WO2019080666A1 - 间隔件、泵体以及压缩机 - Google Patents

间隔件、泵体以及压缩机

Info

Publication number
WO2019080666A1
WO2019080666A1 PCT/CN2018/105956 CN2018105956W WO2019080666A1 WO 2019080666 A1 WO2019080666 A1 WO 2019080666A1 CN 2018105956 W CN2018105956 W CN 2018105956W WO 2019080666 A1 WO2019080666 A1 WO 2019080666A1
Authority
WO
WIPO (PCT)
Prior art keywords
passage
spacer
cylinder
oil guiding
hole
Prior art date
Application number
PCT/CN2018/105956
Other languages
English (en)
French (fr)
Inventor
李雄辉
Original Assignee
珠海凌达压缩机有限公司
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海凌达压缩机有限公司, 珠海格力电器股份有限公司 filed Critical 珠海凌达压缩机有限公司
Publication of WO2019080666A1 publication Critical patent/WO2019080666A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/04Heating; Cooling; Heat insulation

Definitions

  • the present invention relates to the field of compressor technology, and in particular to a spacer, a pump body and a compressor.
  • a multi-cylinder rolling rotor compressor is provided with a spacer between two adjacent cylinders to space the two cylinders.
  • the lubricating oil enters the various friction pairs of the pump body and the oil passage between the components to lubricate and exchange the components.
  • the temperature of the components inside the pump is much higher than the temperature of the absorbed refrigerant, which tends to cause the temperature of the refrigerant to be too high, and the temperature of the refrigerant is too high, which will reduce the energy efficiency of the compressor.
  • the present invention provides a spacer, a pump body and a compressor to solve the problem of excessive temperature of the refrigerant in the compressor in the prior art.
  • the present invention provides a spacer for being disposed between a first cylinder and a second cylinder, the spacer comprising: a body having opposite first end faces and a first The two end faces, the first end face and the second end face are respectively used for mating connection with the first cylinder and the second cylinder; the through hole is disposed on the body, the through hole is used for piercing the crankshaft; the oil guiding cavity is disposed on the body, and the guiding The oil chamber is in communication with the through hole.
  • the oil guiding chamber is disposed at a position of the body close to the suction hole of the first cylinder and/or close to the suction hole of the second cylinder.
  • the oil guiding chamber is a fan-shaped structure.
  • the inlet of the oil guiding chamber communicates with the through hole, and the outlet of the oil guiding chamber communicates with the outside of the body.
  • the spacer further includes: a first passage disposed on the body, the oil guiding chamber communicating with the through hole through the first passage.
  • the first channel includes a first inlet, a first outlet, and a second outlet, the first inlet is in communication with the through hole, the first outlet is located on an outer side of the body, and the second outlet is located between the first inlet and the first outlet,
  • the oil guiding chamber is in communication with the second outlet.
  • the oil guiding chamber is disposed on the body at intervals from the first passage, and the spacer further comprises: a second passage disposed on the body, the outlet of the second passage is in communication with the oil guiding chamber, and the inlet and the first passage of the second passage Connected.
  • the spacer further includes: a third passage disposed on the body, the inlet of the third passage is in communication with the first passage, and the outlet of the third passage is located on the first end surface and/or the second end surface, and the outlet of the third passage Used to communicate with the slide groove of the cylinder.
  • the third channel has two outlets, and the two outlets of the third channel are respectively located on the first end surface and the second end surface, and the third channel is plural, and the plurality of third channels are spaced along the extending direction of the first channel. .
  • the body has an annular structure, the first passage extends in the radial direction of the body, and the third passage extends in the axial direction of the body.
  • the spacer further comprises: a fourth passage disposed on the body, the inlet of the fourth passage being in communication with the outlet of the oil guiding chamber, and the outlet of the fourth passage being located on the outer side of the body.
  • the body includes: a first partition, the first end surface is located on the first partition, the first partition is provided with a first hole section; the second partition, the second end is located at the second partition, the second partition A second hole segment is disposed, the second baffle is coupled to the first baffle, and the first hole segment and the second hole segment cooperate to form a through hole, and the oil guiding cavity is located between the first baffle and the second baffle.
  • a first oil guiding groove is disposed on a side of the first partition corresponding to the first end surface
  • a second oil guiding groove is disposed on a side of the second partition corresponding to the second end surface
  • the second oil guiding groove is The first oil guiding groove cooperates to form an oil guiding cavity, the first oil guiding groove communicates with the first hole section, and/or the second oil guiding groove communicates with the second hole section.
  • first baffle and the second baffle are symmetrical with respect to the mating surface of the first baffle and the second baffle.
  • a pump body including a spacer, a first cylinder, a second cylinder, and a crankshaft
  • the spacer is disposed between the first cylinder and the second cylinder
  • the crankshaft is sequentially disposed at the A cylinder, a spacer and a second cylinder, wherein the spacer is the spacer provided above.
  • a compressor comprising a pump body, wherein the pump body is the pump body provided above.
  • an oil guiding cavity is arranged on the body of the spacer, and the oil guiding cavity is communicated with the through hole on the body, so that the lubricating oil between the crankshaft and the through hole can flow to the compressor during operation.
  • the lubricating oil having a relatively low temperature in the oil guiding chamber can cool the refrigerant in the first cylinder or the second cylinder by heat conduction, thereby reducing the temperature of the refrigerant and improving the energy efficiency of the compressor.
  • Figure 1 is a schematic view showing the structure of a spacer provided by the present invention.
  • Figure 2 shows a cross-sectional view of the spacer of Figure 1 in the A-A position
  • Figure 3 is a schematic view showing the structure of the first partition in the spacer
  • Figure 4 shows a cross-sectional view of the first partition at the B-B position
  • Figure 5 is a schematic view showing the structure of a second partition in the spacer
  • Figure 6 shows a cross-sectional view of the second partition at the C-C position
  • Figure 7 is a schematic view showing the structure of a pump body provided by the present invention.
  • Figure 8 is a schematic view showing the structure of a compressor provided by the present invention.
  • Figure 9 shows a cross-sectional view of the compressor in the D-D position.
  • an embodiment of the present invention provides a spacer for interposing between a first cylinder and a second cylinder, the spacer including the body 10, the through hole 20, and the oil guiding chamber 30.
  • the body 10 has opposite first and second end faces, and the first end surface and the second end surface are respectively configured to be coupled with the first cylinder and the second cylinder.
  • the through hole 20 is provided on the body 10, and the through hole 20 is used to penetrate the crankshaft.
  • the oil guiding chamber 30 is disposed on the body 10, and the oil guiding chamber 30 is in communication with the through hole 20.
  • the oil guiding chamber 30 is disposed on the body 10 of the spacer, and the oil guiding chamber 30 is communicated with the through hole 20 in the body 10, so that the crankshaft and the through hole 20 are in operation of the compressor.
  • the lubricating oil can flow into the oil guiding chamber 30, and the lubricating oil having a relatively low temperature in the oil guiding chamber 30 can cool the refrigerant in the first cylinder or the second cylinder through heat conduction, thereby reducing the temperature of the refrigerant and improving the temperature of the refrigerant.
  • the energy efficiency of the compressor is disposed on the body 10 of the spacer, and the oil guiding chamber 30 is communicated with the through hole 20 in the body 10, so that the crankshaft and the through hole 20 are in operation of the compressor.
  • the lubricating oil can flow into the oil guiding chamber 30, and the lubricating oil having a relatively low temperature in the oil guiding chamber 30 can cool the refrigerant in the first cylinder or the second cylinder through heat conduction,
  • the oil guiding chamber 30 is disposed at a position of the body 10 close to the suction hole of the first cylinder and/or close to the suction hole of the second cylinder.
  • the cylinder generates a problem of inhalation overheating in the position of the suction hole and the suction chamber close to the suction hole during operation.
  • the oil guiding chamber 30 By arranging the oil guiding chamber 30 at the position of the suction hole of the body 10 close to the first cylinder or the suction hole close to the second cylinder, the intake air can be prevented from being overheated by the cooling action of the lubricating oil. This can reduce the temperature of the refrigerant, thereby increasing the volumetric efficiency and energy efficiency of the compressor.
  • Positioning the oil guiding chamber 30 at the same time near the suction hole of the first cylinder and the suction hole of the second cylinder can simultaneously prevent the two cylinders from inhaling.
  • the oil guiding chamber 30 has a sector structure.
  • the oil guiding chamber 30 is arranged in a fan-shaped structure, and the volume of the oil guiding chamber 30 can be increased to store more lubricating oil in the oil guiding chamber 30, and can match the shape of the suction region of the cylinder, thereby improving Cooling effect on the refrigerant.
  • the lubricating oil in this embodiment can be understood as the freezing oil in the compressor.
  • the angle between the two end faces of the sector structure can be set to 180 to 220 to match the suction area of the cylinder.
  • the inlet of the oil guiding chamber 30 communicates with the through hole 20, and the outlet of the oil guiding chamber 30 communicates with the outside of the body 10.
  • Such a setting allows the lubricating oil to flow in the oil guiding chamber 30, thereby enhancing the heat exchange effect and improving the cooling effect on the refrigerant and the first cylinder or the second cylinder.
  • the spacer further includes a first passage 40 disposed on the body 10, and the oil guiding chamber 30 communicates with the through hole 20 through the first passage 40.
  • the lubricating oil can be easily guided to smoothly flow the lubricating oil into the oil guiding chamber 30.
  • the first passage 40 may or may not be in communication with the exterior of the body 10.
  • the first passage 40 includes a first inlet 41, a first outlet 42, and a second outlet 43.
  • the first inlet 41 is in communication with the through hole 20
  • the first outlet 42 is located on the outer side of the body 10
  • the second outlet 43 is located between the first inlet 41 and the first outlet 42
  • the oil guiding chamber 30 is connected to the second outlet 43.
  • the arrangement is such that the lubricating oil entering the first passage 40 can flow into the oil guiding chamber 30 or out to the outside of the body 10, thereby enhancing the flow of the lubricating oil and improving the heat exchange effect.
  • the oil guiding chamber 30 is spaced apart from the first passage 40 on the body 10.
  • the spacer further includes a second passage 50.
  • the second passage 50 is disposed on the body 10, and the outlet and the oil guiding of the second passage 50 are provided.
  • the chamber 30 is in communication and the inlet of the second passage 50 is in communication with the first passage 40.
  • the spacer further includes a third passage 60, the third passage 60 is disposed on the body 10, the inlet of the third passage 60 is in communication with the first passage 40, and the outlet of the third passage 60 is located at the first end face and/or Or on the second end face, the outlet of the third passage 60 is for communicating with the vane groove of the cylinder.
  • the lubricating oil between the through hole of the spacer and the crankshaft can be introduced into the sliding groove of the cylinder to lubricate the sliding vane in the sliding vane.
  • the cylinder here may be a first cylinder or a second cylinder, and may also be a first cylinder and a second cylinder.
  • the technical solution of the embodiment can also ensure the lubrication of the sliding plate in the case of insufficient oil quantity, thereby ensuring the reliability of the compressor.
  • the third passage 60 has two outlets, and the two outlets of the third passage 60 are respectively located on the first end surface and the second end surface, and the third passage 60 is plural, and the plurality of third passages 60 are along the first The extension direction of a channel 40 is spaced apart.
  • the body 10 has an annular structure, the first passage 40 extends in the radial direction of the body 10, and the third passage 60 extends in the axial direction of the body 10.
  • Such an arrangement can facilitate the processing of the first passage 40 and the third passage 60, thereby reducing the manufacturing cost of the spacer.
  • the spacer further includes a fourth passage 70, the fourth passage 70 is disposed on the body 10, the inlet of the fourth passage 70 communicates with the outlet of the oil guiding chamber 30, and the outlet of the fourth passage 70 is located at the body 10 Outer side.
  • the fourth passage 70 By providing the fourth passage 70, the guiding action of the lubricating oil can be enhanced, thereby facilitating the flow of the lubricating oil and improving the cooling effect on the refrigerant.
  • the angle between the end face of the oil guiding chamber 30 adjacent to the fourth passage 70 and the axis of the first passage 40 may be set to 180° to 220°, and at the same time, the oil guiding chamber 30 is close to the end surface of the first passage 40.
  • the value of the angle with the axis of the first passage is set smaller, thereby increasing the volume of the oil guiding chamber 30, so that the oil guiding chamber 30 stores more lubricating oil, thereby improving the cooling effect on the refrigerant.
  • the spacers may be provided in a one-piece structure or as a split structure.
  • the body 10 includes a first partition 11 and a second partition 12, and the first partition 11 and the second partition 12 are cooperatively connected.
  • the first end surface is located on the first partition plate 11
  • the first partition plate 11 is provided with a first hole section
  • the second end surface is located on the second partition plate 12
  • the second partition plate 12 is provided with a second hole section.
  • the first hole section and the second hole section cooperate to form a through hole 20, and the oil guiding cavity 30 is located between the first partition 11 and the second partition 12.
  • the oil guiding chamber 30 may be disposed on the first partition plate 11, or may be disposed on the second partition plate 12, or may be disposed on the first partition plate 11 and the second partition plate 12 at the same time.
  • the spacer is arranged in a split structure, and after the oil guiding chamber 30 is processed, the first partition plate 11 and the second partition plate 12 are coupled and connected, which can facilitate the processing of the spacer and reduce the manufacturing cost of the spacer.
  • a first oil guiding groove 31 is disposed on a side of the first partition 11 corresponding to the first end surface, and a side corresponding to the second end surface of the second partition plate 12 is provided with a first
  • the second oil guiding groove 32 and the second oil guiding groove 32 cooperate with the first oil guiding groove 31 to form the oil guiding chamber 30.
  • the first oil guiding groove 31 may be in communication with the first hole section, or the second oil guiding groove 32 may be in communication with the second hole section.
  • the first partition 11 and the second partition 12 are symmetric with respect to the mating surface of the first partition 11 and the second partition 12.
  • This arrangement facilitates the processing of the spacer and allows the lubricating oil to have the same or similar cooling effect on the two cylinders.
  • the first passage 40, the second passage 50, the third passage 60, and the fourth passage 70 may be simultaneously disposed on the first partition 11 and the second partition 12.
  • a groove-like structure is formed on the first partition plate 11 and the second partition plate 12, and then the corresponding groove-like structure is combined into a passage, which can not only facilitate the processing of the passage but also ensure the sealing effect of the passage.
  • the depth of the first oil guiding groove 31 on the first partition plate 11 may be set to be greater than the depth of the other groove-shaped structures, and correspondingly, the depth of the second oil guiding groove 32 on the second partition plate 12 Set to a depth greater than the other grooved structures. In this way, a large amount of lubricating oil can be stored in the oil guiding chamber 30 to improve the cooling effect on the refrigerant and prevent the suction from overheating.
  • another embodiment of the present invention provides a pump body including a spacer, a first cylinder 200, a second cylinder 300, and a crankshaft 400.
  • the spacer is disposed between the first cylinder 200 and the second cylinder 300
  • the crankshaft 400 is sequentially disposed on the first cylinder 200, the spacer and the second cylinder 300, and the spacer is the spacer provided by the above embodiment .
  • the oil guiding chamber 30 is disposed on the body 10 of the spacer, and the oil guiding chamber 30 is communicated with the through hole 20 in the body 10, so that the crankshaft and the through hole 20 are in operation of the compressor.
  • the lubricating oil can flow into the oil guiding chamber 30, and the lubricating oil having a relatively low temperature in the oil guiding chamber 30 can cool the refrigerant in the first cylinder or the second cylinder through heat conduction, thereby reducing the temperature of the refrigerant and improving the temperature of the refrigerant.
  • the energy efficiency of the compressor is disposed on the body 10 of the spacer, and the oil guiding chamber 30 is communicated with the through hole 20 in the body 10, so that the crankshaft and the through hole 20 are in operation of the compressor.
  • the lubricating oil can flow into the oil guiding chamber 30, and the lubricating oil having a relatively low temperature in the oil guiding chamber 30 can cool the refrigerant in the first cylinder or the second cylinder through heat conduction,
  • FIG. 8 and 9 still another embodiment of the present invention provides a compressor including the pump body provided by the above embodiment.
  • the lubricating oil between the crankshaft and the through hole 20 can flow into the oil guiding chamber 30, and the lubricating oil having a relatively low temperature in the oil guiding chamber 30 can be thermally conducted to the first cylinder or
  • the refrigerant in the second cylinder is cooled, so that the temperature of the refrigerant can be lowered and the energy efficiency of the compressor can be improved.
  • the refrigerant in the suction chambers of the first cylinder and the second cylinder can be cooled by the lubricating oil in the oil guiding chamber 30, thereby preventing the intake air from being overheated.
  • the lubricating oil inside the compressor or in the refrigerant can be circulated to continuously cool the refrigerant. Further, by providing the third passage 60 in the spacer, the lubricating oil between the through hole of the spacer and the crankshaft can be introduced into the sliding groove of the cylinder to lubricate the sliding vane in the sliding vane.
  • the technical solution of the embodiment can also ensure the lubrication of the sliding plate in the case of insufficient oil quantity, thereby ensuring the reliability of the compressor.
  • orientations such as “front, back, up, down, left, right", “horizontal, vertical, vertical, horizontal” and “top, bottom” and the like are indicated. Or the positional relationship is generally based on the orientation or positional relationship shown in the drawings, and is merely for the convenience of the description of the invention and the simplification of the description, which are not intended to indicate or imply the indicated device or component. It must be constructed and operated in a specific orientation or in a specific orientation, and thus is not to be construed as limiting the scope of the invention; the orientations “inside and outside” refer to the inside and outside of the contour of the components themselves.
  • spatially relative terms such as “above”, “above”, “on top”, “above”, etc., may be used herein to describe as in the drawings.
  • the exemplary term “above” can include both “over” and "under”.
  • the device can also be positioned in other different ways (rotated 90 degrees or at other orientations) and the corresponding description of the space used herein is interpreted accordingly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressor (AREA)

Abstract

一种间隔件、泵体以及压缩机,其中,间隔件用于设置在第一气缸与第二气缸之间,间隔件包括:本体(10),具有相对设置的第一端面和第二端面,第一端面和第二端面分别用于与第一气缸和第二气缸配合连接;通孔(20),设置在本体(10)上,通孔(20)用于穿设曲轴;导油腔(30),设置在本体(10)上,导油腔(30)与通孔(20)连通。设置该间隔件能够解决现有技术中压缩机内的冷媒温度过高的问题。间隔件上还可以设置第三通道(60),通过第三通道(60)将导油腔与气缸的滑片槽连通,这样当油量不足时可通过导油腔内的润滑油对滑片进行润滑,从而保证压缩机的可靠性。

Description

间隔件、泵体以及压缩机 技术领域
本发明涉及压缩机技术领域,具体而言,涉及一种间隔件、泵体以及压缩机。
背景技术
多缸滚动转子式压缩机在相邻的两个气缸之间设置有间隔件以将两个气缸间隔开。压缩机在工作时,润滑油进入泵体的各个摩擦副内以及零部件之间的油道内,以对零部件进行润滑和换热。压缩机在工作过程中,泵体内零部件的温度比吸收的冷媒的温度高很多,这容易导致冷媒温度过高,而冷媒温度过高会降低压缩机的能效。
发明内容
本发明提供一种间隔件、泵体以及压缩机,以解决现有技术中的压缩机内的冷媒温度过高的问题。
为了解决上述问题,根据本发明的一个方面,本发明提供了一种间隔件,用于设置在第一气缸与第二气缸之间,间隔件包括:本体,具有相对设置的第一端面和第二端面,第一端面和第二端面分别用于与第一气缸和第二气缸配合连接;通孔,设置在本体上,通孔用于穿设曲轴;导油腔,设置在本体上,导油腔与通孔连通。
进一步地,导油腔设置在本体的靠近第一气缸的吸气孔和/或靠近第二气缸的吸气孔的位置。
进一步地,导油腔为扇形结构。
进一步地,导油腔的入口与通孔连通,导油腔的出口与本体的外部连通。
进一步地,间隔件还包括:第一通道,设置在本体上,导油腔通过第一通道与通孔连通。
进一步地,第一通道包括第一入口、第一出口和第二出口,第一入口与通孔连通,第一出口位于本体的外侧面,第二出口位于第一入口与第一出口之间,导油腔与第二出口连通。
进一步地,导油腔与第一通道间隔设置在本体上,间隔件还包括:第二通道,设置在本体上,第二通道的出口与导油腔连通,第二通道的入口与第一通道连通。
进一步地,间隔件还包括:第三通道,设置在本体上,第三通道的入口与第一通道连通,第三通道的出口位于第一端面和/或第二端面上,第三通道的出口用于与气缸的滑片槽连通。
进一步地,第三通道具有两个出口,第三通道的两个出口分别位于第一端面和第二端面上,第三通道为多个,多个第三通道沿第一通道的延伸方向间隔设置。
进一步地,本体为环形结构,第一通道沿本体的径向延伸,第三通道沿本体的轴向延伸。
进一步地,间隔件还包括:第四通道,设置在本体上,第四通道的入口与导油腔的出口连通,第四通道的出口位于本体的外侧面。
进一步地,本体包括:第一隔板,第一端面位于第一隔板,第一隔板上设置有第一孔段;第二隔板,第二端面位于第二隔板,第二隔板上设置有第二孔段,第二隔板与第一隔板配合连接,第一孔段与第二孔段配合形成通孔,导油腔位于第一隔板与第二隔板之间。
进一步地,第一隔板上与第一端面对应的一侧设置有第一导油槽,第二隔板上与第二端面对应的一侧设置有第二导油槽,第二导油槽与第一导油槽配合形成导油腔,第一导油槽与第一孔段连通,和/或第二导油槽与第二孔段连通。
进一步地,第一隔板与第二隔板相对于第一隔板与第二隔板的配合面对称。
根据本发明的另一方面,提供了一种泵体,包括间隔件、第一气缸、第二气缸和曲轴,间隔件设置在第一气缸与第二气缸之间,曲轴顺次穿设在第一气缸、间隔件和第二气缸上,其中,间隔件为上述提供的间隔件。
根据本发明的又一方面,提供了一种压缩机,包括泵体,其中,泵体为上述提供的泵体。
应用本发明的技术方案,在间隔件的本体上设置导油腔,并将导油腔与本体上的通孔连通,这样压缩机在工作时,曲轴与通孔之间的润滑油能够流动到导油腔内,导油腔内温度相对较低的润滑油通过热传导可对第一气缸或第二气缸内的冷媒进行冷却,从而能够降低冷媒的温度,提高压缩机的能效。
附图说明
构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1示出了本发明提供的间隔件的结构示意图;
图2示出了图1中的间隔件在A-A位置的剖视图;
图3示出了间隔件中的第一隔板的结构示意图;
图4示出了第一隔板在B-B位置的剖视图;
图5示出了间隔件中的第二隔板的结构示意图;
图6示出了第二隔板在C-C位置的剖视图;
图7示出了本发明提供的泵体的结构示意图;
图8示出了本发明提供的压缩机的结构示意图;
图9示出了压缩机在D-D位置的剖视图。
其中,上述附图包括以下附图标记:
10、本体;11、第一隔板;12、第二隔板;20、通孔;30、导油腔;31、第一导油槽;32、第二导油槽;40、第一通道;41、第一入口;42、第一出口;43、第二出口;50、第二通道;60、第三通道;70、第四通道;200、第一气缸;300、第二气缸;400、曲轴。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1至图6所示,本发明的实施例提供了一种间隔件,间隔件用于设置在第一气缸与第二气缸之间,间隔件包括本体10、通孔20和导油腔30。其中,本体10具有相对设置的第一端面和第二端面,第一端面和第二端面分别用于与第一气缸和第二气缸配合连接。通孔20设置在本体10上,通孔20用于穿设曲轴。导油腔30设置在本体10上,导油腔30与通孔20连通。
应用本实施例的技术方案,在间隔件的本体10上设置导油腔30,并将导油腔30与本体10上的通孔20连通,这样压缩机在工作时,曲轴与通孔20之间的润滑油能够流动到导油腔30内,导油腔30内温度相对较低的润滑油通过热传导可对第一气缸或第二气缸内的冷媒进行冷却,从而能够降低冷媒的温度,提高压缩机的能效。
具体地,导油腔30设置在本体10的靠近第一气缸的吸气孔和/或靠近第二气缸的吸气孔的位置。气缸在工作时在吸气孔的位置以及靠近吸气孔的吸气腔内产生吸气过热的问题。通过将导油腔30设置在本体10的靠近第一气缸的吸气孔或靠近第二气缸的吸气孔的位置,可以通过润滑油的冷却作用防止吸气过热。这样可以降低冷媒的温度,从而提高压缩机的容积效率和能效。将导油腔30设置在同时靠近第一气缸的吸气孔和第二气缸的吸气孔的位置,可以同时防止两个气缸吸气过热。
如图1所示,导油腔30为扇形结构。将导油腔30设置为扇形结构,可以增大导油腔30的体积,以使导油腔30内存储更多的润滑油,并且可以与气缸的吸气区域的形状相匹配,从而可以提高对冷媒的冷却效果。本实施例中的润滑油可以理解为压缩机中的冷冻油。在本实施例中,可以将扇形结构的两个端面之间的夹角设置为180°至220°,以与气缸的吸气区域相匹配。
在本实施例中,导油腔30的入口与通孔20连通,导油腔30的出口与本体10的外部连通。如此设置可使润滑油在导油腔30内流动,从而加强换热作用,提高对冷媒以及第一气缸或第二气缸的冷却效果。
如图2所示,间隔件还包括第一通道40,第一通道40设置在本体10上,导油腔30通过第一通道40与通孔20连通。通过设置第一通道40,可便于对润滑油进行引导,以使润滑油顺畅地流入导油腔30。
第一通道40可以与本体10的外部连通,也可以不与本体10的外部连通。在本实施例中,第一通道40包括第一入口41、第一出口42和第二出口43。其中,第一入口41与通孔20连通,第一出口42位于本体10的外侧面,第二出口43位于第一入口41与第一出口42之间,导油腔30与第二出口43连通。如此设置可使进入第一通道40的润滑油既可以流入到导油腔30内,又可以流出到本体10的外部,从而可以加强润滑油的流动,提高换热效果。
如图1所示,导油腔30与第一通道40间隔设置在本体10上,间隔件还包括第二通道50,第二通道50设置在本体10上,第二通道50的出口与导油腔30连通,第二通道50的入口与第一通道40连通。通过设置第二通道50,可以对进入第一通道40的润滑油进行分流,使一部分润滑油进入导油腔30,另一部分润滑油流出到本体10的外部或其他位置。
如图2所示,间隔件还包括第三通道60,第三通道60设置在本体10上,第三通道60的入口与第一通道40连通,第三通道60的出口位于第一端面和/或第二端面上,第三通道60的出口用于与气缸的滑片槽连通。通过设置第三通道60,可以将间隔件的通孔与曲轴之间的润滑油引入到气缸的滑片槽中,以对滑片槽中的滑片进行润滑。此处的气缸可以为第一气缸或第二气缸,还可以为第一气缸和第二气缸。
对于原有的压缩机,当润滑油的液面高度低于滑片时,润滑油不能对滑片进行润滑,容易磨损滑片等零部件。通过本实施例的技术方案,即使润滑油的液面高度低于滑片,在曲轴的转动带动下,通孔与曲轴之间的润滑油可顺次通过第一通道40和第三通道60进入到滑片槽内,从而对滑片等部件进行润滑。因此本实施例的技术方案还能够在油量不足的情况下保证滑片的润滑,从而保证压缩机的可靠性。
在本实施例中,第三通道60具有两个出口,第三通道60的两个出口分别位于第一端面和第二端面上,第三通道60为多个,多个第三通道60沿第一通道40的延伸方向间隔设置。当第一气缸与第二气缸按照相同的位置布置时,可通过第三通道60的两个出口分别向第一气缸和第二气缸的滑片槽内提供润滑油,从而保证第一气缸和第二气缸内的滑片都能得到良好的润滑。
如图1所示,本体10为环形结构,第一通道40沿本体10的径向延伸,第三通道60沿本体10的轴向延伸。如此设置可以便于第一通道40和第三通道60的加工,从而降低间隔件的制造成本。
在本实施例中,间隔件还包括第四通道70,第四通道70设置在本体10上,第四通道70的入口与导油腔30的出口连通,第四通道70的出口位于本体10的外侧面。通过设置第四通道70,能够加强对润滑油的引导作用,从而便于润滑油的流动,提高对冷媒的冷却效果。
具体地,可以将导油腔30靠近第四通道70的端面与第一通道40的轴线之间的夹角设置为180°至220°,同时,将导油腔30靠近第一通道40的端面与第一通道的轴线之间的夹角的值设置的较小,从而提高导油腔30的体积,以使导油腔30储存较多的润滑油,进而提高对冷媒的冷却效果。
间隔件可以设置为一体式结构,也可以设置为分体式结构。在本实施例中,本体10包括第一隔板11和第二隔板12,第一隔板11与第二隔板12配合连接。其中,第一端面位于第一隔板11上,第一隔板11上设置有第一孔段,第二端面位于第二隔板12上,第二隔板12上设置有第二孔段,第一孔段与第二孔段配合形成通孔20,导油腔30位于第一隔板11与第二隔板12之间。导油腔30可以设置在第一隔板11上,也可以设置在第二隔板12上,还可以同时设置在第一隔板11和第二隔板12上。将间隔件设置为分体式结构,加工出导油腔30后再将第一隔板11和第二隔板12配合连接,能够便于间隔件的加工,降低间隔件的制造成本。
如图3至图6所示,第一隔板11上与第一端面对应的一侧设置有第一导油槽31,第二隔板12上与第二端面对应的一侧设置有第二导油槽32,第二导油槽32与第一导油槽31配合形成导油腔30。可以将第一导油槽31与第一孔段连通,也可以将第二导油槽32与第二孔段连通。如此设置,不但可以便于导油腔30的加工,而且能够使导油腔30与相邻的两个气缸的距离相同或接近,从而使润滑油对两个气缸的冷却效果相同或相近。
可选地,在本实施例中,第一隔板11与第二隔板12相对于第一隔板11与第二隔板12的配合面对称。如此设置可以便于间隔件的加工并且使润滑油对两个气缸的冷却效果相同或相近。除导油腔30之外,第一通道40、第二通道50、第三通道60、第四通道70均可同时设置在第一隔板11和第二隔板12上。先在第一隔板11和第二隔板12上加工出槽状结构,然后将对应的槽状结构拼合成通道,既可以便于通道的加工,又可以保证通道的密封效果。
为了保证润滑油的冷却效果,可以将第一隔板11上第一导油槽31的深度设置为大于其他槽状结构的深度,相应地,将第二隔板12上第二导油槽32的深度设置为大于其他槽状结构的深度。这样可以使导油腔30内存储较多的润滑油,以提高对冷媒的冷却效果,防止吸气过热。
如图7所示,本发明的另一实施例提供了一种泵体,泵体包括间隔件、第一气缸200、第二气缸300和曲轴400。其中,间隔件设置在第一气缸200与第二气缸300之间,曲轴400顺次穿设在第一气缸200、间隔件和第二气缸300上,并且间隔件为上述实施例提供的间隔件。
应用本实施例的技术方案,在间隔件的本体10上设置导油腔30,并将导油腔30与本体10上的通孔20连通,这样压缩机在工作时,曲轴与通孔20之间的润滑油能够流动到导油腔30内,导油腔30内温度相对较低的润滑油通过热传导可对第一气缸或第二气缸内的冷媒进行冷却,从而能够降低冷媒的温度,提高压缩机的能效。
如图8和图9所示,本发明的又一实施例提供了一种压缩机,压缩机包括上述实施例提供的泵体。本实施例提供的压缩机在工作时,曲轴与通孔20之间的润滑油能够流动到导油腔30内,导油腔30内温度相对较低的润滑油通过热传导可对第一气缸或第二气缸内的冷媒进行冷却,从而能够降低冷媒的温度,提高压缩机的能效。具体地,可通过导油腔30内的润滑油对第一气缸和第二气缸的吸气腔内的冷媒进行冷却,从而防止吸气过热。压缩机内部或冷媒中的润滑油可以循环流动,从而持续地对冷媒进行冷却。进一步地,通过在间隔件内设置第三通道60,可以将间隔件的通孔与曲轴之间的润滑油引入到气缸的滑片槽中,以对滑片槽中的滑片进行润滑。本实施例的技术方案还能够在油量不足的情况下保证滑片的润滑,从而保证压缩机的可靠性。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本发明的范围。同时,应当明白,为了便于描述,附图中所示出的各个部分的尺寸并不是按照实际的比例关系绘制的。对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为授权说明书的一部分。在这里示出和讨论的所有示例中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它示例可以具有不同的值。应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
在本发明的描述中,需要理解的是,方位词如“前、后、上、下、左、右”、“横向、竖向、垂直、水平”和“顶、底”等所指示的方位或位置关系通常是基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,在未作相反说明的情况下,这些方位词并不指示和暗示所指的装置或元件必须具有特定的方位或者以特定的方位构造和操作,因此不能理解为对本发明保护范围的限制;方位词“内、外”是指相对于各部件本身的轮廓的内外。
为了便于描述,在这里可以使用空间相对术语,如“在……之上”、“在……上方”、“在……上表面”、“上面的”等,用来描述如在图中所示的一个器件或特征与其他器件或特征的空间位置关系。应当理解的是,空间相对术语旨在包含除了器件在图中所描述的方位之外的在使用或操作中的不同方位。例如,如果附图中的器件被倒置,则描述为“在其他器件或构造上方”或“在其他器件或构造之上”的器件之后将被定位为“在其他器件或构造下方”或“在其他器件或构造之下”。因而,示例性术语“在……上方”可以包括“在……上方”和“在…… 下方”两种方位。该器件也可以其他不同方式定位(旋转90度或处于其他方位),并且对这里所使用的空间相对描述作出相应解释。
此外,需要说明的是,使用“第一”、“第二”等词语来限定零部件,仅仅是为了便于对相应零部件进行区别,如没有另行声明,上述词语并没有特殊含义,因此不能理解为对本发明保护范围的限制。

Claims (16)

  1. 一种间隔件,用于设置在第一气缸与第二气缸之间,其特征在于,所述间隔件包括:
    本体(10),具有相对设置的第一端面和第二端面,所述第一端面和所述第二端面分别用于与所述第一气缸和所述第二气缸配合连接;
    通孔(20),设置在所述本体(10)上,所述通孔(20)用于穿设曲轴;
    导油腔(30),设置在所述本体(10)上,所述导油腔(30)与所述通孔(20)连通。
  2. 根据权利要求1所述的间隔件,其特征在于,所述导油腔(30)设置在所述本体(10)的靠近所述第一气缸的吸气孔和/或靠近所述第二气缸的吸气孔的位置。
  3. 根据权利要求1所述的间隔件,其特征在于,所述导油腔(30)为扇形结构。
  4. 根据权利要求1所述的间隔件,其特征在于,所述导油腔(30)的入口与所述通孔(20)连通,所述导油腔(30)的出口与所述本体(10)的外部连通。
  5. 根据权利要求1所述的间隔件,其特征在于,所述间隔件还包括:
    第一通道(40),设置在所述本体(10)上,所述导油腔(30)通过所述第一通道(40)与所述通孔(20)连通。
  6. 根据权利要求5所述的间隔件,其特征在于,所述第一通道(40)包括第一入口(41)、第一出口(42)和第二出口(43),所述第一入口(41)与所述通孔(20)连通,所述第一出口(42)位于所述本体(10)的外侧面,所述第二出口(43)位于所述第一入口(41)与所述第一出口(42)之间,所述导油腔(30)与所述第二出口(43)连通。
  7. 根据权利要求5所述的间隔件,其特征在于,所述导油腔(30)与所述第一通道(40)间隔设置在所述本体(10)上,所述间隔件还包括:
    第二通道(50),设置在所述本体(10)上,所述第二通道(50)的出口与所述导油腔(30)连通,所述第二通道(50)的入口与所述第一通道(40)连通。
  8. 根据权利要求5所述的间隔件,其特征在于,所述间隔件还包括:
    第三通道(60),设置在所述本体(10)上,所述第三通道(60)的入口与所述第一通道(40)连通,所述第三通道(60)的出口位于所述第一端面和/或所述第二端面上,所述第三通道(60)的出口用于与气缸的滑片槽连通。
  9. 根据权利要求8所述的间隔件,其特征在于,所述第三通道(60)具有两个出口,所述第三通道(60)的两个出口分别位于所述第一端面和所述第二端面上,所述第三通道(60)为多个,多个所述第三通道(60)沿所述第一通道(40)的延伸方向间隔设置。
  10. 根据权利要求8所述的间隔件,其特征在于,所述本体(10)为环形结构,所述第一通道(40)沿所述本体(10)的径向延伸,所述第三通道(60)沿所述本体(10)的轴向延伸。
  11. 根据权利要求4所述的间隔件,其特征在于,所述间隔件还包括:
    第四通道(70),设置在所述本体(10)上,所述第四通道(70)的入口与所述导油腔(30)的出口连通,所述第四通道(70)的出口位于所述本体(10)的外侧面。
  12. 根据权利要求1至11中任一项所述的间隔件,其特征在于,所述本体(10)包括:
    第一隔板(11),所述第一端面位于所述第一隔板(11),所述第一隔板(11)上设置有第一孔段;
    第二隔板(12),所述第二端面位于所述第二隔板(12),所述第二隔板(12)上设置有第二孔段,所述第二隔板(12)与所述第一隔板(11)配合连接,所述第一孔段与所述第二孔段配合形成所述通孔(20),所述导油腔(30)位于所述第一隔板(11)与所述第二隔板(12)之间。
  13. 根据权利要求12所述的间隔件,其特征在于,所述第一隔板(11)上与所述第一端面对应的一侧设置有第一导油槽(31),所述第二隔板(12)上与所述第二端面对应的一侧设置有第二导油槽(32),所述第二导油槽(32)与所述第一导油槽(31)配合形成所述导油腔(30),所述第一导油槽(31)与所述第一孔段连通,和/或所述第二导油槽(32)与所述第二孔段连通。
  14. 根据权利要求12所述的间隔件,其特征在于,所述第一隔板(11)与所述第二隔板(12)相对于所述第一隔板(11)与所述第二隔板(12)的配合面对称。
  15. 一种泵体,包括间隔件、第一气缸(200)、第二气缸(300)和曲轴(400),所述间隔件设置在所述第一气缸(200)与所述第二气缸(300)之间,所述曲轴(400)顺次穿设在所述第一气缸(200)、所述间隔件和所述第二气缸(300)上,其特征在于,所述间隔件为权利要求1至14中任一项所述的间隔件。
  16. 一种压缩机,包括泵体,其特征在于,所述泵体为权利要求15所述的泵体。
PCT/CN2018/105956 2017-10-23 2018-09-17 间隔件、泵体以及压缩机 WO2019080666A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710995544.X 2017-10-23
CN201710995544.XA CN107605735B (zh) 2017-10-23 2017-10-23 间隔件、泵体以及压缩机

Publications (1)

Publication Number Publication Date
WO2019080666A1 true WO2019080666A1 (zh) 2019-05-02

Family

ID=61079345

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/105956 WO2019080666A1 (zh) 2017-10-23 2018-09-17 间隔件、泵体以及压缩机

Country Status (2)

Country Link
CN (1) CN107605735B (zh)
WO (1) WO2019080666A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107605735B (zh) * 2017-10-23 2019-09-03 合肥凌达压缩机有限公司 间隔件、泵体以及压缩机
CN108331755B (zh) * 2018-02-08 2023-11-10 珠海格力节能环保制冷技术研究中心有限公司 泵体组件及具有其的压缩机
CN112610487A (zh) * 2020-12-03 2021-04-06 珠海格力节能环保制冷技术研究中心有限公司 一种隔板结构及压缩机
CN115013312A (zh) * 2022-06-09 2022-09-06 珠海格力电器股份有限公司 泵体组件、压缩机以及具有其的空调器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003286984A (ja) * 2002-03-26 2003-10-10 Sanyo Electric Co Ltd 内部中間圧型多段圧縮式ロータリコンプレッサ
CN101105174A (zh) * 2007-07-06 2008-01-16 薛亮亮 低功耗滚动活塞式制冷压缩机
JP2012021462A (ja) * 2010-07-14 2012-02-02 Toshiba Carrier Corp 密閉形圧縮機および冷凍サイクル装置
CN102619759A (zh) * 2011-01-31 2012-08-01 三洋电机株式会社 金属部件的加工孔结构及冷冻循环装置
CN104989644A (zh) * 2015-07-03 2015-10-21 广东美芝制冷设备有限公司 压缩机
CN106704198A (zh) * 2017-01-24 2017-05-24 广东美芝制冷设备有限公司 压缩机及具有其的车辆
CN107605735A (zh) * 2017-10-23 2018-01-19 珠海凌达压缩机有限公司 间隔件、泵体以及压缩机
CN207349092U (zh) * 2017-10-23 2018-05-11 珠海凌达压缩机有限公司 间隔件、泵体以及压缩机

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003286984A (ja) * 2002-03-26 2003-10-10 Sanyo Electric Co Ltd 内部中間圧型多段圧縮式ロータリコンプレッサ
CN101105174A (zh) * 2007-07-06 2008-01-16 薛亮亮 低功耗滚动活塞式制冷压缩机
JP2012021462A (ja) * 2010-07-14 2012-02-02 Toshiba Carrier Corp 密閉形圧縮機および冷凍サイクル装置
CN102619759A (zh) * 2011-01-31 2012-08-01 三洋电机株式会社 金属部件的加工孔结构及冷冻循环装置
CN104989644A (zh) * 2015-07-03 2015-10-21 广东美芝制冷设备有限公司 压缩机
CN106704198A (zh) * 2017-01-24 2017-05-24 广东美芝制冷设备有限公司 压缩机及具有其的车辆
CN107605735A (zh) * 2017-10-23 2018-01-19 珠海凌达压缩机有限公司 间隔件、泵体以及压缩机
CN207349092U (zh) * 2017-10-23 2018-05-11 珠海凌达压缩机有限公司 间隔件、泵体以及压缩机

Also Published As

Publication number Publication date
CN107605735B (zh) 2019-09-03
CN107605735A (zh) 2018-01-19

Similar Documents

Publication Publication Date Title
WO2019080666A1 (zh) 间隔件、泵体以及压缩机
WO2019024562A1 (zh) 压缩机以及具有它的制冷设备
WO2019076080A1 (zh) 一种带润滑结构的涡旋压缩机
CN108397383A (zh) 泵体组件、压缩机及换热设备
CN102094821A (zh) 回转压缩机
BR102013027941A2 (pt) Compressor do tipo pistão
CN108843568B (zh) 螺杆压缩机及其机体
JP2014231801A (ja) ロータリ圧縮機
US9695825B2 (en) Rotary compressor
CN208749547U (zh) 泵体组件和压缩机
CN204783685U (zh) 卧式滑片压缩机及空调
BR112014006692B1 (pt) Compressor giratório
JP5846012B2 (ja) 斜板式圧縮機
TWI705186B (zh) 螺旋式壓縮機
CN207349092U (zh) 间隔件、泵体以及压缩机
WO2022242202A1 (zh) 压缩机及具有其的空调器
JP2015017574A (ja) ロータリ圧縮機
JP6280783B2 (ja) 水圧回転機
CN205445949U (zh) 压缩机
CN210484001U (zh) 压缩机、制冷系统及冰箱
CN206738150U (zh) 一种组合式气缸结构及具有其的压缩机
CN204386889U (zh) 转子压缩机及其泵体组件
BR102015001370A2 (pt) compressor de placa oscilante do tipo pistão de cabeça dupla
CN106121972A (zh) 一种制冷压缩机阀板与消音器的连接结构
EP3604814A1 (en) Screw type fluid machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18871411

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18871411

Country of ref document: EP

Kind code of ref document: A1