5-15 h; preferably, when the acid solution is added in multiple times, the weight of the acid in the acid solution and the dryness of the phosphorus-containing molecular sieve raw material
  • the basis weight ratio is from about 0.01:1 to about 0.3:1.
  • the hydrothermally treated molecular sieve material is watered and beaten to obtain a molecular sieve slurry, wherein the ratio of the weight of water in the obtained molecular sieve slurry to the dry weight of the phosphorus-containing molecular sieve raw material is from about 14:1 to about 5:1;
  • a hydrocracking catalyst comprising, on a dry basis and based on the weight of the catalyst, the catalyst comprising from about 45 to 90% by weight, preferably from about 55 to 85% by weight, based on the metal oxide, from about 1 to about 40 % by weight, preferably from about 12 to 35% by weight, of the first metal component, and from about 1 to 15% by weight, preferably from about 2 to 10% by weight, based on the metal oxide, of the second metal component, wherein:
  • the carrier includes the phosphorus-containing molecular sieve and the heat-resistant inorganic oxide according to any one of items C1 to C6 and C1g, wherein the weight ratio of the phosphorus-containing molecular sieve to the heat-resistant inorganic oxide is from about 0.03:1 to about 20:1, preferably from about 0.03:1 to about 6:1; the first metal is a metal selected from Group VIB; and the second metal is a metal selected from Group VIII.
  • the catalyst according to item C19 wherein the heat resistant inorganic oxide is selected from the group consisting of alumina, silica, amorphous silicoalumino compounds, zirconia, magnesia, cerium oxide, cerium oxide, boron oxide, cadmium oxide, And combinations thereof; the first metal is molybdenum and/or tungsten; the second metal is selected from the group consisting of iron, nickel, cobalt, and combinations thereof.
  • the method of producing the hydrocracking catalyst according to any one of the items C19 to C20 comprising the steps of: immersing a carrier with an impregnation liquid containing a metal precursor, and drying the material obtained after the immersion, wherein:
  • the carrier includes the phosphorus-containing molecular sieve and the heat-resistant inorganic oxide according to any one of items C1 to C6 and C1g, preferably, the weight ratio of the phosphorus-containing molecular sieve to the heat-resistant inorganic oxide is about 0.03:1. Up to about 20:1, preferably from about 0.03:1 to about 6:1;
  • the metal precursor includes a first metal precursor and a second metal precursor, the first metal being a metal selected from Group VIB, and the second metal being a metal selected from Group VIII.
  • the first metal precursor is selected from the group consisting of a mineral of a first metal, an inorganic salt of a first metal, a first metal organic compound, and combinations thereof;
  • the salt is preferably selected from the group consisting of nitrates, carbonates, basic carbonates, hypophosphites, phosphates, sulfates, chlorides, and combinations thereof;
  • the organic substituents in the first organometallic compound are selected from the group consisting of hydroxyl groups , a carboxyl group, an amine group, a ketone group, an ether group, an alkyl group, and combinations thereof;
  • the second metal precursor is selected from the group consisting of a mineral of a second metal, an inorganic salt of a second metal, a second metal organic compound, and combinations thereof; the inorganic salt is selected from the group consisting of nitrates, carbonates, and basic carbons.
  • the organic substituent in the second metal organic compound is selected from the group consisting of a hydroxyl group, a carboxyl group, an amine group, a ketone group, an ether group, and an alkyl group. , and their combination.
  • the immersion liquid further contains an organic additive having a concentration of about 2 to 300 g/L, and the organic additive is preferably selected from the group consisting of ethylene glycol and glycerol.
  • polyethylene glycol diethylene glycol, butanediol, acetic acid, maleic acid, oxalic acid, aminotriacetic acid, 1,2-cyclohexanediaminetetraacetic acid, citric acid, tartaric acid, malic acid, ethylenediamine Diethylenetriamine, cyclohexanediaminetetraacetic acid, glycine, nitrilotriacetic acid, ethylenediaminetetraacetic acid, ammonium diaminetetraacetate, and combinations thereof.
  • any one of items C21 to C25 further comprising the step of calcining the dried material, the calcining conditions being as follows: a temperature of about 350-600 ° C and a time of about 0.2-12 h.
  • hydrocarbon raw material is selected from the group consisting of straight-run gas oil, vacuum gas oil, demetallized oil, atmospheric residue, deasphalted vacuum residue, coking distillate , catalytic cracking distillate oil, shale oil, tar sand oil, coal liquefied oil, and combinations thereof.
  • reaction temperature of about 200-650 ° C, preferably about 300-510 ° C
  • reaction pressure of about 3-24 MPa, preferably about 4-15MPa
  • liquid hourly space velocity of about 0.1-10h -1, preferably from about 0.2-5h -1
  • hydrogen to oil volume ratio of about 100-5000Nm 3 / m 3, preferably from about 200-1000Nm 3 / m 3.
  • a hydrocracking process for a hydrocarbon feedstock comprising a phosphorus-containing molecular sieve according to any one of items C1 to C6 and C18 or a hydrocracking catalyst according to any one of items C19 and C20.
  • hydrocarbon raw material is selected from the group consisting of straight-run gas oil, vacuum gas oil, demetallized oil, atmospheric residue, deasphalted vacuum residue, coking distillate, and catalysis Cracked distillate, shale oil, tar sand oil, coal liquefied oil, and combinations thereof.
  • reaction temperature of about 200 to 650 ° C, preferably about 300 to 510 ° C; and a reaction pressure of about 3 to 24 MPa, preferably about 4-15MPa; liquid hourly space velocity of about 0.1-10h -1, preferably from about 0.2-5h -1; hydrogen to oil volume ratio of about 100-5000Nm 3 / m 3, preferably from about 200-1000Nm 3 / m 3 .
  • the pore volume and specific surface area of the molecular sieve were determined by a static low-temperature adsorption capacity method (using the method of the Chinese national standard GB/T5816-1995) by an American Micromertics Instruments ASAP 2400 automatic adsorption apparatus.
  • the specific method is as follows: vacuum degassing at 250 ° C, 1.33 Pa for 4 h, using nitrogen as the adsorbate, contacting with the adsorbate at -196 ° C, statically reaching the adsorption equilibrium; residual nitrogen gas in the gas phase after adsorption and adsorption The difference is calculated by the amount of nitrogen adsorbed by the adsorbent, then the pore size distribution is calculated by the BJH formula, and the specific surface area and pore volume are calculated by the BET formula.
  • the unit cell constant of the molecular sieve was measured by a D5005 type ray diffractometer from Siemens AG of Germany, and the method of the Chinese petrochemical industry standard SH/T0339-92 was adopted.
  • Experimental conditions Cu target, Ka radiation, solid detector, tube voltage 40 kV, tube current 40 mA, step scan, step size 0.02 °, pre-made time 2 s, scan range 5 ° -70 °.
  • the phosphorus content and sodium content of the molecular sieve were measured by a ray fluorescence spectrometer of the Japanese Science and Technology Co., Ltd., Model 3271E, and the measurement methods were: powder sample tableting, ruthenium target, laser voltage 50 kV, laser current 50 mA, the spectral line intensity of each element was detected by a scintillation counter and a proportional counter, and the element content was quantitatively and semi-quantitatively analyzed by an external standard method.
  • the ratio of the amount of B acid to the amount of L acid in the molecular sieve was measured by a Bio-Rad IFS-3000 infrared spectrometer.
  • the specific method is as follows: the molecular sieve sample itself is finely pressed and pressed into a self-supporting piece of about 10 mg/cm 2 , placed in an in-situ pool of an infrared spectrometer, and subjected to surface purification treatment at 350 ° C, 10 -3 pa vacuum for 2 h, After boiling to room temperature, pyridine saturated vapor was introduced, and after adsorption and equilibration for 15 minutes, vacuum desorption was carried out at 350 ° C for 30 minutes, and after dropping to room temperature, the adsorption pyridine vibration spectrum was measured.
  • the scanning range is 1400cm -1 -1700cm -1 , and the ratio of the infrared absorption value of the band of 1540 ⁇ 5cm -1 to the weight and area of the sample piece defines the amount of B acid [infrared absorption value per unit area, unit mass sample, Expressed as: AB ⁇ (cm 2 ⁇ g) -1 ].
  • the ratio of the infrared absorption value of the 1450 ⁇ 5 cm -1 band to the weight and area of the sample piece defines the amount of L acid [infrared absorption value per unit area, unit mass sample, expressed as: AL ⁇ (cm 2 ⁇ g) -1 ], the value of AB/AL is defined as the ratio of the amount of B acid to the amount of L acid in the zeolite molecular sieve.
  • the 27Al-NMR structure of the molecular sieve was analyzed by a Varian UNITYINOVA 300M nuclear magnetic resonance spectrometer, wherein the Al MAS NMR resonance frequency was 78.162 MHz, the rotor speed was 3000 Hz, and the repetition delay time was 0.5 s.
  • the sampling time is 0.020s
  • the pulse width is 1.6 ⁇ s
  • the spectral width is 54.7kHz
  • the data is collected 2000 points
  • the cumulative number is 800 times
  • the test temperature is room temperature.
  • Molecular sieve yield (%) dry basis weight of the prepared molecular sieve / dry basis weight of the molecular sieve raw material before hydrothermal treatment ⁇ 100%.
  • Raw material conversion rate (%) (distillate component of the feedstock with an initial boiling point greater than 350 ° C - fraction of the product oil with an initial boiling point greater than 350 ° C) / fraction of the feedstock with an initial boiling point greater than 350 ° C ⁇ 100% .
  • Examples I-1 to I-3 are preparation examples of the phosphorus-containing molecular sieve of the present invention
  • Comparative Examples I-1 to I-4 are preparation examples of the molecular sieves not according to the present invention.
  • NaY molecular sieve produced by Sinopec Catalyst Changling Branch, trade name NaY, cell constant is 2.468nm, specific surface area is 680m 2 /g, pore volume is 0.30ml/g, Na 2 O content is 13.0% by weight, Al 2 O 3 content is 22% by weight
  • 300g 2.0mol / L (NH 4 ) 2 HPO 4 aqueous solution is added, beaten, the total amount of water is 1000ml, filtered, the obtained filter cake is repeated three times, and then at 100 ° C
  • a phosphorus-containing molecular sieve raw material was obtained, and the unit cell constant of the phosphorus-containing molecular sieve raw material was 2.468 nm, the specific surface area was 590 m 2 /g, the pore volume was 0.37 ml/g, and the P 2 O 5 content was 4.8% by weight.
  • the Na 2 O content was 3.5% by weight.
  • a hydrochloric acid-ammonium chloride aqueous solution is prepared according to a weight ratio of hydrochloric acid, ammonium chloride and a phosphorus-containing molecular sieve raw material (dry basis) of 0.2:0.4:1, wherein the concentration of hydrochloric acid is 0.05 mol/L, ammonium chloride The concentration was 0.07 mol/L.
  • the solid product was collected and dried at 180 ° C for 3 h to obtain a phosphorus-containing molecular sieve Y-1 having a unit cell constant of 2.436 nm, a specific surface area of 634 m 2 /g, and a Na 2 O content of 0.42.
  • the weight %, the Al 2 O 3 content was 18.7% by weight, and the 27Al-NMR structure spectrum is shown in Fig. 1, and other properties are shown in Table 1.
  • PSRY molecular sieve (Sinstone, Sinopec Catalyst, produced by the company, trade name PSRY, cell constant is 2.456nm, specific surface area is 620m 2 /g, pore volume is 0.39ml/g, Na 2 O content is 2.2wt%, P 2 O 5 content of 1.5% by weight, Al 2 O 3 content of 18% by weight) 300g, adding deionized water to be beaten, the total amount of water is 1000ml, filtered, dried at 70 ° C for 2h, to obtain a water content of 35% by weight Phosphorus-containing molecular sieve raw materials.
  • the above-mentioned phosphorus-containing molecular sieve raw material is crushed, sieved into 5-20 mesh (in which about 1-500 mm particles account for 70% by weight of the total weight of the phosphorus-containing molecular sieve raw material), placed in a hydrothermal treatment device, and passed through 100% steam to raise the temperature.
  • the pressure inside the control device was 0.4 MPa, and the hydrothermally treated molecular sieve material was taken out after constant hydrothermal treatment for 2 hours.
  • 250 ml of an aqueous sulfuric acid solution was prepared in a weight ratio of sulfuric acid to a phosphorus-containing molecular sieve raw material (dry basis) of 0.02:1, and the concentration of sulfuric acid in the aqueous solution was 0.2 mol/L.
  • the solid product was collected and dried at 100 ° C for 8 h to obtain a phosphorus-containing molecular sieve Y-2 having a unit cell constant of 2.447 nm, a specific surface area of 684 m 2 /g, and a Na 2 O content of 0.08.
  • the weight %, Al 2 O 3 content was 14.4% by weight, and the 27Al-NMR structure spectrum is shown in Fig. 1, and other properties are shown in Table 1.
  • a phosphorus-containing molecular sieve according to the method of Example I-2, except that the phosphorus-containing molecular sieve raw material is crushed and sieved into 5-20 mesh (in which about 5-100 mm particles account for 70% by weight of the total weight of the phosphorus-containing molecular sieve raw material), Then, the hydrothermal treatment and the subsequent operation were carried out in accordance with the method of Example I-2 to obtain a phosphorus-containing molecular sieve Y-3 having a unit cell constant of 2.438 nm, a specific surface area of 733 m 2 /g, and a Na 2 O content of 0.08% by weight.
  • the Al 2 O 3 content was 8.1% by weight, and the 27Al-NMR structure spectrum is shown in Fig. 1, and other properties are shown in Table 1.
  • the phosphorus-containing molecular sieve of the present comparative example is the same PSRY molecular sieve as that of the embodiment I-2, and the preparation method thereof can be referred to the preparation method of the phosphorus-containing zeolite disclosed in Chinese Patent Publication No. CN1088407C, which comprises the phosphorus-containing compound and the raw material zeolite according to 0.2.
  • the weight ratio was directly mixed and heated at 520 ° C for at least 0.1 h under closed conditions, and the obtained product was washed with deionized water to an acid-free ion to recover a phosphorus-containing zeolite.
  • HY molecular sieve produced by Sinopec Catalyst Changling Branch, trade name HY, unit cell constant 2.465nm, specific surface area of 580m 2 /g, pore volume of 0.33ml / g, Na 2 O content of 0.3% by weight , the content of Al 2 O 3 is 22% by weight
  • 100g is placed in the hydrothermal treatment device, 100% water vapor is introduced, the temperature is raised to 450 ° C, the pressure inside the control device is 0.8 MPa, and the hydrothermal treatment is performed after constant hydrothermal treatment for 8 hours.
  • the molecular sieve material is taken out.
  • a hydrochloric acid-ammonium chloride aqueous solution was prepared according to the weight ratio of hydrochloric acid, ammonium chloride and molecular sieve raw materials of 0.08:1.5:1.
  • the concentration of hydrochloric acid in the aqueous solution was 0.1 mol/L, and the concentration of ammonium chloride was 0.14 mol/L. .
  • the solid product was collected and dried at 180 ° C for 3 h to obtain molecular sieve RY-2 having a unit cell constant of 2.434 nm, a specific surface area of 694 m 2 /g, and a Na 2 O content of 0.08 wt%.
  • the Al 2 O 3 content was 10.2% by weight, and the 27Al-NMR structure spectrum is shown in Fig. 1, and other properties are shown in Table 1.
  • the solid product was collected and dried at 180 ° C for 3 h to obtain a phosphorus-containing molecular sieve RY-3 having a unit cell constant of 2.427 nm, a specific surface area of 608 m 2 /g, and a Na 2 O content of 0.12.
  • the weight %, Al 2 O 3 content was 7.8% by weight, and the 27Al-NMR structure spectrum is shown in Fig. 1, and other properties are shown in Table 1.
  • the obtained phosphorus-containing molecular sieve raw material was placed in a hydrothermal treatment device, and the temperature was raised to 580 ° C, and the pressure inside the control device was 0.4 MPa. After hydrothermal treatment for 2 hours, the hydrothermally treated molecular sieve material was taken out.
  • 500 ml of an aqueous sulfuric acid solution was prepared in a weight ratio of sulfuric acid to a phosphorus-containing molecular sieve raw material of 0.8:1, and the concentration of sulfuric acid in the aqueous solution was 0.2 mol/L.
  • the solid product was collected and dried at 100 ° C for 8 h to obtain a phosphorus-containing molecular sieve RY-4 having a unit cell constant of 2.432 nm, a specific surface area of 485 m 2 /g, and a Na 2 O content of 0.12.
  • the weight %, Al 2 O 3 content was 4.6% by weight, and the 27Al-NMR structure spectrum is shown in Fig. 1, and other properties are shown in Table 1.
  • the phosphorus-containing molecular sieve of the present invention has a specific combination of characteristics, in particular, a higher ratio of the amount of B acid to the amount of L acid and a lower ratio of I -1 ppm / I ⁇ 6 ppm , and is under control
  • the phosphorus-containing molecular sieve preparation method of the present invention can increase the molecular sieve yield.
  • Examples II-1 to II-5 are preparation examples of the hydrocracking catalyst of the present invention, and Comparative Examples II-1 to II-4 are preparation examples of the hydrocracking catalyst which is not the present invention.
  • the catalyst was prepared in the same manner as in Example II-1 except that the molecular sieves used were Y-2 and Y-3, respectively, and the composition of the obtained catalyst is shown in Table 2.
  • pseudo-boehmite powder SB powder (produced by Sasol Company, trade name SB powder, dry base content 0.72) is uniformly mixed with 31.6g HY molecular sieve (produced by Sinopec Catalyst Changling Branch, trade name HY, dry content 0.76), and then Add 10g Y-2 molecular sieve (water content: 19% by weight), 2.2g of tianjing powder and mix well, add 2ml of nitric acid (Beijing Chemical Reagent Factory, nitric acid content 65-68% by weight) in 200ml aqueous solution, and extrude into circumscribed circle A trilobal strip having a diameter of 1.6 mm was dried at 120 ° C and calcined at 550 ° C for 3 h to obtain a carrier CS-4.
  • HY molecular sieve produced by Sinopec Catalyst Changling Branch, trade name HY, dry content 0.76
  • CS-4 carrier After cooling to room temperature, 100 g of CS-4 carrier was impregnated with 90 ml of an aqueous solution containing 24.1 g of ammonium heptamolybdate (Tianjin Sifang Chemical Co., Ltd., molybdenum oxide content of 82% by weight), dried at 120 ° C for 10 h, and then containing 46.2 g of nitric acid.
  • Nickel (Jiangsu Yixing Xuchi Chemical Co., Ltd., nickel oxide content of 25.6% by weight) was impregnated with 50 ml of aqueous solution, dried at 90 ° C for 5 h, and calcined at 420 ° C for 3 h to obtain the hydrocracking catalyst prepared in this example.
  • the composition is shown in Table 2. .
  • carrier After cooling to room temperature, 100 g of carrier was used to contain 39.2 g of ammonium metatungstate (Sichuan Zigong Cemented Carbide Plant, tungsten oxide content was 91% by weight), and 20.56 g of nickel nitrate (Jiangsu Yixing Xuchi Chemical Co., Ltd., nickel oxide content was 25.6 wt%) and 0.26 g of ethylene glycol in 85 ml of an aqueous solution were impregnated and dried at 180 ° C for 3 h to obtain a hydrocracking catalyst prepared in this example, the composition of which is shown in Table 2.
  • the catalyst was prepared in the same manner as in Example II-1 except that the molecular sieves used were RY-1, RY-2, RY-3 and RY-4, respectively, and the composition of the obtained catalyst is shown in Table 2.
  • This application example was used to test the catalytic activity of the catalysts of Examples II-1 to II-5 and Comparative Examples II-1 to II-4 for the hydrocracking reaction.
  • the raw material oil used is sand light minus two vacuum gas oil, and its physicochemical properties are shown in Table 3.
  • the catalyst is evaluated as follows: the catalyst is crushed into particles having a diameter of 2-3 mm, and 20 ml of a catalyst is charged in a 30 ml fixed bed reactor, and 2% by weight is contained in a hydrogen atmosphere before the reaction.
  • the carbon sulphide kerosene is vulcanized according to the procedure described below, and then switched to the reaction stock oil for reaction.
  • the vulcanization procedure is as follows: the reactor is heated to 150 ° C, the sulfurized oil is introduced, and the temperature is maintained for 1 h; the temperature is raised to 230 ° C at 60 ° C / h, stabilized for 2 h, and then heated to 360 ° C at 60 ° C / h for 6 h. Subsequently, the reaction stock oil was replaced, adjusted to the following reaction conditions, and stabilized for at least 20 h.
  • the hydrocracking reaction was carried out under the following reaction conditions: a reaction temperature of 365 ° C, a hydrogen partial pressure of 6.4 MPa, a liquid hourly space velocity (LHSV) of 1 h -1 , and a hydrogen to oil ratio (volume) of 800 Nm 3 /m 3 .
  • the reaction results are shown in Table 4.
  • the catalytic activity of the hydrocracking catalyst containing the phosphorus-containing molecular sieve provided by the present application is improved by about 7.9-by the hydrocracking catalyst containing the molecular sieve prepared by the conventional method. 63.4%.

Abstract

提供一种含磷分子筛及其制备方法和应用。以氧化物计,该分子筛的磷含量为约0.3-5重量%,孔容为约0.2-0.95ml/g,B酸酸量和L酸酸量的比值为约2-10。该分子筛具有高的B酸酸量与L酸酸量的比值,从而在用于制备加氢裂化催化剂时表现出了更高的加氢裂化活性和开环选择性。

Description

含磷分子筛及其制备方法和应用
相关申请的交叉引用
本申请要求申请人于2017年10月31日向中国专利局提交的申请号为201711046549.4、名称为“含磷分子筛及其制备方法和应用”的专利申请的优先权,以及,申请人于2017年10月31日向中国专利局提交的申请号为201711048395.2、名称为“加氢裂化催化剂及其制备方法和应用”的专利申请的优先权,上述专利申请的内容经此引用全文并入本文。
技术领域
本发明涉及分子筛技术领域,更具体地涉及一种含磷分子筛及其制备方法和应用。
背景技术
工业加氢裂化进料包括VGO等350-540℃馏分,含有大量的多环芳烃和环烷烃。研究表明,在加氢裂化高转化率区域,重质馏分中芳烃含量降低,而环烷烃含量较高,这使得开环性能成为改善尾油质量,提高航煤烟点的有效手段。然而,由于环烷烃中的β键处于环烷正碳离子空p轨道的垂直方向上,使得二者不容易形成共面构象,这使得环烷烃开环需要更强的酸性条件。分子筛具有较高的酸性,广泛应用于加氢裂化反应中。然而普通HY分子筛结构不稳定,在催化剂制备和使用过程中容易发生骨架脱铝。分子筛制备过程中生成的非骨架铝通常酸性较弱,屏蔽了B酸中心,使得催化剂性能降低。通过水热处理、引入第二组分等方式进行超稳化处理可以稳定分子筛结构,其中引入的第二组分通常包括烯土组分和磷组分。由于焙烧过程中磷同分子筛中脱除的非骨架铝形成分子量更大的磷铝氧化物复合体,这种复合体具有更高的热稳定性,有利于阻止骨架脱铝,使得其在一定程度上可以代替烯土组分的作用。
中国专利申请公开CN1279130A公开了一种含磷Y型分子筛的制备方法,该方法包括将磷含量为0.5-5重量%(以P 2O 5计),Na 2O含量为0.5-6重量%,晶胞常数为2.460-2.475nm的P-NH 4NaY分子筛在 焙烧炉中,在100%水蒸气气氛下于450-700℃水热焙烧0.5-4h;将焙烧后的产物进行液相抽铝补硅反应;然后过滤,洗涤得到含磷超稳Y型分子筛。
中国专利申请公开CN1727280A公开了一种含磷分子筛,该含磷分子筛含有85-99.9重量%的分子筛和,以P 2O 5计,约0.1-15重量%的磷。所述分子筛的 31P MAS-NMR谱图中,化学位移为0±1.0ppm的峰的峰面积占总峰面积的百分数小于1%。所述分子筛的制备方法包括:在分子筛中引入磷,并用含酸的水溶液洗涤该分子筛,其中的酸选自水溶性的有机酸、无机酸中的一种或几种,酸的含量为0.0001-10.0摩尔/升,洗涤的温度为室温至95℃。
现有技术中通常对含磷分子筛进行后处理,以进一步提高分子筛的稳定性和酸性。这些后处理方法通常包含热处理和酸洗处理。
现有分子筛热处理过程中,常常包含热处理和水热处理,二者均可脱除一定量的不稳定铝物种,提高分子筛的稳定性。采用水热气氛来使得分子筛中的硅氧化物在高温下形成硅水物种,增强其可移动性,从而克服脱硅和脱铝之间10-30kJ/mol的反应能垒差值,达到所谓的“脱铝-补硅”平衡,最终使得分子筛骨架结构保持的更加完整。水热处理过程中水的引入方式包含两种方式,即焙烧过程中通入水蒸汽和物料自热焙烧释放出水。两种方式中,随着温度超过水所在压力下的汽化温度,反应体系形成气-液-固三相反应,使得微观尺度上,脱硅反应具有不均一性。此外,由于液体变成气体的体积膨胀效应,使得水蒸汽压力急剧增加,这使得在实际分子筛制备过程中,分子筛反应物料会被带出反应系统。这进一步使得分子筛反应苛刻度随微观气氛具有很大的不均匀性,最终使得骨架铝在分子筛中的分布不均匀,从而降低其反应活性。
本领域尽管存在一些已知的含磷分子筛及其制备方法,但是仍然需要用在加氢裂化催化剂中时表现出更高的加氢裂化活性和开环选择性的含磷分子筛及制备此类分子筛的方法。
发明内容
本申请的一个目的是提供一种含磷分子筛、及其制备方法和应用,该分子筛具有特定的特征组合,尤其是高B酸酸量与L酸酸量比 值与其它特定特征的组合,使得其用于制备加氢裂化催化剂时表现出更高的加氢裂化活性和开环选择性。本申请的另一目的是提供包含本发明含磷分子筛的加氢裂化催化剂、及其制备方法和应用。
为了实现上述目的,在一方面,本申请提供了一种含磷分子筛,以氧化物计,该分子筛的磷含量为约0.3-5重量%,孔容为约0.2-0.95ml/g,B酸酸量和L酸酸量的比值为约2-10。
优选地,所述含磷分子筛的27Al-NMR结构谱图中,I 60ppm/I -1ppm为约5-40,I -1ppm/I ±6ppm为约0.4-2。
在另一方面,本申请提供了一种制备含磷分子筛的方法,包括如下步骤:
i)对含磷分子筛原料进行水热处理;
ii)将经水热处理后的分子筛制成浆液,其中所得分子筛浆液中水的重量与含磷分子筛原料的干基重量的比例为约14∶1至约5∶1;
iii)对所得分子筛浆液进行酸洗处理;以及
iv)收集固体产物,
其中步骤iii)的酸洗处理按如下方式进行:在约40-95℃的温度下,基本匀速地向所述分子筛浆液中加入酸溶液,以1L所述分子筛浆液为基准,以H +计,所述酸溶液的加入速度为约0.05-10摩尔/小时,加酸完毕后恒温反应约0.5-20h,其中所述酸溶液中酸的重量与所述含磷分子筛原料的干基重量的比例为约0.01∶1至约0.6∶1。
优选地,以氧化物计并以含磷分子筛原料的干基重量为基准,所述含磷分子筛原料的磷含量为约0.1-15重量%,钠含量为约0.5-4.5重量%。
优选地,所述含磷分子筛原料为含磷的Y型分子筛,其晶胞常数为2.425-2.470nm,比表面积为约250-750m 2/g,孔容为约0.2-0.95ml/g。
优选地,所述含磷分子筛原料为颗粒状,且粒度范围为约1-500mm的含磷分子筛原料的含量为含磷分子筛原料总重量的约10-100重量%,所述粒度以颗粒外切圆直径计。
在又一方面,本申请提供了根据本发明的制备含磷分子筛的方法得到的含磷分子筛。
在又一方面,本申请提供了一种加氢裂化催化剂,以干基计并以 催化剂的重量为基准,该催化剂包括约45-90重量%的载体,以金属氧化物计约1-40重量%的第一金属组分,和以金属氧化物计约1-15重量%的第二金属组分,其中:
所述载体包括根据本发明的含磷分子筛和耐热无机氧化物,其中所述含磷分子筛与耐热无机氧化物的重量比为约0.03∶1至约20∶1;所述第一金属为选自第VIB族的金属;所述第二金属为选自第VIII族的金属。
优选地,所述耐热无机氧化物选自氧化铝、氧化硅、无定形硅铝化合物、氧化锆、氧化镁、氧化钍、氧化铍、氧化硼、氧化镉,和它们的组合;所述第一金属为钼和/或钨;所述第二金属选自铁、镍、钴,和它们的组合。
在又一方面,本申请提供了本发明的含磷分子筛在加氢裂化催化剂制备中的应用。
在又一方面,本申请提供了一种制备加氢裂化催化剂的方法,包括使载体与含有金属前驱物的浸渍液接触进行浸渍,并将浸渍后得到的物料干燥的步骤,其中:
所述载体包括根据本发明的含磷分子筛和耐热无机氧化物,所述金属前驱物包括第一金属前驱物和第二金属前驱物,所述第一金属为选自第VIB族的金属,所述第二金属为选自第VIII族的金属;
优选地,所述方法进一步包括如下步骤:将所述含磷分子筛和耐热无机氧化物与胶溶剂,以及任选的润滑剂混合,然后成型、干燥和焙烧得到所述载体。
优选地,所述第一金属前驱物选自第一金属的无机酸、第一金属的无机盐、第一金属有机化合物,和它们的组合;所述无机盐优选选自硝酸盐、碳酸盐、碱式碳酸盐、次磷酸盐、磷酸盐、硫酸盐、氯化物,和它们的组合;所述第一金属有机化合物中的有机取代基选自羟基、羧基、胺基、酮基、醚基、烷基,和它们的组合;
所述第二金属前驱物选自第二金属的无机酸、第二金属的无机盐、第二金属有机化合物,和它们的组合;所述无机盐选自硝酸盐、碳酸盐、碱式碳酸盐、次磷酸盐、磷酸盐、硫酸盐、氯化物,和它们的组合;所述第二金属有机化合物中的有机取代基选自羟基、羧基、胺基、酮基、醚基、烷基,和它们的组合。
在又一方面,本申请提供了本发明的含磷分子筛或本发明的加氢裂化催化剂在烃类原料的加氢裂化反应中的应用。
在又一方面,本申请提供了一种烃类原料的加氢裂化方法,包括在本发明的含磷分子筛或者本发明的加氢裂化催化剂存在下,使所述烃类原料加氢裂化的步骤。
在本申请中,通过对含磷分子筛原料进行特殊处理,制得了性能优异的含磷分子筛,其具有特定的特征组合,特别是高B酸酸量与L酸酸量比值与其他特定特征的组合。相对于现有的含磷分子筛,本发明的含磷分子筛在用于制备加氢裂化催化剂时表现出了更高的加氢裂化活性和开环选择性。相应地,采用该含磷分子筛的本发明加氢裂化催化剂在用于加氢裂化反应时,显示出更高的加氢裂化活性和开环选择性。
本发明的其他特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
附图是用来帮助对本发明的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本发明,但并不构成对本发明的限制。在附图中:
图1是实施例I-1至I-3和对比例I-1至I-4所制备的分子筛的27Al-NMR结构谱图。
具体实施方式
以下结合附图对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
在本文中所披露的任何具体数值(包括数值范围的端点)都不限于该数值的精确值,而应当理解为还涵盖了接近该精确值的值。并且,对于所披露的数值范围而言,在该范围的端点值之间、端点值与范围内的具体点值之间,以及各具体点值之间可以任意组合而得到一个或多个新的数值范围,这些新的数值范围也应被视为在本文中具体公开。
如无特殊说明,本文所用的术语具有与本领域技术人员通常所理解的相同的含义,如果术语在本文中有定义,且其定义与本领域的通常理解不同,则以本文的定义为准。
本申请中,除了明确说明的内容之外,未提到的任何事宜或事项均直接适用本领域已知的那些而无需进行任何改变。而且,本文描述的任何实施方式均可以与本文描述的一种或多种其他实施方式自由结合,由此形成的技术方案或技术思想均视为本发明原始公开或原始记载的一部分,而不应被视为是本文未曾披露或预期过的新内容,除非本领域技术人员认为该结合明显不合理。
如无特殊说明,本文给出的所有压力均为表压。
如无特殊说明,本文给出的所有粒度均为以颗粒的外切圆直径计。
在本文中,术语“含磷分子筛原料”指用作起始原料的含磷的分子筛。在本发明中,由于采用含磷分子筛原料,分子筛骨架外的磷铝物种能够提高分子筛的骨架稳定性,从而进一步提高分子筛的性能。
在本文中,所谓“基本匀速”是指以基本恒定的速率向分子筛浆液中基本连续地加入酸溶液,直到加入的酸溶液中的酸的重量达到设定量为止,其中所述“基本连续地加入”指持续不断地加入直至添加完毕,或者间隔地分多次加入且每次期间均以连续的方式添加。本发明通过采用基本连续加酸的方式,能够实现边加酸边进行酸洗反应,且加酸速度较慢,使得脱铝过程更为缓和,有利于提高分子筛的性能。
特别地,在本发明中,所谓“基本匀速地向所述分子筛浆液中加入酸溶液”涵盖了以基本恒定的速率向分子筛浆液中连续不间断地添加酸溶液,直到一次性将设定量的酸溶液添加完毕的情形;并且,还涵盖了分多次向分子筛浆液中添加酸溶液,且每次添加期间均以基本恒定的速率连续添加所述酸溶液的情形,其中每次加酸后可恒温反应一段时间再继续进行下一次的加酸,直到将设定量的酸溶液加完为止。每次添加期间的酸溶液的加入速度可以相同也可以不同,并且各自独立地为约0.05-10摩尔/小时,优选约0.2-3.0摩尔/小时。
在本文中提及的所有专利和非专利文献,包括但不限于教科书和期刊文章等,均通过引用方式全文并入本文。
在第一方面,本申请提供了一种含磷分子筛,以氧化物计,该分 子筛的磷含量为约0.3-5重量%,优选约0.4-2.0重量%,孔容为约0.2-0.95ml/g,优选约0.25-0.60ml/g,B酸酸量和L酸酸量的比值为约2-10,优选约3.4-9.5。
本申请提供的含磷分子筛具有较高的B酸酸量和L酸酸量的比值。尤其特别的是,本申请提供的含磷分子筛不仅保留了较高的骨架铝和非骨架铝的比值,在非骨架铝位置,如化学位移为-4ppm至-6ppm位置或3-7ppm位置处,还保留了一定的非骨架铝。特别地,所述分子筛的27Al-NMR结构谱图中,在60±1ppm位置处的骨架铝和在-1±1ppm位置处的非骨架铝的峰高比值即I 60ppm/I -1ppm为约5-40,优选约10.0-39;且非骨架铝有两处明显的特征峰,一处在-1±1ppm,另一处在-5.5±2ppm或3-7ppm,二者的峰高比值即I -1ppm/I ±6ppm为约0.4-2,优选为约0.8-2,其中,I ±6ppm取-5.5±2ppm和3-7ppm处峰高的较大值。
在优选的实施方式中,本发明的含磷分子筛的晶胞常数为2.425-2.470nm,优选2.430-2.458nm,比表面积为约250-850m 2/g,优选约400-750m 2/g。
在优选的实施方式中,本发明的含磷分子筛为具有八面沸石结构的分子筛,优选为Y型分子筛,更优选选自NaY、HNaY、REY、USY分子筛,和它们的组合。
在优选的实施方式中,本发明的含磷分子筛的阳离子位被钠离子、铵离子和氢离子中的一种或几种所占据。
在特别优选的实施方式中,本发明的含磷分子筛通过包括如下步骤的方法制备:
i)对含磷分子筛原料进行水热处理;
ii)将经水热处理后的分子筛制成浆液,其中所得分子筛浆液中水的重量与含磷分子筛原料的干基重量的比例为约14∶1至约5∶1;
iii)对所得分子筛浆液进行酸洗处理;以及
iv)收集固体产物,
其中步骤iii)的酸洗处理按如下方式进行:在约40-95℃、优选约50-85℃的温度下,基本匀速地向所述分子筛浆液中加入酸溶液,以1L所述分子筛浆液为基准,以H +计,所述酸溶液的加入速度为约0.05-10摩尔/小时,优选约0.2-3.0摩尔/小时,加酸完毕后恒温反应约 0.5-20h,优选约0.5-15h,其中所述酸溶液中酸的重量与所述含磷分子筛原料的干基重量的比例为约0.01∶1至约0.6∶1。
在进一步优选的实施方式中,所述含磷分子筛原料可具有八面沸石分子筛结构,优选为含磷的Y型分子筛,其晶胞常数可以为2.425-2.470nm,优选2.440-2.470nm,比表面积可以为约250-750m 2/g,优选约400-700m 2/g,孔容可以为约0.2-0.95ml/g,优选约0.2-0.5ml/g。进一步地,所述Y型分子筛的具体选择可以在很大范围内变化,只要使得所述含磷分子筛原料满足上述条件即可,例如,所述Y型分子筛可以选自NaY、HNaY(氢Y型分子筛)、REY(稀土Y型分子筛)、USY(超稳Y型分子筛)等。所述含磷的Y型分子筛的阳离子位可以是被钠离子、铵离子、氢离子中的一种或几种所占据;或者也可以是,在向分子筛中引入磷之前或之后,通过常规的离子交换,使其中的钠离子、铵离子、氢离子全部或部分被其它离子所取代。所述含磷分子筛原料可以是市售的商品,也可以采用任意的现有技术制备,例如,可以采用中国专利申请公开CN1350886A公开的制备USY的方法,或中国专利申请公开CN1727280A公开的制备PUSY的方法等,本发明不再赘述。
在进一步优选的实施方式中,所述含磷分子筛原料的含水量为约10-40重量%。具有上述含水量的含磷分子筛原料可以通过将初始的分子筛原料加水打浆后过滤、干燥得到。进一步地,所述含磷分子筛原料优选为颗粒状,且粒度范围为约1-500mm的含磷分子筛原料的含量可以为含磷分子筛原料总重量的约10-100重量%,优选为约30-100重量%。更进一步地,粒度范围为约5-100mm的含磷分子筛原料的含量为含磷分子筛原料总重量的约30-100重量%。采用上述粒度范围的含磷分子筛原料进行水热处理能够明显改善水热处理的传质效果,减少物料跑损,提高操作的稳定性。所述分子筛原料的粒度控制方法可以为本领域常规的,例如筛分法、挤条法、滚球法等。
在进一步优选的实施方式中,步骤i)的水热处理在水蒸汽存在下、优选在30%-100%的水蒸汽存在下,在如下条件下进行:温度为约350-700℃,压力为约0.1-2Mpa,水热处理时间为约0.5-10h。
在进一步优选的实施方式中,在步骤ii)中通过将所述经水热处理后的分子筛物料加水打浆得到所述分子筛浆液,其中所述的“加水打 浆”具有本领域技术人员所熟知的含义,打浆后得到的所述分子筛浆液中水的重量与含磷分子筛原料的干基重量的比例可以为约14∶1至约5∶1。
在某些进一步优选的实施方式中,在步骤iii)中,将所述酸溶液基本匀速地、一次性添加到所述分子筛浆液中,即以所设定的加酸速率持续不断地添加直到全部的酸溶液添加完毕,然后再恒温进行反应。
在另一些进一步优选的实施方式中,为了提高物料的利用率并减少废物产出,将所述酸溶液分多次添加,每次均以一设定的加酸速率连续添加到所述分子筛浆液中,每次加酸后恒温反应一定时间,而后再继续进行下一次的加酸,直到将设定量的酸溶液加完为止。例如,所述酸溶液的加入可以分2-10次进行,以1L所述分子筛浆液为基准,以H +计,所述酸溶液每次以在约0.05-10摩尔/小时,优选约0.2-3.0摩尔/小时范围内的速度基本匀速地加入,每次加酸后均恒温反应一段时间,使得总恒温反应时间为约0.5-20h,优选约0.5-15h。优选地,当所述酸溶液分多次加入时,所述酸溶液中酸的重量与所述含磷分子筛原料的干基重量的比例为约0.01∶1至约0.3∶1。
在进一步优选的实施方式中,所述酸溶液的酸浓度可以为约0.01-15.0mol/L,优选约0.02-5.0mol/L,pH值可以为约0.01-3。所述酸可以为常规的无机酸和/有机或酸,例如可以选自磷酸、硫酸、硝酸、盐酸、醋酸、柠檬酸、酒石酸、甲酸、乙酸、和它们的组合。
在进一步优选的实施方式中,在步骤iii)中,在加入酸溶液的过程中还向所述分子筛浆液中加入铵盐,例如,所述铵盐可以选自硝酸铵、氯化铵、硫酸铵、以及它们的组合。优选地,所述铵盐的重量与含磷分子筛原料的干基重量的比例可以为约0.1∶1至约2.0∶1。所述铵盐可以独立于所述酸溶液加入至所述分子筛浆液中,也可以按照需要的量配制为含铵盐和酸的水溶液,并将该水溶液加入至所述分子筛浆液中。
在进一步优选的实施方式中,在步骤iv)之后,对所收集的固体产物进行水洗、干燥,得到含磷分子筛。所述水洗和干燥为制备分子筛的常规步骤,本发明没有特殊的限制。例如,所述干燥可以采用烘箱、网带、转炉加热等方法进行,干燥的条件可以为:温度为约50-350℃,优选为约70-200℃;时间为约1-24h,优选为约2-6h。
在尤其特别优选的实施方式中,本发明的含磷分子筛通过包括如下步骤的方法制备:
i)使含磷分子筛原料在水蒸汽存在下、优选在30%-100%的水蒸汽存在下,在约350-700℃的温度和约0.1-2Mpa的压力下进行水热处理约0.5-10h,得到经水热处理后的分子筛物料;
ii)将所述经水热处理后的分子筛物料加水打浆,得到分子筛浆液,其中所得分子筛浆液中水的重量与含磷分子筛原料的干基重量的比例为约14∶1至约5∶1;
iii)将所述分子筛浆液加热至约40-95℃、优选约50-85℃,然后保持温度并基本匀速地向该分子筛浆液中加入酸溶液,所述酸溶液中酸的重量与所述含磷分子筛原料的干基重量的比例为约0.01∶1至约0.6∶1,以1L所述分子筛浆液为基准,以H +计,所述酸溶液的加入速度为约0.05-10摩尔/小时,优选约0.2-3.0摩尔/小时,加酸完毕后恒温反应约0.5-20h,优选约0.5-15h;以及
iv)收集固体产物。
在第二方面,本申请提供了一种制备含磷分子筛的方法,包括如下步骤:
i)对含磷分子筛原料进行水热处理;
ii)将经水热处理后的分子筛制成浆液,其中所得分子筛浆液中水的重量与含磷分子筛原料的干基重量的比例为约14∶1至约5∶1;
iii)对所得分子筛浆液进行酸洗处理;以及
iv)收集固体产物,
其中步骤iii)的酸洗处理按如下方式进行:在约40-95℃、优选约50-85℃的温度下,基本匀速地向所述分子筛浆液中加入酸溶液,以1L所述分子筛浆液为基准,以H +计,所述酸溶液的加入速度为约0.05-10摩尔/小时,优选约0.2-3.0摩尔/小时,加酸完毕后恒温反应约0.5-20h,优选约0.5-15h,其中所述酸溶液中酸的重量与所述含磷分子筛原料的干基重量的比例为约0.01∶1至约0.6∶1。
在优选的实施方式中,所述含磷分子筛原料可具有八面沸石分子筛结构,优选为含磷的Y型分子筛,其晶胞常数可以为2.425-2.470nm,优选2.440-2.470nm,比表面积可以为约250-750m 2/g,优选约400-700m 2/g,孔容可以为约0.2-0.95ml/g,优选约0.2-0.5ml/g。进一 步地,所述Y型分子筛的具体选择可以在很大范围内变化,只要使得所述含磷分子筛原料满足上述条件即可,例如,所述Y型分子筛可以选自NaY、HNaY(氢Y型分子筛)、REY(稀土Y型分子筛)、USY(超稳Y型分子筛)等。所述含磷的Y型分子筛的阳离子位可以是被钠离子、铵离子、氢离子中的一种或几种所占据;或者也可以是,在向分子筛中引入磷之前或之后,通过常规的离子交换,使其中的钠离子、铵离子、氢离子全部或部分被其它离子所取代。所述含磷分子筛原料可以是市售的商品,也可以采用任意的现有技术制备,例如,可以采用中国专利申请公开CN1350886A公开的制备USY的方法,或中国专利申请公开CN1727280A公开的制备PUSY的方法等,本发明不再赘述。
在优选的实施方式中,所述含磷分子筛原料的含水量为约10-40重量%。具有上述含水量的含磷分子筛原料可以通过将初始的分子筛原料加水打浆后过滤、干燥得到。进一步地,所述含磷分子筛原料优选为颗粒状,且粒度范围为约1-500mm的含磷分子筛原料的含量可以为含磷分子筛原料总重量的约10-100重量%,优选为约30-100重量%。更进一步地,粒度范围为约5-100mm的含磷分子筛原料的含量为含磷分子筛原料总重量的约30-100重量%。采用上述粒度范围的含磷分子筛原料进行水热处理能够明显改善水热处理的传质效果,减少物料跑损,提高操作的稳定性。所述分子筛原料的粒度控制方法可以为本领域常规的,例如筛分法、挤条法、滚球法等。
在优选的实施方式中,步骤i)的水热处理在水蒸汽存在下、优选在30%-100%的水蒸汽存在下,在如下条件下进行:温度为约350-700℃,压力为约0.1-2Mpa,水热处理时间为约0.5-10h。
在优选的实施方式中,在步骤ii)中通过将所述经水热处理后的分子筛物料加水打浆得到所述分子筛浆液,其中所述的“加水打浆”具有本领域技术人员所熟知的含义,打浆后得到的所述分子筛浆液中水的重量与含磷分子筛原料的干基重量的比例可以为约14∶1至约5∶1。
在某些具体实施方式中,在步骤iii)中,将所述酸溶液基本匀速地、一次性添加到所述分子筛浆液中,即以所设定的加酸速率持续不断地添加直到全部的酸溶液添加完毕,然后再恒温进行反应。
在另一些具体实施方式中,为了提高物料的利用率并减少废物产 出,将所述酸溶液分多次添加,每次均以一设定的加酸速率连续添加到所述分子筛浆液中,每次加酸后均恒温反应一定时间,而后再继续进行下一次的加酸,直到将设定量的酸溶液加完为止。例如,所述酸溶液的加入可以分2-10次进行,以1L所述分子筛浆液为基准,以H +计,所述酸溶液每次以在约0.05-10摩尔/小时,优选约0.2-3.0摩尔/小时范围内的速度基本匀速地加入,每次加酸后均恒温反应一段时间,使得总恒温反应时间为约0.5-20h,优选约0.5-15h。优选地,当所述酸溶液分多次加入时,所述酸溶液中酸的重量与所述含磷分子筛原料的干基重量的比例为约0.01∶1至约0.3∶1。
在优选的实施方式中,所述酸溶液的酸浓度可以为约0.01-15.0mol/L,优选约0.02-5.0mol/L,pH值可以为约0.01-3。所述酸可以为常规的无机酸和/有机或酸,例如可以选自磷酸、硫酸、硝酸、盐酸、醋酸、柠檬酸、酒石酸、甲酸、乙酸、和它们的组合。
在优选的实施方式中,本发明方法还可以包括,在步骤iii)中,在加入酸溶液的过程中向所述分子筛浆液中加入铵盐,例如,所述铵盐可以选自硝酸铵、氯化铵、硫酸铵、以及它们的组合。优选地,所述铵盐的重量与含磷分子筛原料的干基重量的比例可以为约0.1∶1至约2.0∶1。所述铵盐可以独立于所述酸溶液加入至所述分子筛浆液中,也可以按照需要的量配制为含铵盐和酸的水溶液,并将该水溶液加入至所述分子筛浆液中。
在优选的实施方式中,本发明方法还可以包括,在步骤iv)之后,对所收集的固体产物进行水洗、干燥,得到含磷分子筛。所述水洗和干燥为制备分子筛的常规步骤,本发明没有特殊的限制。例如,所述干燥可以采用烘箱、网带、转炉加热等方法进行,干燥的条件可以为:温度为约50-350℃,优选为约70-200℃;时间为约1-24h,优选为约2-6h。
在特别优选的实施方式中,本发明方法包括如下步骤:
i)使含磷分子筛原料在水蒸汽存在下、优选在30%-100%的水蒸汽存在下,在约350-700℃的温度和约0.1-2Mpa的压力下进行水热处理约0.5-10h,得到经水热处理后的分子筛物料;
ii)将所述经水热处理后的分子筛物料加水打浆,得到分子筛浆液,其中所得分子筛浆液中水的重量与含磷分子筛原料的干基重量的 比例为约14∶1至约5∶1;
iii)将所述分子筛浆液加热至约40-95℃、优选约50-85℃,然后保持温度并基本匀速地向该分子筛浆液中加入酸溶液,所述酸溶液中酸的重量与所述含磷分子筛原料的干基重量的比例为约0.01∶1至约0.6∶1,以1L所述分子筛浆液为基准,以H +计,所述酸溶液的加入速度为约0.05-10摩尔/小时,优选约0.2-3.0摩尔/小时,加酸完毕后恒温反应约0.5-20h,优选约0.5-15h;以及
iv)收集固体产物。
在第三方面,本申请提供了通过本发明的含磷分子筛制备方法得到的含磷分子筛。
本发明通过对含磷分子筛原料进行特殊处理,能够制得性能优异的含磷分子筛,其用于制备加氢裂化催化剂时能够表现出更高的加氢裂化活性和开环选择性。
本发明所提供的含磷分子筛适合用在各种酸催化催化剂中,用于催化裂化、临氢异构化、烷基化、加氢裂化等反应,特别适用于对烃类原料进行加氢裂化,以生产具有较低沸点和较低分子量的烃类馏分。
在第四方面,本申请提供了一种加氢裂化催化剂,以干基计并以催化剂的重量为基准,该催化剂包括约45-90重量%、优选约55-85重量%的载体,以金属氧化物计约1-40重量%、优选约12-35重量%的第一金属组分,和以金属氧化物计约1-15重量%、优选约2-10重量%的第二金属组分,其中:
所述载体包括如上文所描述的本发明的含磷分子筛和耐热无机氧化物,其中所述含磷分子筛与耐热无机氧化物的重量比为约0.03∶1至约20∶1、优选约0.03∶1至约6∶1;所述第一金属为选自第VIB族的金属;所述第二金属为选自第VIII族的金属。
在本发明的加氢裂化催化剂中,所述耐热无机氧化物能够提高催化剂的强度,并改善和调节催化剂的物化性质,如可以改善催化剂的孔结构。适用于本发明的耐热无机氧化物包括加氢催化剂载体中常用的无机氧化物,例如氧化铝、氧化硅、无定形硅铝化合物、氧化锆、氧化镁、氧化钍、氧化铍、氧化硼和氧化镉等。在某些优选的实施方式中,所述耐热无机氧化物可以为氧化铝,所述氧化铝可以包括三水 铝石,如水矿铝(gibbsite)、三羟铝石(bayerite)、诺三水铝石(nordstrandite)和一水铝石,如一水软铝石(boehmite,diaspor,pseudoboehmite)。在其他实施方式中,所述耐热无机氧化物可以为其他的种类或组合。
在优选的实施方式中,所述第一金属可以为钼和/或钨;所述第二金属可以选自铁、镍、钴,和它们的组合。
在第五方面,本申请提供了根据本发明的含磷分子筛在制备加氢裂化催化剂中的应用。
在第六方面,本申请提供了一种制备加氢裂化催化剂的方法,该方法包括使载体与含有金属前驱物的浸渍液接触进行浸渍,并将浸渍后得到的物料干燥的步骤,其中:
所述载体包括如上文所描述的本发明的含磷分子筛和耐热无机氧化物,优选地,所述含磷分子筛与耐热无机氧化物的重量比为约0.03∶1至约20∶1、优选约0.03∶1至约6∶1;并且
所述金属前驱物包括第一金属前驱物和第二金属前驱物,所述第一金属为选自第VIB族的金属,所述第二金属为选自第VIII族的金属。
在本申请中,所述浸渍液同载体的接触浸渍方式可采用本领域已知的任意一种方法,例如中国专利申请公开CN101757931A所公开的将VIB族金属组分、VIII族金属组分和有机添加剂负载到催化剂载体上的方法,其中将VIB族金属组分、VIII族金属组分和有机添加剂负载到催化剂载体上的方式为以下中的任意一种:
方式1:将催化剂载体与第一溶液接触,然后再与第二溶液接触,或者将催化剂载体与第二溶液接触,然后再与第一溶液接触,其中,第一溶液含有VIB族金属组分的化合物和VIII族金属组分的化合物,第二溶液含有VIB族金属组分的化合物但不含VIII族金属组分的化合物,第一溶液和/或第二溶液含有所述有机添加剂;
方式2:将催化剂载体与第三溶液接触,然后再与第四溶液接触,或者将催化剂载体与第四溶液接触,然后再与第三溶液接触,其中,第三溶液含有VIB族金属组分的化合物,第四溶液含有VIII族金属组分的化合物和有机助剂但不含VIB族金属组分的化合物,第三溶液含或不含VIII族金属组分的化合物和有机添加剂,
其中,在每次接触后,对接触后的催化剂载体进行加热。
本发明催化剂所用的载体可以通过本领域技术人员熟知的方式制备,本申请对此没有特殊的限制。例如,可以将含磷Y型分子筛、耐热无机氧化物、溶剂和可选的助剂混合,然后成型并干燥,得到所述载体。所述成型的方法可以采用各种常规的方法,如压片成型、滚球成型或挤条成型等。所述溶剂为催化剂成型过程中的常见溶剂。当采用挤出成型的方法时,优选加入适量助剂以便于成型。
优选地,所述载体的制备方法包括:将含磷Y型分子筛、耐热无机氧化物、胶溶剂,以及任选的润滑剂混合,然后成型、干燥和焙烧得到所述载体。所述胶溶剂可以为含酸溶液或含碱溶液,所述酸可选自本领域技术人员所熟悉的有机酸或者无机酸,和它们的组合,例如磷酸、硫酸、硝酸、盐酸、醋酸、含钨和/或钼杂多酸、柠檬酸、酒石酸、甲酸和乙酸,和它们的组合,含酸溶液中还可添加使得其保持酸性的铵、铁、钴、镍、铝等阳离子;含碱溶液可包括氨、有机胺和尿素中的至少一种。
本申请对所述载体的形状没有特别的要求,可以是球形、条形、中空的条形、球形、块状等,条形载体可以是三叶草形、四叶草形等多叶草形或它们的变形体。
在本申请的一种可选的实施方式中,所述载体可以按中国专利申请公开CN107029779A所公开的方法制备,包括:(1)将含磷Y型分子筛与耐热无机氧化物、胶溶剂、润滑剂和水混合,得到混合物,各组分的用量使所述混合物中胶溶剂的物质的量与粉体的重量比值为0.28×10 -4至4.8×10 -4mol/g,水的重量与胶溶剂的物质的量之比为2.0×10 3至30×10 3g/mol,所述粉体的重量为所述含磷Y型分子筛与耐热无机氧化物重量之和,所述胶溶剂物质的量指的是所述胶溶剂中计量H质子的摩尔数;所述润滑剂为田菁粉、石墨中的一种或者两种;以及(2)将步骤(1)得到的混合物混捏、成型、干燥并焙烧,得到载体。
根据本申请,所述金属前驱物包括第一金属前驱物和第二金属前驱物,其中,所述第一金属前驱物为含有所述第一金属的可溶性化合物,包括第一金属的无机酸、第一金属的无机盐和第一金属有机化合物,和它们的组合;所述无机盐可以选自硝酸盐、碳酸盐、碱式碳酸盐、次磷酸盐、磷酸盐、硫酸盐和氯化物,和它们的组合;所述第一 金属有机化合物中的有机取代基可以选自羟基、羧基、胺基、酮基、醚基、烷基,和它们的组合。例如,当所述第一金属为钼时,所述第一金属前驱物可以选自钼酸、仲钼酸、钼酸盐、仲钼酸盐,和它们的组合;当所述第一金属为钨时,所述第一金属前驱物可以选自钨酸、偏钨酸、乙基偏钨酸、钨酸盐、偏钨酸盐、乙基偏钨酸盐,和它们的组合。所述第二金属前驱物为含有所述第二金属的可溶性化合物,包括第二金属的无机酸、第二金属的无机盐和第二金属有机化合物,和它们的组合;所述无机盐可以选自硝酸盐、碳酸盐、碱式碳酸盐、次磷酸盐、磷酸盐、硫酸盐和氯化物,和它们的组合;所述第二金属有机化合物中的有机取代基可以选自羟基、羧基、胺基、酮基、醚基、烷基,和它们的组合。
根据本申请,所述浸渍液中还可以含有有机添加剂;所述有机添加剂的浓度可以为约2-300g/L。所述有机添加剂可以为含氧有机化合物和/或含氮有机化合物。例如,所述含氧有机化合物可以选自乙二醇、丙三醇、聚乙二醇(分子量可以为200-1500)、二乙二醇、丁二醇、乙酸、马来酸、草酸、氨基三乙酸、1,2-环己烷二胺四乙酸、柠檬酸、酒石酸和苹果酸,和它们的组合;所述含氮有机化合物可以选自乙二胺、二亚乙基三胺、环己二胺四乙酸、氨基乙酸、次氮基三乙酸、乙二胺四乙酸和乙二胺四乙酸铵,和它们的组合。
本申请的制备加氢裂化催化剂的方法中,所述接触浸渍的温度没有特别限定,可以是浸渍液所能达到的各种温度。浸渍的时间也没有特别限定,只要能使催化剂载体负载上所需量的金属活性组分前驱物即可。一般情况下,浸渍温度越高,浸渍液浓度越大,达到同样浸渍量(即催化剂载体浸渍后与浸渍前的重量差)所需的时间越短;反之亦然。当所需的浸渍量和条件确定后,本领域技术人员根据本申请的教导很容易选择合适的浸渍时间。本申请对浸渍方法没有特别的要求,所述浸渍可以是饱和浸渍,也可以是过饱和浸渍。所述浸渍的环境没有特别的限制,按照本领域中的常规方法可以在密封条件下,也可以在开放环境中进行,可以在浸渍过程中补充损失的水溶剂,也可以不补充。在浸渍过程中可以通入各种气体,比如空气、氮气、水蒸气等,也可以不通入任何新组分。
本申请的制备加氢裂化催化剂的方法中,对浸渍后得到的物料进 行干燥的条件没有特殊的限制,可以是本领域常用的各种干燥条件,例如可以为:温度为约80-350℃,优选为约100-300℃,时间为约0.5-24h,优选为约1-12h。
本申请的制备加氢裂化催化剂的方法中,还可以包括将接触后的物料干燥后进行焙烧的步骤,所述焙烧为制备催化剂的常规步骤,本申请没有特殊的限制。所述焙烧的条件例如可以为:温度为约350-600℃,优选为400-550℃;时间为约0.2-12h,优选为1-10h。
本申请提供的加氢裂化催化剂可作为各种酸催化催化剂用于催化裂化、临氢异构化、烷基化、加氢裂化等反应中,特别适用于对烃类原料进行加氢裂化,以生产具有较低沸点和较低分子量的烃类馏分。
在第七方面,本申请提供了根据本发明的含磷分子筛或加氢裂化催化剂在烃类原料的加氢裂化反应中的应用。
在第八方面,本申请提供了一种烃类原料的加氢裂化方法,包括在本发明的含磷分子筛或者加氢裂化催化剂的存在下,使所述烃类原料加氢裂化的步骤。
适用于本发明的所述烃类原料可以是各种重质矿物油或合成油,或它们的混合馏分油,如直馏瓦斯油(straight run gas oil)、减压瓦斯油(vacuum gas oil)、脱金属油(demetallized oils)、常压渣油(atmospheric residue)、脱沥青减压渣油(deasphalted vacuum residue)、焦化馏出油(coker distillates)、催化裂化馏出油(cat craker distillates)、页岩油(shale oil)、沥青砂油(tar sand oil)、煤液化油(coal liquid)等。特别地,本发明的加氢裂化催化剂适用于重质和劣质馏分油的加氢裂化以生产馏程为149-371℃,尤其是馏程为180-370℃的中间馏分油的加氢裂化过程。
在本申请中,所述加氢裂化反应可以在任何足以使所述烃类原料在加氢反应条件下与所述催化剂接触反应的反应装置中进行,例如可以在固定床反应器、移动床反应器、沸腾床反应器、浆态床反应器和悬浮床反应器等常规加氢裂化装置的一种或者多种中进行。
在本申请中,所述加氢裂化反应可在常规的加氢裂化反应条件下进行。例如,所述加氢裂化反应的条件可以为:反应温度约200-650℃,优选约300-510℃,反应压力约3-24MPa,优选约4-15MPa,液时空速约0.1-10h -1,优选约0.2-5h -1,氢油体积比约100-5000Nm 3/m 3,优选约200-1000Nm 3/m 3
在所述加氢裂化反应中,本申请所公开的加氢裂化催化剂可以单独使用,也可以和具有不同组成的加氢裂化催化剂级配使用。
在某些优选的实施方式中,所述加氢裂化反应所得产品中的部分馏分还可以循环回反应器入口,从而提高目标产品的收率。
在优选的实施方式中,本申请的加氢裂化方法还可以包括在使用所述加氢裂化催化剂之前,在氢气存在下,于约140-370℃的温度下用硫、硫化氢或含硫原料对所述加氢裂化催化剂进行预硫化,将其转化为硫化物型。这种预硫化可在反应器外进行,也可在反应器内原位硫化。
在优选的实施方式中,本申请提供了以下的技术方案:
A1、一种含磷分子筛,其特征在于,以氧化物计,该分子筛的磷含量为约0.3-5重量%,孔容为约0.2-0.95ml/g,B酸酸量和L酸酸量的比值为约2-10。
A2、根据项目A1所述的含磷分子筛,其中,所述分子筛的27A1-NMR结构谱图中,I 60ppm/I -1ppm为约5-40,I -1ppm/I ±6ppm为约0.4-2。
A3、一种制备项目A1或A2所述的含磷分子筛的方法,其特征在于,该方法包括:
a)使含磷分子筛原料在温度为约350-700℃,压力为约0.1-2MPa并在水蒸汽存在下进行水热处理约0.5-10h,得到水热处理后的分子筛物料;以氧化物计并以含磷分子筛原料的干基重量为基准,所述含磷分子筛原料的磷含量为约0.1-15重量%,钠含量为约0.5-4.5重量%;
b)将步骤a)得到的所述水热处理后的分子筛物料加水打浆,得到分子筛浆液,将该分子筛浆液加热至约40-95℃,然后保持温度并连续向该分子筛浆液中加入酸溶液,所述酸溶液中酸的重量与所述含磷分子筛原料的干基重量的比例为约0.01∶1至约0.6∶1,以1L所述分子筛浆液为基准,以H +计,所述酸溶液的加入速度为约0.05-10摩尔/小时,加酸完毕后恒温反应约0.5-20h,收集固体产物。
A4、根据项目A3所述的方法,其中,步骤a)中,所述含磷分子筛原料为含磷的Y型分子筛,所述含磷的Y型分子筛的晶胞常数为2.425-2.470nm,比表面积为约250-750m 2/g,孔容为约0.2-0.95ml/g。
A5、根据项目A4所述的方法,其中,步骤a)中,所述含磷分子 筛原料的含水量为约10-40重量%;
所述含磷分子筛原料为颗粒状,且粒度范围为约1-500mm的含磷分子筛原料的含量为含磷分子筛原料总重量的约10-100重量%,所述粒度以颗粒外切圆直径计。
A6、根据项目A5所述的方法,其中,粒度范围为约1-500mm的含磷分子筛原料的含量为含磷分子筛原料总重量的约30-100重量%。
A7、根据项目A6所述的方法,其中,粒度范围为约5-100mm的含磷分子筛原料的含量为含磷分子筛原料总重量的约30-100重量%。
A8、根据项目A3所述的方法,其中,步骤b)中,打浆后得到的所述分子筛浆液中水的重量与含磷分子筛原料的干基重量的比例为约14∶1至约5∶1。
A9、根据项目A3所述的方法,其中,该方法还包括:步骤b)中,在加入酸溶液的过程中向所述分子筛浆液中加入铵盐,所述铵盐选自硝酸铵、氯化铵、硫酸铵、以及它们的组合,所述铵盐的重量与含磷分子筛原料的干基重量的比例为约0.1∶1至约2.0∶1。
A10、根据项目A3所述的方法,其中,步骤b)中,所述酸溶液的酸浓度为约0.01-15.0mol/L,所述酸选自磷酸、硫酸、硝酸、盐酸、醋酸、柠檬酸、酒石酸、甲酸、乙酸、和它们的组合。
A11、根据项目A3所述的方法,其中,该方法还包括:收集固体产物,然后水洗、干燥,得到含磷分子筛;所述干燥的条件为:温度为约50-350℃,优选为约70-200℃;时间为约1-24h,优选为约2-6h。
A12、一种项目A1或A2中所述的含磷分子筛在烃类原料的加氢裂化反应中的应用。
A13、根据项目A12所述的应用,其中,所述烃类原料选自直馏瓦斯油、减压瓦斯油、脱金属油、常压渣油、脱沥青减压渣油、焦化馏出油、催化裂化馏出油、页岩油、沥青砂油、煤液化油、以及它们的组合;
所述加氢裂化反应的条件为:反应温度为约200-650℃,优选为约300-510℃;反应压力为约3-24MPa,优选为约4-15MPa;液时空速为约0.1-10h -1,优选为约0.2-5h -1;氢油体积比为约100-5000Nm 3/m 3,优选为约200-1000Nm 3/m 3
B1、一种加氢裂化催化剂,其特征在于,以催化剂的干基重量为基准,该催化剂包括以干基重量计约45-90重量%的载体,以金属氧化物计约1-40重量%的第一金属组分,和以金属氧化物计约1-15重量%的第二金属组分;
所述载体包括含磷Y型分子筛和耐热无机氧化物,所述含磷Y型分子筛和耐热无机氧化物的重量比为约0.03∶1至约20∶1;所述第一金属选自第VIB族的金属;所述第二金属组分选自第VIII族的金属;
以氧化物计,所述含磷Y型分子筛的磷含量为约0.3-5重量%,孔容为约0.2-0.95ml/g,吡啶红外B酸和L酸的比值为约2-10。
B2、根据项目B1所述的催化剂,其中,以催化剂的干基重量为基准,该催化剂包括以干基重量计约55-85重量%的载体,以金属氧化物计约12-35重量%的第一金属组分,和以金属氧化物计约2-10重量%的第二金属组分;
所述含磷Y型分子筛和耐热无机氧化物的重量比为约0.03∶1至约6∶1。
B3、根据项目B1或B2所述的催化剂,其中,所述含磷Y型分子筛的27Al-NMR结构谱图中,I 60ppm/I -1ppm为约5-40,I -1ppm/I ±6ppm为约0.4-2。
B4、根据项目B1或B2所述的催化剂,其中,所述含磷Y型分子筛通过包括如下步骤的方法制备得到:
a、使含磷分子筛原料在温度为约350-700℃,压力为约0.1-2MPa并在水蒸汽存在下进行水热处理约0.5-10h,得到水热处理后的分子筛物料;以氧化物计并以含磷分子筛原料的干基重量为基准,所述含磷分子筛原料的磷含量为约0.1-15重量%,钠含量为约0.5-4.5重量%;
b、将步骤a得到的所述水热处理后的分子筛物料加水打浆,得到分子筛浆液,将该分子筛浆液加热至约40-95℃,然后保持温度并连续向该分子筛浆液中加入酸溶液,所述酸溶液中酸的重量与所述含磷分子筛原料的干基重量的比例为约0.01∶1至约0.6∶1,以1L所述分子筛浆液为基准,以H +计,所述酸溶液的加入速度为约0.05-10摩尔/小时,加酸完毕后恒温反应约0.5-20h,收集固体产物。
B5、根据项目B4所述的催化剂,其中,步骤a中,所述含磷分子筛原料为含磷的Y型分子筛,所述含磷的Y型分子筛的晶胞常数为 2.425-2.47nm,比表面积为约250-750m 2/g,孔容为约0.2-0.95ml/g。
B6、根据项目B5所述的催化剂,其中,步骤a中,所述含磷分子筛原料的含水量为约10-40重量%;
所述含磷分子筛原料为颗粒状,且粒度范围为1-500mm的含磷分子筛原料的含量为含磷分子筛原料总重量的约10-100重量%,所述粒度以颗粒外切圆直径计。
B7、根据项目B6所述的催化剂,其中,粒度范围为1-500mm的含磷分子筛原料的含量为含磷分子筛原料总重量的约30-100重量%;
优选地,粒度范围为5-100mm的含磷分子筛原料的含量为含磷分子筛原料总重量的约30-100重量%。
B8、根据项目B4所述的催化剂,其中,步骤b中,打浆后得到的所述分子筛浆液中水的重量与含磷分子筛原料的干基重量的比例为约14∶1至约5∶1。
B9、根据项目B4所述的催化剂,其中,所述含磷Y型分子筛的制备步骤还包括:步骤b中,在加入酸溶液的过程中向所述分子筛浆液中加入铵盐,所述铵盐选自硝酸铵、氯化铵和硫酸铵,和它们的组合,所述铵盐的重量与含磷分子筛原料的干基重量的比例为约0.1∶1至约2.0∶1。
B10、根据项目B4所述的催化剂,其中,步骤b中,所述酸溶液的酸浓度为约0.01-15.0mol/L,所述酸选自磷酸、硫酸、硝酸、盐酸、醋酸、柠檬酸、酒石酸、甲酸和乙酸,和它们的组合。
B11、根据项目B4所述的催化剂,其中,所述含磷Y型分子筛的制备步骤还包括:收集固体产物,然后水洗、干燥,得到含磷分子筛;所述干燥的条件为:温度为约50-350℃,优选为约70-200℃;时间为约1-24h,优选为约2-6h。
B12、根据项目B1所述的催化剂,其中,所述耐热无机氧化物选自氧化铝、氧化锆、氧化镁、氧化钍、氧化铍、氧化硼和氧化镉,和它们的组合;所述第一金属为钼和/或钨;所述第二金属选自铁、镍和钴,和它们的组合。
B13、制备项目B1-B12中任意一项所述的加氢裂化催化剂的方法,其特征在于,该方法包括:使含有金属前驱物的浸渍液与载体接触进行浸渍,然后将浸渍后得到的物料干燥。
B14、根据项目B13所述的方法,其中,该方法还包括:将含磷Y型分子筛、耐热无机氧化物、胶溶剂,以及可选的润滑剂混合,然后成型、干燥、焙烧得到所述载体。
B15、根据项目B13所述的方法,其中,所述金属前驱物包括第一金属前驱物和第二金属前驱物,其中,所述第一金属前驱物选自第一金属的无机酸、第一金属的无机盐和第一金属有机化合物,和它们的组合;所述无机盐选自硝酸盐、碳酸盐、碱式碳酸盐、次磷酸盐、磷酸盐、硫酸盐和氯化物,和它们的组合;所述第一金属有机化合物中的有机取代基选自羟基、羧基、胺基、酮基、醚基、烷基,和它们的组合;
所述第二金属前驱物选自第二金属的无机酸、第二金属的无机盐和第二金属有机化合物,和它们的组合;所述无机盐选自硝酸盐、碳酸盐、碱式碳酸盐、次磷酸盐、磷酸盐、硫酸盐和氯化物,和它们的组合;所述第二金属有机化合物中的有机取代基选自羟基、羧基、胺基、酮基、醚基、烷基,和它们的组合。
B16、根据项目B13所述的方法,其中,所述浸渍液中还含有有机添加剂;所述有机添加剂的浓度为约2-300g/L;所述有机添加剂选自乙二醇、丙三醇、聚乙二醇、二乙二醇、丁二醇、乙酸、马来酸、草酸、氨基三乙酸、1,2-环己烷二胺四乙酸、柠檬酸、酒石酸、苹果酸、乙二胺、二亚乙基三胺、环己二胺四乙酸、氨基乙酸、次氮基三乙酸、乙二胺四乙酸和乙二胺四乙酸铵,和它们的组合。
B17、根据项目B13所述的方法,其中,所述干燥的条件为:温度为约80-350℃,时间为约0.5-24h。
B18、根据项目B13所述的方法,其中,该方法还包括将接触后的物料干燥后进行焙烧的步骤,所述焙烧的条件为:温度为约350-600℃,时间为约0.2-12h。
B19、项目B1-12中任意一项所述的加氢裂化催化剂在烃类原料的加氢裂化反应中的应用。
B20、根据项目B19所述的应用,其中,所述烃类原料选自直馏瓦斯油、减压瓦斯油、脱金属油、常压渣油、脱沥青减压渣油、焦化馏出油、催化裂化馏出油、页岩油、沥青砂油和煤液化油,和它们的组合;
所述加氢裂化反应的条件为:反应温度为约200-650℃,优选为约300-510℃;反应压力为约3-24MPa,优选为约4-15MPa;液时空速为约0.1-10h -1,优选为约0.2-5h -1;氢油体积比为约100-5000Nm 3/m 3,优选为约200-1000Nm 3/m 3
C1、一种含磷分子筛,其中,以氧化物计,该分子筛的磷含量为约0.3-5重量%,优选约0.4-2.0重量%,孔容为约0.2-0.95ml/g,优选约0.25-0.60ml/g,B酸酸量和L酸酸量的比值为约2-10,优选约3.4-9.5。
C2、根据项目C1所述的含磷分子筛,其中所述分子筛的27A1-NMR结构谱图中,I 60ppm/I -1ppm为约5-40,优选约10.0-39,且I -1ppm/I ±6ppm为约0.4-2。
C3、根据前述项目中任一项所述的含磷分子筛,其中所述分子筛的晶胞常数为2.425-2.470nm,优选2.430-2.458nm,比表面积为约250-850m 2/g,优选约400-750m 2/g。
C4、根据前述项目中任一项所述的含磷分子筛,其中所述分子筛为具有八面沸石结构的分子筛,优选为Y型分子筛,更优选选自NaY、HNaY、REY、USY分子筛,和它们的组合。
C5、根据前述项目中任一项所述的含磷分子筛,其中所述分子筛的阳离子位被钠离子、铵离子和氢离子中的一种或几种所占据。
C6、根据前述项目中任一项所述的含磷分子筛,其中所述分子筛通过包括如下步骤的方法制备:
i)对含磷分子筛原料进行水热处理;
ii)将经水热处理后的分子筛制成浆液,其中所得分子筛浆液中水的重量与含磷分子筛原料的干基重量的比例为约14∶1至约5∶1;
iii)对所得分子筛浆液进行酸洗处理;以及
iv)收集固体产物,
其中步骤iii)的酸洗处理按如下方式进行:在约40-95℃、优选约50-85℃的温度下,基本匀速地向所述分子筛浆液中加入酸溶液,以1L所述分子筛浆液为基准,以H +计,所述酸溶液的加入速度为约0.05-10摩尔/小时,优选约0.2-3.0摩尔/小时,加酸完毕后恒温反应约0.5-20h,优选约0.5-15h,其中所述酸溶液中酸的重量与所述含磷分子筛原料的干基重量的比例为约0.01∶1至约0.6∶1。
C7、一种制备含磷分子筛的方法,包括如下步骤:
i)对含磷分子筛原料进行水热处理;
ii)将经水热处理后的分子筛制成浆液,其中所得分子筛浆液中水的重量与含磷分子筛原料的干基重量的比例为约14∶1至约5∶1;
iii)对所得分子筛浆液进行酸洗处理;以及
iv)收集固体产物,
其中步骤iii)的酸洗处理按如下方式进行:在约40-95℃、优选约50-85℃的温度下,基本匀速地向所述分子筛浆液中加入酸溶液,以1L所述分子筛浆液为基准,以H +计,所述酸溶液的加入速度为约0.05-10摩尔/小时,优选约0.2-3.0摩尔/小时,加酸完毕后恒温反应约0.5-20h,优选约0.5-15h,其中所述酸溶液中酸的重量与所述含磷分子筛原料的干基重量的比例为约0.01∶1至约0.6∶1。
C8、根据项目C7所述的方法,其中,以氧化物计并以含磷分子筛原料的干基重量为基准,所述含磷分子筛原料的磷含量为约0.1-15重量%,优选约0.2-5.0重量%,钠含量为约0.5-4.5重量%,优选约1.0-4.0重量%。
C9、根据项目C7至C8中任一项所述的方法,其中所述含磷分子筛原料为含磷的Y型分子筛,其晶胞常数为2.425-2.470nm,优选2.440-2.470nm,比表面积为约250-750m 2/g,优选约400-700m 2/g,孔容为约0.2-0.95ml/g,优选约0.2-0.5ml/g。
C 10、根据项目C7至C9中任一项所述的方法,其中所述含磷分子筛原料的含水量为约10-40重量%。
C11、根据项目C7至C10中任一项所述的方法,其中所述含磷分子筛原料为颗粒状,且粒度范围为约1-500mm的含磷分子筛原料的含量为含磷分子筛原料总重量的约10-100重量%,优选约30-100重量%,所述粒度以颗粒外切圆直径计;优选地,粒度范围为约5-100mm的含磷分子筛原料的含量为含磷分子筛原料总重量的约30-100重量%。
C12、根据项目C7至C11中任一项所述的方法,其中步骤i)的水热处理在水蒸汽存在下、优选在30%-100%的水蒸汽存在下,在如下条件下进行:温度为约350-700℃,压力为约0.1-2Mpa,水热处理时间为约0.5-10h。
C13、根据项目C7至C12中任一项所述的方法,进一步包括:在步骤iii)的酸洗处理中,在加入酸溶液的过程中向所述分子筛浆液中加 入铵盐,所述铵盐优选选自硝酸铵、氯化铵、硫酸铵、以及它们的组合,所述铵盐的重量与含磷分子筛原料的干基重量的比例优选为约0.1∶1至约2.0∶1。
C14、根据项目C7至C13中任一项所述的方法,其中步骤iii)的酸洗处理中所用酸溶液的酸浓度为约0.01-15.0mol/L,优选约0.02-5.0mol/L,所述酸选自磷酸、硫酸、硝酸、盐酸、醋酸、柠檬酸、酒石酸、甲酸、乙酸、和它们的组合。
C15、根据项目C7至C14中任一项所述的方法,进一步包括:在步骤iv)之后,水洗并干燥所得的固体产物,得到所述含磷分子筛;所述干燥的条件如下:温度为约50-350℃,优选为约70-200℃;时间为约1-24h,优选为约2-6h。
C16、根据项目C7至C15中任一项所述的方法,其中步骤iii)的酸洗处理中所述酸溶液的加入分多次进行,优选分2-10次进行,以1L所述分子筛浆液为基准,以H +计,所述酸溶液每次以在约0.05-10摩尔/小时,优选约0.2-3.0摩尔/小时范围内的速度基本匀速地加入,每次加酸后均恒温反应一段时间,使得总恒温反应时间为约0.5-20h,优选约0.5-15h;优选地,当所述酸溶液分多次加入时,所述酸溶液中酸的重量与所述含磷分子筛原料的干基重量的比例为约0.01∶1至约0.3∶1。
C17、根据项目C7至C16中任一项所述的方法,包括如下步骤:
i)使所述含磷分子筛原料在水蒸汽存在下、优选在30%-100%的水蒸汽存在下,在约350-700℃的温度和约0.1-2Mpa的压力下、进行水热处理约0.5-10h,得到经水热处理后的分子筛;
ii)将所述经水热处理后的分子筛物料加水打浆,得到分子筛浆液,其中所得分子筛浆液中水的重量与含磷分子筛原料的干基重量的比例为约14∶1至约5∶1;
iii)将所述分子筛浆液加热至约40-95℃、优选约50-85℃,然后保持温度并基本匀速地向该分子筛浆液中加入酸溶液,所述酸溶液中酸的重量与所述含磷分子筛原料的干基重量的比例为约0.01∶1至约0.6∶1,以1L所述分子筛浆液为基准,以H +计,所述酸溶液的加入速度为约0.05-10摩尔/小时,优选约0.2-3.0摩尔/小时,加酸完毕后恒温反应约0.5-20h,优选约0.5-15h;以及
iv)收集固体产物。
C1g、按照项目C7至C17中任一项所述的方法制备得到的含磷分子筛。
C19、一种加氢裂化催化剂,以干基计并以催化剂的重量为基准,该催化剂包括约45-90重量%、优选约55-85重量%的载体,以金属氧化物计约1-40重量%、优选约12-35重量%的第一金属组分,和以金属氧化物计约1-15重量%、优选约2-10重量%的第二金属组分,其中:
所述载体包括根据项目C1至C6和C1g中任一项所述的含磷分子筛和耐热无机氧化物,其中所述含磷分子筛与耐热无机氧化物的重量比为约0.03∶1至约20∶1、优选约0.03∶1至约6∶1;所述第一金属为选自第VIB族的金属;所述第二金属为选自第VIII族的金属。
C20、根据项目C19所述的催化剂,其中所述耐热无机氧化物选自氧化铝、氧化硅、无定形硅铝化合物、氧化锆、氧化镁、氧化钍、氧化铍、氧化硼、氧化镉,和它们的组合;所述第一金属为钼和/或钨;所述第二金属选自铁、镍、钴,和它们的组合。
C21、制备项目C19至C20中任一项所述的加氢裂化催化剂的方法,包括使载体与含有金属前驱物的浸渍液接触进行浸渍,并将浸渍后得到的物料干燥的步骤,其中:
所述载体包括根据项目C1至C6和C1g中任一项所述的含磷分子筛和耐热无机氧化物,优选地,所述含磷分子筛与耐热无机氧化物的重量比为约0.03∶1至约20∶1、优选约0.03∶1至约6∶1;并且
所述金属前驱物包括第一金属前驱物和第二金属前驱物,所述第一金属为选自第VIB族的金属,所述第二金属为选自第VIII族的金属。
C22、根据项目C21所述的方法,进一步包括如下步骤:将所述含磷分子筛和耐热无机氧化物与胶溶剂,以及任选的润滑剂混合,然后成型、干燥和焙烧得到所述载体。
C23、根据项目C21或C22所述的方法,其中所述第一金属前驱物选自第一金属的无机酸、第一金属的无机盐、第一金属有机化合物,和它们的组合;所述无机盐优选选自硝酸盐、碳酸盐、碱式碳酸盐、次磷酸盐、磷酸盐、硫酸盐、氯化物,和它们的组合;所述第一金属有机化合物中的有机取代基选自羟基、羧基、胺基、酮基、醚 基、烷基,和它们的组合;并且
所述第二金属前驱物选自第二金属的无机酸、第二金属的无机盐、第二金属有机化合物,和它们的组合;所述无机盐选自硝酸盐、碳酸盐、碱式碳酸盐、次磷酸盐、磷酸盐、硫酸盐、氯化物,和它们的组合;所述第二金属有机化合物中的有机取代基选自羟基、羧基、胺基、酮基、醚基、烷基,和它们的组合。
C24、根据项目C21至C23中任一项所述的方法,其中所述浸渍液中还含有浓度为约2-300g/L的有机添加剂,所述有机添加剂优选选自乙二醇、丙三醇、聚乙二醇、二乙二醇、丁二醇、乙酸、马来酸、草酸、氨基三乙酸、1,2-环己烷二胺四乙酸、柠檬酸、酒石酸、苹果酸、乙二胺、二亚乙基三胺、环己二胺四乙酸、氨基乙酸、次氮基三乙酸、乙二胺四乙酸、乙二胺四乙酸铵,和它们的组合。
C25、根据项目C21至C24中任一项所述的方法,其中在如下条件下对浸渍后得到的物料进行干燥:温度为约80-350℃,优选为100-300℃,时间为约0.5-24h,优选为约1-12h。
C26、根据项目C21至C25中任一项所述的方法,进一步包括对干燥后的物料进行焙烧的步骤,所述焙烧的条件如下:温度为约350-600℃,时间为约0.2-12h。
C27、根据项目C1至C6和C18中任一项所述的含磷分子筛在用于烃类原料的加氢裂化反应的加氢裂化催化剂的制备中的应用。
C28、根据项目C1至C6和C18中任一项所述的含磷分子筛或者根据项目C19-20中任意一项所述的加氢裂化催化剂在烃类原料的加氢裂化反应中的应用。
C29、根据项目C27或28所述的应用,其中所述烃类原料选自直馏瓦斯油、减压瓦斯油、脱金属油、常压渣油、脱沥青减压渣油、焦化馏出油、催化裂化馏出油、页岩油、沥青砂油、煤液化油,和它们的组合。
C30、根据项目C27或C28所述的应用,其中所述加氢裂化反应的条件如下:反应温度为约200-650℃,优选为约300-510℃;反应压力为约3-24MPa,优选为约4-15MPa;液时空速为约0.1-10h -1,优选为约0.2-5h -1;氢油体积比为约100-5000Nm 3/m 3,优选为约200-1000Nm 3/m 3
C31、一种烃类原料的加氢裂化方法,包括在根据项目C1至C6和C18中任一项所述的含磷分子筛或者根据项目C19和C20中任意一项所述的加氢裂化催化剂的存在下,使所述烃类原料加氢裂化的步骤。
C32、根据项目C31所述的方法,其中所述烃类原料选自直馏瓦斯油、减压瓦斯油、脱金属油、常压渣油、脱沥青减压渣油、焦化馏出油、催化裂化馏出油、页岩油、沥青砂油、煤液化油,和它们的组合。
C33、根据项目C31或C32所述的方法,其中所述加氢裂化在如下条件下进行:反应温度为约200-650℃,优选为约300-510℃;反应压力为约3-24MPa,优选为约4-15MPa;液时空速为约0.1-10h -1,优选为约0.2-5h -1;氢油体积比为约100-5000Nm 3/m 3,优选为约200-1000Nm 3/m 3
实施例
下面通过实施例对本发明做进一步的说明,但并不因此而限制本发明的内容。
仪器和设备
在以下的实施例和对比例中,分子筛的孔容、比表面积采用美国Micromertics仪器公司ASAP 2400型自动吸附仪,通过静态低温吸附容量法测定(采用中国国家标准GB/T5816-1995的方法),具体方法为:在250℃、1.33Pa下抽真空脱气4h,以氮气为吸附质,在-196℃下与吸附质接触,静态达到吸附平衡;由氮气进气量与吸附后残存于气相中的差值计算出吸附剂吸附氮气的量,然后用BJH公式计算孔径分布,用BET公式计算比表面积和孔体积。
在以下的实施例和对比例中,分子筛的晶胞常数采用德国西门子公司的D5005型射线衍射仪测定,采用中国石油化工行业标准SH/T0339-92的方法。实验条件:Cu靶,Ka辐射,固体探测器,管电压40kV,管电流40mA,步进扫描,步幅0.02°,预制时间2s,扫描范围5°-70°。
在以下的实施例和对比例中,分子筛的磷含量、钠含量采用日本理学电机工业株式会社3271E型射线荧光光谱仪测定,测定方法为: 粉末样品压片成型,铑靶,激光电压50kV,激光电流50mA,以闪烁计数器和正比计数器探测各元素谱线强度,用外标法对元素含量进行定量和半定量分析。
在以下的实施例和对比例中,分子筛的B酸酸量与L酸酸量的比值采用Bio-Rad IFS-3000型红外光谱仪测定。具体方法为:将分子筛样品自身研细后压成约10mg/cm 2的自撑片,置于红外光谱仪的原位池中,于350℃、10 -3pa真空度下表面净化处理2h,降至室温后引入吡啶饱和蒸气,吸附平衡15分钟之后,在350℃下抽真空脱附30分钟,降至室温后测吸附定吡啶振动光谱。扫描范围为1400cm -1-1700cm -1,以1540±5cm -1谱带的红外光吸收值与样品片重量和面积的比值定义其B酸量[单位面积、单位质量样品的红外光吸收值,表示为:AB·(cm 2·g) -1]。以1450±5cm -1谱带的红外光吸收值与样品片重量和面积的比值定义其L酸量[单位面积、单位质量样品的红外光吸收值,表示为:AL·(cm 2·g) -1],将AB/AL的值定义为所述沸石分子筛的B酸酸量与L酸酸量的比值。
在以下的实施例和对比例中,分子筛的27Al-NMR结构谱图采用Varian UNITYINOVA300M型核磁共振仪进行样品分析,其中Al MAS NMR共振频率为78.162MHz,转子速度为3000Hz,重复延迟时间为0.5s,采样时间为0.020s,脉宽1.6μs,谱宽为54.7kHz,数据采集2000点,累计次数800次,测试温度为室温。
参数计算
以下实施例和对比例中相关参数的计算方法如下:
分子筛收率(%)=制备所得分子筛的干基重量/水热处理前分子筛原料的干基重量×100%。
原料转化率(%)=(原料油中初馏点大于350℃的馏分量-产物油中初馏点大于350℃的馏分量)/原料油中初馏点大于350℃的馏分量×100%。
分子筛制备
以下实施例I-1至I-3为本发明的含磷分子筛的制备实施例,对比例I-1至I-4为非本发明的分子筛的制备实施例。
实施例I-1
取NaY分子筛(中石化催化剂长岭分公司生产,商品名NaY,晶胞常数为2.468nm,比表面积为680m 2/g,孔容为0.30ml/g,Na 2O含量为13.0重量%,Al 2O 3含量为22重量%)300g,加入2.0mol/L的(NH 4) 2HPO 4水溶液,打浆,水的总用量为1000ml,过滤,将所得滤饼重复上述过程三遍,然后在100℃干燥1h,得到含磷分子筛原料,测得该含磷分子筛原料的晶胞常数为2.468nm,比表面积为590m 2/g,孔容为0.37ml/g,P 2O 5含量为4.8重量%,Na 2O含量为3.5重量%。
取上述含磷分子筛原料100g置入水热处理装置中,通入100%水蒸汽,升温到450℃,控制装置内压力为0.8MPa,恒定进行水热处理8h后将水热处理后的分子筛物料取出。
按照盐酸、氯化铵与含磷分子筛原料(干基)的重量比为0.2∶0.4∶1配制盐酸-氯化铵水溶液100ml,该水溶液中,盐酸的浓度为0.05mol/L,氯化铵的浓度为0.07mol/L。
取上述所得水热处理后的分子筛物料50g(干基),加入500ml去离子水,搅拌打浆,得到分子筛浆液,将其升温至80℃。以1L分子筛浆液为基准,以H +计,按照2mol/h的速度将上述配制的盐酸-氯化铵水溶液分三次匀速加入到分子筛浆液中,每次加酸后恒温反应4h,然后过滤,取滤饼按照同样的方式继续进行下一次的加酸。最后一次加酸完毕并反应4h后,收集固体产物,在180℃干燥3h,得到含磷分子筛Y-1,其晶胞常数为2.436nm,比表面积为634m 2/g,Na 2O含量为0.42重量%,Al 2O 3含量18.7重量%,27Al-NMR结构谱图如图1所示,其它性质如表1所示。
实施例I-2
取PSRY分子筛(中石化催化剂长岭分,公司生产,商品名PSRY,晶胞常数为2.456nm,比表面积为620m 2/g,孔容为0.39ml/g,Na 2O含量为2.2重量%,P 2O 5含量为1.5重量%,Al 2O 3含量为18重量%)300g,加入去离子水打浆,水的总用量为1000ml,过滤,在70℃干燥2h,得到水含量为35重量%的含磷分子筛原料。
将上述含磷分子筛原料破碎,筛分为5-20目(其中约1-500mm 颗粒占含磷分子筛原料总重量的70重量%),置入水热处理装置中,通入100%水蒸气,升温到580℃,控制装置内压力为0.4MPa,恒定进行水热处理2h后将水热处理后的分子筛物料取出。
按照硫酸与含磷分子筛原料(干基)的重量比为0.02∶1配制硫酸水溶液250ml,该水溶液中,硫酸的浓度为0.2mol/L。
取上述所得水热处理后的分子筛物料50g(干基),加入500ml去离子水,搅拌打浆,得到分子筛浆液,升温至80℃。以1L分子筛浆液为基准,以H +计,按照0.5mol/h的速度将上述配制的硫酸水溶液分三次匀速加入到分子筛浆液中,每次加酸后恒温反应2h,然后过滤,取滤饼按照同样的方式继续进行下一次的加酸。最后一次加酸完毕并反应2h后,收集固体产物,在100℃干燥8h,得到含磷分子筛Y-2,其晶胞常数为2.447nm,比表面积为684m 2/g,Na 2O含量为0.08重量%,Al 2O 3含量为14.4重量%,27Al-NMR结构谱图如图1所示,其它性质如表1所示。
实施例I-3
按照实施例I-2的方法制备含磷分子筛,区别在于,将含磷分子筛原料破碎,筛分为5-20目(其中约5-100mm颗粒占含磷分子筛原料总重量的70重量%),然后按照实施例I-2的方法进行水热处理及后续的操作,得到含磷分子筛Y-3,其晶胞常数为2.438nm,比表面积为733m 2/g,Na 2O含量为0.08重量%,Al 2O 3含量为8.1重量%,27Al-NMR结构谱图如图1所示,其它性质如表1所示。
对比例I-1
本对比例的含磷分子筛为与实施例I-2相同的PSRY分子筛,其制备方法可参考中国专利公开CN1088407C中公开的含磷沸石的制备方法,该方法包括将含磷化合物与原料沸石按0.2的重量比直接混合,并在密闭条件下于520℃加热至少0.1h,用去离子水洗涤得到的产物至无酸根离子,回收含磷沸石。将其命名为RY-1,其晶胞常数为2.456nm,比表面积为620m 2/g,Na 2O含量为2.53重量%,Al 2O 3含量为20.7重量%,27Al-NMR结构谱图如图1所示,其它性质如表1所示。
对比例I-2
取不含磷的HY分子筛(中石化催化剂长岭分公司生产,商品名HY,晶胞常数2.465nm,比表面积为580m 2/g,孔容为0.33ml/g,Na 2O含量为0.3重量%,Al 2O 3含量为22重量%)100g置入水热处理装置中,通入100%水蒸汽,升温到450℃,控制装置内压力为0.8MPa,恒定进行水热处理8h后将水热处理后的分子筛物料取出。
按照盐酸、氯化铵与分子筛原料的重量比为0.08∶1.5∶1配制盐酸-氯化铵水溶液50ml,该水溶液中,盐酸的浓度为0.1mol/L,氯化铵的浓度为0.14mol/L。
取上述所得水热处理后的分子筛物料50g(干基),加入500ml去离子水,搅拌打浆,得到分子筛浆液,将其升温至80℃。以1L分子筛浆液为基准,以H +计,按照2mol/h的速度将上述配制的盐酸-氯化铵水溶液分三次匀速加入到分子筛浆液中,每次加酸后恒温反应4h,然后过滤,取滤饼按照同样的方式继续进行下一次的加酸。最后一次加酸完毕并反应4h后,收集固体产物,在180℃干燥3h,得到分子筛RY-2,其晶胞常数为2.434nm,比表面积为694m 2/g,Na 2O含量为0.08重量%,Al 2O 3含量为10.2重量%,27Al-NMR结构谱图如图1所示,其它性质如表1所示。
对比例I-3
取PSRY分子筛(同实施例I-2)300g,加入浓度为0.5mol/L的NH 4Cl水溶液600ml,用去离子水打浆,水的总用量为1000ml,加热至90℃,进行铵交换3h。然后过滤,用去离子水洗涤两遍,将滤饼在600℃,常压下加热4h。
按照盐酸、氯化铵与含磷分子筛原料的重量比为0.5∶0.36∶1配制盐酸-氯化铵水溶液300ml,该水溶液中,盐酸的浓度为0.6mol/L,氯化铵的浓度为0.3mol/L。
取经上述处理后的分子筛物料50g(干基),加入500ml去离子水,搅拌打浆,得到分子筛浆液,将其升温至80℃。以1L分子筛浆液为基准,以H +计,按照2mol/h的速度将上述配制的盐酸-氯化铵水溶液分三次匀速加入到分子筛浆液中,每次加酸后恒温反应4h,然后 过滤,取滤饼按照同样的方式继续进行下一次的加酸。最后一次加酸完毕并反应4h后,收集固体产物,在180℃干燥3h,得到含磷分子筛RY-3,其晶胞常数为2.427nm,比表面积为608m 2/g,Na 2O含量为0.12重量%,Al 2O 3含量为7.8重量%,27Al-NMR结构谱图如图1所示,其它性质如表1所示。
对比例I-4
取PSRY分子筛(同实施例I-2)300g,加入去离子水打浆,水的总用量为1000ml,过滤,在70℃干燥2h,得到水含量为65%的含磷分子筛原料。
将所得含磷分子筛原料置入水热处理装置中,升温到580℃,控制装置内压力为0.4MPa,恒定进行水热处理2h后将水热处理后的分子筛物料取出。
按照硫酸与含磷分子筛原料的重量比为0.8∶1配制硫酸水溶液500ml,该水溶液中,硫酸的浓度为0.2mol/L。
取上述所得水热处理后的分子筛物料50g(干基),加入500ml去离子水,搅拌打浆,得到分子筛浆液,升温至80℃。将上述配制的硫酸水溶液分三次加入至分子筛浆液中,每次加酸的方式为直接倒入,然后恒温反应2h,过滤,取滤饼按照同样的方式继续进行下一次的加酸。最后一次加酸完毕并反应2h后,收集固体产物,在100℃干燥8h,得到含磷分子筛RY-4,其晶胞常数为2.432nm,比表面积为485m 2/g,Na 2O含量为0.12重量%,Al 2O 3含量为4.6重量%,27Al-NMR结构谱图如图1所示,其它性质如表1所示。
表1各实施例和对比例所得分子筛的性质
Figure PCTCN2018111166-appb-000001
由表1可见,本发明的含磷分子筛具有特定的特征组合,特别是具有较高的B酸酸量与L酸酸量的比值和较低的I -1ppm/I ±6ppm比率,并且在控制含磷分子筛原料的粒度范围的情况下,本发明的含磷分子筛制备方法能够提高分子筛收率。
催化剂制备
以下实施例II-1至II-5为本发明的加氢裂化催化剂的制备实施例,对比例II-1至II-4为非本发明的加氢裂化催化剂的制备实施例。
实施例II-1
将583.3g克拟薄水铝石粉PB90(中石化催化剂长岭分公司生产,孔容0.9ml/g,水含量为28重量%)同98.8g Y-1分子筛(水含量为19重量%)、田菁粉18克混合均匀,加入含18ml硝酸(北京化学试剂厂,硝酸含量65-68重量%)的580ml水溶液,挤出成外接圆直径为1.6毫米的三叶形条,120℃烘干,600℃温度下焙烧3h,得载体CS-1。
降温至室温后,取100g CS-1载体用含52克偏钨酸铵(四川自贡硬质合金厂,氧化钨含量为82重量%)、8.7克碱式碳酸镍(江苏宜兴徐迟化工有限公司,氧化镍含量为51重量%)和10.5g柠檬酸的80ml水溶液作为浸渍溶液进行浸渍,120℃烘干10h,得到本实施例制备的加氢裂化催化剂,其组成见表2。
实施例II-2至II-3
按照实施例II-1的方法制备催化剂,区别在于,所用的分子筛分别为Y-2和Y-3,所得催化剂的组成见表2。
实施例II-4
将178g拟薄水铝石粉SB粉(Sasol公司生产,商品名SB粉,干基含量0.72)同31.6gHY分子筛(中石化催化剂长岭分公司生产,商品名HY,干基含量0.76)均匀混合,再加入10g Y-2分子筛(水含量为19重量%)、田菁粉2.2克混合均匀,加入含2ml硝酸(北京化学试剂厂,硝酸含量65-68重量%)的200ml水溶液,挤出成外接圆直径为1.6毫米的三叶形条,120℃烘干,550℃温度下焙烧3h,得载体CS-4。
降温至室温后,取100g CS-4载体用含24.1克七钼酸铵(天津四方化工有限公司,氧化钼含量为82重量%)的90ml水溶液浸渍,120℃干燥10h,再用含46.2克硝酸镍(江苏宜兴徐迟化工有限公司,氧化镍含量为25.6重量%)的50ml水溶液浸渍,90℃烘干5h,420℃焙烧3h,得到本实施例制备的加氢裂化催化剂,其组成见表2。
实施例II-5
将67.6g克拟薄水铝石粉PB100(中石化催化剂长岭分公司生产,孔容1.05ml/g,水含量为29重量%)同138g Y-3分子筛(水含量为19重量%)、田菁粉6.2克混合均匀,加入含20g尿素(北京化学试剂厂)的144ml水溶液,挤出成外接圆直径为1.6毫米的三叶形条,120℃烘干,600℃温度下焙烧3h,得载体CS-5。
降温至室温后,取100g载体用含39.2克偏钨酸铵(四川自贡硬质合金厂,氧化钨含量为91重量%)、20.56克硝酸镍(江苏宜兴徐迟化工有限公司,氧化镍含量为25.6重量%)和0.26g乙二醇的85ml水溶液浸渍,180℃烘干3h,得到本实施例制备的加氢裂化催化剂,其组成见表2。
对比例II-1至II-4
按照实施例II-1的方法制备催化剂,区别在于,所用的分子筛分 别为RY-1、RY-2、RY-3和RY-4,所得催化剂的组成见表2。
表2各实施例和对比例所得催化剂的组成
Figure PCTCN2018111166-appb-000002
应用实施例
本应用实施例用于测试实施例II-1至II-5和对比例II-1至II-4的催化剂用于加氢裂化反应的催化活性。其中,所用原料油为沙轻减二减压瓦斯油,其物化性质见表3。
表3所用原料油的物化性质
项目 原料油
密度(20℃)(g/cm 3) 0.8885
S(重量%) 16000
N(mg/L) 352
模拟蒸馏(ASTM D-2887)(℃)  
初馏点 291
50重量% 391
90重量% 421
本应用实施例中,催化剂的评价方法如下:将催化剂破碎成直径2-3毫米的颗粒,在30毫升固定床反应器中装入催化剂20毫升,反应前先在氢气氛下用含2重量%二硫化碳的煤油按照如下所述的程序进行硫化,然后切换至反应原料油进行反应。
硫化程序如下:反应器升温至150℃,引入硫化油,恒温1h;以60℃/h升温至230℃,稳定2h,再以60℃/h升温至360℃,稳定6h。随后,置换反应原料油,调整到以下反应条件,并至少稳定20h。
在如下反应条件下进行加氢裂化反应:反应温度为365℃,氢分压为6.4MPa,液时空速(LHSV)为1h -1,氢油比(体积)为800Nm 3/m 3。反应结果列于表4中。
表4应用实施例的反应结果
催化剂 原料转化率(%)
实施例II-1 58.3
实施例II-2 62.1
实施例II-3 61.1
实施例II-4 69.3
实施例II-5 91.2
对比例II-1 34.3
对比例II-2 38.2
对比例II-3 27.8
对比例II-4 50.4
从表4可以看出,在相同的反应条件下,相对于含采用常规方法制备的分子筛的加氢裂化催化剂,含有本申请提供的含磷分子筛的加氢裂化催化剂的催化活性提高了约7.9-63.4%。
以上结合附图详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,这些简单变型均属于本发明的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。
此外,本发明的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明的思想,其同样应当视为本发明所公开的内容。

Claims (17)

  1. 一种含磷分子筛,其中,以氧化物计,该分子筛的磷含量为约0.3-5重量%,优选约0.4-2.0重量%,孔容为约0.2-0.95ml/g,优选约0.25-0.60ml/g,B酸酸量和L酸酸量的比值为约2-10,优选约3.4-9.5。
  2. 根据权利要求1所述的含磷分子筛,其中所述分子筛的27A1-NMR结构谱图中,I 60ppm/I -1ppm为约5-40,优选约10.0-39,且I -1ppm/I ±6ppm为约0.4-2。
  3. 根据前述权利要求中任一项所述的含磷分子筛,其中所述分子筛的晶胞常数为2.425-2.470nm,优选2.430-2.458nm,比表面积为约250-850m 2/g,优选约400-750m 2/g;优选地,所述分子筛为具有八面沸石结构的分子筛,优选为Y型分子筛,更优选选自NaY、HNaY、REY、USY分子筛,和它们的组合。
  4. 根据前述权利要求中任一项所述的含磷分子筛,其中所述分子筛通过包括如下步骤的方法制备得到:
    i)对含磷分子筛原料进行水热处理;
    ii)将经水热处理后的分子筛制成浆液,其中所得分子筛浆液中水的重量与含磷分子筛原料的干基重量的比例为约14∶1至约5∶1;
    iii)对所得分子筛浆液进行酸洗处理;以及
    iv)收集固体产物,
    其中步骤iii)的酸洗处理按如下方式进行:在约40-95℃、优选约50-85℃的温度下,基本匀速地向所述分子筛浆液中加入酸溶液,以1L所述分子筛浆液为基准,以H +计,所述酸溶液的加入速度为约0.05-10摩尔/小时,优选约0.2-3.0摩尔/小时,加酸完毕后恒温反应约0.5-20h,优选约0.5-15h,其中所述酸溶液中酸的重量与所述含磷分子筛原料的干基重量的比例为约0.01∶1至约0.6∶1。
  5. 一种制备含磷分子筛的方法,包括如下步骤:
    i)对含磷分子筛原料进行水热处理;
    ii)将经水热处理后的分子筛制成浆液,其中所得分子筛浆液中水的重量与含磷分子筛原料的干基重量的比例为约14∶1至约5∶1;
    iii)对所得分子筛浆液进行酸洗处理;以及
    iv)收集固体产物,
    其中步骤iii)的酸洗处理按如下方式进行:在约40-95℃、优选约50-85℃的温度下,基本匀速地向所述分子筛浆液中加入酸溶液,以1L所述分子筛浆液为基准,以H +计,所述酸溶液的加入速度为约0.05-10摩尔/小时,优选约0.2-3.0摩尔/小时,加酸完毕后恒温反应约0.5-20h,优选约0.5-15h,其中所述酸溶液中酸的重量与所述含磷分子筛原料的干基重量的比例为约0.01∶1至约0.6∶1。
  6. 根据权利要求5所述的方法,其中,以氧化物计并以含磷分子筛原料的干基重量为基准,所述含磷分子筛原料的磷含量为约0.1-15重量%,优选约0.2-5.0重量%,钠含量为约0.5-4.5重量%,优选约1.0-4.0重量%;优选地,所述含磷分子筛原料的含水量为约10-40重量%。
  7. 根据权利要求5-6中任一项所述的方法,其中所述含磷分子筛原料为含磷的Y型分子筛,其晶胞常数为2.425-2.470nm,优选2.440-2.470nm,比表面积为约250-750m 2/g,优选约400-700m 2/g,孔容为约0.2-0.95ml/g,优选约0.2-0.5ml/g。
  8. 根据权利要求5-7中任一项所述的方法,其中所述含磷分子筛原料为颗粒状,且粒度范围为约1-500mm的含磷分子筛原料的含量为含磷分子筛原料总重量的约10-100重量%,优选约30-100重量%,所述粒度以颗粒外切圆直径计;优选地,粒度范围为约5-100mm的含磷分子筛原料的含量为含磷分子筛原料总重量的约30-100重量%。
  9. 根据权利要求5-8中任一项所述的方法,其中步骤i)的水热处理在水蒸汽存在下、优选在30%-100%的水蒸汽存在下,在如下条件下进行:温度为约350-700℃,压力为约0.1-2Mpa,水热处理时间为约0.5-10h;
    优选地,步骤iii)的酸洗处理中所用酸溶液的酸浓度为约0.01-15.0mol/L,优选约0.02-5.0mol/L,所述酸选自磷酸、硫酸、硝酸、盐酸、醋酸、柠檬酸、酒石酸、甲酸、乙酸、和它们的组合。
  10. 根据权利要求5-9中任一项所述的方法,其中步骤iii)的酸洗处理中所述酸溶液的加入分多次进行,优选分2-10次进行,以1L所述分子筛浆液为基准,以H +计,所述酸溶液每次以在约0.05-10摩尔/小时,优选约0.2-3.0摩尔/小时范围内的速度基本匀速地加入,每次加酸后均恒温反应一段时间,使得总恒温反应时间为约0.5-20h,优选约 0.5-15h;优选地,当所述酸溶液分多次加入时,所述酸溶液中酸的重量与所述含磷分子筛原料的干基重量的比例为约0.01∶1至约0.3∶1。。
  11. 一种加氢裂化催化剂,以干基计并以催化剂的重量为基准,该催化剂包括约45-90重量%、优选约55-85重量%的载体,以金属氧化物计约1-40重量%、优选约12-35重量%的第一金属组分,和以金属氧化物计约1-15重量%、优选约2-10重量%的第二金属组分,其中:
    所述载体包括根据权利要求1-4中任一项所述的含磷分子筛和耐热无机氧化物,其中所述含磷分子筛与耐热无机氧化物的重量比为约0.03∶1至约20∶1、优选约0.03∶1至约6∶1;所述第一金属为选自第VIB族的金属;所述第二金属为选自第VIII族的金属。
  12. 根据权利要求11所述的催化剂,其中所述耐热无机氧化物选自氧化铝、氧化硅、无定形硅铝化合物、氧化锆、氧化镁、氧化钍、氧化铍、氧化硼、氧化镉,和它们的组合;所述第一金属为钼和/或钨;所述第二金属选自铁、镍、钴,和它们的组合。
  13. 制备加氢裂化催化剂的方法,包括使载体与含有金属前驱物的浸渍液接触进行浸渍,并将浸渍后得到的物料干燥的步骤,其中:
    所述载体包括根据权利要求1-4中任一项所述的含磷分子筛和耐热无机氧化物,优选地,所述含磷分子筛与耐热无机氧化物的重量比为约0.03∶1至约20∶1、优选约0.03∶1至约6∶1;并且
    所述金属前驱物包括第一金属前驱物和第二金属前驱物,所述第一金属为选自第VIB族的金属,所述第二金属为选自第VIII族的金属。
  14. 根据权利要求13所述的方法,进一步包括如下步骤:将所述含磷分子筛和耐热无机氧化物与胶溶剂,以及任选的润滑剂混合,然后成型、干燥和焙烧得到所述载体。
  15. 根据权利要求13或14所述的方法,其中所述第一金属前驱物选自第一金属的无机酸、第一金属的无机盐、第一金属有机化合物,和它们的组合;所述无机盐优选选自硝酸盐、碳酸盐、碱式碳酸盐、次磷酸盐、磷酸盐、硫酸盐、氯化物,和它们的组合;所述第一金属有机化合物中的有机取代基选自羟基、羧基、胺基、酮基、醚基、烷基,和它们的组合;并且
    所述第二金属前驱物选自第二金属的无机酸、第二金属的无机盐、第二金属有机化合物,和它们的组合;所述无机盐选自硝酸盐、碳酸盐、碱式碳酸盐、次磷酸盐、磷酸盐、硫酸盐、氯化物,和它们的组合;所述第二金属有机化合物中的有机取代基选自羟基、羧基、胺基、酮基、醚基、烷基,和它们的组合。
  16. 根据权利要求1-4中任一项所述的含磷分子筛或者根据权利要求11-12中任意一项所述的加氢裂化催化剂在烃类原料的加氢裂化反应中的应用。
  17. 根据权利要求16所述的应用,其中所述烃类原料选自直馏瓦斯油、减压瓦斯油、脱金属油、常压渣油、脱沥青减压渣油、焦化馏出油、催化裂化馏出油、页岩油、沥青砂油、煤液化油,和它们的组合;
    优选地,所述加氢裂化反应的条件如下:反应温度为约200-650℃,优选为约300-510℃;反应压力为约3-24MPa,优选为约4-15MPa;液时空速为约0.1-10h -1,优选为约0.2-5h -1;氢油体积比为约100-5000Nm 3/m 3,优选为约200-1000Nm 3/m 3
PCT/CN2018/111166 2017-10-31 2018-10-22 含磷分子筛及其制备方法和应用 WO2019085777A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
RU2020117474A RU2782564C2 (ru) 2017-10-31 2018-10-22 Фосфорсодержащее молекулярное сито, его получение и применение
US16/760,562 US11524281B2 (en) 2017-10-31 2018-10-22 Phosphorus-containing molecular sieve, its preparation and application thereof
KR1020207015134A KR102593164B1 (ko) 2017-10-31 2018-10-22 인 함유 분자체, 그 제조 방법 및 그 적용

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201711046549.4 2017-10-31
CN201711046549.4A CN109721075B (zh) 2017-10-31 2017-10-31 含磷分子筛及其制备方法和应用
CN201711048395.2A CN109718846B (zh) 2017-10-31 2017-10-31 加氢裂化催化剂及其制备方法和应用
CN201711048395.2 2017-10-31

Publications (1)

Publication Number Publication Date
WO2019085777A1 true WO2019085777A1 (zh) 2019-05-09

Family

ID=66331336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/111166 WO2019085777A1 (zh) 2017-10-31 2018-10-22 含磷分子筛及其制备方法和应用

Country Status (5)

Country Link
US (1) US11524281B2 (zh)
KR (1) KR102593164B1 (zh)
SA (1) SA520411866B1 (zh)
TW (1) TWI784075B (zh)
WO (1) WO2019085777A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114471675A (zh) * 2020-10-27 2022-05-13 中国石油化工股份有限公司 一种用于临氢降凝的改性zsm-5分子筛及其制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101759198A (zh) * 2008-12-24 2010-06-30 中国石油化工股份有限公司 小晶粒y型分子筛及其制备方法
CN104211083A (zh) * 2013-06-05 2014-12-17 中国石油天然气股份有限公司 一种复合改性y分子筛的制备方法
CN104549418A (zh) * 2013-10-23 2015-04-29 中国石油化工股份有限公司 一种改性y型分子筛及其制备方法
CN104843737A (zh) * 2015-03-31 2015-08-19 中国石油天然气集团公司 一种y分子筛及其制备方法
CN105817259A (zh) * 2016-04-15 2016-08-03 中国海洋石油总公司 一种多产石脑油型加氢裂化催化剂及其制备方法
CN106179461A (zh) * 2015-04-30 2016-12-07 中国石油化工股份有限公司 一种加氢裂化催化剂的制备方法
CN106179475A (zh) * 2015-04-29 2016-12-07 中国石油化工股份有限公司 一种催化裂化催化剂及其制备方法和应用
CN106268917A (zh) * 2015-05-18 2017-01-04 中国石油化工股份有限公司 一种加氢裂化催化剂及其应用
CN106622357A (zh) * 2016-08-28 2017-05-10 山东成泰化工有限公司 一种异丁烯制备用催化剂
CN106669863A (zh) * 2015-11-10 2017-05-17 中国石油化工股份有限公司 加氢改质催化剂载体的改性方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5308472A (en) * 1992-06-11 1994-05-03 Texaco Inc. Mild hydrocracking process using catalysts containing dealuminated y-zeolites
US5763729A (en) 1994-11-14 1998-06-09 Uop Alkylation of alkanes with alkyl halides
DE69906545T2 (de) 1998-07-29 2004-03-04 Exxonmobil Chemical Patents Inc., Baytown Kristalline molekularsiebe
CN1088407C (zh) 1998-08-14 2002-07-31 中国石油化工集团公司 一种含磷沸石及其制备方法
CN1132695C (zh) 1999-06-23 2003-12-31 中国石油化工集团公司 一种超稳y型分子筛的制备
RU2158632C1 (ru) 1999-10-05 2000-11-10 Закрытое акционерное общество "Катализаторная компания" Катализатор для гидрирования растительных масел и жиров
CN1112245C (zh) 2000-10-26 2003-06-25 中国石油化工股份有限公司 一种组合沸石及其制备方法
CN1200079C (zh) 2001-04-28 2005-05-04 中国石油化工股份有限公司 含磷y型沸石裂化催化剂及其制备方法
DE10237514A1 (de) 2002-08-16 2004-02-26 Basf Ag Isothermes Verfahren zur Dehydrierung von Alkanen
CN1312039C (zh) 2004-07-29 2007-04-25 中国石油化工股份有限公司 一种含磷沸石及其制备方法
CN100448952C (zh) * 2005-04-29 2009-01-07 中国石油化工股份有限公司 一种含沸石的加氢裂化催化剂组合物
RU2331473C2 (ru) 2005-10-28 2008-08-20 Общество с ограниченной ответственностью научно-производственное предприятие "Катализаторы переработки нефтепродуктов"(ООО НПП "КАНЕФ") Катализатор пиролиза пропан-бутанового углеводородного сырья в низшие олефины и способ его получения
CN101343068B (zh) 2007-07-09 2010-08-18 中国石油化工股份有限公司 一种y型分子筛及其制备方法
CN101757931B (zh) 2008-12-25 2012-05-30 中国石油化工股份有限公司 一种加氢催化剂及其制备方法和加氢裂化方法
BR112012030016B8 (pt) 2010-05-24 2021-05-18 Siluria Technologies Inc processo para preparar etileno a partir de metano e método para preparar um produto a jusante de etileno
CN105536854B (zh) 2014-11-03 2018-04-10 中国石油化工股份有限公司 一种制备含y分子筛的加氢裂化催化剂的方法
CN107029779B (zh) 2015-07-28 2019-03-22 中国石油化工股份有限公司 一种含y型分子筛的多级孔加氢裂化催化剂及其应用

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101759198A (zh) * 2008-12-24 2010-06-30 中国石油化工股份有限公司 小晶粒y型分子筛及其制备方法
CN104211083A (zh) * 2013-06-05 2014-12-17 中国石油天然气股份有限公司 一种复合改性y分子筛的制备方法
CN104549418A (zh) * 2013-10-23 2015-04-29 中国石油化工股份有限公司 一种改性y型分子筛及其制备方法
CN104843737A (zh) * 2015-03-31 2015-08-19 中国石油天然气集团公司 一种y分子筛及其制备方法
CN106179475A (zh) * 2015-04-29 2016-12-07 中国石油化工股份有限公司 一种催化裂化催化剂及其制备方法和应用
CN106179461A (zh) * 2015-04-30 2016-12-07 中国石油化工股份有限公司 一种加氢裂化催化剂的制备方法
CN106268917A (zh) * 2015-05-18 2017-01-04 中国石油化工股份有限公司 一种加氢裂化催化剂及其应用
CN106669863A (zh) * 2015-11-10 2017-05-17 中国石油化工股份有限公司 加氢改质催化剂载体的改性方法
CN105817259A (zh) * 2016-04-15 2016-08-03 中国海洋石油总公司 一种多产石脑油型加氢裂化催化剂及其制备方法
CN106622357A (zh) * 2016-08-28 2017-05-10 山东成泰化工有限公司 一种异丁烯制备用催化剂

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WEI, QIANG ET AL.: "Synthesis and Characterization of Phosphorous Modified Y Zeolite", ACTA PETROLEI SINICA (PETROLEUM PROCESSING SECTION, vol. 27, no. 2, 30 April 2011 (2011-04-30), pages 275 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114471675A (zh) * 2020-10-27 2022-05-13 中国石油化工股份有限公司 一种用于临氢降凝的改性zsm-5分子筛及其制备方法
CN114471675B (zh) * 2020-10-27 2023-09-01 中国石油化工股份有限公司 一种用于临氢降凝的改性zsm-5分子筛及其制备方法

Also Published As

Publication number Publication date
RU2020117474A (ru) 2021-12-01
TW201930193A (zh) 2019-08-01
US20200338540A1 (en) 2020-10-29
US11524281B2 (en) 2022-12-13
SA520411866B1 (ar) 2023-02-28
RU2020117474A3 (zh) 2022-03-30
TWI784075B (zh) 2022-11-21
KR20200078587A (ko) 2020-07-01
KR102593164B1 (ko) 2023-10-24

Similar Documents

Publication Publication Date Title
JP4855475B2 (ja) ベータ及びyゼオライトを含有する水素化分解触媒及びナフサを製造するためのその使用
CN109718835B (zh) 加氢裂化催化剂及其制备方法和应用
TWI829749B (zh) 含磷高矽分子篩及其製備方法和應用
WO2019085777A1 (zh) 含磷分子筛及其制备方法和应用
CN111100706B (zh) 一种生产燃料油的加氢裂化方法
RU2782564C2 (ru) Фосфорсодержащее молекулярное сито, его получение и применение
CN110833848B (zh) 加氢裂化催化剂及其制备方法和应用
CN110833847B (zh) 加氢裂化催化剂及其制备方法和应用
CN109718837B (zh) 加氢裂化催化剂及其制备方法和应用
CN109718836B (zh) 加氢裂化催化剂及其制备方法和应用
CN109718846B (zh) 加氢裂化催化剂及其制备方法和应用
CN111097508B (zh) 含复合Beta分子筛的加氢裂化催化剂及其制备方法和应用
CN111097505B (zh) 含Beta分子筛的加氢裂化催化剂及其制备方法和应用
CN111097490B (zh) 含高硅分子筛和硅铝的加氢裂化催化剂及其制备方法和应用
CN111097506B (zh) 含复合分子筛和硅铝的加氢裂化催化剂及其制备方法和应用
CN111097504B (zh) 含复合分子筛的加氢裂化催化剂及其制备方法和应用
CN111097491B (zh) 含高硅分子筛的加氢裂化催化剂及其制备方法和应用
RU2796542C2 (ru) Фосфорсодержащее молекулярное сито с высоким содержанием диоксида кремния, его получение и применение
CN111100707B (zh) 一种生产化工料和燃料油的加氢裂化方法
CN112742440B (zh) 加氢裂化催化剂及其制备方法和应用
CN107486250B (zh) 一种浸渍溶液的制备方法及由该方法制得的浸渍溶液
CN107486216B (zh) 一种浸渍溶液的制备方法及由该方法制得的浸渍溶液
JP2010215736A (ja) 高オクタン価ガソリン留分の製造方法
CN109721074A (zh) 含磷分子筛及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18872253

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207015134

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18872253

Country of ref document: EP

Kind code of ref document: A1