WO2019080755A1 - 生产粉体的装置及其方法 - Google Patents

生产粉体的装置及其方法

Info

Publication number
WO2019080755A1
WO2019080755A1 PCT/CN2018/110591 CN2018110591W WO2019080755A1 WO 2019080755 A1 WO2019080755 A1 WO 2019080755A1 CN 2018110591 W CN2018110591 W CN 2018110591W WO 2019080755 A1 WO2019080755 A1 WO 2019080755A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
tank
port
producing
blowing port
Prior art date
Application number
PCT/CN2018/110591
Other languages
English (en)
French (fr)
Inventor
张刚
崔蔚菁
关国江
张宠元
安仲鑫
Original Assignee
内蒙古盛本荣科技有限公司
张刚
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 内蒙古盛本荣科技有限公司, 张刚 filed Critical 内蒙古盛本荣科技有限公司
Publication of WO2019080755A1 publication Critical patent/WO2019080755A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/17Metallic particles coated with metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/12Making metallic powder or suspensions thereof using physical processes starting from gaseous material

Definitions

  • the invention relates to a pulverizing device for industrial production of sintered NdFeB, in particular to a device for producing powder and a method thereof.
  • the technical problem to be solved by the present invention is to provide a device for producing powder and a method thereof, which are simple in operation, low in manufacturing cost, good in use effect, and low in Dy/Tb dosage.
  • a device for producing powder comprising a tank body, a gas supply unit, a vacuuming unit, an evaporation source, a feeding tank and a receiving tank; a top of the tank body is provided with a first blowing port, and a second portion of the side wall is provided with a second a blowing port is provided at the bottom with a feeding port and a discharging port, and a lower portion of the first blowing port inside the tank body is provided with a baffle; the first blowing port and the second blowing port are respectively connected to the gas storage of the gas supply unit through the pipeline
  • the feeding port is connected to the feeding tank through the pipeline, and the discharging port is connected to the receiving tank through the pipeline; the vacuuming unit is respectively connected to the side wall of the tank body and the discharging port through the pipeline, and the evaporation source is arranged inside the tank body, Connect the power supply through the wires.
  • an evaporation source is used to heat the Dy/Tb metal and evaporate to form Dy/Tb atoms.
  • the top of the can body is hemispherical, the bottom is conical, the side wall is cylindrical, and the shape of the baffle is hemispherical.
  • the tank body adopts a single layer or a double layer structure, and under the double layer structure, the water cooling layer is in the middle.
  • blowing port is inclined to one side to form a swirling airflow.
  • a method of producing a powder comprising:
  • the vacuuming unit vacuums the inside of the tank, and sends an inert gas into the tank through the first blowing port to form a gas flow;
  • the evaporation source is powered on. When the evaporation source temperature reaches 3000 ° C or higher, the robot puts particles or wires of Dy or Tb into the evaporation source;
  • the second blowing port feeds the inert gas, opens the feed port, and the inert gas blows the NdFeB powder into the inside of the tank;
  • the gas stream blows the evaporated metal atoms downward to form a mixed gas stream of metal atoms and inert gas, and the mixed gas flow continues to move downward; after the metal atoms meet the NdFeB powder, the metal atoms adhere to the NdFeB powder to form a coating powder;
  • the coated powder is collected at the discharge port and collected by pipe to the receiving tank for collection.
  • the can body is first evacuated to below 100 Pa, the first blowing port starts to work to feed the inert gas, and the inside of the casing starts working under a protective atmosphere.
  • a mixed gas stream of Dy or Tb atoms and an inert gas is formed, and after Dy or Tb atoms are encountered with the NdFeB powder, Dy or Tb atoms are attached to the NdFeB powder to form a coating powder.
  • the invention has the advantages of simple operation, low manufacturing cost, good use effect, and low Dy/Tb dosage, and can greatly improve the corrective force without degrading the performance.
  • the invention can control the entry speed of NdFeB powder, the entry and discharge speed of working gas, control the evaporation speed of Dy and Tb metals, control the proportion of Dy and Tb in the product NdFeB powder, and can reach Dy and Tb as the total mass of NdFeB as required.
  • a suitable powder which can be used for sintering NdFeB permanent magnet production adhered to a layer of Dy/Tb metal particles is finally obtained.
  • Figure 1 is a view showing the state of use of the apparatus for producing a powder in the present invention
  • Figure 2 is a flow diagram showing the evaporation of atoms by a laterally inert gas stream in the present invention.
  • the device for producing powder can be used for efficiently producing NdFeB coated powder adhering to Dy or Tb, and NdFeB coated powder can be produced in a ratio of Dy (or Tb): NdFeB to produce high-performance sintered NdFeB permanent magnet.
  • FIG. 1 it is a state of use of the apparatus for producing a powder in the present invention
  • Fig. 2 it is a flow diagram of a vaporized atom driven by a lateral inert gas flow in the present invention.
  • the structure of the apparatus for producing powder includes: a tank body 1, a gas supply unit, a vacuuming unit 2, an evaporation source 3, a feeding tank, and a receiving tank.
  • the can body 1 is a sealing structure which is the main structure of the present invention, the height of which is not limited, the horizontal section is circular or polygonal, and the horizontal dimension is determined according to the height of the casing. If the height of the can body 1 is high, the horizontal section size is large, and vice versa. In the preferred embodiment, the horizontal section has a diameter of 5 mm to 5000 mm and a vertical height of no more than 10 meters.
  • the top of the can body 1 is hemispherical, the bottom is conical, the side wall is cylindrical, the top of the hemisphere is provided with a first blowing port 11, and the lower part of the side wall is provided with a second blowing port 12, and the bottom is provided with a
  • the material port 13 and the discharge port 14 are provided with a baffle 15 at a lower portion of the first blowing port 11 inside the can body 1.
  • the shape of the baffle plate 15 is a hemispherical shape.
  • the material of the tank body 1 is made of metal steel or stainless steel, and can be set as a single layer or a double layer, and in the double layer structure, the water cooling layer is in the middle.
  • the cross section of the side wall is cylindrical or polygonal.
  • the second blowing port 12 is horizontally grouped, and one set is set to one, two or more, and different sets of second blowing ports 12 can be arranged on the side walls at different heights.
  • the first blowing port 11 and the second blowing port 12 are connected to the gas storage tank of the air supply unit through a pipeline, and the inert gas of Ar, N2, He in the gas storage tank enters the tank through the first blowing port 11 and the second blowing port 12.
  • four second blowing ports 12 are provided, and the four second blowing ports 12 are inclined to one side to form a swirling air flow.
  • the deflector 15 causes the air flow to flow down the sides.
  • the function of the deflector 15 is to divert the flow of Ar, N2 or He flowing from above to the periphery and to flow downward, and at the same time, the evaporated atoms flow downward, and the atoms adhere to the NdFeB powder after encountering the NdFeB powder. Landed at the discharge port 14.
  • the feed port 13 is used to transport the NdFeB raw powder into the can body 1, and the feed tank is connected through a pipeline.
  • the discharge port 14 is for collecting and discharging the NdFeB powder adhered to the Dy/Tb, and is connected to the receiving tank through a pipeline for use in producing a NdFeB magnet.
  • the vacuuming unit 2 is connected to the side wall of the tank body 1 and the discharge port 14 through the pipeline, and the excess Ar or N2 or He gas inside the tank body 1 is taken out by the vacuuming unit 2 to ensure the presence of the lower part and the upper part of the tank body 1.
  • the pressure difference, the airflow blows the evaporated atoms and the NdFeB powder toward the bottom of the tank, ensuring that the evaporated metal atoms fall and adhere to the powder.
  • the evaporation source 3 is disposed inside the tank body 1, and is connected to the power source through a wire.
  • the high temperature is generated by a low voltage and a large current, and the temperature can reach above 3000 ° C, so that the metal can be melted and evaporated instantaneously, and one or more evaporation sources 3 can be designed.
  • the evaporation source 3 is used to heat the Dy/Tb metal and evaporate to form Dy/Tb atoms.
  • the evaporation source 3 is selected as follows: (electron beam, evaporation boat, induction coil) tungsten coil evaporator is a heating source, the temperature is greater than 3000 ° C, and the power is 50,000 to 100 kW.
  • the method for producing powder is as follows:
  • Step 1 The vacuum unit 2 vacuums the inside of the tank 1, and sends an inert gas into the tank 1 through the first blowing port 11 to form an air flow;
  • the tank When the apparatus starts to operate, the tank is first evacuated to 100 Pa or less, the first blowing port 11 starts to operate, and inert gas (Ar, N2, He gas) is supplied, and the inside of the casing 1 starts to operate under a protective atmosphere.
  • inert gas Ar, N2, He gas
  • Step 2 The evaporation source 3 is turned on. When the temperature of the evaporation source 3 reaches 3000 ° C or higher, the particles or filaments of Dy or Tb are placed by the robot to the evaporation source 3;
  • Step 3 the second blowing port 12 feeds an inert gas, opens the feed port 13, and the inert gas blows the NdFeB powder into the inside of the tank 1;
  • Step 4 The gas stream blows the evaporated atoms 4 downward to form a mixed gas stream of Dy/Tb atoms and Ar, N2, He inert gases, and the mixed gas stream continues to move downward;
  • Step 5 After the Dy/Tb atom and the NdFeB powder meet, the Dy/Tb atom is attached to the NdFeB powder to form a coating powder;
  • Step 6 The coated powder is collected at the discharge port 14 and transported through a pipeline to a collection tank for collection.
  • the powder is obtained from the marketed NdFeB magnetic powder, the particle size is less than 10 ⁇ m, the device is weighed 10kg per feed, the feeding speed is 100g/min, and the first blowing port 11 wind speed is 30, 40, 50, 60m/s, respectively. 3
  • the evaporation amounts were 0.5, 1.0, 2.0, and 3.0 g/min, respectively.
  • the powder is obtained from the marketed NdFeB magnetic powder, the particle size is less than 10 ⁇ m, the device weighs 10kg per feed, the feeding speed is 100g/min, and the wind speed of the air supply port is 35, 45, 55, 65m/s, evaporation of evaporation source respectively. They are 0.5, 1.0, 1.5, and 2.0 g/min, respectively.
  • the invention can control the entry speed of NdFeB powder, the entry and discharge speed of working gas, control the evaporation speed of Dy and Tb metals, control the proportion of Dy and Tb in the product NdFeB powder, and can reach Dy and Tb as the total mass of NdFeB as required.
  • a suitable powder which can be used for sintering NdFeB permanent magnet production adhered to a layer of Dy/Tb metal particles is finally obtained.

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

一种生产粉体的装置,包括罐体(1)、供气单元、抽真空单元(2)、蒸发源(3)、送料罐及收料罐;罐体的顶部设置有第一吹送口(11),在侧壁的下部设置有第二吹送口(12),在底部设置有进料口(13)和出料口(14),罐体内部第一吹送口的下部设置有导流板(15);第一吹送口、第二吹送口分别通过管路连接供气单元的储气罐;进料口通过管路连接送料罐,出料口通过管路连接收料罐;抽真空单元通过管路分别连接罐体的侧壁和出料口,蒸发源设置在罐体的内部,通过导线连接电源。还公开了一种生产粉体的方法。上述生产粉体的装置及方法操作简单、制造成本低、使用效果好、Dy/Tb用量少。

Description

生产粉体的装置及其方法
本申请基于下列中国专利申请提出:
申请号:201711026141.0,申请日:2017年10月27日;
并要求上述中国专利申请的优先权,上述中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明涉及一种烧结NdFeB产业化生产的制粉装置,具体说,涉及一种生产粉体的装置及其方法。
背景技术
尽管目前已发明了许多有关NdFeB包覆Dy/Tb金属粒子的方法,但均设备昂贵,Dy/Tb利用率低,生产用Dy、Tb成本与性能比相差不明显。因此,在不降低性能的情况下,设计出一种大幅提高矫项力的方法或装置,是烧结NdFeB产业化生产急需解决的问题。
发明内容
本发明所解决的技术问题是提供一种生产粉体的装置及其方法,操作简单、制造成本低、使用效果好、Dy/Tb用量少。
技术方案如下:
一种生产粉体的装置,包括罐体、供气单元、抽真空单元、蒸发源、送料罐及收料罐;罐体的顶部设置有第一吹送口,在侧壁的下部设置有第二吹送口,在底部设置有进料口和出料口,罐体内部第一吹送口的下部设置有导流板;第一吹送口、第二吹送口分别通过管路连接供气单元的储气罐;进料口通过管路连接送料罐,出料口通过管路连接收料罐;抽真空单元通过管路分别连接罐体的侧壁和出料口,蒸发源设置在罐体的内部,通过导线连接电源。
进一步:蒸发源用于加热Dy/Tb金属并蒸发形成Dy/Tb原子。
进一步:罐体的顶部为半球形,底部为圆锥形,侧壁为柱形,导流板的形状为半球面形。
进一步:罐体采用单层或双层结构,双层结构下,中间为水冷却层。
进一步:吹送口向一侧倾斜,以形成旋转气流。
一种生产粉体的方法,包括:
抽真空单元给罐体内部抽真空,通过第一吹送口向罐体内送入惰性气体,形成气流;
蒸发源接通电源,当蒸发源温度达到3000℃以上时,机械手放入Dy或Tb的颗粒或丝给蒸发源;
第二吹送口送入惰性气体,打开进料口,惰性气体将NdFeB粉体吹入罐体内部;
气流把蒸发的金属原子向下吹送,形成金属原子和惰性气体混合气流,混合气流继续向下运动;金属原子与NdFeB粉体相遇后,金属原子附着在NdFeB粉体上,形成包覆粉;
包覆粉在出料口汇集,通过管道输送到收料罐收集。
优选的:装置开始工作时,先将罐体抽真空至100Pa以下,第一吹送口开始工作送入惰性气体,壳体内部在保护气氛下开始工作。
优选的:形成Dy或者Tb原子与惰性气体混合气流,Dy或者Tb原子与NdFeB粉体相遇后,Dy或者Tb原子附着在NdFeB粉体上,形成包覆粉。
与现有技术相比,本发明技术效果包括:
本发明操作简单、制造成本低、使用效果好、Dy/Tb用量少,在不降低性能的情况下,还能大幅提高矫项力。
本发明可以控制NdFeB粉进入速度、工作气体进入和排出速度,控制Dy、Tb金属的蒸发速度,控制Dy、Tb在产品NdFeB粉体中的比例,可以按要求达到Dy、Tb占NdFeB总质量的0.01%比例,最终获得一种粘附于一层Dy/Tb金属粒子的可用于烧结NdFeB永磁生产的合适粉体。
附图说明
图1是本发明中生产粉体的装置的使用状态图;
图2是是本发明中横向惰性气体流带动蒸发原子的流向图。
本发明的较佳实施方式
下面参考示例实施方式对本发明技术方案作详细说明。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的实施方式;相反,提供这些实施方式使得本发明更全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。
生产粉体的装置可用于高效率生产粘附Dy或者Tb的NdFeB包覆粉,可以按Dy(或Tb):NdFeB的比例生产NdFeB包覆粉,以制造高性能烧结NdFeB永磁体。
如图1所示,是本发明中生产粉体的装置的使用状态图;如图2所示,是本发明中横向惰性气体流带动蒸发原子的流向图。
生产粉体的装置的结构包括:罐体1、供气单元、抽真空单元2、蒸发源3、送料罐及收料罐。
罐体1是一个密封结构,是本发明的主体结构,其高度不限,水平截面为圆形或为多边形,水平尺寸根据壳体的高度确定。如果罐体1的高度高,水平截面尺寸就大,反之亦然。本优选实施例中,水平截面的直径为5mm~5000mm,垂直高度不超过10米。
罐体1的顶部为半球形,底部为圆锥形,侧壁为柱形,半球形的顶部设置有第一吹送口11,在侧壁的下部设置有第二吹送口12,在底部设置有进料口13和出料口14,罐体1内部第一吹送口11的下部设置有导流板15,导流板15的形状为半球面形。罐体1的材料选用金属钢或不锈钢,可以设置成单层或双层,双层结构下,中间为水冷却层。侧壁的截面采用圆柱形或者多边形。第二吹送口12水平一组,一组设1个、2个或2个以上,可以按不同高度将不同组第二吹送口12排列在侧壁上。
第一吹送口11、第二吹送口12通过管路连接供气单元的储气罐,储气罐中的Ar、N2、He惰性气体通过第一吹送口11、第二吹送口12进入罐体1的内部。本优选实施例中,设置有四个第二吹送口12,并且四个第二吹送口12向一侧倾斜,以形成旋转气流。
导流板15使气流沿侧面向下流动。导流板15的作用是把从上面下来的Ar、N2或He气流向四周分流并向下流动,同时带动蒸发的原子向下流动,原子遇到NdFeB粉体后粘附在NdFeB粉体上,降落在出料口14。
进料口13用于输送NdFeB原粉体进入罐体1,通过管路连接送料罐。出料口14用于收集并排出粘覆Dy/Tb后的NdFeB粉体,通过管路连接收料罐,供生产NdFeB磁体使用。
抽真空单元2通过管路分别连接罐体1的侧壁和出料口14,通过抽真空单元2将罐体1内部多余的Ar或N2或He气抽出,保证罐体1的下部与上部存在压力差,气流把蒸发的原子与NdFeB粉体吹向罐体底部,确保蒸发的金属原子向下落,粘附在粉体上。
蒸发源3设置在罐体1的内部,通过导线连接电源,通过低压大电流产生高温,温度可达3000℃以上,可使金属瞬间熔化蒸发,可设计一个或者多个蒸发源3。蒸发源3用于加热Dy/Tb金属并蒸发形成Dy/Tb原子。蒸发源3选用:(电子束、蒸发舟、电感线圈)钨材螺线管蒸发子为加热源,温度大于3000℃,功率为50000~100千瓦。
生产粉体的方法具体如下:
步骤1:抽真空单元2给罐体1内部抽真空,通过第一吹送口11向罐体1内送入惰性气体,形成气流;
装置开始工作时,先将罐体抽真空至100Pa以下,第一吹送口11开始工作,送入惰性气体(Ar、N2、He气体),壳体1内部在保护气氛下开始工作。
步骤2:蒸发源3接通电源,当蒸发源3温度达到3000℃以上时,由机械手放入Dy或Tb的颗粒或丝给蒸发源3;
步骤3:第二吹送口12送入惰性气体,打开进料口13,惰性气体将NdFeB粉体吹入罐体1内部;
步骤4:气流把蒸发的原子4向下吹送,形成Dy/Tb原子和Ar、N2、He惰性气体混合气流,混合气流继续向下运动;
步骤5:Dy/Tb原子与NdFeB粉体相遇后,Dy/Tb原子附着在NdFeB粉体上,形成包覆粉;
步骤6:包覆粉在出料口14汇集,通过管道输送到收料罐收集。
实施例1:
粉料取市场销售的NdFeB磁粉,粒度小于10μm,装置每次吹入料称量10kg,送料速度100g/分钟,第一吹送口11风速分别是30、40、50、60米/秒,蒸发源3蒸发量分别是0.5、1.0、2.0、3.0g/分钟。
设备在运行中的其余参数不变,蒸发源金属为Dy。
Figure PCTCN2018110591-appb-000001
实施例2:
粉料取市场销售的NdFeB磁粉,粒度小于10μm,装置每次吹入料称量10kg,送料速度100g/分钟,送风口4风速分别是35、45、55、65米/秒,蒸发源蒸发量分别是0.5、1.0、1.5、2.0g/分钟。
设备在运行中的其余参数不变,蒸发源金属为Tb。
Figure PCTCN2018110591-appb-000002
本发明所用的术语是说明和示例性、而非限制性的术语。由于本发明能够以多种形式具体实施而不脱离发明的精神或实质,所以应当理解,上述实施例不限于任何前述的细节,而应在随附权利要求所限定的精神和范围内广泛地解释,因此落入权利要求或其等效范围内的全部变化和改型都应为随附权利要求所涵盖。
工业实用性
本发明可以控制NdFeB粉进入速度、工作气体进入和排出速度,控制Dy、Tb金属的蒸发速度,控制Dy、Tb在产品NdFeB粉体中的比例,可以按要求达到Dy、Tb占NdFeB总质量的0.01%比例,最终获得一种粘附于一层Dy/Tb金属粒子的可用于烧结NdFeB永磁生产的合适粉体。

Claims (8)

  1. 一种生产粉体的装置,其特征在于:包括罐体、供气单元、抽真空单元、蒸发源、送料罐及收料罐;罐体的顶部设置有第一吹送口,在侧壁的下部设置有第二吹送口,在底部设置有进料口和出料口,罐体内部第一吹送口的下部设置有导流板;第一吹送口、第二吹送口分别通过管路连接供气单元的储气罐;进料口通过管路连接送料罐,出料口通过管路连接收料罐;抽真空单元通过管路分别连接罐体的侧壁和出料口,蒸发源设置在罐体的内部,通过导线连接电源。
  2. 如权利要求1所述生产粉体的装置,其特征在于:蒸发源用于加热Dy/Tb金属并蒸发形成Dy/Tb原子。
  3. 如权利要求1所述生产粉体的装置,其特征在于:罐体的顶部为半球形,底部为圆锥形,侧壁为柱形,导流板的形状为半球面形。
  4. 如权利要求1所述生产粉体的装置,其特征在于:罐体采用单层或双层结构,双层结构下,中间为水冷却层。
  5. 如权利要求1所述生产粉体的装置,其特征在于:吹送口向一侧倾斜,以形成旋转气流。
  6. 一种生产粉体的方法,包括:
    抽真空单元给罐体内部抽真空,通过第一吹送口向罐体内送入惰性气体,形成气流;
    蒸发源接通电源,当蒸发源温度达到3000℃以上时,机械手放入Dy或Tb的颗粒或丝给蒸发源;
    第二吹送口送入惰性气体,打开进料口,惰性气体将NdFeB粉体吹入罐体内部;
    气流把蒸发的金属原子向下吹送,形成金属原子和惰性气体混合气流,混合气流继续向下运动;金属原子与NdFeB粉体相遇后,金属原子附着在NdFeB粉体上,形成包覆粉;
    包覆粉在出料口汇集,通过管道输送到收料罐收集。
  7. 如权利要求6所述生产粉体的方法,其特征在于:装置开始工作时,先将罐体抽真空至100Pa以下,第一吹送口开始工作送入惰性气体,壳体内部在保护气氛下开始工作。
  8. 如权利要求6所述生产粉体的方法,其特征在于:形成Dy或者Tb原子与惰性气体混合气流,Dy或者Tb原子与NdFeB粉体相遇后,Dy或者Tb原子附着在NdFeB粉体上,形成包覆粉。
PCT/CN2018/110591 2017-10-27 2018-10-17 生产粉体的装置及其方法 WO2019080755A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711026141.0 2017-10-27
CN201711026141.0A CN107876791A (zh) 2017-10-27 2017-10-27 生产粉体的装置及其方法

Publications (1)

Publication Number Publication Date
WO2019080755A1 true WO2019080755A1 (zh) 2019-05-02

Family

ID=61782579

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/110591 WO2019080755A1 (zh) 2017-10-27 2018-10-17 生产粉体的装置及其方法

Country Status (2)

Country Link
CN (1) CN107876791A (zh)
WO (1) WO2019080755A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112442682A (zh) * 2020-11-23 2021-03-05 江汉大学 一种连续粉末镀膜的生产装置与方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107876791A (zh) * 2017-10-27 2018-04-06 内蒙古盛本荣科技有限公司 生产粉体的装置及其方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004296973A (ja) * 2003-03-28 2004-10-21 Kenichi Machida 金属蒸気収着による高性能希土類磁石の製造
CN101163814A (zh) * 2005-03-18 2008-04-16 株式会社爱发科 成膜方法和成膜装置以及永磁铁和永磁铁的制造方法
CN102804296A (zh) * 2009-06-18 2012-11-28 丰田自动车株式会社 磁性粉末的制造方法及其制造装置
JP5101849B2 (ja) * 2006-09-14 2012-12-19 株式会社アルバック 磁気特性、耐熱性、耐食性及び耐候性に優れたボンド磁石用の磁性材料の製造方法及びこの磁性材料を用いて作製した希土類ボンド磁石
CN103443885A (zh) * 2011-03-10 2013-12-11 丰田自动车株式会社 稀土磁体及其制造方法
CN106881459A (zh) * 2016-12-21 2017-06-23 包头稀土研究院 采用重稀土制备钕铁硼磁粉的方法
CN107876791A (zh) * 2017-10-27 2018-04-06 内蒙古盛本荣科技有限公司 生产粉体的装置及其方法
CN207770842U (zh) * 2017-10-27 2018-08-28 内蒙古盛本荣科技有限公司 生产粉体的装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4860493B2 (ja) * 2007-01-18 2012-01-25 株式会社アルバック 永久磁石の製造方法及び永久磁石の製造装置
US20100239878A1 (en) * 2007-10-31 2010-09-23 Hiroshi Nagata Method of manufacturing permanent magnet and permanent magnet
CN106006627B (zh) * 2016-07-08 2019-03-29 张麟德 一种高温反应装置及石墨烯材料生产系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004296973A (ja) * 2003-03-28 2004-10-21 Kenichi Machida 金属蒸気収着による高性能希土類磁石の製造
CN101163814A (zh) * 2005-03-18 2008-04-16 株式会社爱发科 成膜方法和成膜装置以及永磁铁和永磁铁的制造方法
JP5101849B2 (ja) * 2006-09-14 2012-12-19 株式会社アルバック 磁気特性、耐熱性、耐食性及び耐候性に優れたボンド磁石用の磁性材料の製造方法及びこの磁性材料を用いて作製した希土類ボンド磁石
CN102804296A (zh) * 2009-06-18 2012-11-28 丰田自动车株式会社 磁性粉末的制造方法及其制造装置
CN103443885A (zh) * 2011-03-10 2013-12-11 丰田自动车株式会社 稀土磁体及其制造方法
CN106881459A (zh) * 2016-12-21 2017-06-23 包头稀土研究院 采用重稀土制备钕铁硼磁粉的方法
CN107876791A (zh) * 2017-10-27 2018-04-06 内蒙古盛本荣科技有限公司 生产粉体的装置及其方法
CN207770842U (zh) * 2017-10-27 2018-08-28 内蒙古盛本荣科技有限公司 生产粉体的装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112442682A (zh) * 2020-11-23 2021-03-05 江汉大学 一种连续粉末镀膜的生产装置与方法

Also Published As

Publication number Publication date
CN107876791A (zh) 2018-04-06

Similar Documents

Publication Publication Date Title
CN205414417U (zh) 一种等离子雾化制备增材制造用高性能粉末的装置
WO2019080755A1 (zh) 生产粉体的装置及其方法
CN102950291B (zh) 亚微米级锡铜合金粉的生产方法
WO2019024421A1 (zh) 一种制备靶材的方法和靶材
CN108217612A (zh) 制备球形氮化钛粉末的方法及设备
CN111819018B (zh) 微粒子的制造方法及微粒子
CN107838431A (zh) 一种球形铼粉制备方法
CN1203948C (zh) 生产纳米金属粉装置
CN107661983A (zh) 一种卫星球含量低的金属雾化制粉设备
JP6542798B2 (ja) 銀微粒子
CN102320606B (zh) 一种生长纳米晶硅粉体的方法
CN108686596A (zh) 微粒制造装置以及微粒制造方法
CN102950289B (zh) 纳米级铜锰合金粉的生产方法
CN108500280A (zh) 铜铟镓合金粉末制备装置及方法
JP6512484B2 (ja) 微粒子製造装置及び製造方法
CN105220116B (zh) 成膜方法、成膜装置和结构体
CN105088156A (zh) 一种磁控溅射设备
CN207770842U (zh) 生产粉体的装置
CN102941349B (zh) 一种分级收集纳米粒子的设备及方法
CN209754020U (zh) 一种球形钨粉末的制备装置
CN102950292A (zh) 亚微米级铜锰镍合金粉的生产方法
CN101318219A (zh) 纳米粉体机
JP2002220601A (ja) Dc熱プラズマ処理による低酸素球状金属粉末の製造方法
CN109396456B (zh) 一种球形钨粉末的制备装置及方法
CN104485269A (zh) 多注阴极用铼粉处理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18870758

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18870758

Country of ref document: EP

Kind code of ref document: A1