WO2019078267A1 - Organic thin-film transistor, manufacturing method therefor, active matrix array and image display device - Google Patents
Organic thin-film transistor, manufacturing method therefor, active matrix array and image display device Download PDFInfo
- Publication number
- WO2019078267A1 WO2019078267A1 PCT/JP2018/038701 JP2018038701W WO2019078267A1 WO 2019078267 A1 WO2019078267 A1 WO 2019078267A1 JP 2018038701 W JP2018038701 W JP 2018038701W WO 2019078267 A1 WO2019078267 A1 WO 2019078267A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- insulating layer
- electrode
- thin film
- organic thin
- film transistor
- Prior art date
Links
- 239000010409 thin film Substances 0.000 title claims abstract description 149
- 239000011159 matrix material Substances 0.000 title claims abstract description 50
- 238000004519 manufacturing process Methods 0.000 title abstract description 15
- 239000003990 capacitor Substances 0.000 claims abstract description 136
- 239000004065 semiconductor Substances 0.000 claims abstract description 91
- 239000000758 substrate Substances 0.000 claims abstract description 55
- 239000000463 material Substances 0.000 claims abstract description 39
- 239000010408 film Substances 0.000 claims description 34
- 239000010410 layer Substances 0.000 description 194
- 238000000034 method Methods 0.000 description 67
- 239000011347 resin Substances 0.000 description 16
- 229920005989 resin Polymers 0.000 description 16
- 238000007639 printing Methods 0.000 description 11
- 238000000059 patterning Methods 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 9
- 238000007650 screen-printing Methods 0.000 description 9
- 238000001771 vacuum deposition Methods 0.000 description 9
- 239000002105 nanoparticle Substances 0.000 description 8
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 7
- 238000003491 array Methods 0.000 description 7
- 239000011737 fluorine Substances 0.000 description 7
- 229910052731 fluorine Inorganic materials 0.000 description 7
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 7
- 229920001665 Poly-4-vinylphenol Polymers 0.000 description 6
- 239000004372 Polyvinyl alcohol Substances 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- 229910000449 hafnium oxide Inorganic materials 0.000 description 6
- 239000011810 insulating material Substances 0.000 description 6
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 6
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 6
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 6
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 6
- -1 polyethylene Polymers 0.000 description 6
- 239000004926 polymethyl methacrylate Substances 0.000 description 6
- 229920002451 polyvinyl alcohol Polymers 0.000 description 6
- 229910052814 silicon oxide Inorganic materials 0.000 description 6
- 229910001936 tantalum oxide Inorganic materials 0.000 description 6
- 229910001928 zirconium oxide Inorganic materials 0.000 description 6
- 229910052581 Si3N4 Inorganic materials 0.000 description 5
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 5
- 230000004888 barrier function Effects 0.000 description 5
- 238000007429 general method Methods 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- 238000009413 insulation Methods 0.000 description 5
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 5
- 229910052709 silver Inorganic materials 0.000 description 5
- 239000004332 silver Substances 0.000 description 5
- 238000004544 sputter deposition Methods 0.000 description 5
- 238000003860 storage Methods 0.000 description 5
- 238000012546 transfer Methods 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 239000004020 conductor Substances 0.000 description 4
- 238000007644 letterpress printing Methods 0.000 description 4
- AUHZEENZYGFFBQ-UHFFFAOYSA-N mesitylene Substances CC1=CC(C)=CC(C)=C1 AUHZEENZYGFFBQ-UHFFFAOYSA-N 0.000 description 4
- 125000001827 mesitylenyl group Chemical group [H]C1=C(C(*)=C(C([H])=C1C([H])([H])[H])C([H])([H])[H])C([H])([H])[H] 0.000 description 4
- 239000002243 precursor Substances 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 239000002356 single layer Substances 0.000 description 4
- 238000003980 solgel method Methods 0.000 description 4
- 229920001187 thermosetting polymer Polymers 0.000 description 4
- FMZQNTNMBORAJM-UHFFFAOYSA-N tri(propan-2-yl)-[2-[13-[2-tri(propan-2-yl)silylethynyl]pentacen-6-yl]ethynyl]silane Chemical compound C1=CC=C2C=C3C(C#C[Si](C(C)C)(C(C)C)C(C)C)=C(C=C4C(C=CC=C4)=C4)C4=C(C#C[Si](C(C)C)(C(C)C)C(C)C)C3=CC2=C1 FMZQNTNMBORAJM-UHFFFAOYSA-N 0.000 description 4
- 229910004205 SiNX Inorganic materials 0.000 description 3
- FOIXSVOLVBLSDH-UHFFFAOYSA-N Silver ion Chemical compound [Ag+] FOIXSVOLVBLSDH-UHFFFAOYSA-N 0.000 description 3
- 230000000903 blocking effect Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005401 electroluminescence Methods 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000000206 photolithography Methods 0.000 description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 3
- 229920000058 polyacrylate Polymers 0.000 description 3
- 239000013545 self-assembled monolayer Substances 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 150000004696 coordination complex Chemical class 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- NIHNNTQXNPWCJQ-UHFFFAOYSA-N fluorene Chemical compound C1=CC=C2CC3=CC=CC=C3C2=C1 NIHNNTQXNPWCJQ-UHFFFAOYSA-N 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 239000010955 niobium Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 239000002094 self assembled monolayer Substances 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229920002284 Cellulose triacetate Polymers 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 1
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 229920000840 ethylene tetrafluoroethylene copolymer Polymers 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000004050 hot filament vapor deposition Methods 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000000608 laser ablation Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000003094 microcapsule Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 239000002120 nanofilm Substances 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- NQBRDZOHGALQCB-UHFFFAOYSA-N oxoindium Chemical compound [O].[In] NQBRDZOHGALQCB-UHFFFAOYSA-N 0.000 description 1
- SLIUAWYAILUBJU-UHFFFAOYSA-N pentacene Chemical compound C1=CC=CC2=CC3=CC4=CC5=CC=CC=C5C=C4C=C3C=C21 SLIUAWYAILUBJU-UHFFFAOYSA-N 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920000301 poly(3-hexylthiophene-2,5-diyl) polymer Polymers 0.000 description 1
- 229920000083 poly(allylamine) Polymers 0.000 description 1
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920000123 polythiophene Polymers 0.000 description 1
- 229920002620 polyvinyl fluoride Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09F—DISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
- G09F9/00—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
- G09F9/30—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/786—Thin film transistors, i.e. transistors with a channel being at least partly a thin film
Definitions
- the present invention relates to an organic thin film transistor, a method of manufacturing the same, an active matrix array, and an image display device.
- Thin film transistors are widely used in active matrix display devices and sensors, such as liquid crystal display devices (LCDs), organic electroluminescence (EL) display devices, electronic paper display devices, and the like.
- LCDs liquid crystal display devices
- EL organic electroluminescence
- electronic paper display devices and the like.
- semiconductor materials used for thin film transistors those using amorphous silicon, polycrystalline silicon, oxide semiconductors, etc. are in the mainstream, and thin film transistors using these semiconductor materials use a vacuum deposition method. After film formation, patterning is generally performed by a photolithography method or the like.
- organic thin film transistors using an organic material as a semiconductor material have attracted attention.
- devices are formed on plastic substrates at low temperatures by using wet film formation methods such as coating and printing techniques with solutions such as semiconductor materials, conductive materials and insulating materials, and at low cost.
- wet film formation methods such as coating and printing techniques with solutions such as semiconductor materials, conductive materials and insulating materials, and at low cost.
- the printing method it is possible to simultaneously perform the film formation and the patterning process, and it is possible to increase the material utilization efficiency as compared with the vacuum film formation process using the conventional photolithography process.
- the development and etching steps are not required, it is also expected that the environmental load is small (Non-Patent Document 1).
- the bottom of a structure which forms an insulating layer on a top gate structure and a gate electrode which forms a gate electrode via an insulating layer on a semiconductor layer, and forms a semiconductor layer on it Two of the gate structures are known.
- the insulating layer, the source electrode, and the drain electrode are formed rather than the top gate structure formed in the early stage of the thin film transistor manufacturing process. It is preferable that damage such as heat load to the semiconductor layer in the thin film transistor manufacturing process be smaller.
- the bottom gate structure has a simpler element configuration. From such a point, it is preferable to adopt a bottom gate structure for manufacturing a thin film transistor by a printing method.
- thin film transistors formed by the printing method are inferior in alignment accuracy and patterning accuracy as compared with the conventional photolithography process, and therefore, in consideration of the yield, the dimension of each layer of the thin film transistor is designed with allowance. It is preferable to do.
- the area of the thin film transistor becomes large.
- the area that can be used for the capacitor electrode functioning as a storage capacitor is limited, and it is difficult to obtain sufficient capacitance.
- the voltage holding ratio of the image display device decreases, and rewriting of the display elements of the image display device becomes difficult. Therefore, the rewriting time increases and the power consumption increases with the decrease in display quality or the increase in the number of rewrites. A problem arises.
- the semiconductor layer has a smaller characteristic (mobility) of the semiconductor layer compared with an oxide semiconductor or the like, in order to obtain higher element characteristic (semiconductor characteristic), a channel of a large size is obtained. Space is required.
- a thin film transistor having an upper pixel electrode called a field shield pixel structure in order to keep the aperture ratio large. The structure is preferably used.
- the voltage applied to the upper pixel electrode connected to the drain electrode affects the back channel portion in the channel region of the semiconductor layer, causing a change in the device characteristics of the organic thin film transistor It will In particular, when the device is used as an element operated at a large driving voltage, the influence becomes remarkable, and changes occur in the forward characteristics and the reverse characteristics of the organic thin film transistor.
- the present invention has been made in view of the above points, and in an organic thin film transistor of a field shield pixel type bottom gate structure, it is possible to stably drive an organic thin film while maintaining semiconductor characteristics while securing a sufficient capacitance. It is an object of the present invention to provide a thin film transistor, a method of manufacturing the same, an active matrix array, and an image display device.
- One aspect of the present invention for solving the above problems is an insulating substrate, a gate electrode formed over the substrate, a first insulating layer formed to cover the substrate and the gate electrode, and A semiconductor layer including a source electrode, a drain electrode, and an organic semiconductor material formed on the insulating layer, and a second insulating layer formed to cover at least a part of the semiconductor layer, the source electrode, and the drain electrode; A third capacitor electrode formed on the second insulating layer so as to cover at least the semiconductor layer in a plan view, a first capacitor electrode, a second insulating layer, and the first capacitor electrode It is an organic thin film transistor including a layer and an upper pixel electrode electrically connected to the drain electrode, which is formed on the third insulating layer.
- a second capacitor electrode may be further provided in the same layer as the gate electrode over the insulating substrate.
- the film thickness of the second insulating layer may be larger than the film thicknesses of the first insulating layer and the third insulating layer.
- the thickness of the third insulating layer may be smaller than the thicknesses of the first insulating layer and the second insulating layer.
- the relative dielectric constant of the third insulating layer may be larger than the relative dielectric constant of the second insulating layer.
- the area of a region where the first capacitor electrode and the upper pixel electrode overlap in plan view may be 80% or more of the area of the upper pixel electrode.
- the area where the first capacitor electrode and the substrate overlap in plan view may be 85% or more of the area of the substrate.
- the first capacitor electrode may have a via hole communicating the second insulating layer with the third insulating layer, and may cover the entire top surface of the second insulating layer in a region other than the via hole in plan view.
- another aspect of the present invention is a step of providing a gate electrode on an insulating substrate, a step of providing a first insulating layer on the gate electrode, and a source electrode and a drain electrode on the first insulating layer.
- a semiconductor layer including an organic semiconductor material between the source electrode and the drain electrode Separately providing a semiconductor layer including an organic semiconductor material between the source electrode and the drain electrode; and forming a second insulating layer on at least a portion of the semiconductor layer, the source electrode, and the drain electrode.
- a step of providing an upper pixel electrode electrically connected to the drain electrode on the third insulating layer is a step of providing a gate electrode on an insulating substrate, a step of providing a first insulating layer on the gate electrode, and a source electrode and a drain electrode on the first insulating layer.
- Another aspect of the present invention is an active matrix array in which the organic thin film transistors described above are arrayed, wherein the first capacitor electrode of the organic thin film transistor in the active matrix array is the four or more neighboring organic thin film transistors It is an active matrix array connected to one capacitor electrode.
- Another aspect of the present invention is an active matrix array in which the above-mentioned organic thin film transistors are arrayed, in the organic thin film transistors in the active matrix array, first capacitor electrodes of all adjacent organic thin film transistors are connected to each other Active matrix array.
- Another aspect of the present invention is an image display apparatus using the above-mentioned active matrix array.
- an organic thin film transistor of a field shield pixel type bottom gate structure an organic thin film transistor capable of stably driving while maintaining semiconductor characteristics while securing a sufficient capacitance, a manufacturing method thereof, and an active matrix array And an image display apparatus can be provided.
- FIG. 1 is a schematic cross-sectional view of an organic thin film transistor according to a first embodiment of the present invention.
- FIG. 2 is a schematic cross-sectional view of an organic thin film transistor according to a second embodiment of the present invention.
- FIG. 3 is a schematic cross-sectional view of an organic thin film transistor according to a third embodiment of the present invention.
- FIG. 4 is a schematic cross-sectional view of an organic thin film transistor according to a comparative example.
- FIG. 5 is a graph of the transfer characteristics of the organic thin film transistors according to Example 1 and Comparative Example.
- FIG. 6 is a schematic plan view of an active matrix array according to the first embodiment of the present invention.
- FIG. 7 is a schematic plan view of an active matrix array according to a second embodiment and a third embodiment of the present invention.
- FIG. 1 is a schematic cross-sectional view showing an organic thin film transistor 100 according to a first embodiment of the present invention
- FIG. 2 is a schematic cross-sectional view showing an organic thin film transistor 101 according to a second embodiment of the present invention
- FIG. 3 is a schematic cross-sectional view showing an organic thin film transistor 102 according to a third embodiment of the present invention.
- the organic thin film transistors 100, 101, and 102 each include a gate electrode 2 formed on an insulating substrate 1, a first insulating layer 3, a source electrode 4, a drain electrode 5, and a semiconductor layer 6 including an organic semiconductor material.
- the second insulating layer 7, the first capacitor electrode 8, the third insulating layer 9, and the upper pixel electrode 10 at least.
- the organic thin film transistor 102 further includes a second capacitor electrode 11 in addition to the configuration of the organic thin film transistor 100.
- the gate electrode 2 is formed on the substrate 1, and the first insulating layer 3 is formed on the substrate 1 and the gate electrode 2.
- the source electrode 4, the drain electrode 5, and the semiconductor layer 6 are formed on the first insulating layer 3, and the second insulation is formed on at least a part of the source electrode 4, the drain electrode 5, and the semiconductor layer 6.
- the layer 7 is formed, the first capacitor electrode 8 is formed on the second insulating layer 7, and the third insulating layer 9 is formed on at least a part of the first capacitor electrode 8
- the upper pixel electrode 10 electrically connected to the drain electrode 5 is formed on the third insulating layer 9.
- the first capacitor electrode 8 overlaps at least a part of the upper pixel electrode 10 in plan view.
- the first capacitor electrode 8 can be formed in a large area by setting the position for forming the first capacitor electrode 8 on the second insulating layer 7 on which the other electrode is not provided. Therefore, a large capacitance can be generated between the first capacitor electrode 8 and the upper pixel electrode 10.
- the first capacitor electrode 8 is formed to overlap at least the semiconductor layer 6 in plan view. Thereby, since the influence of the voltage applied to the upper pixel electrode 10 on the back channel portion of the semiconductor layer 6 can be blocked, forward characteristics in the case where the organic thin film transistors 100, 101, 102 are operated with a large drive voltage It is possible to suppress the change with the reverse direction characteristic.
- the drain electrode 5 and the upper pixel electrode 10 are connected via a via hole formed in the second insulating layer 7 and the third insulating layer 9. Further, as shown in FIGS. 2 and 3, in the organic thin film transistors 101 and 102, the drain electrode 5 and the upper pixel electrode 10 are the second insulating layer 7, the first capacitor electrode 8, and the third insulating layer. It is connected through the via hole formed in 9. As shown in FIGS. 2 and 3, in the organic thin film transistors 101 and 102, the first capacitor electrode 8 is formed to cover the entire upper surface of the second insulating layer 7 in a region other than the via hole in plan view. ing. Thereby, since the first capacitor electrode 8 can be formed in a wider area, the capacitance generated between the first capacitor electrode 8 and the upper pixel electrode 10 can be further increased.
- the second capacitor electrode 11 is further formed on the substrate 1, and the second capacitor electrode 11 is a drain electrode in plan view with the first insulating layer 3 interposed therebetween. It overlaps with at least a part of 5.
- FIG. 6 is a schematic plan view of an active matrix array 110 according to the first embodiment of the present invention.
- the active matrix array 110 is formed by arranging the organic thin film transistors 100 in a matrix.
- the first capacitor electrode 8 of each organic thin film transistor 100 is electrically connected to the first capacitor electrode 8 of the adjacent four organic thin film transistors 100 via a wire. It is formed.
- FIG. 7 is a schematic plan view of active matrix arrays 111 and 112 according to the second and third embodiments of the present invention. Also in FIG. 7, the description of the third insulating layer 9 and the upper pixel electrode 10 is omitted in order to clarify the shape of the first capacitor electrode 8.
- the active matrix arrays 111 and 112 are formed by arranging the organic thin film transistors 101 and the organic thin film transistors 102 in a matrix. As described above, in the organic thin film transistors 101 and 102, the first capacitor electrode 8 is formed to cover the second insulating layer 7 in a region other than the via hole in a plan view. Therefore, as shown in FIG. 7, in the active matrix arrays 111 and 112, the first capacitor electrodes 8 of the organic thin film transistors 101 and 102 are in contact with the first capacitor electrodes 8 of all the adjacent organic thin film transistors 100 and 101. Are electrically connected.
- the difference between the organic thin film transistors 100 and 101 and the organic thin film transistor 102 is the presence or absence of the second capacitor electrode 11. As shown in FIG. 3, by forming the second capacitor electrode 11 in the organic thin film transistor 102, a capacitance is generated between the drain electrode 5 and the second capacitor electrode 11, so that the pixel electrode of the organic thin film transistor It is possible to further increase the capacitance.
- an image can be obtained. It can be a display device.
- the structure of the counter electrode and the second substrate can be appropriately changed according to the type of display element used.
- each component of the organic thin film transistor 100, 101, 102 will be described along the manufacturing process of the organic thin film transistor 100, 101, 102.
- the substrate 1 is prepared.
- the material of the substrate 1 is polycarbonate, polyethylene sulfide, polyether sulfone, polyethylene terephthalate, polyethylene naphthalate, cycloolefin polymer, triacetyl cellulose, polyvinyl fluoride film, ethylene-tetrafluoroethylene copolymer resin, weather resistant polyethylene terephthalate, Although weather resistant polypropylene, glass fiber reinforced acrylic resin film, glass fiber reinforced polycarbonate, polyimide, fluorocarbon resin, cyclic polyolefin resin, glass, quartz glass and the like can be used, it is not limited thereto. These may be used alone, but can also be used as a composite substrate 1 in which two or more kinds are stacked.
- a transparent gas barrier layer (not shown) can also be formed to improve the durability of the organic thin film transistors 100, 101, 102.
- Materials for the gas barrier layer include aluminum oxide (Al 2 O 3 ), silicon oxide (SiO), silicon nitride (SiN), silicon oxynitride (SiON), silicon carbide (SiC), diamond like carbon (DLC), etc. Is not limited to these.
- these gas barrier layers can be used by laminating two or more layers.
- the gas barrier layer may be formed only on one side of the substrate 1 using the organic film, or may be formed on both sides.
- the gas barrier layer can be formed by vacuum deposition, ion plating, sputtering, laser ablation, plasma CVD (Chemical Vapor Deposition), hot wire CVD, sol-gel, etc. In the present invention, however, It is not limited to these.
- an adhesion layer can be provided to improve adhesion between the substrate 1 and the gate electrode 2 and the first insulating layer 3 formed in contact with the substrate 1, or the surface treatment of the surface of the substrate 1, etc. You may
- the gate electrode 2 is formed on the substrate 1.
- the gate electrode 2, the source electrode 4, the drain electrode 5, the first capacitor electrode 8, and the second capacitor electrode 11 do not have to be clearly divided into an electrode portion and a wiring portion.
- the gate electrode 2 aluminum (Al), copper (Cu), molybdenum (Mo), silver (Ag), chromium (Cr), titanium (Ti), gold (Au), platinum (Pt), tungsten (W) ,
- Metal materials such as manganese (Mn), niobium (Nb), tantalum (Ta), indium oxide (InO), tin oxide (SnO), zinc oxide (ZnO), indium tin oxide (ITO), indium zinc oxide (indium oxide Conductive metal oxide materials such as IZO) can be used, but are not limited thereto. These materials may be used as a single layer, or may be used as a laminate and an alloy.
- the gate electrode 2 can be formed by a vacuum deposition method such as a vacuum evaporation method or a sputtering method, a sol-gel method using a precursor of a conductive material, a method using nanoparticles, or the like, and Although the method of forming by wet film-forming methods, such as screen printing, a letterpress printing, an inkjet method, etc. can be used, it is not limited to these, A well-known general method can be used.
- the patterning can be performed, for example, by using a photolithographic method to protect the pattern-formed portion with a resist or the like, removing unnecessary portions by etching, or directly patterning using a printing method or the like. Also, the present invention is not limited to these methods, and publicly known general patterning methods can be used.
- the second capacitor electrode 11 is provided on the substrate 1 in order to increase the capacitance of the organic thin film transistor.
- the second capacitor electrode 11 can be formed by the same material and method as the gate electrode 2, but may be formed using another material and method or the like.
- the first insulating layer 3 is formed.
- the first insulating layer 3 is provided at least on the gate electrode 2 in order to electrically insulate between the electrodes such as the gate electrode 2, the source electrode 4, and the drain electrode 5, but the outside of the gate electrode 2 It may be provided on the entire surface of the substrate 1 except for the wiring portion and the pad portion used for connection with the other electrodes.
- oxide-based insulation such as silicon oxide (SiOx), aluminum oxide (AlOx), tantalum oxide (TaOx), yttrium oxide (YOx), zirconium oxide (ZrOx), hafnium oxide (HfOx), etc.
- materials and organic insulating materials such as silicon nitride (SiNx), silicon oxynitride (SiON), polyacrylates such as polymethyl methacrylate (PMMA), polyvinyl alcohol (PVA), polyvinyl phenol (PVP), etc. Although it can be done, it is not limited to these.
- a single layer or two or more layers may be laminated, or an inorganic-organic hybrid thin film may be used, or the composition may be inclined in the growth direction.
- the first insulating layer 3 preferably has a resistivity of 10 11 ⁇ cm or more, more preferably 10 14 ⁇ cm or more, in order to suppress the leakage current in the organic thin film transistors 100, 101, 102.
- the source electrode 4 and the drain electrode 5 are formed.
- the source electrode 4 and the drain electrode 5 are formed separately from each other, and the source electrode 4 and the drain electrode 5 may be formed of different processes and different materials, respectively, but on the first insulating layer 3 When forming in the same layer, it is preferable to form the source electrode 4 and the drain electrode 5 simultaneously.
- the same conductive material as the gate electrode 2 can be used for the source electrode 4 and the drain electrode 5. In addition, they may be laminated and used, or may be used as an alloy or the like.
- the source electrode 4 and the drain electrode 5 can be formed by a vacuum deposition method such as vacuum evaporation or sputtering, a sol-gel method using a precursor of a conductive material, a method using nanoparticles, or the like.
- a method of forming an ink and forming it by a wet film forming method such as screen printing, letterpress printing, an inkjet method, etc. can be used, but it is not limited thereto, and publicly known general methods can be used.
- the patterning can be performed, for example, by using a photolithographic method to protect the pattern-formed portion with a resist or the like, removing unnecessary portions by etching, or directly patterning using a printing method or the like. Also, the present invention is not limited to these methods, and publicly known general patterning methods can be used.
- the source electrode 4 and the drain electrode 5 may have a bottom contact structure in which the source electrode 4 and the drain electrode 5 are formed earlier than the semiconductor layer 6. After forming the semiconductor layer 6, the source electrode 4 and the drain electrode 5 may be used. It may be a top contact structure to be formed.
- the source electrode 4 and the drain electrode 5 can use surface treatment or the like to reduce the contact resistance in the electrical connection with the semiconductor layer 6. Specifically, changing the work function of the electrode surface by forming a molecular film such as a self-assembled monolayer (SAM: Self-Assembled-Monolayer) on the surfaces of the source electrode 4 and the drain electrode 5 It is possible.
- SAM Self-Assembled-Monolayer
- the semiconductor layer 6 is formed between the source electrode 4 and the drain electrode 5 so as to connect the source electrode 4 and the drain electrode 5.
- the source electrode 4 and the drain electrode 5 are connected by the semiconductor layer 6 and a region of the semiconductor layer 6 functioning as an organic thin film transistor is generally referred to as a channel region, and such a name is also used in the present invention. There is.
- the semiconductor layer 6 use is made of low molecular weight organic semiconductor materials such as pentacene and derivatives thereof, high molecular organic semiconductor materials such as polythiophene, polyallylamine and fluorene bithiophene copolymer, and derivatives thereof Although it is possible, it is not limited to these.
- the semiconductor layer 6 can also be formed by a wet film forming method such as letterpress printing, screen printing, inkjet, nozzle printing, etc. using a solution in which an organic semiconductor material is dissolved or dispersed as an ink, or a powder or crystal of an organic semiconductor material Can be formed by vapor deposition in a vacuum state.
- the formation method of the semiconductor layer 6 is not limited to these, It is also possible to use a well-known general method.
- wet film formation (printing) drying and baking may be performed to form the semiconductor layer 6. In the present application, it may be referred to as firing including drying.
- a protective layer for protecting the semiconductor layer 6 may be provided on the semiconductor layer 6.
- the second insulating layer 7 is formed to cover at least the channel region of the semiconductor layer 6.
- the second insulating layer 7 is used to secure the insulation of each electrode in the organic thin film transistors 100, 101, 102, and also outside the channel region and the outside of the source electrode 4 and its electrodes such as wiring and drain electrode 5 and others. It can also be formed on the entire surface of the first insulating layer 3 except for the connection portion with the electrode, and the region to be formed can be appropriately adjusted.
- oxide-based insulation such as silicon oxide (SiOx), aluminum oxide (AlOx), tantalum oxide (TaOx), yttrium oxide (YOx), zirconium oxide (ZrOx), hafnium oxide (HfOx), etc.
- materials and organic insulating materials such as silicon nitride (SiNx), silicon oxynitride (SiON), polyacrylates such as polymethyl methacrylate (PMMA), polyvinyl alcohol (PVA), polyvinyl phenol (PVP), and fluorine resin
- PMMA polymethyl methacrylate
- PVA polyvinyl alcohol
- PVP polyvinyl phenol
- fluorine resin fluorine resin
- the second insulating layer 7 desirably has a resistivity of 10 11 ⁇ cm or more, more preferably 10 14 ⁇ cm or more, in order to suppress the leak current in the organic thin film transistors 100, 101, 102.
- the thickness of the second insulating layer 7 is preferably larger than that of the first insulating layer 3 and the third insulating layer 9.
- the first capacitor electrode 8 has an effect of blocking the influence of the voltage applied to the upper pixel electrode 10 on the back channel portion of the semiconductor layer 6, and in the organic thin film transistors 100, 101, 102 of the present invention, The current applied to the semiconductor layer 6 is controlled by the voltage applied to the gate electrode 2 through the first insulating layer 3, but the film thickness of the second insulating layer 7 is thinner than that of the first insulating layer 3.
- the capacitance generated between the semiconductor layer 6 and the first capacitor electrode 8 may be larger than the capacitance generated between the gate electrode 2 and the semiconductor layer 6, Depending on the voltage applied to the capacitor electrode 8 of the above, it may act on the back channel portion of the semiconductor layer 6, and the device characteristics of the organic thin film transistors 100, 101, 102 may be changed. Therefore, in order to control the conductivity of the semiconductor layer 6 reliably by the voltage of the gate electrode 2, it is preferable to form the second insulating layer 7 with a thickness larger than that of the first insulating layer 3. .
- the relative dielectric constant of the second insulating layer 7 is preferably 5 or less, more preferably 4 or less.
- the capacitance generated between the first capacitor electrode 8 and the drain electrode 5 and the upper pixel electrode 10 is used as a storage capacitance.
- the film thickness of the second insulating layer 7 is preferably larger for the reasons described above. The capacitance generated between the capacitor electrode 8 and the drain electrode 5 is reduced. Therefore, in order to secure sufficient storage capacitance, it is necessary to increase the capacitance generated between the first capacitor electrode 8 and the upper pixel electrode 10, so It is preferable to make it thinner than the thickness of the second insulating layer 7.
- the second insulating layer 7 may be formed by a vacuum deposition method such as a vacuum evaporation method or a sputtering method, a sol-gel method using a metal complex as a precursor, or a slit coat of an ink in which nanoparticles or the like are dispersed.
- a vacuum deposition method such as a vacuum evaporation method or a sputtering method, a sol-gel method using a metal complex as a precursor, or a slit coat of an ink in which nanoparticles or the like are dispersed.
- a method of forming by a wet film forming method such as spin coating, screen printing, letterpress printing, ink jet, etc. can be used, it is not limited to these, and publicly known general methods can be used.
- the first capacitor electrode 8 is formed on the second insulating layer 7 in a region overlapping at least the channel region in plan view.
- the first capacitor electrode 8 can be formed by the same material and method as the gate electrode 2, the source electrode 4 and the drain electrode 5 described above.
- the first capacitor electrode 8 overlaps at least the semiconductor layer 6 in plan view for the purpose of blocking the influence of the voltage applied to the upper pixel electrodes 10 of the organic thin film transistors 100, 101, 102 on the channel region of the semiconductor 6. Thus, at least a part of the first capacitor electrode 8 is formed to cover the channel region.
- the first capacitor electrode 8 When forming the active matrix arrays 110, 111, 112 by arranging the organic thin film transistors 100, 101, 102, the first capacitor electrode 8 is adjacent to the gate electrode 2 or the source electrode 4 by wiring or the like. It is connected to the first capacitor electrode 8 of the organic thin film transistor 100, 101, 102.
- the first capacitor electrode 8 is preferably connected to the first capacitor electrode 8 of the surrounding adjacent four or more organic thin film transistors, and more preferably, all adjacent surrounding organic thin film transistors The first capacitor electrodes 8 are connected to each other.
- the connection between the first capacitor electrodes 8 is not particularly required to be divided into the wiring portion, the electrode portion, and the like, and the shape can be appropriately adjusted in accordance with the structure of the organic thin film transistor.
- the first capacitor electrodes 8 of the adjacent adjacent organic thin film transistors 100, 101, 102 By thus connecting the first capacitor electrodes 8 of the adjacent adjacent organic thin film transistors 100, 101, 102 to one another, the first capacitor electrodes 8 can be made of some of the first capacitor electrodes 8 Even when a defect occurs in the pattern, the connection between the first capacitor electrodes 8 is secured without disconnection in the active matrix arrays 110, 111, 112.
- the first capacitor electrodes 8 are electrically connected to the first capacitor electrodes 8 of the adjacent four organic thin film transistors 100 via the wirings.
- Each organic thin film transistor 100 formed in this manner can operate as an organic thin film transistor if at least one of four wirings is connected. Therefore, the active matrix array 110 can suppress the operation failure of the organic thin film transistor due to the disconnection of the wiring between the first capacitor electrodes 8.
- the first capacitor electrode 8 is broken for the reasons as described above. It is possible to prevent the operation failure of the organic thin film transistor. In particular, in a method such as printing, remarkable effects can be obtained by forming the first capacitor electrode 8 as described above.
- the first capacitor electrode 8 has an area of the substrate in order to more efficiently block the influence of the voltage applied to the upper pixel electrode 10 and to generate a larger capacitance with the upper pixel electrode 10. Preferably, it is formed to be 85% or more of the area of 1.
- the third insulating layer 9 is formed on at least the first capacitor electrode 8.
- the third insulating layer 9 is provided for securing the insulation between the first capacitor electrode 8 and the upper pixel electrode 10 in the organic thin film transistors 100, 101, 102, but other than on the first capacitor electrode 8.
- the second insulating layer 7 can be formed on the second insulating layer 7 except for the connection portions with the outside and other electrodes, and the region to be formed can be appropriately adjusted.
- the third insulating layer 9 may be an oxide insulating material such as silicon oxide (SiOx), aluminum oxide (AlOx), tantalum oxide (TaOx), yttrium oxide (YOx), zirconium oxide (ZrOx) or hafnium oxide (HfOx).
- oxide insulating material such as silicon oxide (SiOx), aluminum oxide (AlOx), tantalum oxide (TaOx), yttrium oxide (YOx), zirconium oxide (ZrOx) or hafnium oxide (HfOx).
- Uses materials and organic insulating materials such as silicon nitride (SiNx), silicon oxynitride (SiON), polyacrylates such as polymethyl methacrylate (PMMA), polyvinyl alcohol (PVA), polyvinyl phenol (PVP), and fluorine resin Although it can do, it is not limited to these.
- a single layer or two or more layers may be laminated, or an inorganic
- the third insulating layer 9 may be formed by a vacuum deposition method such as a vacuum evaporation method or a sputtering method, a sol-gel method using a metal complex as a precursor, a slit coating of ink in which nanoparticles are dispersed, spin
- a vacuum deposition method such as a vacuum evaporation method or a sputtering method
- a sol-gel method using a metal complex as a precursor a slit coating of ink in which nanoparticles are dispersed
- spin a method of forming by wet film-forming methods, such as a coat, screen printing, relief printing, an inkjet, etc.
- wet film-forming methods such as a coat, screen printing, relief printing, an inkjet, etc.
- the third insulating layer 9 is formed between the first capacitor electrode 8 and the upper pixel electrode 10, and capacitance occurs in a region where the first capacitor electrode 8 and the upper pixel electrode 10 overlap in a plan view. It is formed for the purpose of In general, by using a material having a large relative dielectric constant as the material of the insulating layer, it is possible to obtain a larger capacitance even with the same film thickness. Further, as described above, in view of the influence of the voltage affecting the semiconductor layer 6 in the second insulating layer 7, it is preferable that the relative dielectric constant of the second insulating layer 7 is small, so that the third insulating layer 7 is preferable.
- the relative dielectric constant of 9 is preferably larger than that of the second insulating layer 7.
- the relative dielectric constant is preferably 3.0 or more, preferably 5 or more, and more preferably 20 or more, but is not limited thereto.
- the film thickness of the third insulating layer 9 is larger than that of the first insulating layer 3 and the second insulating layer 7 in order to generate a larger capacitance between the first capacitor electrode 8 and the upper pixel electrode 10.
- the thickness is preferably smaller than the film thickness, but the thickness can be appropriately adjusted in consideration of the insulating property of the third insulating layer 9, the reliability as the organic thin film transistors 100, 101, 102, the degree of difficulty of the manufacturing process, and the like.
- the third insulating layer 9 is An upper pixel electrode 10 electrically connected to the drain electrode 5 is formed thereon.
- the overlapping area of the upper pixel electrode 10 and the first capacitor electrode 8 is a capacitor area functioning as a storage capacitor of the image display device, and the larger the overlapping area, the larger the capacitor capacity, and the voltage holding ratio of the pixel voltage Can be kept high.
- the overlapping area of the upper pixel electrode 10 and the first capacitor electrode 8 is small and the capacitance of the capacitor is small, the voltage holding ratio is small. Therefore, when the organic thin film transistors 100, 101 and 102 of the present invention are used as an image display device Since the pixel voltage applied to the display element by the upper pixel electrode is attenuated during the selection time, and the voltage applied to the image display element is reduced by the amount of reduction in the pixel voltage, the rewriting efficiency is reduced.
- the quality is reduced. Although it is possible to take measures to increase the number of rewrites in order to maintain display quality, an increase in the number of image rewrites results in an increase in power consumption due to a decrease in image switching speed and an increase in drive time.
- the overlapping area of the upper pixel electrode 10 and the first capacitor electrode 8 is 80% or more, preferably 85% or more. It is preferable to form so that
- the upper pixel electrode 10 can be formed by the same material and method as the gate electrode 2, the source electrode 4, the drain electrode 5 and the first capacitor electrode 8 shown above, but the invention is not limited thereto. The method of can be used.
- a display element (not shown), a counter electrode (not shown), and a counter substrate (not shown) are suitably provided.
- liquid crystal, electrophoretic particles, microcapsules containing electrophoretic particles, organic electroluminescence and the like can be used.
- the image display device it is possible to use these known general display elements without being limited to either the reflective type or the transmissive type.
- the display element may be formed on the counter substrate on which the counter electrode is formed, and then combined with the organic thin film transistors 100, 101, and 102 provided with the pixel electrode 10 to form an image display device.
- the counter electrode and the counter substrate may be stacked to form an image display device, and the process can be selected in accordance with the display element to be used.
- Example 1 an active matrix array 110 composed of the organic thin film transistor 100 shown in FIG. 1 was produced.
- An alkali-free glass 0.7 mm thick was used as the substrate 1.
- a solution in which nanoparticles of silver (Ag) were dispersed on a substrate 1 was patterned into a desired shape using an ink jet method as an ink, and baked at 180 ° C. for 1 hour to form a gate electrode 2.
- thermosetting resin was applied to the substrate 1 on which the gate electrode 2 was formed and fired to form a first insulating layer 3.
- the relative dielectric constant of the first insulating layer 3 is 3.3, and the film thickness is 1.0 ⁇ m.
- the source electrode 4 and the drain electrode 5 were formed by the ink jet method in the same manner as the gate electrode 2.
- a mesitylene solution in which 6,13-bis (triisopropylsilylethynyl) pentacene (TIPS-pentacene) is dissolved at a concentration of 0.1% by weight as an organic semiconductor material is inkjetted
- the semiconductor layer 6 was formed by patterning by a method and baking.
- a fluorine resin is applied by an inkjet method and fired to form a second insulating layer 7.
- the relative dielectric constant of the second insulating layer 7 is 2.4, and the film thickness is 3.0 ⁇ m.
- the first capacitor electrode 8 was formed on the second insulating layer 7 by the same method as the gate electrode 2, the source electrode 4 and the drain electrode 5, using a solution in which silver nanoparticles are dispersed as an ink.
- a photosensitive resin material was applied onto the first capacitor electrode 8, exposed to light, and developed to form a third insulating layer 9.
- the film thickness of the third insulating layer 9 is 0.5 ⁇ m, and the relative dielectric constant is 3.5.
- each first capacitor electrode 8 is connected to the first capacitor electrode 8 of the adjacent four organic thin film transistors 100 via a wire, and formed to be conductive.
- the upper pixel electrode 10 was formed on the third insulating layer 9 using the screen printing method, and an active matrix array 110 composed of the organic thin film transistor 100 according to Example 1 was manufactured.
- Example 2 an active matrix array 111 composed of the organic thin film transistor 101 shown in FIG. 2 was produced.
- An alkali-free glass 0.7 mm thick was used as the substrate 1.
- a solution in which nanoparticles of silver (Ag) were dispersed on a substrate 1 was patterned into a desired shape using an ink jet method as an ink, and baked at 180 ° C. for 1 hour to form a gate electrode 2.
- thermosetting resin was applied to the substrate 1 on which the gate electrode 2 was formed and fired to form a first insulating layer 3.
- the relative dielectric constant of the first insulating layer 3 is 3.3, and the film thickness is 1.0 ⁇ m.
- the source electrode 4 and the drain electrode 5 were formed by the ink jet method in the same manner as the gate electrode 2.
- a mesitylene solution in which TIPS-pentacene was dissolved at a concentration of 0.1% by weight as an organic semiconductor material was patterned by an inkjet method and baked to form a semiconductor layer 6 .
- a fluorine resin was applied by an inkjet method to form a second insulating layer 7.
- the relative dielectric constant of the second insulating layer 7 is 2.4, and the film thickness is 3.0 ⁇ m.
- the first capacitor electrode 8 was formed on the second insulating layer 7 by the same method as the gate electrode 2, the source electrode 4 and the drain electrode 5, using a solution in which silver nanoparticles are dispersed as an ink.
- each first capacitor electrode 8 is connected to the first capacitor electrode 8 of all the adjacent organic thin film transistors 101 and formed to be conductive.
- a photosensitive resin material was applied onto the first capacitor electrode 8, exposed to light, and developed to form a third insulating layer 9.
- the film thickness of the third insulating layer 9 is 0.5 ⁇ m, and the relative dielectric constant is 3.5.
- the upper pixel electrode 10 was formed on the third insulating layer 9 using the screen printing method, and an active matrix array 111 composed of the organic thin film transistor 101 according to Example 2 was manufactured.
- Example 3 an active matrix array 112 composed of the organic thin film transistor 102 shown in FIG. 3 was produced.
- An alkali-free glass 0.7 mm thick was used as the substrate 1.
- a solution in which nanoparticles of silver (Ag) are dispersed on a substrate 1 is patterned into a desired shape using an ink jet method as an ink, and baked at 180 ° C. for 1 hour to form gate electrode 2 and second capacitor electrode 11. Formed.
- thermosetting resin was applied to the substrate 1 on which the gate electrode 2 and the second capacitor electrode 11 were formed and fired to form the first insulating layer 3.
- the relative dielectric constant of the first insulating layer 3 is 3.3, and the film thickness is 1.0 ⁇ m.
- the source electrode 4 and the drain electrode 5 are formed by the inkjet method in the same manner as the gate electrode 2 and the second capacitor electrode 11.
- a mesitylene solution in which TIPS-pentacene was dissolved at a concentration of 0.1% by weight as an organic semiconductor material was patterned by an inkjet method and baked to form a semiconductor layer 6 .
- a fluorine resin was applied by an inkjet method to form a second insulating layer 7.
- the relative dielectric constant of the second insulating layer 7 is 2.4, and the film thickness is 3.0 ⁇ m.
- the first capacitor electrode 8 was formed on the second insulating layer 7 by the same method as the gate electrode 2, the source electrode 4 and the drain electrode 5, using a solution in which silver nanoparticles are dispersed as an ink.
- Each first capacitor electrode 8 is connected to the first capacitor electrode 8 of all the adjacent organic thin film transistors 102 as in the second embodiment, and formed to be conductive.
- a photosensitive resin material was applied onto the first capacitor electrode 8, exposed to light, and developed to form a third insulating layer 9.
- the film thickness of the third insulating layer 9 is 0.5 ⁇ m, and the relative dielectric constant is 3.5.
- the upper pixel electrode 10 was formed on the third insulating layer 9 using the screen printing method, and an active matrix array 112 composed of the organic thin film transistor 102 according to Example 3 was manufactured.
- An active matrix array (not shown) comprising the organic thin film transistor 200 shown in FIG. 4 was produced as a comparative example.
- An alkali-free glass 0.7 mm thick was used as the substrate 21.
- a solution in which nanoparticles of silver (Ag) are dispersed on a substrate 21 is patterned into a desired shape using an ink jet method as an ink, and baked at 180 ° C. for 1 hour to form a gate electrode 22 and a first capacitor electrode 28. Formed.
- thermosetting resin was applied to the substrate on which the gate electrode 22 and the first capacitor electrode 28 were formed and fired to form the first insulating layer 23.
- the relative dielectric constant of the first insulating layer 23 is 3.3, and the film thickness is 1.0 ⁇ m.
- the source electrode 24 and the drain electrode 25 were formed by the inkjet method in the same manner as the gate electrode 22 and the first capacitor electrode 28.
- a mesitylene solution in which poly (3-hexylthiophene) is dissolved at a concentration of 0.1 weight percent as an organic semiconductor material is patterned by an ink jet method and baked. 26 were formed.
- a fluorine resin was applied by an inkjet method to form a second insulating layer 27.
- the relative dielectric constant of the second insulating layer 7 is 2.4, and the film thickness is 3.0 ⁇ m.
- the upper pixel electrode 30 was formed on the second insulating layer 27 by screen printing, and an active matrix array composed of the organic thin film transistor 200 according to the comparative example was manufactured.
- Example 1 Active matrix arrays according to Examples 1, 2, 3 and Comparative Example were produced by the above steps.
- Example 2 the first capacitor electrode 8 is disposed on the second insulating layer 7 so as to cover the channel regions of the organic thin film transistors 100, 101, 102 in plan view.
- the measurement result of the transfer characteristic of the organic thin-film transistor concerning Example 1 and the comparative example which were produced in FIG. 5 is shown.
- the rise of the on current in the transfer characteristic is on the depletion side (positive side).
- the organic thin film transistor 100 according to the first embodiment is further on the enhancement side (negative side).
- the difference in the rising voltage of the on current in these transfer characteristics is the difference in the effects on the semiconductor layers 6 and 26 of the voltage applied to the upper pixel electrodes 10 and 30, and the results shown in FIG.
- the organic thin film transistor 100 according to Example 1 clearly shows that the influence of the voltage of the upper pixel electrode 10 on the semiconductor layer 6 can be effectively blocked.
- the first capacitor electrode 8 is provided to have a sufficient capacitor electrode area, thereby securing a sufficient capacitance.
- Table 1 shows the area of the area where the first capacitor electrode and the upper pixel electrode overlap in plan view with respect to the area of the upper pixel electrode in the active matrix array manufactured using the organic thin film transistors according to Examples 1 to 3 and the comparative example.
- calculation of electrostatic capacitance was performed by Formula (1), and calculation of voltage retention was performed by Formula (2).
- the difference between the active matrix array 110 composed of the organic thin film transistor 100 of Example 1 and the active matrix array 111 composed of the organic thin film transistor 101 of Example 2 is that, as shown in FIGS. 6 and 7, the first capacitor electrode 8 is An area where the number of the first capacitor electrode 8 and the upper pixel electrode 10 overlap each other with respect to the area of the upper pixel electrode 10 in each organic thin film transistor and the number connected to the first capacitor electrode 8 of the adjacent organic thin film transistor
- the ratio of the area of The first capacitor electrode 8 is formed to be connected to more adjacent organic thin film transistors, and the area of the area where the first capacitor electrode 8 and the upper pixel electrode 10 overlap in plan view with respect to the area of the upper pixel electrode 10 By increasing the ratio, it is possible to obtain a larger capacitance, and as a result, it has been confirmed that it is possible to maintain a high voltage holding ratio.
- Example 3 the capacitance of the organic thin film transistor 102 can be further increased by forming the second capacitor electrode 11.
- the first capacitor electrode 8 by providing the first capacitor electrode 8, a sufficient capacitor electrode area can be provided in the field shield pixel type bottom gate organic thin film transistor, so sufficient capacitance is secured. And the influence of the upper pixel electrode voltage on the semiconductor layer can be blocked. Therefore, organic thin film transistors 100, 101, 102 that can be driven stably while maintaining semiconductor characteristics are obtained, and fabrication of an active matrix array using organic thin film transistors 100, 101, 102 and driving of an image display device are realized. It became possible.
- the organic thin film transistors 100, 101, 102 are formed of the first capacitor electrode 8 on the second insulating layer 7 so as to overlap at least the semiconductor layer 6 in plan view. It is possible to maintain a large area and obtain sufficient capacitance. Further, since the influence of the voltage applied to the upper pixel electrode 10 on the channel region of the semiconductor layer 6 can be blocked by the first capacitor electrode 8, it is possible to suppress the characteristic change of the organic thin film transistor.
- the organic thin film transistor of the field shield pixel type bottom gate structure it has a sufficient capacitor electrode area, can ensure a sufficient capacitance, and a channel region of a voltage applied to the upper pixel electrode. It is possible to provide an organic thin film transistor that can be stably driven while maintaining semiconductor characteristics, a method of manufacturing the same, an active matrix array, and an image display device by blocking the influence on the semiconductor layer back channel portion in the above.
- the present invention is suitably applicable to an image display device or various sensors.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Computer Hardware Design (AREA)
- Theoretical Computer Science (AREA)
- Thin Film Transistor (AREA)
- Liquid Crystal (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
Abstract
Provided are: an organic thin-film transistor having a field shield pixel type bottom gate structure, the transistor enabling stable drive while maintaining semiconductor characteristics and ensuring sufficient electrostatic capacity; a manufacturing method therefor; an active matrix array; and an image display device. The organic thin-film transistor includes: a substrate; a gate electrode on the substrate; a first insulating layer formed so as to cover the substrate and the gate electrode; a source electrode, a drain electrode, and a semiconductor layer including an organic semiconductor material that are formed on the first insulating layer; a second insulating layer covering at least a part of the semiconductor layer, the source electrode and the drain electrode; a first capacitor electrode formed on the second insulating layer and overlapping at least the semiconductor layer in a planar view; a third insulating layer electrically connected to the drain electrode and covering the second insulating layer and the first capacitor electrode; and an upper pixel electrode formed on the third insulating layer.
Description
本発明は、有機薄膜トランジスタ、その製造方法、アクティブマトリクスアレイおよび画像表示装置に関するものである。
The present invention relates to an organic thin film transistor, a method of manufacturing the same, an active matrix array, and an image display device.
薄膜トランジスタは液晶表示装置(LCD)、有機エレクトロルミネッセンス(EL)表示装置、電子ペーパー表示装置などの、アクティブマトリクス方式の表示装置やセンサーなどに広く使用されている。
Thin film transistors are widely used in active matrix display devices and sensors, such as liquid crystal display devices (LCDs), organic electroluminescence (EL) display devices, electronic paper display devices, and the like.
薄膜トランジスタに用いられる半導体材料としては、非晶質シリコンや多結晶シリコンあるいは酸化物半導体などを用いたものが主流となっており、これらの半導体材料を用いた薄膜トランジスタは、真空成膜法を用いて成膜した後にフォトリソグラフィ法などによりパターニングを行い製造されることが一般的である。
As semiconductor materials used for thin film transistors, those using amorphous silicon, polycrystalline silicon, oxide semiconductors, etc. are in the mainstream, and thin film transistors using these semiconductor materials use a vacuum deposition method. After film formation, patterning is generally performed by a photolithography method or the like.
近年、半導体材料として有機材料を用いた有機薄膜トランジスタが注目を集めている。有機薄膜トランジスタにおいては、半導体材料、導電性材料および絶縁性材料などの溶液を塗布・印刷技術などのウェット成膜法を用いることにより、低温でのプラスチック基板上へのデバイス形成、および低コストでのデバイス製造の可能性がある。また、印刷法を用いることで成膜とパターニングの工程とを同時に行うことが可能となり、従来のフォトリソグラフィプロセスを用いる真空成膜プロセスと比較して、材料利用効率を高くできる。さらに、現像、エッチング工程を必要としないことから、環境負荷が少ないという点でも期待されている(非特許文献1)。
In recent years, organic thin film transistors using an organic material as a semiconductor material have attracted attention. In organic thin film transistors, devices are formed on plastic substrates at low temperatures by using wet film formation methods such as coating and printing techniques with solutions such as semiconductor materials, conductive materials and insulating materials, and at low cost. There is a possibility of device manufacture. In addition, by using the printing method, it is possible to simultaneously perform the film formation and the patterning process, and it is possible to increase the material utilization efficiency as compared with the vacuum film formation process using the conventional photolithography process. Furthermore, since the development and etching steps are not required, it is also expected that the environmental load is small (Non-Patent Document 1).
薄膜トランジスタの素子構造としては、一般的に、半導体層上に絶縁層を介してゲート電極を形成するトップゲート構造とゲート電極上に絶縁層を形成し、その上に半導体層を形成する構成のボトムゲート構造の2つが知られている。薄膜トランジスタの作製という点では、半導体層が薄膜トランジスタ作製工程の初期に形成されるトップゲート構造よりも、ゲート電極、絶縁層、ソース電極、ドレイン電極の形成された後に半導体層を形成するボトムゲート構造の方が、薄膜トランジスタ作製工程における半導体層への熱負荷などのダメージが小さく好ましい。またボトムゲート構造の方が、素子構成が簡易である。このような点から、印刷法による薄膜トランジスタの作製には、ボトムゲート構造を採用することが好ましい。
Generally as a device structure of a thin film transistor, the bottom of a structure which forms an insulating layer on a top gate structure and a gate electrode which forms a gate electrode via an insulating layer on a semiconductor layer, and forms a semiconductor layer on it Two of the gate structures are known. In terms of fabrication of thin film transistors, in the case of a bottom gate structure in which the semiconductor layer is formed after the gate electrode, the insulating layer, the source electrode, and the drain electrode are formed rather than the top gate structure formed in the early stage of the thin film transistor manufacturing process. It is preferable that damage such as heat load to the semiconductor layer in the thin film transistor manufacturing process be smaller. In addition, the bottom gate structure has a simpler element configuration. From such a point, it is preferable to adopt a bottom gate structure for manufacturing a thin film transistor by a printing method.
また、印刷法によって形成される薄膜トランジスタにおいては、従来のフォトリソグラフィプロセスと比較してアライメント精度やパターニング精度の面で劣るため、歩留まりを考慮して、薄膜トランジスタの各層の寸法に余裕を持たせて設計することが好ましい。
In addition, thin film transistors formed by the printing method are inferior in alignment accuracy and patterning accuracy as compared with the conventional photolithography process, and therefore, in consideration of the yield, the dimension of each layer of the thin film transistor is designed with allowance. It is preferable to do.
しかしながら、薄膜トランジスタの各層の寸法に余裕を持たせて設計すると、薄膜トランジスタの面積が大きくなる。このような薄膜トランジスタをアクティブマトリクス方式の画像表示装置の駆動に用いた場合、補助容量として機能するキャパシタ電極に使用可能な領域が制限されるため、十分な静電容量を得ることが困難となる。その結果、画像表示装置の電圧保持率が低下し、画像表示装置の表示要素の書き換えが困難となるため、表示品位の低下または書き換え回数の増加にともなう書き換え時間の増加および消費電力の増大などの問題が生じる。
However, if the dimensions of each layer of the thin film transistor are designed with a margin, the area of the thin film transistor becomes large. When such a thin film transistor is used to drive an active matrix image display device, the area that can be used for the capacitor electrode functioning as a storage capacitor is limited, and it is difficult to obtain sufficient capacitance. As a result, the voltage holding ratio of the image display device decreases, and rewriting of the display elements of the image display device becomes difficult. Therefore, the rewriting time increases and the power consumption increases with the decrease in display quality or the increase in the number of rewrites. A problem arises.
また、有機薄膜トランジスタにおいては、その半導体層が酸化物半導体などと比較して半導体層の特性(移動度)が小さいことから、より高い素子特性(半導体特性)を得るためには、大きなサイズのチャネル領域が必要となる。さらに前述したように印刷寸法精度に余裕を持たせて有機薄膜トランジスタを作製し、画像表示装置とする場合は、その開口率を大きく保つために、フィールドシールドピクセル構造と呼ばれる、上部画素電極を有する薄膜トランジスタ構造が好適に用いられる。
In addition, in the organic thin film transistor, since the semiconductor layer has a smaller characteristic (mobility) of the semiconductor layer compared with an oxide semiconductor or the like, in order to obtain higher element characteristic (semiconductor characteristic), a channel of a large size is obtained. Space is required. Further, as described above, in the case of manufacturing an organic thin film transistor with a margin for printing dimensional accuracy and making it into an image display device, a thin film transistor having an upper pixel electrode called a field shield pixel structure in order to keep the aperture ratio large. The structure is preferably used.
しかしながら、フィールドシールドピクセル構造を採用した場合、ドレイン電極に接続されている上部画素電極に印加される電圧が、半導体層のチャネル領域におけるバックチャネル部に影響し、有機薄膜トランジスタの素子特性に変化が生じてしまう。特に、大きな駆動電圧で動作させる素子として利用する場合は、その影響は顕著となり、有機薄膜トランジスタの順方向特性と逆方向特性とに変化を生じさせることとなる。
However, when the field shield pixel structure is adopted, the voltage applied to the upper pixel electrode connected to the drain electrode affects the back channel portion in the channel region of the semiconductor layer, causing a change in the device characteristics of the organic thin film transistor It will In particular, when the device is used as an element operated at a large driving voltage, the influence becomes remarkable, and changes occur in the forward characteristics and the reverse characteristics of the organic thin film transistor.
本発明は、以上の点を鑑みなされたものであり、フィールドシールドピクセル型ボトムゲート構造の有機薄膜トランジスタにおいて、十分な静電容量を確保しつつ、半導体特性を維持しながら安定的に駆動可能な有機薄膜トランジスタ、その製造方法、アクティブマトリクスアレイおよび画像表示装置を提供することを目的とする。
The present invention has been made in view of the above points, and in an organic thin film transistor of a field shield pixel type bottom gate structure, it is possible to stably drive an organic thin film while maintaining semiconductor characteristics while securing a sufficient capacitance. It is an object of the present invention to provide a thin film transistor, a method of manufacturing the same, an active matrix array, and an image display device.
上記課題を解決するための本発明の一局面は、絶縁性の基板と、基板上に形成されたゲート電極と、基板およびゲート電極を覆うように形成された第一の絶縁層と、第一の絶縁層上に形成されたソース電極、ドレイン電極、および有機半導体材料を含む半導体層と、少なくとも半導体層、ソース電極、およびドレイン電極の一部を覆うように形成され第二の絶縁層と、第二の絶縁層上に、平面視において少なくとも半導体層に重なるように形成された第一のキャパシタ電極と、第二の絶縁層および第一のキャパシタ電極を覆うように形成された第三の絶縁層と、第三の絶縁層上に形成された、ドレイン電極と電気的に接続された上部画素電極とを含む有機薄膜トランジスタである。
One aspect of the present invention for solving the above problems is an insulating substrate, a gate electrode formed over the substrate, a first insulating layer formed to cover the substrate and the gate electrode, and A semiconductor layer including a source electrode, a drain electrode, and an organic semiconductor material formed on the insulating layer, and a second insulating layer formed to cover at least a part of the semiconductor layer, the source electrode, and the drain electrode; A third capacitor electrode formed on the second insulating layer so as to cover at least the semiconductor layer in a plan view, a first capacitor electrode, a second insulating layer, and the first capacitor electrode It is an organic thin film transistor including a layer and an upper pixel electrode electrically connected to the drain electrode, which is formed on the third insulating layer.
また、絶縁性の基板上に、ゲート電極と同層に第二のキャパシタ電極をさらに有してもよい。
In addition, a second capacitor electrode may be further provided in the same layer as the gate electrode over the insulating substrate.
また、第二の絶縁層の膜厚が第一の絶縁層および第三の絶縁層の膜厚よりも厚くてもよい。
In addition, the film thickness of the second insulating layer may be larger than the film thicknesses of the first insulating layer and the third insulating layer.
また、第三の絶縁層の膜厚が第一の絶縁層および第二の絶縁層の膜厚よりも薄くてもよい。
In addition, the thickness of the third insulating layer may be smaller than the thicknesses of the first insulating layer and the second insulating layer.
また、第三の絶縁層の比誘電率が第二の絶縁層の比誘電率よりも大きくてもよい。
In addition, the relative dielectric constant of the third insulating layer may be larger than the relative dielectric constant of the second insulating layer.
また、第一のキャパシタ電極と、上部画素電極とが平面視において重なった領域の面積が上部画素電極の面積の80%以上であってもよい。
In addition, the area of a region where the first capacitor electrode and the upper pixel electrode overlap in plan view may be 80% or more of the area of the upper pixel electrode.
また、第一のキャパシタ電極と、基板とが平面視において重なる面積が基板の面積の85%以上であってもよい。
In addition, the area where the first capacitor electrode and the substrate overlap in plan view may be 85% or more of the area of the substrate.
第一のキャパシタ電極は、第二の絶縁層と第三の絶縁層とを連通するビアホールを備え、平面視においてビアホール以外の領域において第二の絶縁層の上面全体を覆っていてもよい。
The first capacitor electrode may have a via hole communicating the second insulating layer with the third insulating layer, and may cover the entire top surface of the second insulating layer in a region other than the via hole in plan view.
また、本発明の他の局面は、絶縁性の基板上にゲート電極を設ける工程と、ゲート電極上に第一の絶縁層を設ける工程と、第一の絶縁層上にソース電極およびドレイン電極を離間して設ける工程と、ソース電極とドレイン電極との間に有機半導体材料を含む半導体層を設ける工程と、少なくとも半導体層、ソース電極、およびドレイン電極の一部の上に第二の絶縁層を設ける工程と、第二の絶縁層上に、平面視において少なくとも半導体層に重なるように第一のキャパシタ電極を設ける工程と、第二の絶縁層および第一のキャパシタ電極上に第三の絶縁層を設ける工程と、第三の絶縁層上に、ドレイン電極と電気的に接続された上部画素電極を設ける工程とを含む、有機薄膜トランジスタの製造方法である。
In addition, another aspect of the present invention is a step of providing a gate electrode on an insulating substrate, a step of providing a first insulating layer on the gate electrode, and a source electrode and a drain electrode on the first insulating layer. Separately providing a semiconductor layer including an organic semiconductor material between the source electrode and the drain electrode; and forming a second insulating layer on at least a portion of the semiconductor layer, the source electrode, and the drain electrode. And providing a first capacitor electrode on the second insulating layer so as to overlap at least the semiconductor layer in plan view, and a third insulating layer on the second insulating layer and the first capacitor electrode And a step of providing an upper pixel electrode electrically connected to the drain electrode on the third insulating layer.
また、本発明の他の局面は、上述の有機薄膜トランジスタを配列したアクティブマトリクスアレイであって、当該アクティブマトリクスアレイにおける有機薄膜トランジスタの第一のキャパシタ電極が周囲の隣接した4つ以上の有機薄膜トランジスタの第一のキャパシタ電極と接続されている、アクティブマトリクスアレイである。
Another aspect of the present invention is an active matrix array in which the organic thin film transistors described above are arrayed, wherein the first capacitor electrode of the organic thin film transistor in the active matrix array is the four or more neighboring organic thin film transistors It is an active matrix array connected to one capacitor electrode.
また、本発明の他の局面は、上述の有機薄膜トランジスタを配列したアクティブマトリクスアレイであって、当該アクティブマトリクスアレイにおける有機薄膜トランジスタにおいて、隣接するすべての有機薄膜トランジスタの第一のキャパシタ電極同士が接続されている、アクティブマトリクスアレイである。
Another aspect of the present invention is an active matrix array in which the above-mentioned organic thin film transistors are arrayed, in the organic thin film transistors in the active matrix array, first capacitor electrodes of all adjacent organic thin film transistors are connected to each other Active matrix array.
また、本発明の他の局面は、上述のアクティブマトリクスアレイを用いた画像表示装置である。
Another aspect of the present invention is an image display apparatus using the above-mentioned active matrix array.
本発明によれば、フィールドシールドピクセル型ボトムゲート構造の有機薄膜トランジスタにおいて、十分な静電容量を確保しつつ、半導体特性を維持しながら安定的に駆動可能な有機薄膜トランジスタ、その製造方法、アクティブマトリクスアレイおよび画像表示装置を提供することが可能となる。
According to the present invention, in an organic thin film transistor of a field shield pixel type bottom gate structure, an organic thin film transistor capable of stably driving while maintaining semiconductor characteristics while securing a sufficient capacitance, a manufacturing method thereof, and an active matrix array And an image display apparatus can be provided.
以下、本発明の実施の形態を、図面を参照しつつ、説明する。なお各実施の形態において、同一または対応する構成要素については、同一の符号を付け、実施の形態の間において重複する説明は省略する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In each of the embodiments, the same or corresponding components are denoted by the same reference numerals, and overlapping descriptions between the embodiments will be omitted.
図1は、本発明の第1の実施の形態に係る有機薄膜トランジスタ100を示す概略断面図であり、図2は、本発明の第2の実施の形態に係る有機薄膜トランジスタ101を示す概略断面図であり、図3は本発明の第3の実施の形態に係る有機薄膜トランジスタ102を示す概略断面図である。
FIG. 1 is a schematic cross-sectional view showing an organic thin film transistor 100 according to a first embodiment of the present invention, and FIG. 2 is a schematic cross-sectional view showing an organic thin film transistor 101 according to a second embodiment of the present invention. FIG. 3 is a schematic cross-sectional view showing an organic thin film transistor 102 according to a third embodiment of the present invention.
有機薄膜トランジスタ100、101、102は、絶縁性の基板1の上に形成されたゲート電極2と、第一の絶縁層3と、ソース電極4、ドレイン電極5、および有機半導体材料を含む半導体層6と、第二の絶縁層7と、第一のキャパシタ電極8と、第三の絶縁層9と、上部画素電極10とを少なくとも備えている。
The organic thin film transistors 100, 101, and 102 each include a gate electrode 2 formed on an insulating substrate 1, a first insulating layer 3, a source electrode 4, a drain electrode 5, and a semiconductor layer 6 including an organic semiconductor material. , The second insulating layer 7, the first capacitor electrode 8, the third insulating layer 9, and the upper pixel electrode 10 at least.
また、有機薄膜トランジスタ102は有機薄膜トランジスタ100の構成に加え、第二のキャパシタ電極11をさらに備えている。
The organic thin film transistor 102 further includes a second capacitor electrode 11 in addition to the configuration of the organic thin film transistor 100.
図1~図3に示すように、有機薄膜トランジスタ100、101、102は、基板1上にゲート電極2が形成されており、基板1およびゲート電極2上に第一の絶縁層3が形成されており、第一の絶縁層3上にソース電極4、ドレイン電極5、および半導体層6が形成されており、ソース電極4、ドレイン電極5の少なくとも一部、および半導体層6上に第二の絶縁層7が形成されており、第二の絶縁層上7に第一のキャパシタ電極8が形成されており、第一のキャパシタ電極8上の少なくとも一部に第三の絶縁層9が形成されており、第三の絶縁層9上にドレイン電極5と電気的に接続されている上部画素電極10が形成されている。第一のキャパシタ電極8は、平面視において上部画素電極10の少なくとも一部と重なっている。このように、第一のキャパシタ電極8を形成する位置を他の電極が設けられていない第二の絶縁層7上とすることで、第一のキャパシタ電極8を広い面積で形成できる。このため、第一のキャパシタ電極8と上部画素電極10との間で大きな静電容量を生じさせることが可能になる。また、第一のキャパシタ電極8は平面視において少なくとも前記半導体層6に重なるように形成されている。これにより、上部画素電極10に印加される電圧の、半導体層6のバックチャネル部への影響を遮断できるため、有機薄膜トランジスタ100、101、102を大きな駆動電圧で動作させた場合の順方向特性と逆方向特性との変化を抑制することができる。
As shown in FIGS. 1 to 3, in the organic thin film transistors 100, 101, 102, the gate electrode 2 is formed on the substrate 1, and the first insulating layer 3 is formed on the substrate 1 and the gate electrode 2. The source electrode 4, the drain electrode 5, and the semiconductor layer 6 are formed on the first insulating layer 3, and the second insulation is formed on at least a part of the source electrode 4, the drain electrode 5, and the semiconductor layer 6. The layer 7 is formed, the first capacitor electrode 8 is formed on the second insulating layer 7, and the third insulating layer 9 is formed on at least a part of the first capacitor electrode 8 The upper pixel electrode 10 electrically connected to the drain electrode 5 is formed on the third insulating layer 9. The first capacitor electrode 8 overlaps at least a part of the upper pixel electrode 10 in plan view. As described above, the first capacitor electrode 8 can be formed in a large area by setting the position for forming the first capacitor electrode 8 on the second insulating layer 7 on which the other electrode is not provided. Therefore, a large capacitance can be generated between the first capacitor electrode 8 and the upper pixel electrode 10. The first capacitor electrode 8 is formed to overlap at least the semiconductor layer 6 in plan view. Thereby, since the influence of the voltage applied to the upper pixel electrode 10 on the back channel portion of the semiconductor layer 6 can be blocked, forward characteristics in the case where the organic thin film transistors 100, 101, 102 are operated with a large drive voltage It is possible to suppress the change with the reverse direction characteristic.
図1に示すように、有機薄膜トランジスタ100では、ドレイン電極5と上部画素電極10とは、第二の絶縁層7および第三の絶縁層9に形成されたビアホールを介して接続されている。また、図2、図3に示すように、有機薄膜トランジスタ101、102では、ドレイン電極5と上部画素電極10とは、第二の絶縁層7、第一のキャパシタ電極8、および第三の絶縁層9に形成されたビアホールを介して接続されている。そして、図2、図3に示すように、有機薄膜トランジスタ101、102では、第一のキャパシタ電極8は、平面視においてビアホール以外の領域において第二の絶縁層7の上面全体を覆うように形成されている。これにより、第一のキャパシタ電極8をより広い面積で形成できるため、第一のキャパシタ電極8と上部画素電極10との間に生じる静電容量をより大きくすることができる。
As shown in FIG. 1, in the organic thin film transistor 100, the drain electrode 5 and the upper pixel electrode 10 are connected via a via hole formed in the second insulating layer 7 and the third insulating layer 9. Further, as shown in FIGS. 2 and 3, in the organic thin film transistors 101 and 102, the drain electrode 5 and the upper pixel electrode 10 are the second insulating layer 7, the first capacitor electrode 8, and the third insulating layer. It is connected through the via hole formed in 9. As shown in FIGS. 2 and 3, in the organic thin film transistors 101 and 102, the first capacitor electrode 8 is formed to cover the entire upper surface of the second insulating layer 7 in a region other than the via hole in plan view. ing. Thereby, since the first capacitor electrode 8 can be formed in a wider area, the capacitance generated between the first capacitor electrode 8 and the upper pixel electrode 10 can be further increased.
図3に示すように、有機薄膜トランジスタ102は、基板1上に第二のキャパシタ電極11がさらに形成され、第二のキャパシタ電極11は、第一の絶縁層3を挟んで平面視において、ドレイン電極5の少なくとも一部と重なっている。
As shown in FIG. 3, in the organic thin film transistor 102, the second capacitor electrode 11 is further formed on the substrate 1, and the second capacitor electrode 11 is a drain electrode in plan view with the first insulating layer 3 interposed therebetween. It overlaps with at least a part of 5.
図6は、本発明の第1の実施の形態に係るアクティブマトリクスアレイ110の概略平面図である。なお、図6では、第一のキャパシタ電極8の形状を明確にするため、第三の絶縁層9および上部画素電極10の記載は省略する。アクティブマトリクスアレイ110は、有機薄膜トランジスタ100をマトリクス状に配列して形成される。図6に示すように、アクティブマトリクスアレイ110において、各有機薄膜トランジスタ100の第一のキャパシタ電極8は隣接する4つの有機薄膜トランジスタ100の第一のキャパシタ電極8と配線を介して電気的に接続されて形成されている。
FIG. 6 is a schematic plan view of an active matrix array 110 according to the first embodiment of the present invention. In FIG. 6, the description of the third insulating layer 9 and the upper pixel electrode 10 is omitted in order to clarify the shape of the first capacitor electrode 8. The active matrix array 110 is formed by arranging the organic thin film transistors 100 in a matrix. As shown in FIG. 6, in the active matrix array 110, the first capacitor electrode 8 of each organic thin film transistor 100 is electrically connected to the first capacitor electrode 8 of the adjacent four organic thin film transistors 100 via a wire. It is formed.
図7は、本発明の第2の実施の形態および第3の実施の形態に係るアクティブマトリクスアレイ111、112の概略平面図である。なお、図7でも、第一のキャパシタ電極8の形状を明確にするため、第三の絶縁層9および上部画素電極10の記載は省略する。アクティブマトリクスアレイ111、112は、それぞれ有機薄膜トランジスタ101、有機薄膜トランジスタ102をマトリクス状に配列して形成される。上述のように、有機薄膜トランジスタ101、102では、第一のキャパシタ電極8は、平面視においてビアホール以外の領域において第二の絶縁層7を覆うように形成されている。このため、図7に示すように、アクティブマトリクスアレイ111、112において、各有機薄膜トランジスタ101、102の第一のキャパシタ電極8は隣接する全ての有機薄膜トランジスタ100、101の第一のキャパシタ電極8と接することにより電気的に接続されて形成されている。
FIG. 7 is a schematic plan view of active matrix arrays 111 and 112 according to the second and third embodiments of the present invention. Also in FIG. 7, the description of the third insulating layer 9 and the upper pixel electrode 10 is omitted in order to clarify the shape of the first capacitor electrode 8. The active matrix arrays 111 and 112 are formed by arranging the organic thin film transistors 101 and the organic thin film transistors 102 in a matrix. As described above, in the organic thin film transistors 101 and 102, the first capacitor electrode 8 is formed to cover the second insulating layer 7 in a region other than the via hole in a plan view. Therefore, as shown in FIG. 7, in the active matrix arrays 111 and 112, the first capacitor electrodes 8 of the organic thin film transistors 101 and 102 are in contact with the first capacitor electrodes 8 of all the adjacent organic thin film transistors 100 and 101. Are electrically connected.
有機薄膜トランジスタ100、101と有機薄膜トランジスタ102との相違点は、第二のキャパシタ電極11の有無である。図3に示すように、有機薄膜トランジスタ102に第二のキャパシタ電極11を形成することにより、ドレイン電極5と第二のキャパシタ電極11との間に静電容量が生じるため、有機薄膜トランジスタの画素電極の静電容量をさらに大きくすることが可能となる。
The difference between the organic thin film transistors 100 and 101 and the organic thin film transistor 102 is the presence or absence of the second capacitor electrode 11. As shown in FIG. 3, by forming the second capacitor electrode 11 in the organic thin film transistor 102, a capacitance is generated between the drain electrode 5 and the second capacitor electrode 11, so that the pixel electrode of the organic thin film transistor It is possible to further increase the capacitance.
また、有機薄膜トランジスタ100、101、102、またはこれを用いたアクティブマトリクスアレイ110、111、112に、図示しない表示要素と、図示しない対向電極と、図示しない第二の基板とを設けることにより、画像表示装置とすることができる。対向電極および第二の基板は使用する表示要素の種類により、その構造は適宜変更することができる。
Further, by providing display elements (not shown), counter electrodes (not shown), and a second substrate (not shown) in the organic thin film transistors 100, 101, 102 or the active matrix arrays 110, 111, 112 using the same, an image can be obtained. It can be a display device. The structure of the counter electrode and the second substrate can be appropriately changed according to the type of display element used.
以下、有機薄膜トランジスタ100、101、102の各構成要素について、有機薄膜トランジスタ100、101、102の製造工程に沿って説明する。
Hereinafter, each component of the organic thin film transistor 100, 101, 102 will be described along the manufacturing process of the organic thin film transistor 100, 101, 102.
初めに、基板1を準備する。基板1の材料としては、ポリカーボネート、ポリエチレンサルファイド、ポリエーテルスルホン、ポリエチレンテレフタレート、ポリエチレンナフタレート、シクロオレフィンポリマー、トリアセチルセルロース、ポリビニルフルオライドフィルム、エチレン-テトラフルオロエチレン共重合樹脂、耐候性ポリエチレンテレフタレート、耐候性ポリプロピレン、ガラス繊維強化アクリル樹脂フィルム、ガラス繊維強化ポリカーボネート、ポリイミド、フッ素系樹脂、環状ポリオレフィン系樹脂、ガラス、石英ガラスなどを使用することができるが、これらに限定されるものではない。これらは単独で使用してもよいが、2種以上を積層した複合の基板1として使用することもできる。
First, the substrate 1 is prepared. The material of the substrate 1 is polycarbonate, polyethylene sulfide, polyether sulfone, polyethylene terephthalate, polyethylene naphthalate, cycloolefin polymer, triacetyl cellulose, polyvinyl fluoride film, ethylene-tetrafluoroethylene copolymer resin, weather resistant polyethylene terephthalate, Although weather resistant polypropylene, glass fiber reinforced acrylic resin film, glass fiber reinforced polycarbonate, polyimide, fluorocarbon resin, cyclic polyolefin resin, glass, quartz glass and the like can be used, it is not limited thereto. These may be used alone, but can also be used as a composite substrate 1 in which two or more kinds are stacked.
基板1が有機物フィルムである場合は、有機薄膜トランジスタ100、101、102の耐久性を向上させるために透明のガスバリア層(図示せず)を形成することもできる。ガスバリア層の材料としては酸化アルミニウム(Al2O3)、酸化珪素(SiO)、窒化珪素(SiN)、酸化窒化珪素(SiON)、炭化珪素(SiC)およびダイヤモンドライクカーボン(DLC)などが挙げられるがこれらに限定されるものではない。また、これらのガスバリア層は2層以上積層して使用することもできる。ガスバリア層は有機物フィルムを用いた基板1の片面だけに形成してもよいし、両面に形成しても構わない。ガスバリア層は真空蒸着法、イオンプレーティング法、スパッタリング法、レーザーアブレーション法、プラズマCVD(Chemical Vapor Deposition)法、ホットワイヤーCVD法およびゾル-ゲル法などを用いて形成することができるが本発明ではこれらに限定されるものではない。
When the substrate 1 is an organic film, a transparent gas barrier layer (not shown) can also be formed to improve the durability of the organic thin film transistors 100, 101, 102. Materials for the gas barrier layer include aluminum oxide (Al 2 O 3 ), silicon oxide (SiO), silicon nitride (SiN), silicon oxynitride (SiON), silicon carbide (SiC), diamond like carbon (DLC), etc. Is not limited to these. In addition, these gas barrier layers can be used by laminating two or more layers. The gas barrier layer may be formed only on one side of the substrate 1 using the organic film, or may be formed on both sides. The gas barrier layer can be formed by vacuum deposition, ion plating, sputtering, laser ablation, plasma CVD (Chemical Vapor Deposition), hot wire CVD, sol-gel, etc. In the present invention, however, It is not limited to these.
また、基板1上に接して形成されるゲート電極2および第一の絶縁層3と基板1との密着性を向上させるために密着層を設けることもできるし、基板1の表面に表面処理などを施しても良い。
Also, an adhesion layer can be provided to improve adhesion between the substrate 1 and the gate electrode 2 and the first insulating layer 3 formed in contact with the substrate 1, or the surface treatment of the surface of the substrate 1, etc. You may
次に、基板1上に、ゲート電極2を形成する。ゲート電極2、ソース電極4、ドレイン電極5、第一のキャパシタ電極8、および第二のキャパシタ電極11は、電極部分と配線部分とが明確に分かれている必要はなく、以下では特に各有機薄膜トランジスタ100、101の構成要素として電極と呼称している。
Next, the gate electrode 2 is formed on the substrate 1. The gate electrode 2, the source electrode 4, the drain electrode 5, the first capacitor electrode 8, and the second capacitor electrode 11 do not have to be clearly divided into an electrode portion and a wiring portion. As a component of 100 and 101, it is called an electrode.
ゲート電極2には、アルミニウム(Al)、銅(Cu)、モリブデン(Mo)、銀(Ag)、クロム(Cr)、チタン(Ti)、金(Au)、白金(Pt)、タングステン(W)、マンガン(Mn)、ニオブ(Nb)、タンタル(Ta)などの金属材料や、酸化インジウム(InO)、酸化スズ(SnO)、酸化亜鉛(ZnO)、酸化インジウムスズ(ITO)、酸化インジウム亜鉛(IZO)などの導電性金属酸化物材料を用いることができるが、これらに限定されるものではない。これらの材料は単層で用いても構わないし、積層および合金として用いても構わない。
For the gate electrode 2, aluminum (Al), copper (Cu), molybdenum (Mo), silver (Ag), chromium (Cr), titanium (Ti), gold (Au), platinum (Pt), tungsten (W) , Metal materials such as manganese (Mn), niobium (Nb), tantalum (Ta), indium oxide (InO), tin oxide (SnO), zinc oxide (ZnO), indium tin oxide (ITO), indium zinc oxide (indium oxide Conductive metal oxide materials such as IZO) can be used, but are not limited thereto. These materials may be used as a single layer, or may be used as a laminate and an alloy.
ゲート電極2の形成には、真空蒸着法、スパッタ法などの真空成膜法や、導電性材料の前駆体などを使用するゾル-ゲル法やナノ粒子を使用する方法、それらをインク化して、スクリーン印刷、凸版印刷、インクジェット法などのウェット成膜法で形成する方法などが使用できるが、これらに限定されず、公知一般の方法を用いることができる。パターニングは、例えばフォトリソグラフィ法を用いてパターン形成部分をレジストなどにより保護し、エッチングによって不要部分を除去して行うこともできるし、印刷法などを用いて直接パターニングすることもできるが、これについてもこれらの方法に限定されず、公知一般のパターニング方法を用いることができる。
The gate electrode 2 can be formed by a vacuum deposition method such as a vacuum evaporation method or a sputtering method, a sol-gel method using a precursor of a conductive material, a method using nanoparticles, or the like, and Although the method of forming by wet film-forming methods, such as screen printing, a letterpress printing, an inkjet method, etc. can be used, it is not limited to these, A well-known general method can be used. The patterning can be performed, for example, by using a photolithographic method to protect the pattern-formed portion with a resist or the like, removing unnecessary portions by etching, or directly patterning using a printing method or the like. Also, the present invention is not limited to these methods, and publicly known general patterning methods can be used.
さらに、有機薄膜トランジスタ102では、上述のように、有機薄膜トランジスタのキャパシタ容量を大きくするために、第二のキャパシタ電極11を基板1上に設ける。第二のキャパシタ電極11は、ゲート電極2と同様の材料および方法によって形成することができるが、別の材料および方法などを用いて形成しても良い。
Furthermore, in the organic thin film transistor 102, as described above, the second capacitor electrode 11 is provided on the substrate 1 in order to increase the capacitance of the organic thin film transistor. The second capacitor electrode 11 can be formed by the same material and method as the gate electrode 2, but may be formed using another material and method or the like.
次に、第一の絶縁層3を形成する。第一の絶縁層3は、ゲート電極2、ソース電極4、およびドレイン電極5などの電極との間を電気的に絶縁するために、少なくともゲート電極2上に設けられるが、ゲート電極2の外部およびその他の電極との接続に使用される配線部やパッド部を除いて基板1全面に設けても良い。
Next, the first insulating layer 3 is formed. The first insulating layer 3 is provided at least on the gate electrode 2 in order to electrically insulate between the electrodes such as the gate electrode 2, the source electrode 4, and the drain electrode 5, but the outside of the gate electrode 2 It may be provided on the entire surface of the substrate 1 except for the wiring portion and the pad portion used for connection with the other electrodes.
第一の絶縁層3には、酸化珪素(SiOx)、酸化アルミニウム(AlOx)、酸化タンタル(TaOx)、酸化イットリウム(YOx)、酸化ジルコニウム(ZrOx)、酸化ハフニウム(HfOx)などの酸化物系絶縁材料や窒化珪素(SiNx)、酸化窒化珪素(SiON)や、ポリメチルメタクリレート(PMMA)等のポリアクリレート、ポリビニルアルコール(PVA)、ポリビニルフェノール(PVP)などの有機系絶縁材料などを使用することができるが、これらに限定されるものではない。これらは単層または2層以上積層してもよいし、無機系-有機系のハイブリッド薄膜としても良いし、成長方向に向けて組成を傾斜したものでも構わない。
In the first insulating layer 3, oxide-based insulation such as silicon oxide (SiOx), aluminum oxide (AlOx), tantalum oxide (TaOx), yttrium oxide (YOx), zirconium oxide (ZrOx), hafnium oxide (HfOx), etc. Use of materials and organic insulating materials such as silicon nitride (SiNx), silicon oxynitride (SiON), polyacrylates such as polymethyl methacrylate (PMMA), polyvinyl alcohol (PVA), polyvinyl phenol (PVP), etc. Although it can be done, it is not limited to these. A single layer or two or more layers may be laminated, or an inorganic-organic hybrid thin film may be used, or the composition may be inclined in the growth direction.
第一の絶縁層3は、有機薄膜トランジスタ100、101、102におけるリーク電流を抑えるために、その抵抗率が1011Ωcm以上、より好ましくは1014Ωcm以上であることが望ましい。
The first insulating layer 3 preferably has a resistivity of 10 11 Ωcm or more, more preferably 10 14 Ωcm or more, in order to suppress the leakage current in the organic thin film transistors 100, 101, 102.
次に、ソース電極4およびドレイン電極5を形成する。ソース電極4およびドレイン電極5は、離間して形成されており、ソース電極4とドレイン電極5とをそれぞれ別の工程および別の材料で形成しても良いが、第一の絶縁層3上に同層に形成される場合には、ソース電極4およびドレイン電極5を同時に形成することが好ましい。
Next, the source electrode 4 and the drain electrode 5 are formed. The source electrode 4 and the drain electrode 5 are formed separately from each other, and the source electrode 4 and the drain electrode 5 may be formed of different processes and different materials, respectively, but on the first insulating layer 3 When forming in the same layer, it is preferable to form the source electrode 4 and the drain electrode 5 simultaneously.
ソース電極4およびドレイン電極5は、ゲート電極2と同様の導電性材料を用いることができる。また、それらは積層して用いてもよいし、合金などとして用いることもできる。
The same conductive material as the gate electrode 2 can be used for the source electrode 4 and the drain electrode 5. In addition, they may be laminated and used, or may be used as an alloy or the like.
ソース電極4およびドレイン電極5の形成には、真空蒸着法、スパッタ法などの真空成膜法や、導電性材料の前駆体などを使用するゾル-ゲル法やナノ粒子を使用する方法、それらをインク化して、スクリーン印刷、凸版印刷、インクジェット法などのウェット成膜法で形成する方法などが使用できるが、これらに限定されず、公知一般の方法を用いることができる。パターニングは、例えばフォトリソグラフィ法を用いてパターン形成部分をレジストなどにより保護し、エッチングによって不要部分を除去して行うこともできるし、印刷法などを用いて直接パターニングすることもできるが、これについてもこれらの方法に限定されず、公知一般のパターニング方法を用いることができる。
The source electrode 4 and the drain electrode 5 can be formed by a vacuum deposition method such as vacuum evaporation or sputtering, a sol-gel method using a precursor of a conductive material, a method using nanoparticles, or the like. A method of forming an ink and forming it by a wet film forming method such as screen printing, letterpress printing, an inkjet method, etc. can be used, but it is not limited thereto, and publicly known general methods can be used. The patterning can be performed, for example, by using a photolithographic method to protect the pattern-formed portion with a resist or the like, removing unnecessary portions by etching, or directly patterning using a printing method or the like. Also, the present invention is not limited to these methods, and publicly known general patterning methods can be used.
ソース電極4およびドレイン電極5については、半導体層6よりもソース電極4およびドレイン電極5を先に形成するボトムコンタクト構造としても良いし、半導体層6の形成後に、ソース電極4およびドレイン電極5を形成するトップコンタクト構造としても良い。
The source electrode 4 and the drain electrode 5 may have a bottom contact structure in which the source electrode 4 and the drain electrode 5 are formed earlier than the semiconductor layer 6. After forming the semiconductor layer 6, the source electrode 4 and the drain electrode 5 may be used. It may be a top contact structure to be formed.
また、ボトムコンタクト構造を適用する場合においては、ソース電極4およびドレイン電極5は、半導体層6との電気的接続における接触抵抗を低下させるために、表面処理などを用いることができる。具体的には、ソース電極4およびドレイン電極5表面に自己組織化単分子膜(SAM:Self-Assembled-Monolayer)のような分子膜を形成することにより、電極表面の仕事関数を変化させることが可能である。
In addition, in the case of applying the bottom contact structure, the source electrode 4 and the drain electrode 5 can use surface treatment or the like to reduce the contact resistance in the electrical connection with the semiconductor layer 6. Specifically, changing the work function of the electrode surface by forming a molecular film such as a self-assembled monolayer (SAM: Self-Assembled-Monolayer) on the surfaces of the source electrode 4 and the drain electrode 5 It is possible.
次に、ソース電極4およびドレイン電極5を接続するように、ソース電極4とドレイン電極5との間に半導体層6が形成される。ソース電極4およびドレイン電極5を半導体層6で接続し、有機薄膜トランジスタとして機能する半導体層6の領域をチャンネル領域と呼称することが一般的であり、本発明においてもこのような名称を使用することがある。
Next, the semiconductor layer 6 is formed between the source electrode 4 and the drain electrode 5 so as to connect the source electrode 4 and the drain electrode 5. In general, the source electrode 4 and the drain electrode 5 are connected by the semiconductor layer 6 and a region of the semiconductor layer 6 functioning as an organic thin film transistor is generally referred to as a channel region, and such a name is also used in the present invention. There is.
半導体層6には、ペンタセンのような低分子有機半導体材料、およびそれらの誘導体や、ポリチオフェン、ポリアリルアミン、フルオレンビチオフェン共重合体のような高分子有機半導体材料、およびそれらの誘導体などを用いることがきるが、これらに限定されるものではない。
For the semiconductor layer 6, use is made of low molecular weight organic semiconductor materials such as pentacene and derivatives thereof, high molecular organic semiconductor materials such as polythiophene, polyallylamine and fluorene bithiophene copolymer, and derivatives thereof Although it is possible, it is not limited to these.
半導体層6は、有機半導体材料を溶解または分散させた溶液をインクとして用いる凸版印刷、スクリーン印刷、インクジェット、ノズルプリンティングなどのウェット成膜方法で形成することもできるし、有機半導体材料の粉末や結晶を真空状態で蒸着する方法などで形成することもできる。半導体層6の形成方法は、これらに限定されるものではなく、公知一般の方法を使用することも可能である。ウェット成膜(印刷)を行った場合、半導体層6を形成するために乾燥、焼成を行うことがある。本願では、乾燥を含めて焼成と言うことがある。
The semiconductor layer 6 can also be formed by a wet film forming method such as letterpress printing, screen printing, inkjet, nozzle printing, etc. using a solution in which an organic semiconductor material is dissolved or dispersed as an ink, or a powder or crystal of an organic semiconductor material Can be formed by vapor deposition in a vacuum state. The formation method of the semiconductor layer 6 is not limited to these, It is also possible to use a well-known general method. When wet film formation (printing) is performed, drying and baking may be performed to form the semiconductor layer 6. In the present application, it may be referred to as firing including drying.
また、本発明の実施の形態には図示していないが、半導体層6上には、半導体層6を保護するための保護層を設けることもできる。
Although not shown in the embodiment of the present invention, a protective layer for protecting the semiconductor layer 6 may be provided on the semiconductor layer 6.
次に、少なくとも半導体層6のチャネル領域を覆うように第二の絶縁層7を形成する。第二の絶縁層7は、有機薄膜トランジスタ100、101、102における各電極の絶縁性の確保のため、チャネル領域以外にもソース電極4とその配線およびドレイン電極5などの電極上の外部や他の電極との接続部を除く、第一の絶縁層3全面に形成することもできるし、適宜形成する領域を調整することができる。
Next, the second insulating layer 7 is formed to cover at least the channel region of the semiconductor layer 6. The second insulating layer 7 is used to secure the insulation of each electrode in the organic thin film transistors 100, 101, 102, and also outside the channel region and the outside of the source electrode 4 and its electrodes such as wiring and drain electrode 5 and others. It can also be formed on the entire surface of the first insulating layer 3 except for the connection portion with the electrode, and the region to be formed can be appropriately adjusted.
第二の絶縁層7には、酸化珪素(SiOx)、酸化アルミニウム(AlOx)、酸化タンタル(TaOx)、酸化イットリウム(YOx)、酸化ジルコニウム(ZrOx)、酸化ハフニウム(HfOx)などの酸化物系絶縁材料や窒化珪素(SiNx)、酸化窒化珪素(SiON)や、ポリメチルメタクリレート(PMMA)等のポリアクリレート、ポリビニルアルコール(PVA)、ポリビニルフェノール(PVP)、フッ素樹脂などの有機系絶縁材料などを使用することができるが、これらに限定されるものではない。これらは単層または2層以上積層してもよいし、無機系-有機系のハイブリッド薄膜としても良いし、成長方向に向けて組成を傾斜したものでも構わない。
In the second insulating layer 7, oxide-based insulation such as silicon oxide (SiOx), aluminum oxide (AlOx), tantalum oxide (TaOx), yttrium oxide (YOx), zirconium oxide (ZrOx), hafnium oxide (HfOx), etc. Uses materials and organic insulating materials such as silicon nitride (SiNx), silicon oxynitride (SiON), polyacrylates such as polymethyl methacrylate (PMMA), polyvinyl alcohol (PVA), polyvinyl phenol (PVP), and fluorine resin Although it can do, it is not limited to these. A single layer or two or more layers may be laminated, or an inorganic-organic hybrid thin film may be used, or the composition may be inclined in the growth direction.
第二の絶縁層7は、有機薄膜トランジスタ100、101、102におけるリーク電流を抑えるために、その抵抗率が1011Ωcm以上、より好ましくは1014Ωcm以上であることが望ましい。
The second insulating layer 7 desirably has a resistivity of 10 11 Ωcm or more, more preferably 10 14 Ωcm or more, in order to suppress the leak current in the organic thin film transistors 100, 101, 102.
第二の絶縁層7の膜厚は、第一の絶縁層3および第三の絶縁層9よりも厚い膜厚で形成されることが好ましい。第一のキャパシタ電極8は上部画素電極10に印加される電圧の、半導体層6のバックチャネル部への影響を遮断する効果を有するものであり、本発明の有機薄膜トランジスタ100、101、102においては、第一の絶縁層3を介してゲート電極2に印加される電圧により半導体層6に流れる電流を制御するが、第二の絶縁層7の膜厚が第一の絶縁層3よりも薄い膜厚で形成された場合、半導体層6と第一のキャパシタ電極8の間に生じる静電容量が、ゲート電極2と半導体層6の間に生じる静電容量より大きくなる可能性があり、第一のキャパシタ電極8に印加される電圧によっては、それが半導体層6のバックチャネル部に作用し、有機薄膜トランジスタ100、101、102の素子特性が変化してしまう可能性がある。したがって、半導体層6の導電性をゲート電極2の電圧で確実に制御するためには、第二の絶縁層7の膜厚を第一の絶縁層3よりも厚い膜厚で形成することが好ましい。
The thickness of the second insulating layer 7 is preferably larger than that of the first insulating layer 3 and the third insulating layer 9. The first capacitor electrode 8 has an effect of blocking the influence of the voltage applied to the upper pixel electrode 10 on the back channel portion of the semiconductor layer 6, and in the organic thin film transistors 100, 101, 102 of the present invention, The current applied to the semiconductor layer 6 is controlled by the voltage applied to the gate electrode 2 through the first insulating layer 3, but the film thickness of the second insulating layer 7 is thinner than that of the first insulating layer 3. When formed in a thick thickness, the capacitance generated between the semiconductor layer 6 and the first capacitor electrode 8 may be larger than the capacitance generated between the gate electrode 2 and the semiconductor layer 6, Depending on the voltage applied to the capacitor electrode 8 of the above, it may act on the back channel portion of the semiconductor layer 6, and the device characteristics of the organic thin film transistors 100, 101, 102 may be changed. Therefore, in order to control the conductivity of the semiconductor layer 6 reliably by the voltage of the gate electrode 2, it is preferable to form the second insulating layer 7 with a thickness larger than that of the first insulating layer 3. .
第二の絶縁層7の比誘電率について、比誘電率の小さい材料を選択することにより、第一のキャパシタ電極8に印加される電圧が半導体層6のバックチャネル部に与える影響をより小さくすることが可能である。一般的に、絶縁材料の比誘電率が小さいほうが、その絶縁層に蓄えられる静電容量は小さくなるため、第一のキャパシタ電極8と半導体層6の間に生じる静電容量を小さくし、半導体層6への影響を低減するためには、第二の絶縁層7の比誘電率は、5以下、さらに好ましくは、4以下であることが好ましい。
By selecting a material having a small relative dielectric constant with respect to the relative dielectric constant of the second insulating layer 7, the influence of the voltage applied to the first capacitor electrode 8 on the back channel portion of the semiconductor layer 6 is further reduced. It is possible. Generally, the smaller the relative dielectric constant of the insulating material is, the smaller the capacitance stored in the insulating layer is. Therefore, the capacitance generated between the first capacitor electrode 8 and the semiconductor layer 6 is reduced, and thus the semiconductor In order to reduce the influence on the layer 6, the relative dielectric constant of the second insulating layer 7 is preferably 5 or less, more preferably 4 or less.
また、本発明の有機薄膜トランジスタ100、101、102を用いる画像表示装置においては、安定的な駆動を実現するのに十分な補助容量を有することが好ましく、本発明の薄膜トランジスタ100、101、102の構造においては、第一のキャパシタ電極8とドレイン電極5および上部画素電極10との間に生じる静電容量を補助容量として用いることとなる。しかしながら、前記の理由により第2の絶縁層7の膜厚は、有機薄膜トランジスタ100、101、102の素子特性を安定させるという面から考慮すると、膜厚が厚い方が好ましく、その結果、第一のキャパシタ電極8とドレイン電極5の間に生じる静電容量は低下することとなる。したがって、十分な補助容量を確保するためには、第一のキャパシタ電極8と上部画素電極10の間で生じる静電容量を大きくする必要があるため、第三の絶縁層9の膜厚を第二の絶縁層7の膜厚と比べてより薄くすることが好ましい。
Further, in the image display device using the organic thin film transistor 100, 101, 102 of the present invention, it is preferable to have an auxiliary capacitance sufficient to realize stable driving, and the structure of the thin film transistor 100, 101, 102 of the present invention In the above, the capacitance generated between the first capacitor electrode 8 and the drain electrode 5 and the upper pixel electrode 10 is used as a storage capacitance. However, from the viewpoint of stabilizing the element characteristics of the organic thin film transistors 100, 101 and 102, the film thickness of the second insulating layer 7 is preferably larger for the reasons described above. The capacitance generated between the capacitor electrode 8 and the drain electrode 5 is reduced. Therefore, in order to secure sufficient storage capacitance, it is necessary to increase the capacitance generated between the first capacitor electrode 8 and the upper pixel electrode 10, so It is preferable to make it thinner than the thickness of the second insulating layer 7.
第二の絶縁層7の形成方法は、真空蒸着法、スパッタ法などの真空成膜法や、金属錯体などを前駆体として使用するゾル-ゲル法やナノ粒子などを分散したインクをスリットコート、スピンコート、スクリーン印刷、凸版印刷、インクジェットなどのウェット成膜法で形成する方法などが使用できるが、これらに限定されず、公知一般の方法を用いることができる。
The second insulating layer 7 may be formed by a vacuum deposition method such as a vacuum evaporation method or a sputtering method, a sol-gel method using a metal complex as a precursor, or a slit coat of an ink in which nanoparticles or the like are dispersed. Although a method of forming by a wet film forming method such as spin coating, screen printing, letterpress printing, ink jet, etc. can be used, it is not limited to these, and publicly known general methods can be used.
次に、第二の絶縁層7上の、平面視において少なくともチャネル領域と重なる領域に第一のキャパシタ電極8を形成する。第一のキャパシタ電極8は、先に示したゲート電極2、ソース電極4およびドレイン電極5と同様の材料および方法によって形成することができる。
Next, the first capacitor electrode 8 is formed on the second insulating layer 7 in a region overlapping at least the channel region in plan view. The first capacitor electrode 8 can be formed by the same material and method as the gate electrode 2, the source electrode 4 and the drain electrode 5 described above.
第一のキャパシタ電極8は、有機薄膜トランジスタ100、101、102の上部画素電極10に印加される電圧が半導体6のチャネル領域に与える影響を遮断する目的で、平面視において少なくとも半導体層6に重なることにより、第一のキャパシタ電極8の少なくとも一部によって、チャネル領域が覆われるように形成される。
The first capacitor electrode 8 overlaps at least the semiconductor layer 6 in plan view for the purpose of blocking the influence of the voltage applied to the upper pixel electrodes 10 of the organic thin film transistors 100, 101, 102 on the channel region of the semiconductor 6. Thus, at least a part of the first capacitor electrode 8 is formed to cover the channel region.
第一のキャパシタ電極8は、当該有機薄膜トランジスタ100、101、102を配列してアクティブマトリクスアレイ110、111、112を形成する際には、ゲート電極2やソース電極4と同様に配線などによって隣接する有機薄膜トランジスタ100、101、102の第一のキャパシタ電極8と接続される。特に本発明においては、第一のキャパシタ電極8は周囲の隣接した4つ以上の有機薄膜トランジスタの第一のキャパシタ電極8と接続されることが好ましく、さらに好ましくは、周囲の隣接する全ての有機薄膜トランジスタの第一のキャパシタ電極8同士が接続される。第一のキャパシタ電極8同士の接続は、特に配線部や電極部などに分かれている必要はなく、有機薄膜トランジスタの構造に合わせて適宜その形状は調整することができる。
When forming the active matrix arrays 110, 111, 112 by arranging the organic thin film transistors 100, 101, 102, the first capacitor electrode 8 is adjacent to the gate electrode 2 or the source electrode 4 by wiring or the like. It is connected to the first capacitor electrode 8 of the organic thin film transistor 100, 101, 102. In the present invention, in particular, the first capacitor electrode 8 is preferably connected to the first capacitor electrode 8 of the surrounding adjacent four or more organic thin film transistors, and more preferably, all adjacent surrounding organic thin film transistors The first capacitor electrodes 8 are connected to each other. The connection between the first capacitor electrodes 8 is not particularly required to be divided into the wiring portion, the electrode portion, and the like, and the shape can be appropriately adjusted in accordance with the structure of the organic thin film transistor.
このようにして周囲の隣接する有機薄膜トランジスタ100、101、102の第一のキャパシタ電極8同士を接続することにより、第一のキャパシタ電極8を作製する際に一部の第一のキャパシタ電極8のパターンに不良が生じた場合においても、アクティブマトリクスアレイ110、111、112において断線することなく、第一のキャパシタ電極8同士の接続が確保される。
By thus connecting the first capacitor electrodes 8 of the adjacent adjacent organic thin film transistors 100, 101, 102 to one another, the first capacitor electrodes 8 can be made of some of the first capacitor electrodes 8 Even when a defect occurs in the pattern, the connection between the first capacitor electrodes 8 is secured without disconnection in the active matrix arrays 110, 111, 112.
また、上述のようにアクティブマトリクスアレイ110では、第一のキャパシタ電極8は隣接する4つの有機薄膜トランジスタ100の第一のキャパシタ電極8と配線を介して電気的に接続されている。このように形成された各有機薄膜トランジスタ100は4つの配線のうちの少なくとも1箇所が接続されていれば有機薄膜トランジスタとして動作することができる。したがって、アクティブマトリクスアレイ110は第一のキャパシタ電極8間の配線が断線することによる有機薄膜トランジスタの動作不良を抑制することができる。
Further, as described above, in the active matrix array 110, the first capacitor electrodes 8 are electrically connected to the first capacitor electrodes 8 of the adjacent four organic thin film transistors 100 via the wirings. Each organic thin film transistor 100 formed in this manner can operate as an organic thin film transistor if at least one of four wirings is connected. Therefore, the active matrix array 110 can suppress the operation failure of the organic thin film transistor due to the disconnection of the wiring between the first capacitor electrodes 8.
したがって、このような構成にすることで、第二の絶縁層7にフッ素系樹脂のような密着性の低い材料を用いた場合においても、上記のような理由から第一のキャパシタ電極8の断線を防止するか、有機薄膜トランジスタの動作不良を抑制することが可能となる。特に印刷法のような手法では、上記のように第一のキャパシタ電極8を形成することにより、顕著な効果が得られる。
Therefore, even if the second insulating layer 7 is made of such a material, even when a material with low adhesion such as fluorine resin is used for the second insulating layer 7, the first capacitor electrode 8 is broken for the reasons as described above. It is possible to prevent the operation failure of the organic thin film transistor. In particular, in a method such as printing, remarkable effects can be obtained by forming the first capacitor electrode 8 as described above.
第一のキャパシタ電極8は、上部画素電極10に印加される電圧の影響をより効率的に遮断するため、および上部画素電極10との間により大きな静電容量を生じるように、その面積が基板1の面積の85%以上になるよう形成されることが好ましい。
The first capacitor electrode 8 has an area of the substrate in order to more efficiently block the influence of the voltage applied to the upper pixel electrode 10 and to generate a larger capacitance with the upper pixel electrode 10. Preferably, it is formed to be 85% or more of the area of 1.
次に、少なくとも第一のキャパシタ電極8の上に、第三の絶縁層9を形成する。第三の絶縁層9は、有機薄膜トランジスタ100、101、102における第一のキャパシタ電極8と上部画素電極10との間の絶縁性の確保のために設けられるが、第一のキャパシタ電極8上以外にも外部や他の電極との接続部を除く、第二の絶縁層7上に形成することもできるし、適宜形成する領域を調整することができる。
Next, the third insulating layer 9 is formed on at least the first capacitor electrode 8. The third insulating layer 9 is provided for securing the insulation between the first capacitor electrode 8 and the upper pixel electrode 10 in the organic thin film transistors 100, 101, 102, but other than on the first capacitor electrode 8. Also, the second insulating layer 7 can be formed on the second insulating layer 7 except for the connection portions with the outside and other electrodes, and the region to be formed can be appropriately adjusted.
第三の絶縁層9には、酸化珪素(SiOx)、酸化アルミニウム(AlOx)、酸化タンタル(TaOx)、酸化イットリウム(YOx)、酸化ジルコニウム(ZrOx)、酸化ハフニウム(HfOx)などの酸化物系絶縁材料や窒化珪素(SiNx)、酸化窒化珪素(SiON)や、ポリメチルメタクリレート(PMMA)等のポリアクリレート、ポリビニルアルコール(PVA)、ポリビニルフェノール(PVP)、フッ素樹脂などの有機系絶縁材料などを使用することができるが、これらに限定されるものではない。これらは単層または2層以上積層してもよいし、無機系-有機系のハイブリッド薄膜としても良いし、成長方向に向けて組成を傾斜したものでも構わない。
The third insulating layer 9 may be an oxide insulating material such as silicon oxide (SiOx), aluminum oxide (AlOx), tantalum oxide (TaOx), yttrium oxide (YOx), zirconium oxide (ZrOx) or hafnium oxide (HfOx). Uses materials and organic insulating materials such as silicon nitride (SiNx), silicon oxynitride (SiON), polyacrylates such as polymethyl methacrylate (PMMA), polyvinyl alcohol (PVA), polyvinyl phenol (PVP), and fluorine resin Although it can do, it is not limited to these. A single layer or two or more layers may be laminated, or an inorganic-organic hybrid thin film may be used, or the composition may be inclined in the growth direction.
第三の絶縁層9の形成方法は、真空蒸着法、スパッタ法などの真空成膜法や、金属錯体などを前駆体として使用するゾル-ゲル法やナノ粒子を分散したインクをスリットコート、スピンコート、スクリーン印刷、凸版印刷、インクジェットなどのウェット成膜法で形成する方法などが使用できるが、これらに限定されず、公知一般の方法を用いることができる。
The third insulating layer 9 may be formed by a vacuum deposition method such as a vacuum evaporation method or a sputtering method, a sol-gel method using a metal complex as a precursor, a slit coating of ink in which nanoparticles are dispersed, spin Although the method of forming by wet film-forming methods, such as a coat, screen printing, relief printing, an inkjet, etc. can be used, it is not limited to these, A well-known general method can be used.
第三の絶縁層9は、第一のキャパシタ電極8および上部画素電極10の間に形成され、第一のキャパシタ電極8および上部画素電極10が、平面視において重なった領域において静電容量を生じさせる目的で形成されている。一般的に、絶縁層の材料として、比誘電率の大きな材料を用いることで、同一膜厚においても、より大きな静電容量を得ることが可能となる。また、前述のとおり、第二の絶縁層7については、半導体層6に影響する電圧の影響を考慮すると、第二の絶縁層7の比誘電率は小さい方が好ましいため、第三の絶縁層9の比誘電率は、第二の絶縁層7の比誘電率より大きい方が好ましい。その比誘電率は、3.0以上、好ましくは5以上、さらに好ましくは、20以上であることが好ましいが、これらに限定されるものではない。さらに、第三の絶縁層9の膜厚は、第一のキャパシタ電極8と上部画素電極10の間により大きな静電容量を生じるために、第一の絶縁層3及び第二の絶縁層7の膜厚よりも薄い方が好ましいが、第三の絶縁層9の絶縁性、有機薄膜トランジスタ100、101、102としての信頼性および作製工程の難易度などを考慮して、適宜調整することができる。
The third insulating layer 9 is formed between the first capacitor electrode 8 and the upper pixel electrode 10, and capacitance occurs in a region where the first capacitor electrode 8 and the upper pixel electrode 10 overlap in a plan view. It is formed for the purpose of In general, by using a material having a large relative dielectric constant as the material of the insulating layer, it is possible to obtain a larger capacitance even with the same film thickness. Further, as described above, in view of the influence of the voltage affecting the semiconductor layer 6 in the second insulating layer 7, it is preferable that the relative dielectric constant of the second insulating layer 7 is small, so that the third insulating layer 7 is preferable. The relative dielectric constant of 9 is preferably larger than that of the second insulating layer 7. The relative dielectric constant is preferably 3.0 or more, preferably 5 or more, and more preferably 20 or more, but is not limited thereto. Furthermore, the film thickness of the third insulating layer 9 is larger than that of the first insulating layer 3 and the second insulating layer 7 in order to generate a larger capacitance between the first capacitor electrode 8 and the upper pixel electrode 10. The thickness is preferably smaller than the film thickness, but the thickness can be appropriately adjusted in consideration of the insulating property of the third insulating layer 9, the reliability as the organic thin film transistors 100, 101, 102, the degree of difficulty of the manufacturing process, and the like.
次に、画像表示装置の開口率を向上させることと、先に述べた第一のキャパシタ電極8と第三の絶縁層9と共に、静電容量を生じさせる目的で、第三の絶縁層9の上にドレイン電極5と電気的に接続された上部画素電極10が形成される。
Next, to improve the aperture ratio of the image display device and to generate capacitance with the first capacitor electrode 8 and the third insulating layer 9 described above, the third insulating layer 9 is An upper pixel electrode 10 electrically connected to the drain electrode 5 is formed thereon.
上部画素電極10と第一のキャパシタ電極8の重なり面積は、すなわち画像表示装置の補助容量として機能するキャパシタ面積であり、重なり面積が大きいほど、大きなキャパシタ容量を有し、画素電圧の電圧保持率を高く保つことが可能となる。一方、上部画素電極10と第一のキャパシタ電極8の重なり面積が小さく、キャパシタ容量が小さい場合は、電圧保持率が小さいため、本発明の有機薄膜トランジスタ100、101、102を画像表示装置とした際に、上部画素電極によって表示要素に印加される画素電圧が選択時間中に減衰し、画素電圧が低下した分だけ画像表示要素に印加される電圧が低下するため、その書き換え効率は低下し、表示品位が低下する。また、表示品位を保つためには書き換え回数を増やすという対策が可能ではあるが、画像書き換え回数の増加は、結果として、画像切り替え速度の低下や駆動時間の増加による消費電力の増大を招くこととなる。本発明の上部画素電極10は、第一のキャパシタ電極8との平面視における重なり面積が、50%以上であれば、画像表示装置としての使用は可能な範囲ではあるが、より大きな補助容量を有し、画像表示装置としての表示品位を保ちつつ、より安定的に駆動させるためには、上部画素電極10と第一のキャパシタ電極8の重なり面積は、80%以上、さらに好ましくは85%以上となるように形成されることが好ましい。
The overlapping area of the upper pixel electrode 10 and the first capacitor electrode 8 is a capacitor area functioning as a storage capacitor of the image display device, and the larger the overlapping area, the larger the capacitor capacity, and the voltage holding ratio of the pixel voltage Can be kept high. On the other hand, when the overlapping area of the upper pixel electrode 10 and the first capacitor electrode 8 is small and the capacitance of the capacitor is small, the voltage holding ratio is small. Therefore, when the organic thin film transistors 100, 101 and 102 of the present invention are used as an image display device Since the pixel voltage applied to the display element by the upper pixel electrode is attenuated during the selection time, and the voltage applied to the image display element is reduced by the amount of reduction in the pixel voltage, the rewriting efficiency is reduced. The quality is reduced. Although it is possible to take measures to increase the number of rewrites in order to maintain display quality, an increase in the number of image rewrites results in an increase in power consumption due to a decrease in image switching speed and an increase in drive time. Become. In the upper pixel electrode 10 of the present invention, when the overlapping area with the first capacitor electrode 8 in a plan view is 50% or more, the use as an image display device is possible but a larger storage capacitance In order to drive more stably while maintaining the display quality as an image display device, the overlapping area of the upper pixel electrode 10 and the first capacitor electrode 8 is 80% or more, preferably 85% or more. It is preferable to form so that
上部画素電極10は、先に示したゲート電極2、ソース電極4、ドレイン電極5および第一のキャパシタ電極8と同様の材料および方法によって形成することができるが、これらに限定されず、公知一般の方法を用いることができる。
The upper pixel electrode 10 can be formed by the same material and method as the gate electrode 2, the source electrode 4, the drain electrode 5 and the first capacitor electrode 8 shown above, but the invention is not limited thereto. The method of can be used.
有機薄膜トランジスタ100、101、102を用いて画像表示装置とする際は、図示しない表示要素、図示しない対向電極、図示しない対向基板が好適に設けられる。
When forming an image display device using the organic thin film transistors 100, 101, 102, a display element (not shown), a counter electrode (not shown), and a counter substrate (not shown) are suitably provided.
表示要素は、液晶、電気泳動粒子、または電気泳動粒子を含んだマイクロカプセルや有機エレクトロルミネッセンスなどが使用できる。画像表示装置においては、反射型、透過型のどちらかに限定されることなく、これら公知一般の表示要素を使用することが可能である。また、使用する表示要素によっては、1画素内に有機薄膜トランジスタ100、101、102を複数設置する構成を利用することも可能である。
As the display element, liquid crystal, electrophoretic particles, microcapsules containing electrophoretic particles, organic electroluminescence and the like can be used. In the image display device, it is possible to use these known general display elements without being limited to either the reflective type or the transmissive type. In addition, depending on the display element to be used, it is also possible to use a configuration in which a plurality of organic thin film transistors 100, 101, 102 are provided in one pixel.
表示要素は、対向電極を形成した対向基板上に形成した後に、画素電極10を設けた有機薄膜トランジスタ100、101、102と合わせて、画像表示装置としても良いし、画素電極10上に形成した後に、対向電極および対向基板を積層して画像表示装置としても良く、使用する表示要素に合わせて、その工程を選択することが可能である。
The display element may be formed on the counter substrate on which the counter electrode is formed, and then combined with the organic thin film transistors 100, 101, and 102 provided with the pixel electrode 10 to form an image display device. The counter electrode and the counter substrate may be stacked to form an image display device, and the process can be selected in accordance with the display element to be used.
実施例1として、図1に示す有機薄膜トランジスタ100からなるアクティブマトリクスアレイ110を作製した。
As Example 1, an active matrix array 110 composed of the organic thin film transistor 100 shown in FIG. 1 was produced.
基板1として厚さ0.7mmの無アルカリガラスを使用した。基板1上に銀(Ag)のナノ粒子を分散させた溶液をインクとしてインクジェット法を用いて、所望の形状にパターニングし、180℃で1時間焼成し、ゲート電極2を形成した。
An alkali-free glass 0.7 mm thick was used as the substrate 1. A solution in which nanoparticles of silver (Ag) were dispersed on a substrate 1 was patterned into a desired shape using an ink jet method as an ink, and baked at 180 ° C. for 1 hour to form a gate electrode 2.
ゲート電極2を形成した基板1に、熱硬化性樹脂を塗布し、焼成して第一の絶縁層3を形成した。第一の絶縁層3の比誘電率は、3.3、膜厚は1.0μmである。
A thermosetting resin was applied to the substrate 1 on which the gate electrode 2 was formed and fired to form a first insulating layer 3. The relative dielectric constant of the first insulating layer 3 is 3.3, and the film thickness is 1.0 μm.
その後、インクジェット法により、ゲート電極2と同様の方法によりソース電極4およびドレイン電極5を形成した。
Thereafter, the source electrode 4 and the drain electrode 5 were formed by the ink jet method in the same manner as the gate electrode 2.
ソース電極4およびドレイン電極5を形成した基板に、有機半導体材料として、6,13-ビス(トリイソプロピルシリルエチニル)ペンタセン(TIPS-ペンタセン)を0.1重量パーセント濃度で溶解させたメシチレン溶液をインクジェット法によりパターニングして焼成し、半導体層6を形成した。
On the substrate on which the source electrode 4 and the drain electrode 5 are formed, a mesitylene solution in which 6,13-bis (triisopropylsilylethynyl) pentacene (TIPS-pentacene) is dissolved at a concentration of 0.1% by weight as an organic semiconductor material is inkjetted The semiconductor layer 6 was formed by patterning by a method and baking.
その後、フッ素樹脂をインクジェット法で塗布、焼成し、第二の絶縁層7を形成した。第二の絶縁層7の比誘電率は2.4であり、膜厚は3.0μmである。
Thereafter, a fluorine resin is applied by an inkjet method and fired to form a second insulating layer 7. The relative dielectric constant of the second insulating layer 7 is 2.4, and the film thickness is 3.0 μm.
続いて、銀ナノ粒子を分散させた溶液をインクとして、ゲート電極2、ソース電極4およびドレイン電極5と同様の方法により、第二の絶縁層7上に第一のキャパシタ電極8を形成した。
Subsequently, the first capacitor electrode 8 was formed on the second insulating layer 7 by the same method as the gate electrode 2, the source electrode 4 and the drain electrode 5, using a solution in which silver nanoparticles are dispersed as an ink.
第一のキャパシタ電極8上に感光性樹脂材料を塗布、露光、現像を行い、第三の絶縁層9を形成した。第三の絶縁層9の膜厚は0.5μm、比誘電率は3.5である。
A photosensitive resin material was applied onto the first capacitor electrode 8, exposed to light, and developed to form a third insulating layer 9. The film thickness of the third insulating layer 9 is 0.5 μm, and the relative dielectric constant is 3.5.
各第一のキャパシタ電極8は、図6に示すように、隣接する4つの有機薄膜トランジスタ100の第一のキャパシタ電極8と配線を介して接続され、導通するよう形成した。
As shown in FIG. 6, each first capacitor electrode 8 is connected to the first capacitor electrode 8 of the adjacent four organic thin film transistors 100 via a wire, and formed to be conductive.
最後にスクリーン印刷法を用いて、第三の絶縁層9上に上部画素電極10を形成し、実施例1に係る有機薄膜トランジスタ100からなるアクティブマトリクスアレイ110を作製した。
Finally, the upper pixel electrode 10 was formed on the third insulating layer 9 using the screen printing method, and an active matrix array 110 composed of the organic thin film transistor 100 according to Example 1 was manufactured.
実施例2として、図2に示す有機薄膜トランジスタ101からなるアクティブマトリクスアレイ111を作製した。
As Example 2, an active matrix array 111 composed of the organic thin film transistor 101 shown in FIG. 2 was produced.
基板1として厚さ0.7mmの無アルカリガラスを使用した。基板1上に銀(Ag)のナノ粒子を分散させた溶液をインクとしてインクジェット法を用いて、所望の形状にパターニングし、180℃で1時間焼成し、ゲート電極2を形成した。
An alkali-free glass 0.7 mm thick was used as the substrate 1. A solution in which nanoparticles of silver (Ag) were dispersed on a substrate 1 was patterned into a desired shape using an ink jet method as an ink, and baked at 180 ° C. for 1 hour to form a gate electrode 2.
ゲート電極2を形成した基板1に、熱硬化性樹脂を塗布し、焼成して第一の絶縁層3を形成した。第一の絶縁層3の比誘電率は、3.3、膜厚は1.0μmである。
A thermosetting resin was applied to the substrate 1 on which the gate electrode 2 was formed and fired to form a first insulating layer 3. The relative dielectric constant of the first insulating layer 3 is 3.3, and the film thickness is 1.0 μm.
その後、インクジェット法により、ゲート電極2と同様の方法によりソース電極4およびドレイン電極5を形成した。
Thereafter, the source electrode 4 and the drain electrode 5 were formed by the ink jet method in the same manner as the gate electrode 2.
ソース電極4およびドレイン電極5を形成した基板に、有機半導体材料として、TIPS-ペンタセンを0.1重量パーセント濃度で溶解させたメシチレン溶液をインクジェット法によりパターニングして焼成し、半導体層6を形成した。
On the substrate on which the source electrode 4 and the drain electrode 5 were formed, a mesitylene solution in which TIPS-pentacene was dissolved at a concentration of 0.1% by weight as an organic semiconductor material was patterned by an inkjet method and baked to form a semiconductor layer 6 .
その後、フッ素樹脂をインクジェット法で塗布し、第二の絶縁層7を形成した。第二の絶縁層7の比誘電率は2.4であり、膜厚は3.0μmである。
Thereafter, a fluorine resin was applied by an inkjet method to form a second insulating layer 7. The relative dielectric constant of the second insulating layer 7 is 2.4, and the film thickness is 3.0 μm.
続いて、銀ナノ粒子を分散させた溶液をインクとして、ゲート電極2、ソース電極4およびドレイン電極5と同様の方法により、第二の絶縁層7上に第一のキャパシタ電極8を形成した。
Subsequently, the first capacitor electrode 8 was formed on the second insulating layer 7 by the same method as the gate electrode 2, the source electrode 4 and the drain electrode 5, using a solution in which silver nanoparticles are dispersed as an ink.
各第一のキャパシタ電極8は、図7に示すように、隣接する全ての有機薄膜トランジスタ101の第一のキャパシタ電極8と接続され、導通するよう形成した。
As shown in FIG. 7, each first capacitor electrode 8 is connected to the first capacitor electrode 8 of all the adjacent organic thin film transistors 101 and formed to be conductive.
第一のキャパシタ電極8上に感光性樹脂材料を塗布、露光、現像を行い、第三の絶縁層9を形成した。第三の絶縁層9の膜厚は0.5μm、比誘電率は3.5である。
A photosensitive resin material was applied onto the first capacitor electrode 8, exposed to light, and developed to form a third insulating layer 9. The film thickness of the third insulating layer 9 is 0.5 μm, and the relative dielectric constant is 3.5.
最後にスクリーン印刷法を用いて、第三の絶縁層9上に上部画素電極10を形成し、実施例2に係る有機薄膜トランジスタ101からなるアクティブマトリクスアレイ111を作製した。
Finally, the upper pixel electrode 10 was formed on the third insulating layer 9 using the screen printing method, and an active matrix array 111 composed of the organic thin film transistor 101 according to Example 2 was manufactured.
実施例3として、図3に示す有機薄膜トランジスタ102からなるアクティブマトリクスアレイ112を作製した。
As Example 3, an active matrix array 112 composed of the organic thin film transistor 102 shown in FIG. 3 was produced.
基板1として厚さ0.7mmの無アルカリガラスを使用した。基板1上に銀(Ag)のナノ粒子を分散させた溶液をインクとしてインクジェット法を用いて、所望の形状にパターニングし、180℃で1時間焼成し、ゲート電極2および第二のキャパシタ電極11を形成した。
An alkali-free glass 0.7 mm thick was used as the substrate 1. A solution in which nanoparticles of silver (Ag) are dispersed on a substrate 1 is patterned into a desired shape using an ink jet method as an ink, and baked at 180 ° C. for 1 hour to form gate electrode 2 and second capacitor electrode 11. Formed.
ゲート電極2および第二のキャパシタ電極11を形成した基板1に、熱硬化性樹脂を塗布し、焼成して第一の絶縁層3を形成した。第一の絶縁層3の比誘電率は、3.3、膜厚は1.0μmである。
A thermosetting resin was applied to the substrate 1 on which the gate electrode 2 and the second capacitor electrode 11 were formed and fired to form the first insulating layer 3. The relative dielectric constant of the first insulating layer 3 is 3.3, and the film thickness is 1.0 μm.
その後、ゲート電極2および第二のキャパシタ電極11と同様の方法により、インクジェット法でソース電極4およびドレイン電極5を形成した。
Thereafter, the source electrode 4 and the drain electrode 5 are formed by the inkjet method in the same manner as the gate electrode 2 and the second capacitor electrode 11.
ソース電極4およびドレイン電極5を形成した基板に、有機半導体材料として、TIPS-ペンタセンを0.1重量パーセント濃度で溶解させたメシチレン溶液をインクジェット法によりパターニングして焼成し、半導体層6を形成した。
On the substrate on which the source electrode 4 and the drain electrode 5 were formed, a mesitylene solution in which TIPS-pentacene was dissolved at a concentration of 0.1% by weight as an organic semiconductor material was patterned by an inkjet method and baked to form a semiconductor layer 6 .
その後、フッ素樹脂をインクジェット法で塗布し、第二の絶縁層7を形成した。第二の絶縁層7の比誘電率は2.4であり、膜厚は3.0μmである。
Thereafter, a fluorine resin was applied by an inkjet method to form a second insulating layer 7. The relative dielectric constant of the second insulating layer 7 is 2.4, and the film thickness is 3.0 μm.
続いて、銀ナノ粒子を分散させた溶液をインクとして、ゲート電極2、ソース電極4およびドレイン電極5と同様の方法により、第二の絶縁層7上に第一のキャパシタ電極8を形成した。
Subsequently, the first capacitor electrode 8 was formed on the second insulating layer 7 by the same method as the gate electrode 2, the source electrode 4 and the drain electrode 5, using a solution in which silver nanoparticles are dispersed as an ink.
各第一のキャパシタ電極8は、実施例2と同様に隣接する全ての有機薄膜トランジスタ102の第一のキャパシタ電極8と接続され、導通するよう形成した。
Each first capacitor electrode 8 is connected to the first capacitor electrode 8 of all the adjacent organic thin film transistors 102 as in the second embodiment, and formed to be conductive.
第一のキャパシタ電極8上に感光性樹脂材料を塗布、露光、現像を行い、第三の絶縁層9を形成した。第三の絶縁層9の膜厚は0.5μm、比誘電率は3.5である。
A photosensitive resin material was applied onto the first capacitor electrode 8, exposed to light, and developed to form a third insulating layer 9. The film thickness of the third insulating layer 9 is 0.5 μm, and the relative dielectric constant is 3.5.
最後にスクリーン印刷法を用いて、第三の絶縁層9上に上部画素電極10を形成し、実施例3に係る有機薄膜トランジスタ102からなるアクティブマトリクスアレイ112を作製した。
Finally, the upper pixel electrode 10 was formed on the third insulating layer 9 using the screen printing method, and an active matrix array 112 composed of the organic thin film transistor 102 according to Example 3 was manufactured.
比較例として図4に示す有機薄膜トランジスタ200からなる図示しないアクティブマトリクスアレイを作製した。
An active matrix array (not shown) comprising the organic thin film transistor 200 shown in FIG. 4 was produced as a comparative example.
基板21として厚さ0.7mmの無アルカリガラスを使用した。基板21上に銀(Ag)のナノ粒子を分散させた溶液をインクとしてインクジェット法を用いて、所望の形状にパターニングし、180℃で1時間焼成し、ゲート電極22および第一のキャパシタ電極28を形成した。
An alkali-free glass 0.7 mm thick was used as the substrate 21. A solution in which nanoparticles of silver (Ag) are dispersed on a substrate 21 is patterned into a desired shape using an ink jet method as an ink, and baked at 180 ° C. for 1 hour to form a gate electrode 22 and a first capacitor electrode 28. Formed.
ゲート電極22および第一のキャパシタ電極28を形成した基板に、熱硬化性樹脂を塗布し、焼成して第一の絶縁層23を形成した。第一の絶縁層23の比誘電率は、3.3、膜厚は1.0μmである。
A thermosetting resin was applied to the substrate on which the gate electrode 22 and the first capacitor electrode 28 were formed and fired to form the first insulating layer 23. The relative dielectric constant of the first insulating layer 23 is 3.3, and the film thickness is 1.0 μm.
その後、ゲート電極22および第一のキャパシタ電極28と同様の方法により、インクジェット法でソース電極24およびドレイン電極25を形成した。
After that, the source electrode 24 and the drain electrode 25 were formed by the inkjet method in the same manner as the gate electrode 22 and the first capacitor electrode 28.
ソース電極24およびドレイン電極25を形成した基板に、有機半導体材料として、ポリ(3-ヘキシルチオフェン)を0.1重量パーセント濃度で溶解させたメシチレン溶液をインクジェット法によりパターニングして焼成し、半導体層26を形成した。
On the substrate on which the source electrode 24 and the drain electrode 25 are formed, a mesitylene solution in which poly (3-hexylthiophene) is dissolved at a concentration of 0.1 weight percent as an organic semiconductor material is patterned by an ink jet method and baked. 26 were formed.
その後、フッ素樹脂をインクジェット法で塗布し、第二の絶縁層27を形成した。第二の絶縁層7の比誘電率は2.4であり、膜厚は3.0μmである。
Thereafter, a fluorine resin was applied by an inkjet method to form a second insulating layer 27. The relative dielectric constant of the second insulating layer 7 is 2.4, and the film thickness is 3.0 μm.
第二の絶縁層27上にスクリーン印刷法により上部画素電極30を形成し、比較例に係る有機薄膜トランジスタ200からなるアクティブマトリクスアレイを作製した。
The upper pixel electrode 30 was formed on the second insulating layer 27 by screen printing, and an active matrix array composed of the organic thin film transistor 200 according to the comparative example was manufactured.
以上の工程により、実施例1、2、3および比較例に係るアクティブマトリクスアレイを作製した。実施例1、実施例2および実施例3においては、第一のキャパシタ電極8を第二の絶縁層7上に、平面視において有機薄膜トランジスタ100、101、102のチャネル領域を覆うように配置した。
Active matrix arrays according to Examples 1, 2, 3 and Comparative Example were produced by the above steps. In Example 1, Example 2, and Example 3, the first capacitor electrode 8 is disposed on the second insulating layer 7 so as to cover the channel regions of the organic thin film transistors 100, 101, 102 in plan view.
図5に、作製した実施例1および比較例に係る有機薄膜トランジスタの伝達特性の測定結果を示す。図5に示した有機薄膜トランジスタの伝達特性のグラフからも明らかなように、比較例に係る有機薄膜トランジスタ200においては、その伝達特性におけるオン電流の立ち上がりがデプレッション側(正側)となっているが、実施例1に係る有機薄膜トランジスタ100においては、よりエンハンスメント側(負側)になっている。これらの伝達特性におけるオン電流の立ち上がり電圧の差は、上部画素電極10、30に印加される電圧の半導体層6、26への影響の差であり、図5に示す結果は、本発明の実施例1に係る有機薄膜トランジスタ100においては、上部画素電極10の電圧の半導体層6への影響を効果的に遮断できていることを明確に示している。
The measurement result of the transfer characteristic of the organic thin-film transistor concerning Example 1 and the comparative example which were produced in FIG. 5 is shown. As apparent from the graph of the transfer characteristic of the organic thin film transistor shown in FIG. 5, in the organic thin film transistor 200 according to the comparative example, the rise of the on current in the transfer characteristic is on the depletion side (positive side). The organic thin film transistor 100 according to the first embodiment is further on the enhancement side (negative side). The difference in the rising voltage of the on current in these transfer characteristics is the difference in the effects on the semiconductor layers 6 and 26 of the voltage applied to the upper pixel electrodes 10 and 30, and the results shown in FIG. The organic thin film transistor 100 according to Example 1 clearly shows that the influence of the voltage of the upper pixel electrode 10 on the semiconductor layer 6 can be effectively blocked.
これにより、フィールドシールドピクセル型のボトムゲート構造の有機薄膜トランジスタ100において、第一のキャパシタ電極8を設けることにより、十分なキャパシタ電極面積を有することになるため、十分な静電容量を確保しながら、かつ上部画素電極10からの半導体層への影響を遮断することが可能となり、半導体特性を維持しながら安定的に駆動可能な有機薄膜トランジスタ100を形成することができた。
As a result, in the field-shielded pixel type bottom gate organic thin film transistor 100, the first capacitor electrode 8 is provided to have a sufficient capacitor electrode area, thereby securing a sufficient capacitance. In addition, it is possible to block the influence of the upper pixel electrode 10 on the semiconductor layer, and it is possible to form the organic thin film transistor 100 that can be stably driven while maintaining the semiconductor characteristics.
表1に実施例1~3及び比較例に係る有機薄膜トランジスタを用いて作製したアクティブマトリクスアレイの、上部画素電極の面積に対する第一のキャパシタ電極と上部画素電極とが平面視において重なった領域の面積の比、第一のキャパシタ電極による静電容量、および電圧保持率(Voltage Holding Ratio:VHR)の値を示す。なお、静電容量の計算は式(1)により行い、電圧保持率の計算は式(2)により行った。
Table 1 shows the area of the area where the first capacitor electrode and the upper pixel electrode overlap in plan view with respect to the area of the upper pixel electrode in the active matrix array manufactured using the organic thin film transistors according to Examples 1 to 3 and the comparative example. , The capacitance of the first capacitor electrode, and the value of the voltage holding ratio (VHR). In addition, calculation of electrostatic capacitance was performed by Formula (1), and calculation of voltage retention was performed by Formula (2).
実施例1の有機薄膜トランジスタ100からなるアクティブマトリクスアレイ110と実施例2の有機薄膜トランジスタ101からなるアクティブマトリクスアレイ111との違いは、図6および図7に示したように、第一のキャパシタ電極8が隣接した有機薄膜トランジスタの第一のキャパシタ電極8に接続されている数と、各々の有機薄膜トランジスタにおける上部画素電極10の面積に対する第一のキャパシタ電極8と上部画素電極10とが平面視において重なった領域の面積の比である。より多くの隣接する有機薄膜トランジスタと接続するように第一のキャパシタ電極8を形成し、上部画素電極10の面積に対する第一のキャパシタ電極8と上部画素電極10とが平面視において重なる領域の面積の比を大きくすることにより、より大きな静電容量を得ることが可能となり、その結果、電圧保持率を高く保つことが可能となることが確認できた。
The difference between the active matrix array 110 composed of the organic thin film transistor 100 of Example 1 and the active matrix array 111 composed of the organic thin film transistor 101 of Example 2 is that, as shown in FIGS. 6 and 7, the first capacitor electrode 8 is An area where the number of the first capacitor electrode 8 and the upper pixel electrode 10 overlap each other with respect to the area of the upper pixel electrode 10 in each organic thin film transistor and the number connected to the first capacitor electrode 8 of the adjacent organic thin film transistor The ratio of the area of The first capacitor electrode 8 is formed to be connected to more adjacent organic thin film transistors, and the area of the area where the first capacitor electrode 8 and the upper pixel electrode 10 overlap in plan view with respect to the area of the upper pixel electrode 10 By increasing the ratio, it is possible to obtain a larger capacitance, and as a result, it has been confirmed that it is possible to maintain a high voltage holding ratio.
また、実施例3においては、第二のキャパシタ電極11を形成することにより、さらに有機薄膜トランジスタ102の静電容量を増加させることができた。
Further, in Example 3, the capacitance of the organic thin film transistor 102 can be further increased by forming the second capacitor electrode 11.
何れの実施例においても、第一のキャパシタ電極8を備えることにより、フィールドシールドピクセル型のボトムゲート構造の有機薄膜トランジスタにおいて、十分なキャパシタ電極面積を有することができるため、十分な静電容量を確保し、かつ上部画素電極電圧による半導体層への影響を遮断することができる。したがって、半導体特性を維持しながら、安定的に駆動可能な有機薄膜トランジスタ100、101、102が得られ、有機薄膜トランジスタ100、101、102を用いたアクティブマトリクスアレイの作製および画像表示装置の駆動を実現することが可能となった。
In any of the embodiments, by providing the first capacitor electrode 8, a sufficient capacitor electrode area can be provided in the field shield pixel type bottom gate organic thin film transistor, so sufficient capacitance is secured. And the influence of the upper pixel electrode voltage on the semiconductor layer can be blocked. Therefore, organic thin film transistors 100, 101, 102 that can be driven stably while maintaining semiconductor characteristics are obtained, and fabrication of an active matrix array using organic thin film transistors 100, 101, 102 and driving of an image display device are realized. It became possible.
以上説明したように、有機薄膜トランジスタ100、101、102は、第二の絶縁層7上に、平面視において少なくとも半導体層6に重なるように第一のキャパシタ電極8を形成することで、キャパシタ電極の面積を大きく保ち、十分な静電容量を得ることが可能となる。また、第一のキャパシタ電極8により半導体層6のチャネル領域への上部画素電極10に印加される電圧の影響を遮断することができるため、有機薄膜トランジスタの特性変化を抑制することが可能となる。
As described above, the organic thin film transistors 100, 101, 102 are formed of the first capacitor electrode 8 on the second insulating layer 7 so as to overlap at least the semiconductor layer 6 in plan view. It is possible to maintain a large area and obtain sufficient capacitance. Further, since the influence of the voltage applied to the upper pixel electrode 10 on the channel region of the semiconductor layer 6 can be blocked by the first capacitor electrode 8, it is possible to suppress the characteristic change of the organic thin film transistor.
したがって、本発明によれば、フィールドシールドピクセル型ボトムゲート構造の有機薄膜トランジスタにおいて、十分なキャパシタ電極面積を有し、十分な静電容量を確保でき、かつ上部画素電極に印加される電圧のチャネル領域における半導体層バックチャネル部への影響を遮断することで、半導体特性を維持しながら安定的に駆動可能な有機薄膜トランジスタ、その製造方法、アクティブマトリクスアレイおよび画像表示装置を提供することが可能である。
Therefore, according to the present invention, in the organic thin film transistor of the field shield pixel type bottom gate structure, it has a sufficient capacitor electrode area, can ensure a sufficient capacitance, and a channel region of a voltage applied to the upper pixel electrode. It is possible to provide an organic thin film transistor that can be stably driven while maintaining semiconductor characteristics, a method of manufacturing the same, an active matrix array, and an image display device by blocking the influence on the semiconductor layer back channel portion in the above.
本発明は、画像表示装置、または各種センサーなどに好適に利用可能である。
The present invention is suitably applicable to an image display device or various sensors.
1、21 基板
2、22 ゲート電極
3、23 第一の絶縁層
4、24 ソース電極
5、25 ドレイン電極
6、26 半導体層
7、27 第二の絶縁層
8、28 第一のキャパシタ電極
9 第三の絶縁層
10、30 上部画素電極
11 第二のキャパシタ電極
100、101、102、200 有機薄膜トランジスタ
110、111、112 アクティブマトリクスアレイ 1, 21substrate 2, 22 gate electrode 3, 23 first insulating layer 4, 24 source electrode 5, 25 drain electrode 6, 26 semiconductor layer 7, 27 second insulating layer 8, 28 first capacitor electrode 9 first Three insulating layers 10, 30 Upper pixel electrode 11 Second capacitor electrode 100, 101, 102, 200 Organic thin film transistor 110, 111, 112 Active matrix array
2、22 ゲート電極
3、23 第一の絶縁層
4、24 ソース電極
5、25 ドレイン電極
6、26 半導体層
7、27 第二の絶縁層
8、28 第一のキャパシタ電極
9 第三の絶縁層
10、30 上部画素電極
11 第二のキャパシタ電極
100、101、102、200 有機薄膜トランジスタ
110、111、112 アクティブマトリクスアレイ 1, 21
Claims (12)
- 絶縁性の基板と、
前記基板上に形成されたゲート電極と、
前記基板および前記ゲート電極を覆うように形成された第一の絶縁層と、
前記第一の絶縁層上に形成されたソース電極、ドレイン電極、および有機半導体材料を含む半導体層と、
少なくとも前記半導体層、前記ソース電極、および前記ドレイン電極の一部を覆うように形成された第二の絶縁層と、
前記第二の絶縁層上に、平面視において少なくとも前記半導体層に重なるように形成された第一のキャパシタ電極と、
前記第二の絶縁層および前記第一のキャパシタ電極を覆うように形成された第三の絶縁層と、
前記第三の絶縁層上に形成された、前記ドレイン電極と電気的に接続された上部画素電極とを含む有機薄膜トランジスタ。 An insulating substrate,
A gate electrode formed on the substrate;
A first insulating layer formed to cover the substrate and the gate electrode;
A source electrode formed on the first insulating layer, a drain electrode, and a semiconductor layer containing an organic semiconductor material;
A second insulating layer formed to cover at least the semiconductor layer, the source electrode, and a part of the drain electrode;
A first capacitor electrode formed on the second insulating layer so as to overlap at least the semiconductor layer in plan view;
A third insulating layer formed to cover the second insulating layer and the first capacitor electrode;
An organic thin film transistor including an upper pixel electrode electrically connected to the drain electrode, formed on the third insulating layer. - 前記絶縁性の基板上に、前記ゲート電極と同層に第二のキャパシタ電極をさらに有する、請求項1に記載の有機薄膜トランジスタ。 The organic thin film transistor according to claim 1, further comprising a second capacitor electrode in the same layer as the gate electrode on the insulating substrate.
- 前記第二の絶縁層の膜厚が前記第一の絶縁層および前記第三の絶縁層の膜厚よりも厚い、請求項1または2に記載の有機薄膜トランジスタ。 The organic thin film transistor according to claim 1, wherein a film thickness of the second insulating layer is thicker than a film thickness of the first insulating layer and the third insulating layer.
- 前記第三の絶縁層の膜厚が前記第一の絶縁層および前記第二の絶縁層の膜厚よりも薄い、請求項1ないし3の何れかに記載の有機薄膜トランジスタ。 The organic thin film transistor according to any one of claims 1 to 3, wherein the film thickness of the third insulating layer is smaller than the film thicknesses of the first insulating layer and the second insulating layer.
- 前記第三の絶縁層の比誘電率が前記第二の絶縁層の比誘電率よりも大きい、請求項1ないし4の何れかに記載の有機薄膜トランジスタ。 The organic thin film transistor according to any one of claims 1 to 4, wherein the relative dielectric constant of the third insulating layer is larger than the relative dielectric constant of the second insulating layer.
- 前記第一のキャパシタ電極と、前記上部画素電極とが平面視において重なった領域の面積が前記上部画素電極の面積の80%以上である、請求項1ないし5の何れかに記載の有機薄膜トランジスタ。 The organic thin film transistor according to any one of claims 1 to 5, wherein an area of a region where the first capacitor electrode and the upper pixel electrode overlap in a plan view is 80% or more of the area of the upper pixel electrode.
- 前記第一のキャパシタ電極の面積が前記基板の面積の85%以上であることを特徴とする請求項1ないし6のいずれかに記載の有機薄膜トランジスタ。 The organic thin film transistor according to any one of claims 1 to 6, wherein the area of the first capacitor electrode is 85% or more of the area of the substrate.
- 前記第一のキャパシタ電極は、前記第二の絶縁層と前記第三の絶縁層とを連通するビアホールを備え、平面視において前記ビアホール以外の領域において前記第二の絶縁層の上面全体を覆っている、請求項1ないし7のいずれかに記載の有機薄膜トランジスタ。 The first capacitor electrode includes a via hole communicating the second insulating layer with the third insulating layer, and covers the entire top surface of the second insulating layer in a region other than the via hole in a plan view. The organic thin film transistor according to any one of claims 1 to 7.
- 絶縁性の基板上にゲート電極を設ける工程と、
前記ゲート電極上に第一の絶縁層を設ける工程と、
前記第一の絶縁層上にソース電極およびドレイン電極を離間して設ける工程と、
前記ソース電極と前記ドレイン電極との間に有機半導体材料を含む半導体層を設ける工程と、
少なくとも前記半導体層、前記ソース電極、および前記ドレイン電極の一部の上に第二の絶縁層を設ける工程と、
前記第二の絶縁層上に、平面視において少なくとも前記半導体層に重なるように第一のキャパシタ電極を設ける工程と、
前記第二の絶縁層および前記第一のキャパシタ電極上に第三の絶縁層を設ける工程と、
前記第三の絶縁層上に、前記ドレイン電極と電気的に接続された上部画素電極を設ける
工程とを含む、有機薄膜トランジスタの製造方法。 Providing a gate electrode on an insulating substrate;
Providing a first insulating layer on the gate electrode;
Providing a source electrode and a drain electrode separately on the first insulating layer;
Providing a semiconductor layer comprising an organic semiconductor material between the source electrode and the drain electrode;
Providing a second insulating layer on at least the semiconductor layer, the source electrode, and part of the drain electrode;
Providing a first capacitor electrode on the second insulating layer so as to overlap at least the semiconductor layer in plan view;
Providing a third insulating layer on the second insulating layer and the first capacitor electrode;
Providing an upper pixel electrode electrically connected to the drain electrode on the third insulating layer. - 請求項1ないし8の何れかに記載の有機薄膜トランジスタを配列したアクティブマトリクスアレイであって、
当該アクティブマトリクスアレイにおける前記有機薄膜トランジスタの第一のキャパシタ電極が周囲の隣接した4つ以上の有機薄膜トランジスタの前記第一のキャパシタ電極と接続されている、アクティブマトリクスアレイ。 An active matrix array in which the organic thin film transistors according to any one of claims 1 to 8 are arrayed,
An active matrix array, wherein a first capacitor electrode of the organic thin film transistor in the active matrix array is connected to the first capacitor electrode of the surrounding four or more adjacent organic thin film transistors. - 請求項1ないし8の何れかに記載の有機薄膜トランジスタを配列したアクティブマトリクスアレイであって、
当該アクティブマトリクスアレイにおける前記有機薄膜トランジスタにおいて、隣接するすべての有機薄膜トランジスタの第一のキャパシタ電極同士が接続されている、アクティブマトリクスアレイ。 An active matrix array in which the organic thin film transistors according to any one of claims 1 to 8 are arrayed,
In the organic thin film transistor in the active matrix array, first capacitor electrodes of all adjacent organic thin film transistors are connected to one another. - 請求項10または11に記載のアクティブマトリクスアレイを用いた画像表示装置。 An image display apparatus using the active matrix array according to claim 10 or 11.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019549323A JPWO2019078267A1 (en) | 2017-10-19 | 2018-10-17 | Organic thin film transistor, its manufacturing method, active matrix array and image display device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-202751 | 2017-10-19 | ||
JP2017202751 | 2017-10-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019078267A1 true WO2019078267A1 (en) | 2019-04-25 |
Family
ID=66172920
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/038701 WO2019078267A1 (en) | 2017-10-19 | 2018-10-17 | Organic thin-film transistor, manufacturing method therefor, active matrix array and image display device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2019078267A1 (en) |
WO (1) | WO2019078267A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7567196B2 (en) | 2020-04-20 | 2024-10-16 | Toppanホールディングス株式会社 | Pressure Sensors and Pressure Sensor Arrays |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09318972A (en) * | 1996-03-05 | 1997-12-12 | Semiconductor Energy Lab Co Ltd | Liquid crystal display device and its manufacture |
JPH1091099A (en) * | 1996-09-18 | 1998-04-10 | Toshiba Corp | Liquid crystal display device |
WO2008084697A1 (en) * | 2007-01-10 | 2008-07-17 | Sony Corporation | Semiconductor device and display device |
JP2008277370A (en) * | 2007-04-26 | 2008-11-13 | Sony Corp | Semiconductor device and manufacturing method thereof, and display device and manufacturing method thereof |
WO2013099697A1 (en) * | 2011-12-28 | 2013-07-04 | シャープ株式会社 | Active matrix substrate |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3447947B2 (en) * | 1998-03-20 | 2003-09-16 | 株式会社東芝 | X-ray imaging device |
-
2018
- 2018-10-17 WO PCT/JP2018/038701 patent/WO2019078267A1/en active Application Filing
- 2018-10-17 JP JP2019549323A patent/JPWO2019078267A1/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09318972A (en) * | 1996-03-05 | 1997-12-12 | Semiconductor Energy Lab Co Ltd | Liquid crystal display device and its manufacture |
JPH1091099A (en) * | 1996-09-18 | 1998-04-10 | Toshiba Corp | Liquid crystal display device |
WO2008084697A1 (en) * | 2007-01-10 | 2008-07-17 | Sony Corporation | Semiconductor device and display device |
JP2008277370A (en) * | 2007-04-26 | 2008-11-13 | Sony Corp | Semiconductor device and manufacturing method thereof, and display device and manufacturing method thereof |
WO2013099697A1 (en) * | 2011-12-28 | 2013-07-04 | シャープ株式会社 | Active matrix substrate |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7567196B2 (en) | 2020-04-20 | 2024-10-16 | Toppanホールディングス株式会社 | Pressure Sensors and Pressure Sensor Arrays |
Also Published As
Publication number | Publication date |
---|---|
JPWO2019078267A1 (en) | 2020-09-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI542014B (en) | Thin film transistor and method for producing the same, image display device having thin film transistor | |
US8487308B2 (en) | Thin film transistor and image display unit | |
US8963141B2 (en) | Thin-film transistor, fabrication method thereof, and image display device | |
JP4721972B2 (en) | Thin film transistor substrate and method for manufacturing thin film transistor substrate | |
JP5655277B2 (en) | Thin film transistor and active matrix display | |
US20090213039A1 (en) | Display device | |
US11302880B2 (en) | Organic thin-film transistors and methods for manufacturing the same and image display devices | |
JP5700291B2 (en) | THIN FILM TRANSISTOR, MANUFACTURING METHOD THEREOF, AND IMAGE DISPLAY DEVICE USING THE THIN FILM TRANSISTOR | |
WO2019078267A1 (en) | Organic thin-film transistor, manufacturing method therefor, active matrix array and image display device | |
JP5853390B2 (en) | THIN FILM TRANSISTOR, MANUFACTURING METHOD THEREOF, AND IMAGE DISPLAY DEVICE | |
WO2017208923A1 (en) | Organic thin film transistor and image display device | |
WO2014049970A1 (en) | Thin film transistor array and image display apparatus | |
JP6123413B2 (en) | Thin film transistor array and image display device | |
JP6064356B2 (en) | Thin film transistor array and image display device | |
JP2013201201A (en) | Thin film transistor array, thin film transistor array manufacturing method and image display device | |
JP6209920B2 (en) | Thin film transistor array and image display device | |
JP5782695B2 (en) | Thin film transistor, image display device including thin film transistor, method for manufacturing thin film transistor, and method for manufacturing image display device | |
CN107958956B (en) | Organic thin film transistor element and manufacturing method thereof | |
JP2015185789A (en) | Thin film transistor and manufacturing method of the same | |
JP2014107280A (en) | Thin film transistor and manufacturing method of the same | |
JP2020031100A (en) | Organic thin film transistor, manufacturing method therefor, and electronic device | |
JP2017103409A (en) | Organic transistor and manufacturing method of the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18867669 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019549323 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18867669 Country of ref document: EP Kind code of ref document: A1 |