WO2019085491A1 - 一种液压机的高效节能回程缸及其工作方法 - Google Patents

一种液压机的高效节能回程缸及其工作方法 Download PDF

Info

Publication number
WO2019085491A1
WO2019085491A1 PCT/CN2018/091240 CN2018091240W WO2019085491A1 WO 2019085491 A1 WO2019085491 A1 WO 2019085491A1 CN 2018091240 W CN2018091240 W CN 2018091240W WO 2019085491 A1 WO2019085491 A1 WO 2019085491A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder
movable beam
balance
rod
hydraulic machine
Prior art date
Application number
PCT/CN2018/091240
Other languages
English (en)
French (fr)
Inventor
张连华
张晖
Original Assignee
中科聚信洁能热锻装备研发股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中科聚信洁能热锻装备研发股份有限公司 filed Critical 中科聚信洁能热锻装备研发股份有限公司
Priority to EP18806961.1A priority Critical patent/EP3590697A4/en
Priority to US16/307,112 priority patent/US10926502B2/en
Priority to JP2018568260A priority patent/JP6628909B1/ja
Publication of WO2019085491A1 publication Critical patent/WO2019085491A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/16Control arrangements for fluid-driven presses
    • B30B15/161Control arrangements for fluid-driven presses controlling the ram speed and ram pressure, e.g. fast approach speed at low pressure, low pressing speed at high pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J9/00Forging presses
    • B21J9/10Drives for forging presses
    • B21J9/12Drives for forging presses operated by hydraulic or liquid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/16Control arrangements for fluid-driven presses
    • B30B15/163Control arrangements for fluid-driven presses for accumulator-driven presses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/16Control arrangements for fluid-driven presses
    • B30B15/18Control arrangements for fluid-driven presses controlling the reciprocating motion of the ram
    • B30B15/20Control arrangements for fluid-driven presses controlling the reciprocating motion of the ram controlling the speed of the ram, e.g. the speed of the approach, pressing or return strokes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B1/00Installations or systems with accumulators; Supply reservoir or sump assemblies
    • F15B1/02Installations or systems with accumulators
    • F15B1/04Accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/08Characterised by the construction of the motor unit
    • F15B15/14Characterised by the construction of the motor unit of the straight-cylinder type
    • F15B15/1423Component parts; Constructional details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/08Characterised by the construction of the motor unit
    • F15B15/14Characterised by the construction of the motor unit of the straight-cylinder type
    • F15B15/1423Component parts; Constructional details
    • F15B15/1428Cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/20Other details, e.g. assembly with regulating devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20576Systems with pumps with multiple pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/21Systems with pressure sources other than pumps, e.g. with a pyrotechnical charge
    • F15B2211/212Systems with pressure sources other than pumps, e.g. with a pyrotechnical charge the pressure sources being accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/625Accumulators

Definitions

  • the present disclosure relates to a return cylinder of a hydraulic machine and a working method thereof, in particular to an energy-efficient return cylinder that realizes a small power driven large-mass hydraulic machine by using a balance auxiliary setting, and belongs to the technical field of hydraulic transmission.
  • One working cycle of the hydraulic machine includes the moving beam down work and the uplink return.
  • the above-mentioned cyclic action of the conventional hydraulic machine is to supply the pressure oil to the main hydraulic cylinder through the main hydraulic pump and the liquid filling tank, so that the movable beam of the hydraulic machine and the working part thereof work quickly downward; when returning, the main hydraulic pump switches to supply pressure to the return cylinder.
  • the oil, the oil returning oil tank in the main hydraulic cylinder, the movable beam and its working part are upwardly realized. Due to the large weight of the movable beam of the hydraulic machine, multiple hydraulic pumps are required to return a large amount of pressure oil to the return cylinder at the same time to meet the needs of the return line. This kind of return working condition not only consumes more energy, but also has low work efficiency, and the hydraulic machine has slow response speed, large vibration and high noise, which does not meet the requirements of modern industrial energy saving. Therefore, the returning conditions of the traditional hydraulic machine need to be further improved.
  • the present disclosure proposes an efficient energy-saving return cylinder of a hydraulic machine and a working method thereof, which adopts a balance setting, which greatly reduces the influence of the weight of the movable beam of the press on the working process of the press, thereby reducing The weight of the movable beam hinders the flexibility of the movable beam.
  • the utility model has the advantages of low energy consumption, fast response speed and high work efficiency in the return working condition.
  • a high-efficiency energy-saving return cylinder of a hydraulic machine comprising a plurality of single-shot return hydraulic cylinders symmetrically distributed on two sides of a hydraulic cylinder main cylinder, and the single-outlet return hydraulic cylinder
  • the cylinder block is fixed on the fixed beam of the hydraulic machine, and the single output rod is connected with the movable beam of the hydraulic machine. It cooperates with the hydraulic pump, the accumulator and the main hydraulic cylinder of the hydraulic machine to complete the idle movement of the movable beam of the hydraulic machine and the working part thereof.
  • the accumulator Under pressure and upward return; the accumulator is provided with a constant pressure, and the plurality of single-shot return hydraulic cylinders are divided into several groups, each group consisting of a balance cylinder and a drive cylinder; The accumulator is in communication with the rod cavity of the balance cylinder.
  • the pressure oil in the accumulator is filled into the rod cavity of the balance cylinder, so that the balance cylinder piston has upward buoyancy, and the buoyancy balance activity
  • the weight of the beam and its working part during the downward working of the movable beam, the rodless cavity of the driving cylinder is filled with pressure oil, the pressure oil in the rod cavity is returned to the oil tank, and the pressure oil in the balancing cylinder oil chamber is pressed
  • the movable beam and its working part are fast-moving; during the upward return of the movable beam, the rod chamber of the driving cylinder is filled with pressure oil, and the return oil in the rod-free chamber flows back to the oil tank, balancing
  • the upward buoyancy of the cylinder piston and the driving force generated by the driving cylinder jointly drive the movable beam and its working part to achieve an upward return stroke.
  • the balance cylinder and the driving cylinder are disposed in a body, and the driving cylinder is disposed in the piston rod of the balancing cylinder, that is, the piston rod of the balancing cylinder is a cylinder of the driving cylinder, and the piston rod of the balancing cylinder is connected to the movable beam, that is, The cylinder of the driving cylinder is connected to the movable beam; the piston rod in the driving cylinder passes through the rodless cavity of the balancing cylinder, so that the piston rod end is exposed outside the cylinder of the balancing cylinder, and is sealed and fixedly connected with the cylinder of the balancing cylinder; There are two oil passages in the piston rod, one of the oil passages from the piston rod end of the drive cylinder to the rodless chamber of the drive cylinder, and the other oil passage from the piston rod end of the drive cylinder to the drive cylinder There is a rod cavity.
  • balance cylinder and the drive cylinder are separately arranged, and the balance rod and the piston rod of the drive cylinder are respectively connected to the movable beam.
  • the two oil passages provided in the piston rod of the driving cylinder communicate with each other, so that the rodless cavity of the driving cylinder and the rod cavity communicate with each other, and the rodless cavity and the rod cavity of the driving cylinder In addition, it communicates with the outlet of the hydraulic pump output pressure oil, thereby forming a differential connection of the driving cylinder, and realizing the free running of the movable beam and the working portion thereof.
  • the driving cylinder is a differential connection, and the movable beam and the working part thereof are freely moved.
  • the constant pressure within the accumulator causes the piston in the balance cylinder to have an upward buoyancy less than or equal to the weight of the movable beam and its working portion.
  • the area of the piston in the rodless cavity of the driving cylinder is twice the area of the piston rod in the rod cavity, so that the movable beam of the hydraulic machine and the working portion thereof are equal to the speed of the fast return and the upward return.
  • the driving force of the driving cylinder is smaller than the weight of the movable beam and the working portion thereof.
  • a three-position four-way electromagnetic reversing valve is disposed on the pipeline connecting the rodless chamber of the driving cylinder and the rod chamber to the outlet of the hydraulic pump output pressure oil.
  • the rodless cavity of the driving cylinder is provided with a two-position three-way electromagnetic reversing valve on the pipeline communicating with the rod cavity
  • the driving cylinder is normally connected, and the power connection is a differential connection.
  • the driving cylinder is normally connected.
  • the driving cylinder is a differential connection.
  • the present disclosure provides a method for operating an energy efficient return cylinder of a hydraulic machine, comprising the following steps:
  • the buoyancy of the balance cylinder piston and the driving force generated by the driving cylinder jointly drive the movable beam and its working part to achieve an upward return stroke.
  • the equilibrium state further comprises the steps of: the pressure in the accumulator is filled into the balance cylinder and has a rod cavity, and the balance cylinder piston has an upward buoyancy balance balance weight of the movable beam and the working portion thereof.
  • the descending state further includes the following steps: the driving cylinder has no rod chamber filled with pressure oil, and the driving cylinder has a pressure oil in the rod chamber to return to the oil tank, and the balance cylinder has pressure oil in the rod chamber pressed into the accumulator, and the balance is balanced.
  • the rodless cavity of the cylinder draws in air through the breathing port, and the movable beam and its working part are idled quickly;
  • the ascending state further comprises the following steps: the driving cylinder has a rod chamber filled with pressure oil, and the oil in the rodless chamber of the driving cylinder flows back to the oil tank, and the accumulator is filled with the pressure oil into the rod chamber of the balance cylinder, and the balance cylinder The air in the rodless chamber is discharged through the breathing port, and the balance cylinder piston has an upward buoyancy, and the buoyancy and the driving force generated by the driving cylinder jointly drive the movable beam and the working portion thereof to achieve an upward return.
  • the present disclosure can obtain the following beneficial effects:
  • the rod cavity of the balance cylinder is connected with the accumulator, and the piston rod is fixedly connected with the movable beam, thereby balancing the weight of the movable beam and the working part thereof, so that the weight of the movable beam and its working part is always close to zero.
  • the downward working and the upward return of the movable beam and its working part can be realized, thereby effectively reducing the number of hydraulic pump configurations, thereby saving energy and production. cost;
  • the driving cylinder is arranged in the piston rod of the balance cylinder, and is a differential connection structure, which not only condenses the structural installation space, but also effectively realizes the movable beam and the working part thereof under the condition that the balance cylinder balances the weight of the movable beam. Fast down and upward return;
  • the amount of oil injected into the drive cylinder is small, which reduces the working vibration and noise of the hydraulic press.
  • Embodiment 1 is a schematic structural view of Embodiment 1 of the present disclosure
  • FIG. 2 is a schematic structural view of a return hydraulic cylinder according to Embodiment 1 of the present disclosure
  • FIG. 3 is a schematic structural view of Embodiment 2 of the present disclosure.
  • 1 is a hydraulic pump
  • 2 is a three-position four-way electromagnetic reversing valve
  • 3 is a two-position three-way electromagnetic reversing valve
  • 4 is a main hydraulic cylinder
  • 5 is a single-shot reciprocating hydraulic pressure.
  • Cylinder 501 is balance cylinder, 502 is balance cylinder piston, 503 is balance cylinder piston rod and drive cylinder block, 504 is balance cylinder without rod cavity, 505 is balance cylinder with rod cavity, 506 is drive cylinder piston, 507 is a drive cylinder piston rod, 508 is a drive cylinder rodless chamber, 509 is a drive cylinder with a rod cavity, 510 and 511 are oil passage pipes, 6 is a movable beam, 7 is an accumulator, and b is a breathing port.
  • the terms “installation”, “connected”, and “connected” should be understood broadly, for example, may be a fixed connection, or may be Removable connection, or integral connection; may be mechanical connection or electrical connection; may be directly connected, or may be indirectly connected through an intermediate medium, and may be internal communication between the two elements.
  • installation should be understood broadly, for example, may be a fixed connection, or may be Removable connection, or integral connection; may be mechanical connection or electrical connection; may be directly connected, or may be indirectly connected through an intermediate medium, and may be internal communication between the two elements.
  • the present disclosure includes a plurality of single-row return hydraulic cylinders 5 symmetrically distributed on both sides of the hydraulic machine main cylinder 4, and the cylinder of the single-outlet return hydraulic cylinder 5 is fixed to the fixed beam of the hydraulic machine.
  • the single rod is connected to the movable beam 6 of the hydraulic machine, and cooperates with the hydraulic pump 1, the accumulator 7 and the main hydraulic cylinder 4 of the hydraulic machine to complete the idle movement of the hydraulic movable beam 6 and the working part thereof, and the working pressure and the lowering Upward return; accumulator 7 is provided with constant pressure; multiple single-shot return hydraulic cylinders 5 are divided into several groups, each group consists of one balance cylinder and one drive cylinder; the accumulator 7 and the balance cylinder have a rod cavity The 505 is in communication.
  • the pressure oil in the accumulator 7 is filled into the balance cylinder with the rod chamber 505, so that the balance cylinder piston 502 has an upward buoyancy, and the buoyancy balances the weight of the movable beam 6 and its working portion;
  • the drive cylinder rodless chamber 508 is filled with pressure oil, and the drive cylinder has the pressure oil in the rod chamber 509 returned to the oil tank, and the pressure oil in the balance cylinder having the rod chamber 505 is pressed into the accumulator.
  • the balance cylinder rodless cavity 504 draws in air through the breathing port b, the movable beam 6 and The working part is fast-moving; during the upward return of the movable beam 6, the driving cylinder has a rod chamber 509 filled with pressure oil, and the oil in the rod-free chamber 508 of the driving cylinder flows back to the oil tank, and the accumulator 7 has a rod to the balance cylinder.
  • the chamber is filled with pressurized oil, and the air of the balance cylinder rodless chamber 504 is discharged through the breathing port b.
  • the balance cylinder piston 502 has an upward buoyancy force, and the buoyancy force and the driving force generated by the driving cylinder jointly drive the movable beam 6 and its working portion to achieve an upward return stroke.
  • the constant pressure within the accumulator 7 causes the balance cylinder piston 502 to have an upward buoyancy less than or equal to the weight of the movable beam 6 and its working portion.
  • the piston area in the rodless chamber 508 of the driving cylinder is twice the annular area of the piston rod of the rod chamber 509 of the driving cylinder, so that the movable beam 6 of the hydraulic machine and the working portion thereof are freely fast and the speed of the upward returning is equal; the movable beam 6 and During the upward return of the working part, the driving force of the driving cylinder is smaller than the weight of the movable beam 6 and the working portion thereof; the driving cylinder rodless chamber 508 and the driving cylinder have a rod chamber 509 and a tube communicating with the outlet of the hydraulic pump output pressure oil There is a three-position four-way electromagnetic reversing valve 2 on the road; a two-position three-way electromagnetic reversing valve 3 is arranged on the pipeline connecting the rodless chamber 508 of the driving cylinder and the rod chamber 509 of the driving
  • the breathing port b can control the air balance inside the balance cylinder rodless chamber 504, so that the air can be sucked in or excluded to ensure that the balance cylinder piston 502 has buoyancy or a downward driving force.
  • the balance cylinder and the drive cylinder are integrally disposed, and the drive cylinder is disposed in the balance cylinder piston rod 503, that is, the balance cylinder piston rod 503 is a drive cylinder block 503, and the balance cylinder piston rod 503 is connected to the movable beam. 6.
  • the movable cylinder 6 is connected to the movable cylinder block 503.
  • the driving cylinder piston rod 507 passes through the balance cylinder rodless cavity 504 to expose the balance cylinder piston rod 507 end to the balance cylinder block 501, and to the balance cylinder block 501.
  • two oil passages 510 and 511 are provided in the drive cylinder piston rod 507, wherein the oil passage 510 extends from one end of the drive cylinder piston rod 507 to the drive cylinder rodless chamber 508, and the oil supply line 511 is driven from the drive cylinder piston
  • One end of the rod 507 has a rod chamber 509 to the driving cylinder; the two oil passages 510 and 511 communicate with each other, that is, the rodless chamber 508 of the driving cylinder and the rod chamber 509 of the driving cylinder communicate with each other, and the rodless chamber 508 and the driving cylinder of the driving cylinder have
  • the rod chamber 509 is in turn in communication with the outlet of the hydraulic pump output pressure oil, thereby constituting a differential connection of the drive cylinders, thereby achieving a free running of the movable beam 6 and its working portion.
  • a plurality of oil inlets may be disposed between the oil passage 510 and the rodless chamber 508 of the driving cylinder, so that the efficiency of the oil entering the rodless chamber 508 of the driving cylinder can be further increased.
  • a plurality of oil inlet ports may be provided between the oil passage line 511 and the rod chamber 509 of the drive cylinder to increase the oil inlet efficiency of the rod chamber 509 of the drive cylinder.
  • the balance cylinder and the drive cylinder are separately arranged, and the balance cylinder piston rod and the drive cylinder piston rod are respectively connected to the movable beam 6; the drive cylinder is a differential connection, and the movable beam 6 and the working portion thereof are freely fast. under.
  • the return cylinder is composed of a plurality of single-shot return hydraulic cylinders 5 symmetrically distributed on both sides of the hydraulic machine main hydraulic cylinder 4, and the plurality of single-outlet return hydraulic cylinders 5 are divided into several groups, each group including a balance cylinder and a driving cylinder, wherein the balancing cylinder has a rod chamber 505 communicating with the accumulator 7, so that the balancing cylinder piston 502 has an upward buoyancy, and the buoyancy balances the weight of the movable beam 6, in such an equilibrium state, as long as it is on the movable beam 6.
  • the moving beam 6 and its working part can be quickly and easily returned, thus effectively reducing the number of hydraulic pump configurations, thereby saving energy and production costs; secondly, the driving cylinder is poor.
  • the hydraulic cylinder is moved, thereby increasing the speed of the movable beam 6 in the fast down and the upward return; the present disclosure can reduce the working vibration and noise of the hydraulic machine to a large extent due to the small amount of oil injected into the driving cylinder.
  • the working method of the high-efficiency energy-saving return cylinder of the hydraulic machine includes the following steps: balancing state, balancing the buoyancy of the cylinder piston with the weight balance of the movable beam and the working part thereof; and descending state, driving force and activity of the driving cylinder
  • the combined force of the beam and its working part drives the movable beam and its working part downward; in the ascending state, the buoyancy of the balance cylinder piston and the driving force generated by the driving cylinder force the movable beam and its working part to achieve the upward movement.
  • the equilibrium state further includes the following steps: the pressure oil in the accumulator is charged into the balance cylinder and has a rod cavity, and the buoyancy of the balance cylinder piston upward balances the weight of the movable beam and the working portion thereof.
  • the down state further includes the following steps: the drive cylinder has no rod chamber filled with pressure oil, and the drive cylinder has pressure oil in the rod chamber to return to the oil tank, and the balance cylinder has pressure oil in the rod chamber pressed into the accumulator, and the balance cylinder has no rod
  • the cavity draws in air through the breathing port, and the movable beam and its working part are fast-moving;
  • the ascending state further comprises the following steps: the driving cylinder has a rod chamber filled with pressure oil, and the oil in the rodless chamber of the driving cylinder flows back to the oil tank, and the accumulator is filled with the pressure oil into the rod chamber of the balance cylinder, and the balance cylinder has no rod cavity
  • the air inside is discharged through the breathing port, and the balance cylinder piston has an upward buoyancy, and the buoyancy and the driving force generated by the driving cylinder jointly drive the movable beam and the working portion thereof to achieve an upward return.
  • the high-efficiency energy-saving return cylinder of the hydraulic machine realizes the rapid downward and upward movement of the movable beam and the working part thereof, reduces the number of hydraulic pump configurations, reduces the working vibration and noise of the hydraulic machine, thereby saving energy and Cost of production.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Engineering & Computer Science (AREA)
  • Press Drives And Press Lines (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Actuator (AREA)
  • Control Of Presses (AREA)

Abstract

液压机回程缸及其工作方法,包括对称分布于主液压缸(4)两侧的多只单出杆回程液压缸(5),其与液压机的液压泵(1)、蓄能器(7)、主液压缸(4)协同完成液压机活动梁(6)及其工作部分的空程快下、工进压下和向上回程;回程液压缸(5)包括平衡缸和驱动缸;蓄能器(7)与平衡缸连通,产生向上浮力,平衡活动梁(6)及其工作部分的重量。

Description

一种液压机的高效节能回程缸及其工作方法
相关申请的交叉引用
本申请要求于2017年11月02日提交中国专利局的申请号为201711061950.5、名称为“一种液压机的高效节能回程缸”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及一种液压机的回程缸及其工作方法,特别是一种采用平衡辅助设置实现小动力驱动大质量液压机的高效节能回程缸,属于液压传动技术领域。
背景技术
液压机的一个工作循环包括活动梁下行工作、上行回程。传统液压机的上述循环动作是通过主液压泵和充液罐向主液压缸提供压力油,使液压机的活动梁及其工作部分快速向下工作;回程时,主液压泵切换向回程缸内提供压力油,主液压缸内的油回油箱,活动梁及其工作部分向上实现回程。由于液压机的活动梁重量较大,因而回程时需要多台液压泵同时向回程缸内提供大量的压力油,以满足回程较大线速度需要。这种回程工况不但消耗能量多、工作效率低下,而且液压机的响应速度慢、震动大、噪音大,不符合现代工业节能降耗的要求。因此,传统液压机的回程工况,尚需进一步地改进提高。
发明内容
针对传统液压机回程工况的技术不足,本公开提出一种液压机的高效节能回程缸及其工作方法,它采用平衡设置,极大地减少了压机活动梁重量对压机工作过程的影响,从而减少了活动梁重量对活动梁运动灵活性的阻碍。实现回程工况能量消耗少,响应速度快,工作效率高的目的。
为了实现上述目的,本公开采取以下技术方案实施:一种液压机的高效节能回程缸,包括对称分布于液压机主液缸两边的多只单出杆回程液压缸,所述的单出杆回程液压缸的缸体固定在液压机的固定梁上,单出杆连接液压机的活动梁,它与液压机的液压泵、蓄能器、主液压缸协同完成液压机活动梁及其工作部分的空程快下、工进压下和向上回程;所述的蓄能器内设有恒定压力,所述的多只单出杆回程液压缸分成若干组,每组由一只平衡缸和一只驱动缸组成;所述蓄能器与所述平衡缸的有杆腔相连通,正常工作的过程中,蓄能器内的压力油充入平衡缸的有杆腔内,使平衡缸活塞具有向上浮力,该浮力平衡活动梁及其工作部分的重量;活动梁下行工作的过程中,所述驱动缸的无杆腔内充入压力油,有杆腔内的压力油回油箱,平衡缸油腔内的压力油被压入蓄能器内,活动梁及其工作部分空程快下;活动梁向上回程的过程中,所述驱动缸的有杆腔内充入压力油,无杆腔内的回油流回油箱,平衡缸活塞所具有的向上浮力和驱动缸产生的驱动力合力驱动活动梁及其工作部分实现向上回程。
进一步地,所述的平衡缸和驱动缸连体设置,驱动缸设置在平衡缸的活塞杆内,即:平衡缸的活塞杆为驱动缸的缸体,平衡缸的活塞杆连接活动梁,即:驱动缸的缸体连接活动梁;驱动缸中的活塞杆穿过平衡缸的无杆腔使活塞杆端露出平衡缸的缸体之外,且与平衡缸的缸体密封固定连接; 驱动缸中的活塞杆内设有两条通油管路,其中一条通油管路从驱动缸的活塞杆端至驱动缸的无杆腔内,另一条通油管路从驱动缸的活塞杆端至驱动缸的有杆腔内。
进一步地,所述的平衡缸和驱动缸分体设置,平衡缸和驱动缸的活塞杆分别连接活动梁。
进一步地,连体设置的过程中,驱动缸活塞杆内设有的两条通油管路相互连通,使驱动缸的无杆腔与有杆腔相互连通,驱动缸的无杆腔与有杆腔又与液压泵输出压力油的出口相互连通,由此构成驱动缸的差动连接,实现活动梁及其工作部分的空程快下。
进一步地,分体设置的过程中,驱动缸为差动连接,实现活动梁及其工作部分的空程快下。
进一步地,所述蓄能器内的恒定压力使平衡缸中的活塞具有的向上浮力小于等于活动梁及其工作部分的重量。
进一步地,所述驱动缸无杆腔内的活塞面积为有杆腔内的活塞杆面积的两倍,使液压机的活动梁及其工作部分空程快下与向上回程的速度相等。
进一步地,所述活动梁及其工作部分向上回程的过程中,驱动缸的驱动力小于活动梁及其工作部分的重量。
进一步地,所述驱动缸的无杆腔和有杆腔与液压泵输出压力油的出口相连通的管路上设有三位四通电磁换向阀。
进一步地,所述驱动缸的无杆腔与有杆腔相连通的管路上设有二位三通电磁换向阀
进一步地,所述二位三通电磁换向阀不通电的过程中,驱动缸为常态连接,通电的过程中为差动连接。
进一步地,所述二位三通电磁换向阀不通电的过程中,所述驱动缸为常态连接。
进一步地,所述二位三通电磁换向阀通电的过程中,所述驱动缸为差动连接。
本公开提供了一种液压机的高效节能回程缸的工作方法,包括以下步骤:
平衡状态,平衡缸活塞向上浮力与活动梁及其工作部分的重量平衡;
下行状态,驱动缸的驱动力和活动梁及其工作部分的重量合力驱动活动梁及其工作部分下行;
上行状态,平衡缸活塞的浮力和驱动缸产生的驱动力合力驱动活动梁及其工作部分实现向上回程。
进一步地,平衡状态还包括以下步骤:蓄能器内的压力充入平衡缸有杆腔内,平衡缸活塞具有向上浮力平衡活动梁及其工作部分的重量。
进一步地,下行状态还包括以下步骤:驱动缸无杆腔内充入压力油,驱动缸有杆腔内的压力油回油箱,平衡缸有杆腔内的压力油压入蓄能器内,平衡缸无杆腔通过呼吸口吸入空气,活动梁及其工作部分空程快下;
进一步地,上行状态还包括以下步骤:驱动缸有杆腔内充入压力油,驱动缸无杆腔内的油流回油箱,蓄能器向平衡缸有杆腔内充入压力油,平衡缸无杆腔内的空气通过呼吸口排出,平衡缸活塞具有向上浮力,该浮力和驱动缸产生的驱动力合力驱动活动梁及其工作部分实现向上回程。
本公开通过以上技术方案,可获得以下有益效果:
1、平衡缸的有杆腔与蓄能器相通,活塞杆固定连接活动梁,从而起到平衡活动梁及其工作部分重量的作用,使活动梁及其工作部分的重量始终 接近于零,在这样的平衡状态下,只要在活动梁上施以很小的动力,即可实现活动梁及其工作部分的下行工作、上行回程,有效地减少了液压泵的配置数量,从而节约了能源和生产成本;
2、驱动缸设置在平衡缸的活塞杆内,且为差动连接结构,不仅浓缩了结构设置空间,而且在平衡缸平衡活动梁重量的条件下,能够有效实现活动梁及其工作部分的空程快下和向上回程;
3、驱动缸内注入的油量较少,使液压机的工作振动和噪音降低。
附图说明
为了更清楚地说明本公开具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本公开的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
附图1为本公开实施例一的结构示意图;
附图2为本公开实施例一中回程液压缸的结构示意图;
附图3为本公开实施例二的结构示意图。
在附图1、2、3中:1为液压泵、2为三位四通电磁换向阀、3为二位三通电磁换向阀、4为主液压缸、5为单出杆回程液压缸、501为平衡缸缸体、502为平衡缸活塞、503为平衡缸活塞杆又为驱动缸缸体、504为平衡缸无杆腔、505为平衡缸有杆腔、506为驱动缸活塞、507为驱动缸活塞杆、508为驱动缸无杆腔、509为驱动缸有杆腔、510和511为通油管道、6为活动梁、7为蓄能器、b为呼吸口。
具体实施方式
下面将结合附图对本公开的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
在本公开的描述中,需要说明的是,如出现术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等,其所指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。此外,如出现术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本公开的描述中,需要说明的是,除非另有明确的规定和限定,如出现术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本公开中的具体含义。
如附图1、2、3所示,本公开包括对称分布于液压机主液缸4两边的多只单出杆回程液压缸5,单出杆回程液压缸5的缸体固定在液压机的固定梁上,单出杆连接液压机的活动梁6,它与液压机的液压泵1、蓄能器7、主液压缸4协同完成液压机活动梁6及其工作部分的空程快下、工进压下和向上回程;蓄能器7内设有恒定压力;多只单出杆回程液压缸5分成若干组,每组由一只平衡缸和一只驱动缸组成;蓄能器7与平衡缸有杆腔505 相连通,正常工作的过程中,蓄能器7内的压力油充入平衡缸有杆腔505内,使平衡缸活塞502具有向上浮力,该浮力平衡活动梁6及其工作部分的重量;活动梁6下行工作的过程中,驱动缸无杆腔508内充入压力油,驱动缸有杆腔509内的压力油回油箱,平衡缸有杆腔505内的压力油被压入蓄能器7内,平衡缸无杆腔504通过呼吸口b吸入空气,活动梁6及其工作部分空程快下;活动梁6向上回程的过程中,驱动缸有杆腔509内充入压力油,驱动缸无杆腔508内的油流回油箱,蓄能器7向平衡缸有杆腔内充入压力油,平衡缸无杆腔504的空气通过呼吸口b排出,平衡缸活塞502具有向上浮力,该浮力和驱动缸产生的驱动力合力驱动活动梁6及其工作部分实现向上回程;蓄能器7内的恒定压力使平衡缸活塞502具有向上的浮力小于等于活动梁6及其工作部分的重量。驱动缸无杆腔508内的活塞面积为驱动缸有杆腔509活塞杆环形面积的两倍,使液压机的活动梁6及其工作部分空程快下与向上回程的速度相等;活动梁6及其工作部分向上回程的过程中,驱动缸的驱动力小于活动梁6及其工作部分的重量;驱动缸无杆腔508和驱动缸有杆腔509与液压泵输出压力油的出口相连通的管路上设有三位四通电磁换向阀2;驱动缸无杆腔508与驱动缸有杆腔509相连通的管路上设有二位三通电磁换向阀3,且不通电的过程中,驱动缸为常态连接,通电的过程中为差动连接。
其中,呼吸口b可以控制平衡缸无杆腔504内部的空气平衡,从而可以吸入或者排除空气保证了平衡缸活塞502具有浮力或者向下的驱动力。
实施例一
如附图3所示,平衡缸和驱动缸连体设置,驱动缸设置在平衡缸活塞杆503内,即:平衡缸活塞杆503又为驱动缸缸体503,平衡缸活塞杆503连接活动梁6,又为驱动缸缸体503连接活动梁6;驱动缸活塞杆507穿过 平衡缸无杆腔504使平衡缸活塞杆507端露出平衡缸缸体501之外,且与平衡缸缸体501密封固定连接;驱动缸活塞杆507内设有两条通油管路510和511,其中通油管路510从驱动缸活塞杆507的一端至驱动缸无杆腔508,通油管路511从驱动缸活塞杆507一端至驱动缸有杆腔509;两条通油管路510和511相互连通,即:驱动缸无杆腔508与驱动缸有杆腔509相互连通,驱动缸无杆腔508与驱动缸有杆腔509又与液压泵输出压力油的出口相互连通,由此构成驱动缸的差动连接,从而实现活动梁6及其工作部分的空程快下。
其中,通油管路510与驱动缸无杆腔508之间可以设置有多个入油口,可以更加增加驱动缸无杆腔508进油的效率。
通油管路511与驱动缸有杆腔509之间也可以设置有多个入油口,增大驱动缸有杆腔509的进油效率。
实施例二
如附图3所示,平衡缸和驱动缸分体设置,平衡缸活塞杆和驱动缸活塞杆分别连接活动梁6;驱动缸为差动连接,实现活动梁6及其工作部分的空程快下。
在本公开中,回程缸由对称分布于液压机主液压缸4两边的多只单出杆回程液压缸5组成,多只单出杆回程液压缸5分成若干组,每组包含一只平衡缸和一只驱动缸,其中平衡缸有杆腔505与蓄能器7相通,使平衡缸活塞502具有向上浮力,该浮力平衡活动梁6的重量,在这样的平衡状态下,只要在活动梁6上施以很小的动力,即可实现活动梁6及其工作部分的空程快下和向上回程,因而能够有效减少液压泵的配置数量,从而节约了能源和生产成本;其次,驱动缸为差动液压缸,从而提高了活动梁6空程快下和向上回程的速度;本公开由于向驱动缸内注入的油量较少,因而 在很大程度上可以降低液压机的工作振动和噪音。
实施例三
本实施例提供的一种液压机的高效节能回程缸的工作方法,包括以下步骤:平衡状态,平衡缸活塞的浮力与活动梁及其工作部分的重量平衡;下行状态,驱动缸的驱动力和活动梁及其工作部分的重量合力驱动活动梁及其工作部分下行;上行状态,平衡缸活塞的浮力和驱动缸产生的驱动力合力驱动活动梁及其工作部分实现上行。
具体地,平衡状态还包括以下步骤:蓄能器内的压力油充入平衡缸有杆腔内,平衡缸活塞向上的浮力平衡活动梁及其工作部分的重量。
下行状态还包括以下步骤:驱动缸无杆腔内充入压力油,驱动缸有杆腔内的压力油回油箱,平衡缸有杆腔内的压力油压入蓄能器内,平衡缸无杆腔通过呼吸口吸入空气,活动梁及其工作部分空程快下;
上行状态还包括以下步骤:驱动缸有杆腔内充入压力油,驱动缸无杆腔内的油流回油箱,蓄能器向平衡缸有杆腔内充入压力油,平衡缸无杆腔内的空气通过呼吸口排出,平衡缸活塞具有向上浮力,该浮力和驱动缸产生的驱动力合力驱动活动梁及其工作部分实现向上回程。
以上所述仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。
工业实用性
本公开实施例提供的一种液压机的高效节能回程缸,实现活动梁及其 工作部分的快速下行和上行,减少了液压泵的配置数量,降低了液压机的工作振动和噪音,从而节约了能源和生产成本。

Claims (16)

  1. 一种液压机的高效节能回程缸,包括对称分布于液压机主液缸两边的多只单出杆回程液压缸,所述的单出杆回程液压缸的缸体固定在液压机的固定梁上,单出杆连接液压机的活动梁,它与液压机的液压泵、蓄能器、主液压缸协同完成液压机活动梁及其工作部分的空程快下、工进压下和向上回程;所述的蓄能器内设有恒定压力,其特征在于,
    所述的多只单出杆回程液压缸分成若干组,每组由一只平衡缸和一只驱动缸组成;所述蓄能器与所述平衡缸的有杆腔相连通,正常工作的过程中,蓄能器内的压力油充入平衡缸的有杆腔内,使平衡缸活塞具有向上浮力,该浮力平衡活动梁及其工作部分的重量;活动梁下行工作的过程中,所述驱动缸的无杆腔内充入压力油,有杆腔内的压力油回油箱,平衡缸油腔内的压力油被压入蓄能器内,活动梁及其工作部分空程快下;活动梁向上回程的过程中,所述驱动缸的有杆腔内充入压力油,无杆腔内的回油流回油箱,平衡缸活塞所具有的向上浮力和驱动缸产生的驱动力合力驱动活动梁及其工作部分实现向上回程。
  2. 根据权利要求1所述的一种液压机的高效节能回程缸,其特征在于,所述的平衡缸和驱动缸连体设置,驱动缸设置在平衡缸的活塞杆内,即:平衡缸的活塞杆为驱动缸的缸体,平衡缸的活塞杆连接活动梁,即:驱动缸的缸体连接活动梁;驱动缸中的活塞杆穿过平衡缸的无杆腔使活塞杆端露出平衡缸的缸体之外,且与平衡缸的缸体密封固定连接;驱动缸中的活塞杆内设有两条通油管路,其中一条通油管路由驱动缸的活塞杆端至驱动缸的无杆腔内,另一条通油管路由驱动缸的活塞杆端至驱动缸的有杆腔内。
  3. 根据权利要求1-2任一项所述的一种液压机的高效节能回程缸,其特征在于,所述的平衡缸和驱动缸分体设置,平衡缸和驱动缸的活塞杆分 别连接活动梁。
  4. 根据权利要求2所述的一种液压机的高效节能回程缸,其特征在于,连体设置的过程中,驱动缸活塞杆内设有的两条通油管路相互连通,使驱动缸的无杆腔与有杆腔相互连通,驱动缸的无杆腔与有杆腔又与液压泵输出压力油的出口相互连通,由此构成驱动缸的差动连接,实现活动梁及其工作部分的空程快下。
  5. 根据权利要求3所述的一种液压机的高效节能回程缸,其特征在于,分体设置的过程中,驱动缸为差动连接,实现活动梁及其工作部分的空程快下。
  6. 根据权利要求1-5任一项所述的一种液压机的高效节能回程缸,其特征在于,所述蓄能器内的恒定压力使平衡缸中的活塞具有向上的浮力小于等于活动梁及其工作部分的重量。
  7. 根据权利要求1-6任一项所述的一种液压机的高效节能回程缸,其特征在于,所述驱动缸无杆腔内的活塞面积为有杆腔内的活塞杆面积的两倍,使液压机的活动梁及其工作部分空程快下与向上回程的速度相等。
  8. 根据权利要求1-7任一项所述的一种液压机的高效节能回程缸,其特征在于,所述活动梁及其工作部分向上回程的过程中,驱动缸的驱动力小于活动梁及其工作部分的重量。
  9. 根据权利要求1-8任一项所述的一种液压机的高效节能回程缸,其特征在于,所述驱动缸的无杆腔和有杆腔与液压泵输出压力油的出口相连通的管路上设有三位四通电磁换向阀。
  10. 根据权利要求4或5所述的一种液压机的高效节能回程缸,其特征在于,所述驱动缸的无杆腔与有杆腔相连通的管路上设有二位三通电磁 换向阀。
  11. 根据权利要求10所述的一种液压机的高效节能回程缸,其特征在于,所述二位三通电磁换向阀不通电的过程中,所述驱动缸为常态连接。
  12. 根据权利要求10或11所述的一种液压机的高效节能回程缸,其特征在于,所述二位三通电磁换向阀通电的过程中,所述驱动缸为差动连接。
  13. 一种液压机的高效节能回程缸的工作方法,其特征在于,包括以下步骤:
    平衡状态,平衡缸活塞的浮力与活动梁及其工作部分的重量平衡;
    下行状态,驱动缸的驱动力和活动梁及其工作部分的重量合力驱动活动梁及其工作部分下行;
    上行状态,平衡缸活塞的浮力和驱动缸产生的驱动力合力驱动活动梁及其工作部分实现上行。
  14. 根据权利要求13所述的一种液压机的高效节能回程缸的工作方法,其特征在于,平衡状态还包括以下步骤:蓄能器内的压力油充入平衡缸有杆腔内,平衡缸活塞向上的浮力平衡活动梁及其工作部分的重量。
  15. 根据权利要求13和14所述的一种液压机的高效节能回程缸的工作方法,其特征在于,下行状态还包括以下步骤:驱动缸无杆腔内充入压力油,驱动缸有杆腔内的压力油回油箱,平衡缸有杆腔内的压力油压入蓄能器内,平衡缸无杆腔通过呼吸口吸入空气,活动梁及其工作部分空程快下;
  16. 根据权利要求13-15任一项所述的一种液压机的高效节能回程缸的工作方法,其特征在于,上行状态还包括以下步骤:驱动缸有杆腔内充 入压力油,驱动缸无杆腔内的油流回油箱,蓄能器向平衡缸有杆腔内充入压力油,平衡缸无杆腔内的空气通过呼吸口排出,平衡缸活塞具有向上浮力,该浮力和驱动缸产生的驱动力合力驱动活动梁及其工作部分实现向上回程。
PCT/CN2018/091240 2017-11-02 2018-06-14 一种液压机的高效节能回程缸及其工作方法 WO2019085491A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18806961.1A EP3590697A4 (en) 2017-11-02 2018-06-14 HIGHLY EFFICIENT AND ENERGY-SAVING RETURN CYLINDER FOR HYDRAULIC MACHINE AND OPERATING PROCEDURES FOR IT
US16/307,112 US10926502B2 (en) 2017-11-02 2018-06-14 Efficient energy-saving return cylinder of hydraulic press and working method thereof
JP2018568260A JP6628909B1 (ja) 2017-11-02 2018-06-14 液圧プレス用の高効率且つ低消耗の復帰シリンダ及びその作動方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711061950.5A CN107672222B (zh) 2017-11-02 2017-11-02 一种液压机的高效节能回程缸
CN201711061950.5 2017-11-02

Publications (1)

Publication Number Publication Date
WO2019085491A1 true WO2019085491A1 (zh) 2019-05-09

Family

ID=61144801

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/091240 WO2019085491A1 (zh) 2017-11-02 2018-06-14 一种液压机的高效节能回程缸及其工作方法

Country Status (5)

Country Link
US (1) US10926502B2 (zh)
EP (1) EP3590697A4 (zh)
JP (1) JP6628909B1 (zh)
CN (1) CN107672222B (zh)
WO (1) WO2019085491A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114472781A (zh) * 2022-01-27 2022-05-13 天津市天锻压力机有限公司 一种用于自由锻压机的充液系统

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107672222B (zh) 2017-11-02 2023-07-25 中科聚信洁能热锻装备研发股份有限公司 一种液压机的高效节能回程缸
CN108655316A (zh) * 2018-04-20 2018-10-16 天津市天锻压力机有限公司 用于锻造镁合金轮毂的锻造液压机
CN108543900B (zh) * 2018-06-07 2024-03-19 江苏恒帆重工科技有限公司 一种设有悬浮导向梁的液压快锻机
CN112283181A (zh) * 2020-09-25 2021-01-29 哈尔滨工业大学 足式机器人用高功率密度辅助增力液压缸
CN117141035B (zh) * 2023-10-31 2024-02-06 无锡市鹏达海卓智能装备有限公司 一种高速液压机气动平衡装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000218400A (ja) * 1999-01-29 2000-08-08 Komatsu Ltd プレスダイクッションの補助リフト装置
CN102974732A (zh) * 2012-12-11 2013-03-20 阎善武 一种锻造水压机及方法
CN204674066U (zh) * 2015-05-04 2015-09-30 南通锻压设备股份有限公司 一种液压机节能装置
CN206175358U (zh) * 2016-11-21 2017-05-17 江苏华威机械制造有限公司 液压快锻机空程快降独立补油的液压回路
CN107672222A (zh) * 2017-11-02 2018-02-09 中科聚信洁能热锻装备研发股份有限公司 一种液压机的高效节能回程缸

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE912780C (de) * 1942-10-18 1954-06-03 Becker & Van Huellen Hydraulische Presse mit Rueckzugzylinder
GB720461A (en) * 1948-03-18 1954-12-22 United Eng Foundry Co Improvements in or relating to a hydraulic control system
FR1299692A (fr) * 1961-06-12 1962-07-27 Loewy Eng Co Ltd Presse hydraulique verticale à course descendante
JPS5330188B2 (zh) * 1973-02-05 1978-08-25
JPS50101076U (zh) * 1974-01-21 1975-08-21
DE2916191A1 (de) * 1979-04-21 1980-10-23 Horst Knaebel Krafteinheit als antriebsvorrichtung, z.b. zum umformen, verformen, verdichten, schlagen und antreiben
JPS5847326U (ja) * 1981-09-19 1983-03-30 シ−ケ−デイ株式会社 バランスシリンダの圧力調整装置
DE3221984A1 (de) * 1982-06-11 1983-12-15 Gewerkschaft Eisenhütte Westfalia, 4670 Lünen Hydraulikzylinder
JPH01109398U (zh) * 1988-01-08 1989-07-24
JPH07223099A (ja) * 1994-02-14 1995-08-22 Masataka Matsumura 左右バランス油圧装置
DE19610757C1 (de) * 1996-03-19 1997-10-16 Siempelkamp Pressen Sys Gmbh Antriebssystem für eine hydraulische Presse
CN1877139A (zh) * 2005-09-12 2006-12-13 叶孙勇 无泄漏复合油缸
DE102005043571A1 (de) * 2005-09-12 2007-03-22 Bosch Rexroth Ag Antriebsvorrichtung
CN102678657A (zh) * 2011-03-15 2012-09-19 张家口长城液压油缸有限公司 缸内有2条辅助供油通道的油缸
CN102434524A (zh) * 2011-11-25 2012-05-02 谢建华 往复柱塞增力油缸
DE102012104124A1 (de) * 2012-05-10 2013-11-14 Dieffenbacher GmbH Maschinen- und Anlagenbau Verfahren und Vorrichtung zur adaptiven Steuerung einer hydraulischen Presse
CN102678662A (zh) * 2012-05-14 2012-09-19 长沙金阳机械设备科技开发有限公司 快慢速行程一体化节能油缸及其应用装置
CN102862316B (zh) * 2012-10-08 2015-03-25 北京索普液压机电有限公司 压力机液压控制系统及压力机
JP5769859B1 (ja) * 2014-11-03 2015-08-26 日本エアロフォージ株式会社 液圧鍛造プレス装置及びその制御方法
CN104847732B (zh) * 2015-03-17 2016-08-17 北京理工大学 一种用于不平衡负载的阀控缸系统
CH711715A1 (de) * 2015-10-29 2017-05-15 Hatebur Umformmaschinen Ag Aktuatorvorrichtung.
CN106402053A (zh) * 2016-12-02 2017-02-15 江苏华威机械制造有限公司 一种辅助液压泵自吸的气压供液油箱
CN206206298U (zh) * 2016-12-02 2017-05-31 江苏华威机械制造有限公司 一种辅助液压泵自吸的气压供液油箱
CN207465967U (zh) * 2017-11-02 2018-06-08 中科聚信洁能热锻装备研发股份有限公司 一种液压机的高效节能回程缸

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000218400A (ja) * 1999-01-29 2000-08-08 Komatsu Ltd プレスダイクッションの補助リフト装置
CN102974732A (zh) * 2012-12-11 2013-03-20 阎善武 一种锻造水压机及方法
CN204674066U (zh) * 2015-05-04 2015-09-30 南通锻压设备股份有限公司 一种液压机节能装置
CN206175358U (zh) * 2016-11-21 2017-05-17 江苏华威机械制造有限公司 液压快锻机空程快降独立补油的液压回路
CN107672222A (zh) * 2017-11-02 2018-02-09 中科聚信洁能热锻装备研发股份有限公司 一种液压机的高效节能回程缸

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114472781A (zh) * 2022-01-27 2022-05-13 天津市天锻压力机有限公司 一种用于自由锻压机的充液系统

Also Published As

Publication number Publication date
EP3590697A4 (en) 2020-12-23
JP6628909B1 (ja) 2020-01-15
CN107672222A (zh) 2018-02-09
CN107672222B (zh) 2023-07-25
US20200262169A1 (en) 2020-08-20
US10926502B2 (en) 2021-02-23
EP3590697A1 (en) 2020-01-08
JP2020514055A (ja) 2020-05-21

Similar Documents

Publication Publication Date Title
WO2019085491A1 (zh) 一种液压机的高效节能回程缸及其工作方法
CN100567730C (zh) 液压驱动流体泵
CN102102688B (zh) 高速重载直线往复运动体运行储能装置
CN203769736U (zh) 一种双井互平衡液压抽油机液压系统
CN201461605U (zh) 臂架泵车混凝土泵送液压系统
CN202073754U (zh) 液动隔膜泵
CN102878147A (zh) 一种增速油缸装置
CN102616700B (zh) 一种油气混合驱动的升降控制装置
CN202441833U (zh) 一种双作用双级气液增压传动装置
CN202883540U (zh) 一种增速油缸装置
CN205370884U (zh) 一种柱塞式多液缸组合泥浆泵
CN106762519B (zh) 一种可变负荷往复式压缩机或泵
CN207465967U (zh) 一种液压机的高效节能回程缸
EP2902628B1 (en) Reciprocating low-speed heavy-load hydraulic pump with variable action area
CN209959612U (zh) 一种行程可调自动反复式液压缸
CN103771289B (zh) 多缸同步抬升机构
CN103591071B (zh) 一种直线电机驱动式气动比例压力阀
CN108128743B (zh) 一种钢包回转台升降缸及控制方法
CN201963629U (zh) 两位四通液控换向阀
CN206943107U (zh) 液压机控制系统
CN203362432U (zh) 一种轴向配气高频气动泵
CN220060065U (zh) 一种具备快慢速功能插阀式升降液压站
CN219622967U (zh) 气动液压站
CN208236809U (zh) 一种恒压密封式副油缸
CN220037136U (zh) 气油平衡缸

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018806961

Country of ref document: EP

Effective date: 20181120

ENP Entry into the national phase

Ref document number: 2018568260

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018806961

Country of ref document: EP

Effective date: 20190904

NENP Non-entry into the national phase

Ref country code: DE