WO2014049970A1 - Thin film transistor array and image display apparatus - Google Patents

Thin film transistor array and image display apparatus Download PDF

Info

Publication number
WO2014049970A1
WO2014049970A1 PCT/JP2013/005175 JP2013005175W WO2014049970A1 WO 2014049970 A1 WO2014049970 A1 WO 2014049970A1 JP 2013005175 W JP2013005175 W JP 2013005175W WO 2014049970 A1 WO2014049970 A1 WO 2014049970A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
film transistor
transistor array
protective layer
array according
Prior art date
Application number
PCT/JP2013/005175
Other languages
French (fr)
Japanese (ja)
Inventor
ゆかり 宮入
亮平 松原
Original Assignee
凸版印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 凸版印刷株式会社 filed Critical 凸版印刷株式会社
Publication of WO2014049970A1 publication Critical patent/WO2014049970A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/466Lateral bottom-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/124Insulating layers formed between TFT elements and OLED elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/125Active-matrix OLED [AMOLED] displays including organic TFTs [OTFT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/88Dummy elements, i.e. elements having non-functional features
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates

Definitions

  • the present invention relates to a thin film transistor array and an image display device.
  • the mainstream of semiconductor materials currently used in thin film transistor elements is silicon. Since formation of a thin film transistor element using a silicon-based material includes a process at a high temperature, the substrate material of the thin film transistor element is required to withstand the process temperature. For this reason, glass is generally used as a substrate on which thin film transistor elements are formed.
  • Organic semiconductors have attracted attention as semiconductor materials for thin film transistors.
  • Organic semiconductor materials do not require a heat treatment step at a high temperature unlike silicon-based materials, and thus have an advantage that they are provided on a flexible plastic substrate. Furthermore, since it can be produced by a printing process without using a vacuum process, there is an advantage that the cost can be reduced.
  • a semiconductor layer In order to form a semiconductor layer from a solution, methods such as a spin coating method, a dip method, and an ink jet method can be used. Especially, a semiconductor layer can be formed efficiently by applying a printing process. For example, in Patent Document 1, patterning of an organic semiconductor solution is performed by flexographic printing.
  • Patent Document 2 by making the semiconductor layer into a stripe shape, alignment accuracy can be improved and production efficiency can be further increased.
  • the semiconductor layer is an organic semiconductor layer
  • the organic semiconductor is rapidly deteriorated by moisture in the atmosphere as compared with silicon-based materials. Therefore, in the case of an organic semiconductor, a protective layer for protecting the semiconductor layer from moisture is essential.
  • the protective layer can be formed easily and at low cost by applying a wet process.
  • a protective layer is formed by flexographic printing, and a thin film transistor array having a high aperture ratio is simply manufactured.
  • the present invention provides a thin film transistor array capable of improving the production efficiency and making it difficult to deteriorate the device characteristics in the display effective region, and an image display device including the same.
  • a first invention for solving the above-described problem is a display including at least an insulating substrate, a gate electrode, a gate insulating layer, a source electrode, a drain electrode, a semiconductor layer, and a first protective layer.
  • a thin film transistor array comprising two protective layers.
  • the second invention is the thin film transistor array according to the first invention, wherein the extending direction of the stripe of the first protective layer is the same as the extending direction of the source wiring.
  • the second protective layer has a stripe shape, is parallel to the first protective layer, and extends in a direction parallel to the extending direction of the source wiring. Further, the thin film transistor array is arranged adjacent to a direction orthogonal to an extending direction of the source wiring in the display effective region.
  • the plurality of second protective layers are arranged in a direction in which a source wiring extends from a channel region of an outermost element of the display effective region.
  • the thin film transistor array is formed as a portion extending at least 2 mm of the layer.
  • the fifth invention is the thin film transistor array according to the first invention, wherein the protective layer is formed of an organic insulating material.
  • the sixth invention is the thin film transistor array according to the first invention, wherein the protective layer is formed by a relief printing method, an ink jet printing method, or a screen printing method.
  • the seventh invention is the thin film transistor array according to the first invention, wherein the insulating substrate is a plastic substrate.
  • the eighth invention is the thin film transistor array according to the first invention, wherein the gate insulating film contains an organic material.
  • the ninth invention is an image display device comprising the thin film transistor array and an image display medium.
  • the tenth invention is the image display device according to the ninth invention, wherein the image display medium is of an electrophoretic method.
  • the first invention it is possible to provide a low-cost and high-quality flexible thin film transistor with high production efficiency. Specifically, when the protective layer of the thin film transistor array has a stripe shape, alignment becomes easy and the throughput of the flexible thin film transistor can be improved. In addition, by providing a first protective layer in the display effective region involved in the display of the flexible thin film transistor and a second protective layer outside the display effective region, the semiconductor layer in the thin film transistor array is protected from moisture in the atmosphere. In addition, since deterioration of element characteristics can be reduced, a high-quality flexible thin film transistor array can be produced with high yield.
  • the alignment accuracy of the protective layer can be improved, and a high-quality flexible thin film transistor array can be produced.
  • the third invention it is possible to reduce the formation defect of the stripe protective layer located at the end of the display effective area of the thin film transistor array, and to suppress the deterioration of the element characteristics at the end of the display effective area.
  • the fourth aspect of the present invention it is possible to reduce the shape defect of the protective layer that covers the channel portion of the outermost element in the display effective region, thereby reducing variation in element characteristic deterioration in the flexible thin film transistor array. Can do.
  • the protective layer is formed of an organic insulating material, it can be used as ink, and the protective layer can be formed by printing. Can be formed.
  • a protective layer can be formed in a short time even on a large area thin film transistor array.
  • the insulating substrate is a plastic substrate
  • a flexible flexible thin film transistor array that is lighter and more flexible than a thin film transistor formed on a conventional glass substrate and that does not break even when dropped is manufactured. can do.
  • the gate insulating film can be easily formed by a coating method by using a material containing an organic material when the gate insulating film is manufactured, and the flexible thin film transistor array is produced. Efficiency can be improved.
  • FIG. 1A shows an embodiment of the present invention and is a plan view showing a pattern layout of a schematic configuration of the entire thin film transistor array.
  • FIG. 1B shows an embodiment of the present invention and is a plan view showing a detailed configuration of elements in a display effective region and a dummy protective layer region of a thin film transistor array.
  • FIG. 1C illustrates an embodiment of the present invention, and is a cross-sectional view illustrating a configuration of elements in a display effective region of a thin film transistor array.
  • FIG. 1D shows an embodiment of the present invention and is a cross-sectional view showing a configuration in a dummy protective layer region of a thin film transistor array.
  • FIG. 2A shows an embodiment of the present invention and is a cross-sectional view showing a configuration in a display effective region of an image display device using a thin film transistor array according to the example.
  • FIG. 2B shows an embodiment of the present invention and is a cross-sectional view showing a configuration in a dummy protective layer region of an image display device using a thin film transistor array according to the example.
  • FIG. 3A shows an embodiment of the present invention, and is a plan view showing a schematic configuration of an entire thin film transistor array according to a first comparative example.
  • FIG. 3B shows an embodiment of the present invention and is a cross-sectional view showing a configuration in a display effective region of an image display device using a thin film transistor array according to a first comparative example.
  • FIG. 3C illustrates an embodiment of the present invention and is a cross-sectional view illustrating a configuration in a dummy protective layer region of an image display device using a thin film transistor array according to a first comparative example.
  • FIG. 4A shows an embodiment of the present invention and is a plan view showing a schematic configuration of an entire thin film transistor array according to a second comparative example.
  • FIG. 4B shows an embodiment of the present invention and is a cross-sectional view showing a configuration in a display effective region of an image display device using a thin film transistor array according to a second comparative example.
  • FIG. 4C shows an embodiment of the present invention and is a cross-sectional view showing a configuration in a dummy protective layer region of an image display device using a thin film transistor array according to a second comparative example.
  • FIG. 1A to 1D show an example of the configuration of the thin film transistor array 1 of the present embodiment.
  • 1A is an overall pattern layout plan view of the thin film transistor array 1
  • FIG. 1B is a pattern layout plan view showing in detail the configuration of the region R in FIG. 1A
  • FIG. 1C is a cross-sectional view taken along line AA ′ in FIG.
  • FIG. 1B is a cross-sectional view taken along the line BB ′ of FIG. 1B.
  • the thin film transistor array 1 includes a gate electrode 11, a capacitor electrode 18, a gate insulating layer 12, a source electrode 13, a drain electrode 14, a semiconductor layer 15, and a protection layer on a plastic substrate (insulating substrate) 10.
  • a layer 16 and a protective layer 17 are provided.
  • a plurality of protective layers (first protective layers) 16 are provided in the display effective area 101, and a plurality of protective layers (second protective layers) 17 are provided outside the display effective area not related to display.
  • the protective layer 17 outside the display effective region not related to display is formed from the channel region of the outermost element of the display effective region 101 so as to form a part of the source electrode 13.
  • the dummy protective layer 17 (a) formed by extending 2 mm or more parallel to the extending y direction of (a) and the semiconductor layer 15 are parallel to the source wiring 13 (a) and display.
  • the dummy protective layer 17 (b) is disposed adjacent to the left and right of the effective area 101 (in the x direction orthogonal to the y direction).
  • FIG. 1A shows the protective layer 16 of the display effective region 101 and the dummy protective layers 17 (a) and 17 (b), and the gate electrode 11, the capacitor electrode 18, the source electrode 13, and the drain electrode 14 are shown. Was omitted.
  • a region R shown in FIG. 1A is a region including the four elements at the lower left of the display effective region 101 and the surrounding dummy protective layers 17 (a) and 17 (b).
  • illustration of the plastic substrate 10 and the gate insulating film 12 is omitted.
  • the dummy protective layer 17 (a) and the dummy protective layer 17 (b) have the same form.
  • the plastic substrate 10 includes polymethylene methacrylate, polyacrylate, polycarbonate, polystyrene, polyethylene sulfide, polyethersulfone, polyolefin, polyethylene terephthalate, polyethylene naphthalate, cycloolefin polymer, polyethersulfone, and triacetyl cellulose.
  • this invention is not limited to these. These can be used alone or as a composite substrate in which two or more kinds are laminated.
  • a substrate having a resin layer such as a color filter on a glass or plastic substrate can also be used.
  • a low resistance metal material such as Au, Ag, Cu, Cr, Al, Mg, Li, or an oxide material is preferably used. It is done. Specifically, indium oxide (In 2 O 3 ), tin oxide (SnO 2 ), zinc oxide (ZnO), cadmium oxide (CdO), indium cadmium oxide (CdIn 2 O 4 ), cadmium tin oxide (Cd 2 SnO) 4 ), zinc tin oxide (Zn 2 SnO 4 ), indium zinc oxide (InZnO), and the like. Further, an oxide material doped with impurities is also preferable.
  • indium oxide doped with molybdenum or titanium tin oxide doped with antimony or fluorine, zinc oxide doped with indium, aluminum, or gallium.
  • indium tin oxide (ITO) in which tin is doped in indium oxide exhibits a particularly low resistivity.
  • An organic conductive material such as PEDOT (polyethylenedioxythiophene) is also suitable, and is preferably used in the case of a single substance or a plurality of laminated layers with a conductive oxide material.
  • PEDOT polyethylenedioxythiophene
  • the gate electrode 11, the source electrode 13, and the drain electrode 14 may be made of the same material or different materials. However, in order to reduce the number of steps, it is desirable to use the same material for the source electrode 13 and the drain electrode 14.
  • Electrodes are formed by vacuum deposition, ion plating, sputtering, laser ablation, plasma CVD, photo CVD, hot wire CVD, or the like. It can also be formed by applying the above conductive material in ink or paste form by screen printing, flexographic printing, ink jet method or the like and baking. The present invention is not limited to these.
  • inorganic materials such as silicon oxide, silicon nitride, silicon oxynitride, aluminum oxide, tantalum oxide, yttrium oxide, hafnium oxide, hafnium aluminate, zirconia oxide, and titanium oxide
  • polyacrylate such as PMMA (polymethylmethacrylate), PVA (polyvinyl alcohol), PVP (polyvinylphenol) and the like, but the present invention is not limited thereto.
  • a preferable resistivity of the insulating material is 10 11 ⁇ cm or more, more preferably 10 14 ⁇ cm or more.
  • Examples of the material used for the semiconductor layer 15 according to this embodiment include an oxide semiconductor and an organic semiconductor.
  • an oxide semiconductor material an oxide containing one or more elements selected from zinc, indium, tin, tungsten, magnesium, gallium, that is, zinc oxide, indium oxide, indium zinc oxide, tin oxide, tungsten oxide, zinc oxide Known materials such as gallium indium can be used.
  • Organic semiconductor materials include high molecular organic semiconductor materials such as polythiophene, polyallylamine, fluorenebithiophene copolymers, and derivatives thereof, and pentacene, tetracene, copper phthalocyanine, perylene, 6,13-bis (triisopropylsilyl) Low molecular organic semiconductor materials such as ethynyl) pentacene (TIPS-pentacene) and derivatives thereof, and precursors that are converted into organic semiconductors by heat treatment or the like can be used as the semiconductor material ink. Carbon compounds such as carbon nanotubes or fullerenes, semiconductor nanoparticle dispersions, and the like can also be used as the material for the semiconductor layer.
  • high molecular organic semiconductor materials such as polythiophene, polyallylamine, fluorenebithiophene copolymers, and derivatives thereof, and pentacene, tetracene, copper phthalocyanine, perylene, 6,13
  • examples of the solvent include toluene, xylene, indane, tetralin, propylene glycol methyl ether acetate, and the like, but are not limited thereto.
  • These semiconductor layers are formed by a vacuum deposition method, an ion plating method, a sputtering method, a laser ablation method, a plasma CVD method, a photo CVD method, a hot wire CVD method, or the like.
  • the conductive material can be formed by applying an ink-like or paste-like conductive material by screen printing, flexographic printing, ink-jet method, or the like, and drying, but the present invention is not limited thereto. .
  • Materials used for the protective layer 16 and the dummy protective layer 17 used in this embodiment are polymer solutions such as polyvinylphenol, polymethyl methacrylate, polyimide, polyvinyl alcohol, epoxy resin, fluororesin, and particles such as alumina and silica gel.
  • a dispersed solution is preferably used.
  • a method for forming the protective layer a method of directly forming a pattern using a wet method such as screen printing, letterpress printing, or an inkjet method is preferably used, but is not limited thereto.
  • the structure of the thin film transistor formed using the pattern forming method of the present embodiment is not particularly limited, and may be a top gate type or a bottom gate type structure.
  • a difference in structure other than the arrangement of the gate electrode there are a bottom contact type and a top contact type in which the positions of the semiconductor layers are different.
  • the bottom contact type is preferable. This is because the bottom contact type can shorten the channel length as compared with the top contact type, so that a large drain current can be obtained.
  • Example 2A and 2B show a cross-sectional structure of a thin film transistor array 1 including a bottom gate bottom contact type flexible thin film transistor array according to the first embodiment.
  • 2A shows a cross-sectional structure in a display effective region of an image display device using the thin film transistor array 1, and a method for manufacturing the thin film transistor array 1 taking the form shown in FIGS. 2A and 2B will be described.
  • the thin film transistor array 1 has a single element size of 500 ⁇ m ⁇ 500 ⁇ m and includes 240 ⁇ 320 elements.
  • PEN polyethylene naphthalate
  • Teijin DuPont Teijin DuPont
  • polyimide (Neoprim manufactured by Mitsubishi Gas Chemical) was applied as a gate insulating material by a die coater and dried at 180 ° C. for 1 hour to obtain a gate insulating film 12.
  • gold was deposited to a thickness of 50 nm by an evaporation method, photolithography and etching were performed using a positive resist, and then the resist was removed to form the source electrode 13 and the drain electrode 14.
  • a mixed solution of tetralin (manufactured by Kanto Chemical) and 6,13-bis (triisopropylsilylethynyl) pentacene (TIPS-pentacene) (manufactured by Aldrich) was used.
  • the flexographic printing method was used for forming the semiconductor layer. In the flexographic printing, a photosensitive resin flexographic plate and a 150-wire anilox roll were used. After the semiconductor material was printed in stripes, the semiconductor layer 15 was formed by drying at 100 ° C. for 60 minutes.
  • protective layers 16 and 17 were formed.
  • Cytop manufactured by Asahi Glass
  • Flexographic printing was used for forming the protective layer.
  • a photosensitive resin flexographic plate was used as the flexographic plate, and a 150-wire anilox roll was used.
  • the flexographic plate has a stripe shape, and the length of each stripe is 180 mm, which is a sum of 176 mm, which becomes the display effective area 101, and 4 mm of the dummy protective layer 17 (a) disposed above and below the display effective area 101. is there.
  • the total number of stripes is 330, which is the sum of 320 stripes to be the display effective area 101 in the array and 10 stripes to be the dummy protective layer 17 (b).
  • Ink is applied to the flexographic plate from the anilox roll, five dummy protective layers 17 (b) are formed at both ends of the display effective area 101, and the display effective area 101 is striped so as to cover the semiconductor layer 15.
  • a protective layer was printed. Then, it dried at 100 degreeC for 90 minute (s), and it was set as the stripe-shaped protective layers 16 * 17, and the flexible thin-film transistor array 1 was formed.
  • the sealing layer can be uniformly formed in the display effective region 101, so that deterioration due to moisture during the manufacturing process is caused. It was suppressed, and good image display with little display unevenness could be performed.
  • FIGS. 3A, 3B, and 3C A manufacturing method of the bottom gate bottom contact type flexible thin film transistor array 2 taking the form shown in FIGS. 3A, 3B, and 3C will be described.
  • This transistor array has an element size of 500 ⁇ m ⁇ 500 ⁇ m, and includes 240 ⁇ 320 elements.
  • FIG. 3A illustration of the gate electrode 11, the capacitor electrode 18, the source electrode 13, and the drain electrode 14 is omitted.
  • the dummy protective layer 17 (a) and the dummy protective layer 17 (b) have the same form.
  • a gate electrode 11, a capacitor electrode 18, a gate insulating film 12, a source electrode 13, a drain electrode 14, and a semiconductor layer 15 were formed on the PEN film 10.
  • the flexographic printing method was used for forming the protective layers 16 and 17.
  • a photosensitive resin flexographic plate and a 150-wire anilox roll were used.
  • the flexographic plate has a stripe shape, and the length of each stripe is 180 mm, which is a sum of 176 mm, which becomes the display effective area 101, and 4 mm of the dummy protective layer 17 (a) disposed above and below the display effective area 101. is there.
  • the number of stripes is 320 stripes to be the display effective area 101 in the array, and the dummy protective layers 17 (b) having a stripe shape parallel to the protective layers 16 of the display effective area 101 located at both ends of the display effective area 101 are Did not form.
  • the stripes at the left and right ends of the display effective area 101 have a shape defect.
  • the striped protective layers at both ends have a fast solvent volatilization, and the ink is dried before the protective layer is formed, so that the semiconductor layer 15 cannot be covered. Since the semiconductor layer 15 can no longer be protected from moisture in the atmosphere, the flexible thin film transistor array 2 cannot be obtained.
  • FIGS. 4A, 4B, and 4C A manufacturing method of the bottom gate bottom contact type flexible thin film transistor array 3 taking the form shown in FIGS. 4A, 4B, and 4C will be described.
  • This transistor array has an element size of 500 ⁇ m ⁇ 500 ⁇ m, and includes 240 ⁇ 320 elements.
  • the gate electrode 11, the capacitor electrode 18, the source electrode 13, and the drain electrode 14 are not shown.
  • the dummy protective layer 17 (a) and the dummy protective layer 17 (b) have the same form.
  • a gate electrode 11, a capacitor electrode 18, a gate insulating film 12, a source electrode 13, a drain electrode 14, and a semiconductor layer 15 were formed on the PEN film 10.
  • the flexographic printing method was used for forming the protective layers 16 and 17.
  • a photosensitive resin flexographic plate and a 150-wire anilox roll were used.
  • the flexographic plate has a stripe shape, and the length of each stripe is 177 mm, which is a combination of 176 mm, which becomes the display effective area 101, and 1 mm of the dummy protective layer 17 (a) disposed above and below the display effective area 101.
  • the total number of the stripes is 330, which is the sum of 320 stripe semiconductor layers serving as the protective layer 16 of the display effective area 101 in the array and 10 stripes serving as the dummy protective layer 17 (b).
  • Ink is applied from the anilox roll to the flexographic plate, and five dummy protective layers 17 (b) are formed at both ends of the display effective region 101, and the protective layer forming material covers the semiconductor layer 15 in the display effective region 101.
  • the protective layer 16 was formed.
  • the shape of the protective layer corresponding to the two rows of elements on the upper and lower ends of the display effective area 101 becomes poor, and the flexible thin film transistor array 3 cannot be obtained. This is because the solvent volatilization was fast at the stripe end of the protective layer, and the ink was dried before the protective layer was formed, so that the semiconductor layer 15 could not be covered.
  • the flexible thin film transistor of the present invention can be used as a switching element such as flexible electronic paper or a flexible organic EL display.
  • a flexible thin film transistor applicable to a wide range such as a flexible display, an IC card, and an IC tag can be manufactured at low cost and with high quality.

Abstract

This thin film transistor array has display effective regions, each of which is provided with at least an insulating substrate, a gate electrode, a gate insulating layer, a source electrode, a drain electrode, a semiconductor layer, and a first protection layer. A plurality of first protection layers are formed over a plurality of thin film transistors, said first protection layers being formed in stripe shapes on the insulating substrate, and the first protection layers include a plurality of second protection layers that are provided outside of the display effective regions.

Description

薄膜トランジスタアレイおよび画像表示装置Thin film transistor array and image display device
 本発明は、薄膜トランジスタアレイおよび画像表示装置に関する。 The present invention relates to a thin film transistor array and an image display device.
 情報技術の目覚しい発展により、現在ではノート型パソコンや携帯情報端末などでの情報の送受信が頻繁に行われている。近い将来、場所を選ばずに情報をやり取りできるユビキタス社会が来るであろうことは周知の事実である。そのような社会においては、より軽量で薄型の情報端末が望まれる。 Due to the remarkable development of information technology, information is frequently sent and received on laptop computers and portable information terminals. It is a well-known fact that in the near future, a ubiquitous society that can exchange information regardless of location will come. In such a society, a lighter and thinner information terminal is desired.
 そのような情報端末に使用する電子部材の中でも、現在薄膜トランジスタ素子に使用されている半導体材料の主流はシリコン系である。シリコン系材料を用いた薄膜トランジスタ素子の形成には高い温度の工程が含まれるため、薄膜トランジスタ素子の基板材料には工程温度に耐え得ることが求められる。このため、一般的には薄膜トランジスタ素子を形成する基板としてガラスが使用されている。 Among the electronic members used in such information terminals, the mainstream of semiconductor materials currently used in thin film transistor elements is silicon. Since formation of a thin film transistor element using a silicon-based material includes a process at a high temperature, the substrate material of the thin film transistor element is required to withstand the process temperature. For this reason, glass is generally used as a substrate on which thin film transistor elements are formed.
 しかしながら、先に述べた情報端末を構成する際にガラスを用いた場合、その情報端末は重く、柔軟性がなく、落下の衝撃で割れる可能性のある製品となってしまう。従ってガラス上に薄膜トランジスタ素子を形成することに起因するこれらの特徴は、ユビキタス社会における情報端末として望ましくないものであるといえる。 However, when glass is used when configuring the information terminal described above, the information terminal is heavy, inflexible, and can be broken by the impact of dropping. Therefore, it can be said that these characteristics resulting from the formation of thin film transistor elements on glass are undesirable as information terminals in the ubiquitous society.
 そこで近年、薄膜トランジスタの半導体材料として有機半導体が注目されている。有機半導体材料はシリコン系材料のような高温での熱処理工程を必要としないため可撓性のプラスチック基板上に設けられる等の利点を有する。さらに、真空プロセスを用いず印刷プロセスで作製できるためコストを下げられる等の利点も有する。 Therefore, in recent years, organic semiconductors have attracted attention as semiconductor materials for thin film transistors. Organic semiconductor materials do not require a heat treatment step at a high temperature unlike silicon-based materials, and thus have an advantage that they are provided on a flexible plastic substrate. Furthermore, since it can be produced by a printing process without using a vacuum process, there is an advantage that the cost can be reduced.
 溶液から半導体層を形成するには、スピンコート法やディップ法、インクジェット法などの方法が挙げられる。なかでも、印刷プロセスを適用することにより、効率よく半導体層を形成することができる。例えば特許文献1においては、フレキソ印刷により有機半導体溶液のパターニングを行っている。 In order to form a semiconductor layer from a solution, methods such as a spin coating method, a dip method, and an ink jet method can be used. Especially, a semiconductor layer can be formed efficiently by applying a printing process. For example, in Patent Document 1, patterning of an organic semiconductor solution is performed by flexographic printing.
 さらに、特許文献2では、半導体層をストライプ形状とすることで、アライメント精度を向上させ、生産効率を更に高めることができる。 Furthermore, in Patent Document 2, by making the semiconductor layer into a stripe shape, alignment accuracy can be improved and production efficiency can be further increased.
 しかしながら、半導体層を有機半導体層とする場合、有機半導体はシリコン系材料と比べ大気中の水分による劣化が早いことが懸念される。よって、有機半導体の場合、半導体層を水分から守るための保護層が必須である。 However, when the semiconductor layer is an organic semiconductor layer, there is a concern that the organic semiconductor is rapidly deteriorated by moisture in the atmosphere as compared with silicon-based materials. Therefore, in the case of an organic semiconductor, a protective layer for protecting the semiconductor layer from moisture is essential.
 保護層の形成においても、ウェットプロセスを適用することで簡便かつ低コストに保護層を形成することができる。例えば特許文献3では、フレキソ印刷により保護層を形成し、簡便に開口率の高い薄膜トランジスタアレイを作製している。 Also in the formation of the protective layer, the protective layer can be formed easily and at low cost by applying a wet process. For example, in Patent Document 3, a protective layer is formed by flexographic printing, and a thin film transistor array having a high aperture ratio is simply manufactured.
特開2006-63334号公報JP 2006-63334 A 特開2008-235861号公報JP 2008-235861 A 特許第4743348号公報Japanese Patent No. 4743348
 しかしながら、印刷法を用いて薄膜トランジスタアレイの保護層のパターニングを行う場合、アレイ端部と中心部とではインキの乾燥ムラやインキングムラによる印刷ムラが発生しやすく、特にアレイ端部では保護層の形状不良が顕著である。保護層が形状不良となることで、半導体層が保護層で覆いきれなくなり、剥き出しになった半導体層が大気に晒されることにより素子作製中および作製後に大気中の水分によって劣化し、薄膜トランジスタアレイを構成する素子の移動度が低下してしまう。 However, when patterning the protective layer of the thin film transistor array using the printing method, uneven printing due to ink drying unevenness or inking unevenness is likely to occur at the edge and center of the array. The shape defect is remarkable. Due to the defective shape of the protective layer, the semiconductor layer cannot be covered with the protective layer, and the exposed semiconductor layer is exposed to the atmosphere, so that it deteriorates due to moisture in the atmosphere during and after the device fabrication. The mobility of the constituent elements is reduced.
 本発明は、生産効率が良く、かつ、表示有効領域における素子特性を劣化し難くすることができる薄膜トランジスタアレイ、およびそれを備えた画像表示装置を提供するものである。 The present invention provides a thin film transistor array capable of improving the production efficiency and making it difficult to deteriorate the device characteristics in the display effective region, and an image display device including the same.
 前記課題を解決するための第1の発明は、少なくとも、絶縁基板と、ゲート電極と、ゲート絶縁層と、ソース電極と、ドレイン電極と、半導体層と、第1の保護層とを備えた表示有効領域を有する薄膜トランジスタアレイであって、複数の前記第1の保護層が複数の薄膜トランジスタにまたがるように、前記絶縁基板上にストライプ形状に形成され、前記表示有効領域外に設けられた複数の第2の保護層を含むことを特徴とする薄膜トランジスタアレイである。 A first invention for solving the above-described problem is a display including at least an insulating substrate, a gate electrode, a gate insulating layer, a source electrode, a drain electrode, a semiconductor layer, and a first protective layer. A thin film transistor array having an effective region, wherein a plurality of the first protective layers are formed in a stripe shape on the insulating substrate so as to extend over the plurality of thin film transistors, and a plurality of first layers provided outside the display effective region are provided. A thin film transistor array comprising two protective layers.
 また、第2の発明は、第1の発明において、前記第1の保護層のストライプの延伸方向は、ソース配線の延伸方向と同じであることを特徴とする薄膜トランジスタアレイである。 Further, the second invention is the thin film transistor array according to the first invention, wherein the extending direction of the stripe of the first protective layer is the same as the extending direction of the source wiring.
 また、第3の発明は、第1の発明において、前記第2の保護層はストライプ形状であり、前記第1の保護層と平行であり、ソース配線の延伸方向と平行な方向に延伸するように、前記表示有効領域の前記ソース配線の延伸方向と直交する方向に隣接して配置されていることを特徴とする薄膜トランジスタアレイである。 In a third aspect based on the first aspect, the second protective layer has a stripe shape, is parallel to the first protective layer, and extends in a direction parallel to the extending direction of the source wiring. Further, the thin film transistor array is arranged adjacent to a direction orthogonal to an extending direction of the source wiring in the display effective region.
 また、第4の発明は、第1の発明において、前記複数の第2の保護層が、前記表示有効領域の最も外側の素子のチャネル領域から、ソース配線の延伸方向に、前記第1の保護層の少なくとも2mm以上延伸した部分として形成されていることを特徴とする薄膜トランジスタアレイである。 In a fourth aspect based on the first aspect, the plurality of second protective layers are arranged in a direction in which a source wiring extends from a channel region of an outermost element of the display effective region. The thin film transistor array is formed as a portion extending at least 2 mm of the layer.
 また、第5の発明は、第1の発明において、前記保護層が、有機絶縁材料により形成されていることを特徴とする薄膜トランジスタアレイである。 The fifth invention is the thin film transistor array according to the first invention, wherein the protective layer is formed of an organic insulating material.
 また、第6の発明は、第1の発明において、前記保護層が凸版印刷法、インクジェット印刷法、スクリーン印刷法により形成されることを特徴とする薄膜トランジスタアレイである。 The sixth invention is the thin film transistor array according to the first invention, wherein the protective layer is formed by a relief printing method, an ink jet printing method, or a screen printing method.
 また、第7の発明は、第1の発明において、前記絶縁基板がプラスチック基板であることを特徴とする薄膜トランジスタアレイである。 The seventh invention is the thin film transistor array according to the first invention, wherein the insulating substrate is a plastic substrate.
 また、第8の発明は、第1の発明において、前記ゲート絶縁膜が有機材料を含むことを特徴とする薄膜トランジスタアレイである。 The eighth invention is the thin film transistor array according to the first invention, wherein the gate insulating film contains an organic material.
 また、第9の発明は、前記薄膜トランジスタアレイと画像表示媒体とを備えていることを特徴とする画像表示装置である。 The ninth invention is an image display device comprising the thin film transistor array and an image display medium.
 また、第10の発明は、第9の発明において、前記画像表示媒体が電気泳動方式によるものであることを特徴とする画像表示装置である。 The tenth invention is the image display device according to the ninth invention, wherein the image display medium is of an electrophoretic method.
 第1の発明によれば、低コストかつ高品質なフレキシブル薄膜トランジスタを高生産効率で提供することが可能となる。具体的には、薄膜トランジスタアレイの保護層をストライプ形状とすることで、アライメントが容易となり、フレキシブル薄膜トランジスタのスループットを向上することができる。また、フレキシブル薄膜トランジスタの表示に関与する表示有効領域内の第1の保護層と、表示有効領域外の第2の保護層とを設けることで、薄膜トランジスタアレイ内の半導体層を大気中の水分から保護し、素子特性の劣化を軽減することができるため、高品質なフレキシブル薄膜トランジスタアレイを歩留まりよく生産することができる。 According to the first invention, it is possible to provide a low-cost and high-quality flexible thin film transistor with high production efficiency. Specifically, when the protective layer of the thin film transistor array has a stripe shape, alignment becomes easy and the throughput of the flexible thin film transistor can be improved. In addition, by providing a first protective layer in the display effective region involved in the display of the flexible thin film transistor and a second protective layer outside the display effective region, the semiconductor layer in the thin film transistor array is protected from moisture in the atmosphere. In addition, since deterioration of element characteristics can be reduced, a high-quality flexible thin film transistor array can be produced with high yield.
 以上により、生産効率が良く、かつ、表示有効領域における素子特性が劣化し難い薄膜トランジスタアレイを提供することができる。 As described above, it is possible to provide a thin film transistor array that has high production efficiency and that does not easily deteriorate the element characteristics in the display effective region.
 また、第2の発明によれば、保護層のアライメント精度を向上させることができ、高品質なフレキシブル薄膜トランジスタアレイを生産することができる。 Further, according to the second invention, the alignment accuracy of the protective layer can be improved, and a high-quality flexible thin film transistor array can be produced.
 また、第3の発明によれば、薄膜トランジスタアレイの表示有効領域端部に位置するストライプ保護層の形成不良を軽減することができ、表示有効領域端部の素子特性劣化を抑制することができる。 Further, according to the third invention, it is possible to reduce the formation defect of the stripe protective layer located at the end of the display effective area of the thin film transistor array, and to suppress the deterioration of the element characteristics at the end of the display effective area.
 また、第4の発明によれば、表示有効領域内の最も外側の素子のチャネル部分を覆う保護層の形状不良を軽減することができるため、フレキシブル薄膜トランジスタアレイ内の素子特性劣化ばらつきを軽減することができる。 In addition, according to the fourth aspect of the present invention, it is possible to reduce the shape defect of the protective layer that covers the channel portion of the outermost element in the display effective region, thereby reducing variation in element characteristic deterioration in the flexible thin film transistor array. Can do.
 また、第5の発明によれば、前記保護層が、有機絶縁材料により形成されていることでインキとして用いることが可能となり、印刷により保護層を形成できるため、保護層を低コストで簡便に形成することができる。 In addition, according to the fifth invention, since the protective layer is formed of an organic insulating material, it can be used as ink, and the protective layer can be formed by printing. Can be formed.
 また、第6の発明によれば、大面積の薄膜トランジスタアレイにも短時間で保護層を形成することができる。 Further, according to the sixth aspect of the invention, a protective layer can be formed in a short time even on a large area thin film transistor array.
 また、第7の発明によれば、前記絶縁基板がプラスチック基板であることで、従来のガラス基板に形成した薄膜トランジスタに比べ軽量かつ柔軟性があり、落としても割れない安全なフレキシブル薄膜トランジスタアレイを作製することができる。 According to the seventh invention, since the insulating substrate is a plastic substrate, a flexible flexible thin film transistor array that is lighter and more flexible than a thin film transistor formed on a conventional glass substrate and that does not break even when dropped is manufactured. can do.
 また、第8の発明によれば、前記ゲート絶縁膜を作製する際に有機材料を含む材料を使用することで、塗布法により容易にゲート絶縁膜を形成することができ、フレキシブル薄膜トランジスタアレイの生産効率を向上することができる。 Further, according to the eighth invention, the gate insulating film can be easily formed by a coating method by using a material containing an organic material when the gate insulating film is manufactured, and the flexible thin film transistor array is produced. Efficiency can be improved.
図1Aは、本発明の実施形態を示すものであり、薄膜トランジスタアレイ全体の概略構成のパターンレイアウトを示す平面図である。FIG. 1A shows an embodiment of the present invention and is a plan view showing a pattern layout of a schematic configuration of the entire thin film transistor array. 図1Bは、本発明の実施形態を示すものであり、薄膜トランジスタアレイの表示有効領域およびダミー保護層領域の素子の詳細な構成を示す平面図である。FIG. 1B shows an embodiment of the present invention and is a plan view showing a detailed configuration of elements in a display effective region and a dummy protective layer region of a thin film transistor array. 図1Cは、本発明の実施形態を示すものであり、薄膜トランジスタアレイの表示有効領域における素子の構成を示す断面図である。FIG. 1C illustrates an embodiment of the present invention, and is a cross-sectional view illustrating a configuration of elements in a display effective region of a thin film transistor array. 図1Dは、本発明の実施形態を示すものであり、薄膜トランジスタアレイのダミー保護層領域における構成を示す断面図である。FIG. 1D shows an embodiment of the present invention and is a cross-sectional view showing a configuration in a dummy protective layer region of a thin film transistor array. 図2Aは、本発明の実施形態を示すものであり、実施例に係る薄膜トランジスタアレイを用いた画像表示装置の表示有効領域における構成を示す断面図である。FIG. 2A shows an embodiment of the present invention and is a cross-sectional view showing a configuration in a display effective region of an image display device using a thin film transistor array according to the example. 図2Bは、本発明の実施形態を示すものであり、実施例に係る薄膜トランジスタアレイを用いた画像表示装置のダミー保護層領域における構成を示す断面図である。FIG. 2B shows an embodiment of the present invention and is a cross-sectional view showing a configuration in a dummy protective layer region of an image display device using a thin film transistor array according to the example. 図3Aは、本発明の実施形態を示すものであり、第1の比較例に係る薄膜トランジスタアレイ全体の概略構成を示す平面図である。FIG. 3A shows an embodiment of the present invention, and is a plan view showing a schematic configuration of an entire thin film transistor array according to a first comparative example. 図3Bは、本発明の実施形態を示すものであり、第1の比較例に係る薄膜トランジスタアレイを用いた画像表示装置の表示有効領域における構成を示す断面図である。FIG. 3B shows an embodiment of the present invention and is a cross-sectional view showing a configuration in a display effective region of an image display device using a thin film transistor array according to a first comparative example. 図3Cは、本発明の実施形態を示すものであり、第1の比較例に係る薄膜トランジスタアレイを用いた画像表示装置のダミー保護層領域における構成を示す断面図である。FIG. 3C illustrates an embodiment of the present invention and is a cross-sectional view illustrating a configuration in a dummy protective layer region of an image display device using a thin film transistor array according to a first comparative example. 図4Aは、本発明の実施形態を示すものであり、第2の比較例に係る薄膜トランジスタアレイ全体の概略構成を示す平面図である。FIG. 4A shows an embodiment of the present invention and is a plan view showing a schematic configuration of an entire thin film transistor array according to a second comparative example. 図4Bは、本発明の実施形態を示すものであり、第2の比較例に係る薄膜トランジスタアレイを用いた画像表示装置の表示有効領域における構成を示す断面図である。FIG. 4B shows an embodiment of the present invention and is a cross-sectional view showing a configuration in a display effective region of an image display device using a thin film transistor array according to a second comparative example. 図4Cは、本発明の実施形態を示すものであり、第2の比較例に係る薄膜トランジスタアレイを用いた画像表示装置のダミー保護層領域における構成を示す断面図である。FIG. 4C shows an embodiment of the present invention and is a cross-sectional view showing a configuration in a dummy protective layer region of an image display device using a thin film transistor array according to a second comparative example.
 以下、本発明の実施の形態を、図面を参照しつつ説明する。実施の形態において、同一構成要素には同一符号を付け、実施の形態間において重複する説明は省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the embodiments, the same components are denoted by the same reference numerals, and redundant description among the embodiments is omitted.
 図1A~図1Dに、本実施形態の薄膜トランジスタアレイ1の構成の一例を示す。図1Aは薄膜トランジスタアレイ1の全体のパターンレイアウト平面図、図1Bは図1Aの領域Rの構成を詳細に示すパターンレイアウト平面図、図1Cは図1BのA-A’線断面図、図1Dは図1BのB-B’線断面図である。 1A to 1D show an example of the configuration of the thin film transistor array 1 of the present embodiment. 1A is an overall pattern layout plan view of the thin film transistor array 1, FIG. 1B is a pattern layout plan view showing in detail the configuration of the region R in FIG. 1A, FIG. 1C is a cross-sectional view taken along line AA ′ in FIG. FIG. 1B is a cross-sectional view taken along the line BB ′ of FIG. 1B.
 図1Cおよび図1Dに示すように、薄膜トランジスタアレイ1は、プラスチック基板(絶縁基板)10上にゲート電極11、キャパシタ電極18、ゲート絶縁層12、ソース電極13、ドレイン電極14、半導体層15、保護層16、および、保護層17を備えている。保護層(第1の保護層)16は表示有効領域101に複数設けられており、保護層(第2の保護層)17は、表示に関係しない表示有効領域外に複数設けられている。さらに、表示に関係しない表示有効領域外の保護層17は、図1Aおよび図1Bに示すように、表示有効領域101の最も外側の素子のチャネル領域から、ソース電極13の一部分をなすソース配線13(a)の延伸するy方向に平行に、2mm以上延長することにより形成されたダミー保護層17(a)と、半導体層15と平行であり、ソース配線13(a)と平行な方向かつ表示有効領域101の左右に(y方向に直交するx方向に)隣接して配置されているダミー保護層17(b)から成る。 As shown in FIGS. 1C and 1D, the thin film transistor array 1 includes a gate electrode 11, a capacitor electrode 18, a gate insulating layer 12, a source electrode 13, a drain electrode 14, a semiconductor layer 15, and a protection layer on a plastic substrate (insulating substrate) 10. A layer 16 and a protective layer 17 are provided. A plurality of protective layers (first protective layers) 16 are provided in the display effective area 101, and a plurality of protective layers (second protective layers) 17 are provided outside the display effective area not related to display. Further, as shown in FIGS. 1A and 1B, the protective layer 17 outside the display effective region not related to display is formed from the channel region of the outermost element of the display effective region 101 so as to form a part of the source electrode 13. The dummy protective layer 17 (a) formed by extending 2 mm or more parallel to the extending y direction of (a) and the semiconductor layer 15 are parallel to the source wiring 13 (a) and display. The dummy protective layer 17 (b) is disposed adjacent to the left and right of the effective area 101 (in the x direction orthogonal to the y direction).
 なお、図1Aには、表示有効領域101の保護層16と、ダミー保護層17(a)、17(b)とを示し、ゲート電極11、キャパシタ電極18、ソース電極13、ドレイン電極14の図示を省略した。図1Aに示す領域Rは、表示有効領域101の左下にある4素子と、その周囲のダミー保護層17(a)、17(b)とを含む領域である。図1Bでは、プラスチック基板10とゲート絶縁膜12との図示を省略した。また、ダミー保護層17(a)とダミー保護層17(b)とは、互いに同様の形態をとる。 1A shows the protective layer 16 of the display effective region 101 and the dummy protective layers 17 (a) and 17 (b), and the gate electrode 11, the capacitor electrode 18, the source electrode 13, and the drain electrode 14 are shown. Was omitted. A region R shown in FIG. 1A is a region including the four elements at the lower left of the display effective region 101 and the surrounding dummy protective layers 17 (a) and 17 (b). In FIG. 1B, illustration of the plastic substrate 10 and the gate insulating film 12 is omitted. The dummy protective layer 17 (a) and the dummy protective layer 17 (b) have the same form.
 本実施形態に係るプラスチック基板10には、ポリメチレンメタクリレート、ポリアクリレート、ポリカーボネート、ポリスチレン、ポリエチレンサルファイド、ポリエーテルスルホン、ポリオレフィン、ポリエチレンテレフタレート、ポリエチレンナフタレート、シクロオレフィンポリマー、ポリエーテルサルフォン、トリアセチルセルロース、ポリビニルフルオライドフィルム、エチレン-テトラフルオロエチレン、共重合樹脂、耐候性ポリエチレンテレフタレート、耐候性ポリプロピレン、ガラス繊維強化アクリル樹脂フィルム、ガラス繊維強化ポリカーボネート、透明性ポリイミド、フッ素系樹脂、環状ポリオレフィン樹脂等を使用することができるが、本発明はこれらに限定されるものではない。これらは単独でも、二種以上が積層された複合基板としても使用することができる。またガラスやプラスチック基板上にカラーフィルタのような樹脂層を有する基板も使用することができる。 The plastic substrate 10 according to this embodiment includes polymethylene methacrylate, polyacrylate, polycarbonate, polystyrene, polyethylene sulfide, polyethersulfone, polyolefin, polyethylene terephthalate, polyethylene naphthalate, cycloolefin polymer, polyethersulfone, and triacetyl cellulose. , Polyvinyl fluoride film, ethylene-tetrafluoroethylene, copolymer resin, weather resistant polyethylene terephthalate, weather resistant polypropylene, glass fiber reinforced acrylic resin film, glass fiber reinforced polycarbonate, transparent polyimide, fluororesin, cyclic polyolefin resin, etc. Although it can be used, this invention is not limited to these. These can be used alone or as a composite substrate in which two or more kinds are laminated. A substrate having a resin layer such as a color filter on a glass or plastic substrate can also be used.
 本実施形態に係るゲート電極11、ソース電極13、ドレイン電極14、キャパシタ電極18には、Au、Ag、Cu、Cr、Al、Mg、Liなどの低抵抗金属材料や酸化物材料が好適に用いられる。具体的には、酸化インジウム(In)、酸化錫(SnO)、酸化亜鉛(ZnO)、酸化カドミウム(CdO)、酸化インジウムカドミウム(CdIn)、酸化カドミウム錫(CdSnO)、酸化亜鉛錫(ZnSnO)、酸化インジウム亜鉛(InZnO)等が挙げられる。またこの酸化物材料に不純物をドープしたものも好ましい。一例として酸化インジウムにモリブデンやチタンをドープしたもの、酸化錫にアンチモンやフッ素をドープしたもの、酸化亜鉛にインジウム、アルミニウム、ガリウムをドープしたものなどが挙げられる。なかでも酸化インジウムに錫をドープした酸化インジウム錫(ITO)がとりわけ低い抵抗率を示す。またPEDOT(ポリエチレンジオキシチオフェン)等の有機導電性材料も好適であり、単体の場合も導電性酸化物材料との複数積層の場合も好んで用いられる。ゲート電極11、ソース電極13およびドレイン電極14は、すべて同じ材料からできていても、違う材料からできていてもよい。しかし、工程を減らすためにはソース電極13とドレイン電極14に同一の材料を使用することが望ましい。これらの電極は、真空蒸着法、イオンプレーティング法、スパッタ法、レーザーアブレーション法、プラズマCVD法、光CVD法、ホットワイヤーCVD法等により形成される。また上述の導電性材料をインキ状、ペースト状にしたものをスクリーン印刷、フレキソ印刷、インクジェット法等により塗布し、焼成することでも形成が可能である。本発明はこれらに限定されるものではない。 For the gate electrode 11, the source electrode 13, the drain electrode 14, and the capacitor electrode 18 according to the present embodiment, a low resistance metal material such as Au, Ag, Cu, Cr, Al, Mg, Li, or an oxide material is preferably used. It is done. Specifically, indium oxide (In 2 O 3 ), tin oxide (SnO 2 ), zinc oxide (ZnO), cadmium oxide (CdO), indium cadmium oxide (CdIn 2 O 4 ), cadmium tin oxide (Cd 2 SnO) 4 ), zinc tin oxide (Zn 2 SnO 4 ), indium zinc oxide (InZnO), and the like. Further, an oxide material doped with impurities is also preferable. For example, indium oxide doped with molybdenum or titanium, tin oxide doped with antimony or fluorine, zinc oxide doped with indium, aluminum, or gallium. Among them, indium tin oxide (ITO) in which tin is doped in indium oxide exhibits a particularly low resistivity. An organic conductive material such as PEDOT (polyethylenedioxythiophene) is also suitable, and is preferably used in the case of a single substance or a plurality of laminated layers with a conductive oxide material. The gate electrode 11, the source electrode 13, and the drain electrode 14 may be made of the same material or different materials. However, in order to reduce the number of steps, it is desirable to use the same material for the source electrode 13 and the drain electrode 14. These electrodes are formed by vacuum deposition, ion plating, sputtering, laser ablation, plasma CVD, photo CVD, hot wire CVD, or the like. It can also be formed by applying the above conductive material in ink or paste form by screen printing, flexographic printing, ink jet method or the like and baking. The present invention is not limited to these.
 本実施形態に係るゲート絶縁膜12に使用する材料として、酸化シリコン、窒化シリコン、酸化窒化シリコン、酸化アルミニウム、酸化タンタル、酸化イットリウム、酸化ハフニウム、ハフニウムアルミネート、酸化ジルコニア、酸化チタン等の無機材料、またはPMMA(ポリメチルメタクリレート)等のポリアクリレート、PVA(ポリビニルアルコール)、PVP(ポリビニルフェノール)等が挙げられるが、本発明はこれらに限定されるものではない。またゲートリーク電流を抑えるために、絶縁材料の好ましい抵抗率は1011Ωcm以上、より好ましくは1014Ωcm以上である。 As materials used for the gate insulating film 12 according to the present embodiment, inorganic materials such as silicon oxide, silicon nitride, silicon oxynitride, aluminum oxide, tantalum oxide, yttrium oxide, hafnium oxide, hafnium aluminate, zirconia oxide, and titanium oxide Or polyacrylate such as PMMA (polymethylmethacrylate), PVA (polyvinyl alcohol), PVP (polyvinylphenol) and the like, but the present invention is not limited thereto. In order to suppress gate leakage current, a preferable resistivity of the insulating material is 10 11 Ωcm or more, more preferably 10 14 Ωcm or more.
 本実施形態に係る半導体層15に用いる材料として、酸化物半導体や有機半導体が挙げられる。酸化物半導体材料としては、亜鉛、インジウム、錫、タングステン、マグネシウム、ガリウムなどのうち一種類以上の元素を含む酸化物、すなわち酸化亜鉛、酸化インジウム、酸化インジウム亜鉛、酸化錫、酸化タングステン、酸化亜鉛ガリウムインジウム等公知の材料が挙げられる。有機半導体材料としては、ポリチオフェン、ポリアリルアミン、フルオレンビチオフェン共重合体、およびそれらの誘導体のような高分子有機半導体材料、およびペンタセン、テトラセン、銅フタロシアニン、ペリレン、6,13-ビス(トリイソプロピルシリルエチニル)ペンタセン(TIPS-ペンタセン)、およびそれらの誘導体のような低分子有機半導体材料や加熱処理などで有機半導体に変換される前駆体を半導体材料インキとして用いることができる。また、カーボンナノチューブあるいはフラーレンなどの炭素化合物や半導体ナノ粒子分散液なども半導体層の材料として用いることができる。半導体材料インキを用いる場合には、溶媒としてトルエンやキシレン、インダン、テトラリン、プロピレングリコールメチルエーテルアセテートなどが挙げられるが、これらに限定されるものではない。これらの半導体層は、真空蒸着法、イオンプレーティング法、スパッタ法、レーザーアブレーション法、プラズマCVD法、光CVD法、ホットワイヤーCVD法等により形成される。また上述の導電性材料をインキ状、ペースト状にしたものをスクリーン印刷、フレキソ印刷、インクジェット法等により塗布し、乾燥することでも形成可能であるが、本発明はこれらに限定されるものではない。 Examples of the material used for the semiconductor layer 15 according to this embodiment include an oxide semiconductor and an organic semiconductor. As an oxide semiconductor material, an oxide containing one or more elements selected from zinc, indium, tin, tungsten, magnesium, gallium, that is, zinc oxide, indium oxide, indium zinc oxide, tin oxide, tungsten oxide, zinc oxide Known materials such as gallium indium can be used. Organic semiconductor materials include high molecular organic semiconductor materials such as polythiophene, polyallylamine, fluorenebithiophene copolymers, and derivatives thereof, and pentacene, tetracene, copper phthalocyanine, perylene, 6,13-bis (triisopropylsilyl) Low molecular organic semiconductor materials such as ethynyl) pentacene (TIPS-pentacene) and derivatives thereof, and precursors that are converted into organic semiconductors by heat treatment or the like can be used as the semiconductor material ink. Carbon compounds such as carbon nanotubes or fullerenes, semiconductor nanoparticle dispersions, and the like can also be used as the material for the semiconductor layer. When a semiconductor material ink is used, examples of the solvent include toluene, xylene, indane, tetralin, propylene glycol methyl ether acetate, and the like, but are not limited thereto. These semiconductor layers are formed by a vacuum deposition method, an ion plating method, a sputtering method, a laser ablation method, a plasma CVD method, a photo CVD method, a hot wire CVD method, or the like. The conductive material can be formed by applying an ink-like or paste-like conductive material by screen printing, flexographic printing, ink-jet method, or the like, and drying, but the present invention is not limited thereto. .
 本実施形態で用いられる保護層16およびダミー保護層17として用いられる材料はポリビニルフェノール、ポリメタクリル酸メチル、ポリイミド、ポリビニルアルコール、エポキシ樹脂、フッ素樹脂などの高分子溶液、アルミナやシリカゲルなどの粒子を分散させた溶液が好適に用いられる。また、保護層の形成方法はスクリーン印刷や凸版印刷、インクジェット法などの湿式法を用いて直接パターンを形成する方法が好適に用いられるが、これらに限定されるものではない。 Materials used for the protective layer 16 and the dummy protective layer 17 used in this embodiment are polymer solutions such as polyvinylphenol, polymethyl methacrylate, polyimide, polyvinyl alcohol, epoxy resin, fluororesin, and particles such as alumina and silica gel. A dispersed solution is preferably used. In addition, as a method for forming the protective layer, a method of directly forming a pattern using a wet method such as screen printing, letterpress printing, or an inkjet method is preferably used, but is not limited thereto.
 本実施形態のパターン形成方法を用いて形成される薄膜トランジスタの構造としては、特に限定されるものではなくトップゲート型、ボトムゲート型のいずれの構造であってもよい。ゲート電極の配置以外の構造の違いとして、半導体層の位置が異なるボトムコンタクト型、トップコンタクト型があるが、半導体層として有機半導体材料を用いる場合にはボトムコンタクト型とすることが好ましい。ボトムコンタクト型はトップコンタクト型に比べてチャネル長を短くできるため大きなドレイン電流が得られるためである。 The structure of the thin film transistor formed using the pattern forming method of the present embodiment is not particularly limited, and may be a top gate type or a bottom gate type structure. As a difference in structure other than the arrangement of the gate electrode, there are a bottom contact type and a top contact type in which the positions of the semiconductor layers are different. When an organic semiconductor material is used as the semiconductor layer, the bottom contact type is preferable. This is because the bottom contact type can shorten the channel length as compared with the top contact type, so that a large drain current can be obtained.
 [実施例]
 図2Aおよび図2Bに、実施例1に係るボトムゲートボトムコンタクト型のフレキシブル薄膜トランジスタアレイから成る薄膜トランジスタアレイ1の断面構造を示す。図2Aは、薄膜トランジスタアレイ1を用いた画像表示装置の表示有効領域における断面構造を示し、図2Aおよび図2Bに示した形態をとる薄膜トランジスタアレイ1の製造方法を説明する。本薄膜トランジスタアレイ1は1素子サイズが500μm×500μmであり、この素子を240×320個含むものである。
[Example]
2A and 2B show a cross-sectional structure of a thin film transistor array 1 including a bottom gate bottom contact type flexible thin film transistor array according to the first embodiment. 2A shows a cross-sectional structure in a display effective region of an image display device using the thin film transistor array 1, and a method for manufacturing the thin film transistor array 1 taking the form shown in FIGS. 2A and 2B will be described. The thin film transistor array 1 has a single element size of 500 μm × 500 μm and includes 240 × 320 elements.
 プラスチック基板10としてポリエチレンナフタレート(PEN)フィルム(帝人デュポン製)を用いた。PENフィルム上にアルミニウムをスパッタ法により100nm成膜後、ポジレジストを用いてフォトリソグラフィ、エッチングを行い、その後レジストを剥離することによりゲート電極11、キャパシタ電極18を形成した。 As the plastic substrate 10, a polyethylene naphthalate (PEN) film (manufactured by Teijin DuPont) was used. After depositing aluminum on the PEN film to a thickness of 100 nm by sputtering, photolithography and etching were performed using a positive resist, and then the resist was removed to form the gate electrode 11 and the capacitor electrode 18.
 続いてゲート絶縁材料としてポリイミド(ネオプリム 三菱ガス化学製)をダイコーターにより塗布し、180℃で1時間乾燥させゲート絶縁膜12を得た。次に金を蒸着法により50nm成膜し、ポジレジストを用いてフォトリソグラフィおよびエッチングを行い、その後レジストを剥離することによりソース電極13およびドレイン電極14を形成した。 Subsequently, polyimide (Neoprim manufactured by Mitsubishi Gas Chemical) was applied as a gate insulating material by a die coater and dried at 180 ° C. for 1 hour to obtain a gate insulating film 12. Next, gold was deposited to a thickness of 50 nm by an evaporation method, photolithography and etching were performed using a positive resist, and then the resist was removed to form the source electrode 13 and the drain electrode 14.
 半導体層形成用材料として、テトラリン(関東化学製)と6,13-ビス(トリイソプロピルシリルエチニル)ペンタセン(TIPS-ペンタセン)(Aldrich製)を混合した溶液を用いた。半導体層の形成にはフレキソ印刷法を用いた。フレキソ印刷には感光性樹脂フレキソ版と150線のアニロックスロールを用い、ストライプ状に半導体材料を印刷した後100℃で60分乾燥させて半導体層15を形成した。 As a semiconductor layer forming material, a mixed solution of tetralin (manufactured by Kanto Chemical) and 6,13-bis (triisopropylsilylethynyl) pentacene (TIPS-pentacene) (manufactured by Aldrich) was used. The flexographic printing method was used for forming the semiconductor layer. In the flexographic printing, a photosensitive resin flexographic plate and a 150-wire anilox roll were used. After the semiconductor material was printed in stripes, the semiconductor layer 15 was formed by drying at 100 ° C. for 60 minutes.
 続いて保護層16・17を形成した。保護層形成材料としてサイトップ(旭硝子製)を用いた。保護層形成にはフレキソ印刷を用いた。フレキソ版として感光性樹脂フレキソ版を用い、150線アニロックスロールを用いた。フレキソ版はストライプ形状であり、それぞれのストライプの長さは表示有効領域101となる176mmと、表示有効領域101の上下に配置されたダミー保護層17(a)の4mmとを足し合わせた180mmである。また、その本数はアレイ内の表示有効領域101となるストライプ320本と、ダミー保護層17(b)となるストライプ10本とを足し合わせた計330本である。アニロックスロールよりフレキソ版へインクを塗布し、表示有効領域101の両端に5本ずつダミー保護層17(b)が形成され、かつ表示有効領域101内では半導体層15を覆うように、ストライプ状に保護層を印刷した。その後、100℃で90分乾燥させてストライプ状保護層16・17とし、フレキシブル薄膜トランジスタアレイ1を形成した。 Subsequently, protective layers 16 and 17 were formed. Cytop (manufactured by Asahi Glass) was used as a protective layer forming material. Flexographic printing was used for forming the protective layer. A photosensitive resin flexographic plate was used as the flexographic plate, and a 150-wire anilox roll was used. The flexographic plate has a stripe shape, and the length of each stripe is 180 mm, which is a sum of 176 mm, which becomes the display effective area 101, and 4 mm of the dummy protective layer 17 (a) disposed above and below the display effective area 101. is there. The total number of stripes is 330, which is the sum of 320 stripes to be the display effective area 101 in the array and 10 stripes to be the dummy protective layer 17 (b). Ink is applied to the flexographic plate from the anilox roll, five dummy protective layers 17 (b) are formed at both ends of the display effective area 101, and the display effective area 101 is striped so as to cover the semiconductor layer 15. A protective layer was printed. Then, it dried at 100 degreeC for 90 minute (s), and it was set as the stripe-shaped protective layers 16 * 17, and the flexible thin-film transistor array 1 was formed.
 しかる後、対向電極との間に電気泳動媒体19を挟んで本実施例によるディスプレイを駆動したところ、封止層が表示有効領域101内で均一に形成できるため、製作工程中の水分による劣化が抑止され、表示ムラの少ない良好な画像表示を行うことができた。 After that, when the display according to this example is driven with the electrophoretic medium 19 interposed between the counter electrode and the counter electrode, the sealing layer can be uniformly formed in the display effective region 101, so that deterioration due to moisture during the manufacturing process is caused. It was suppressed, and good image display with little display unevenness could be performed.
 [比較例1]
 図3A、図3B、および図3Cに示した形態をとるボトムゲートボトムコンタクト型フレキシブル薄膜トランジスタアレイ2の製造方法を示す。本トランジスタアレイは1素子サイズが500μm×500μmであり、この素子を240×320個含むものである。図3Aでは、ゲート電極11、キャパシタ電極18、ソース電極13、ドレイン電極14の図示を省略した。また、ダミー保護層17(a)とダミー保護層17(b)とは、互いに同様の形態をとる。
[Comparative Example 1]
A manufacturing method of the bottom gate bottom contact type flexible thin film transistor array 2 taking the form shown in FIGS. 3A, 3B, and 3C will be described. This transistor array has an element size of 500 μm × 500 μm, and includes 240 × 320 elements. In FIG. 3A, illustration of the gate electrode 11, the capacitor electrode 18, the source electrode 13, and the drain electrode 14 is omitted. The dummy protective layer 17 (a) and the dummy protective layer 17 (b) have the same form.
 実施例1と同様の手順で、PENフィルム10上にゲート電極11、キャパシタ電極18、ゲート絶縁膜12、ソース電極13、ドレイン電極14、半導体層15を形成した。 In the same procedure as in Example 1, a gate electrode 11, a capacitor electrode 18, a gate insulating film 12, a source electrode 13, a drain electrode 14, and a semiconductor layer 15 were formed on the PEN film 10.
 保護層16、17の形成にはフレキソ印刷法を用いた。フレキソ印刷には感光性樹脂フレキソ版と、150線のアニロックスロールとを用いた。フレキソ版はストライプ形状であり、それぞれのストライプの長さは表示有効領域101となる176mmと、表示有効領域101の上下に配置されたダミー保護層17(a)の4mmとを足し合わせた180mmである。また、その本数はアレイ内の表示有効領域101となるストライプ320本とし、表示有効領域101の両端に位置する表示有効領域101の保護層16と平行なストライプ形状のダミー保護層17(b)は形成しなかった。その結果、表示有効領域101の左右両端のストライプが形状不良となってしまった。具体的には、両端のストライプ形状の保護層は溶剤の揮発が早く、保護層形成前にインクが乾燥してしまい、半導体層15を覆いきれなかった。これより大気中の水分から半導体層15を保護することができなくなってしまったため、フレキシブル薄膜トランジスタアレイ2を得ることはできなかった。 The flexographic printing method was used for forming the protective layers 16 and 17. For flexographic printing, a photosensitive resin flexographic plate and a 150-wire anilox roll were used. The flexographic plate has a stripe shape, and the length of each stripe is 180 mm, which is a sum of 176 mm, which becomes the display effective area 101, and 4 mm of the dummy protective layer 17 (a) disposed above and below the display effective area 101. is there. The number of stripes is 320 stripes to be the display effective area 101 in the array, and the dummy protective layers 17 (b) having a stripe shape parallel to the protective layers 16 of the display effective area 101 located at both ends of the display effective area 101 are Did not form. As a result, the stripes at the left and right ends of the display effective area 101 have a shape defect. Specifically, the striped protective layers at both ends have a fast solvent volatilization, and the ink is dried before the protective layer is formed, so that the semiconductor layer 15 cannot be covered. Since the semiconductor layer 15 can no longer be protected from moisture in the atmosphere, the flexible thin film transistor array 2 cannot be obtained.
 [比較例2]
 図4A、図4B、および図4Cに示した形態をとるボトムゲートボトムコンタクト型フレキシブル薄膜トランジスタアレイ3の製造方法を示す。本トランジスタアレイは1素子サイズが500μm×500μmであり、この素子を240×320個含むものである。図4Aでは、ゲート電極11、キャパシタ電極18、ソース電極13、ドレイン電極14の図示を省略した。また、ダミー保護層17(a)とダミー保護層17(b)とは、互いに同様の形態をとる。
[Comparative Example 2]
A manufacturing method of the bottom gate bottom contact type flexible thin film transistor array 3 taking the form shown in FIGS. 4A, 4B, and 4C will be described. This transistor array has an element size of 500 μm × 500 μm, and includes 240 × 320 elements. In FIG. 4A, the gate electrode 11, the capacitor electrode 18, the source electrode 13, and the drain electrode 14 are not shown. The dummy protective layer 17 (a) and the dummy protective layer 17 (b) have the same form.
 実施例1と同様の手順で、PENフィルム10上にゲート電極11、キャパシタ電極18、ゲート絶縁膜12、ソース電極13、ドレイン電極14、半導体層15を形成した。 In the same procedure as in Example 1, a gate electrode 11, a capacitor electrode 18, a gate insulating film 12, a source electrode 13, a drain electrode 14, and a semiconductor layer 15 were formed on the PEN film 10.
 保護層16、17の形成にはフレキソ印刷法を用いた。フレキソ印刷には感光性樹脂フレキソ版と、150線のアニロックスロールを用いた。フレキソ版はストライプ形状であり、それぞれのストライプの長さは表示有効領域101となる176mmと表示有効領域101の上下に配置されたダミー保護層17(a)の1mmとを合わせた177mmである。また、その本数はアレイ内の表示有効領域101の保護層16となるストライプ半導体層320本と、ダミー保護層17(b)となるストライプ10本とを足し合わせた計330本とした。アニロックスロールよりフレキソ版へインクを塗布し、表示有効領域101の両端に5本ずつダミー保護層17(b)が形成され、かつ表示有効領域101内では保護層形成用材料が半導体層15を覆うよう、保護層16を形成した。しかし、表示有効領域101の上下両端の2列の素子に該当する部分の保護層が形状不良となってしまい、フレキシブル薄膜トランジスタアレイ3を得ることはできなかった。これは、保護層のストライプ端部において溶剤の揮発が早く、保護層形成前にインクが乾燥してしまい、半導体層15を覆いきれなかったためである。 The flexographic printing method was used for forming the protective layers 16 and 17. For flexographic printing, a photosensitive resin flexographic plate and a 150-wire anilox roll were used. The flexographic plate has a stripe shape, and the length of each stripe is 177 mm, which is a combination of 176 mm, which becomes the display effective area 101, and 1 mm of the dummy protective layer 17 (a) disposed above and below the display effective area 101. The total number of the stripes is 330, which is the sum of 320 stripe semiconductor layers serving as the protective layer 16 of the display effective area 101 in the array and 10 stripes serving as the dummy protective layer 17 (b). Ink is applied from the anilox roll to the flexographic plate, and five dummy protective layers 17 (b) are formed at both ends of the display effective region 101, and the protective layer forming material covers the semiconductor layer 15 in the display effective region 101. Thus, the protective layer 16 was formed. However, the shape of the protective layer corresponding to the two rows of elements on the upper and lower ends of the display effective area 101 becomes poor, and the flexible thin film transistor array 3 cannot be obtained. This is because the solvent volatilization was fast at the stripe end of the protective layer, and the ink was dried before the protective layer was formed, so that the semiconductor layer 15 could not be covered.
 本発明のフレキシブル薄膜トランジスタは、フレキシブル電子ペーパーや、フレキシブル有機ELディスプレイ等のスイッチング素子として利用することができる。特に、ダミー保護層を形成することにより、製造工程における歩留まりやスループットを向上することができる。従って、フレキシブルディスプレイやICカード、ICタグ等広範囲に応用可能なフレキシブル薄膜トランジスタを低コストかつ高品質に作製することが可能となる。 The flexible thin film transistor of the present invention can be used as a switching element such as flexible electronic paper or a flexible organic EL display. In particular, by forming the dummy protective layer, the yield and throughput in the manufacturing process can be improved. Therefore, a flexible thin film transistor applicable to a wide range such as a flexible display, an IC card, and an IC tag can be manufactured at low cost and with high quality.
1・・・薄膜トランジスタアレイ
10・・・プラスチック基板
11・・・ゲート電極
12・・・ゲート絶縁膜
13・・・ソース電極
13(a)・・・ソース配線
14・・・ドレイン電極
15・・・半導体層
16・・・表示有効領域の保護層
17(a)・・・表示有効領域の上下に配置されたダミー保護層
17(b)・・・表示有効領域の左右に配置されたダミー保護層
18・・・キャパシタ電極
19・・・電気泳動媒体
101・・・表示有効領域
DESCRIPTION OF SYMBOLS 1 ... Thin-film transistor array 10 ... Plastic substrate 11 ... Gate electrode 12 ... Gate insulating film 13 ... Source electrode 13 (a) ... Source wiring 14 ... Drain electrode 15 ... Semiconductor layer 16... Protective layer 17 (a) in the display effective region... Dummy protective layer 17 (b) disposed above and below the display effective region. 18 ... Capacitor electrode 19 ... Electrophoretic medium 101 ... Display effective area

Claims (10)

  1.  少なくとも、絶縁基板と、ゲート電極と、ゲート絶縁層と、ソース電極と、ドレイン電極と、半導体層と、第1の保護層とを備えた表示有効領域を有する薄膜トランジスタアレイであって、
     複数の前記第1の保護層が複数の薄膜トランジスタにまたがるように、前記絶縁基板上にストライプ形状に形成され、
     前記表示有効領域外に設けられた複数の第2の保護層を含むことを特徴とする薄膜トランジスタアレイ。
    A thin film transistor array having a display effective region including at least an insulating substrate, a gate electrode, a gate insulating layer, a source electrode, a drain electrode, a semiconductor layer, and a first protective layer;
    A plurality of the first protective layers are formed in a stripe shape on the insulating substrate so as to span a plurality of thin film transistors,
    A thin film transistor array comprising a plurality of second protective layers provided outside the display effective area.
  2.  前記第1の保護層のストライプの延伸方向は、ソース配線の延伸方向と同じであることを特徴とする請求項1に記載の薄膜トランジスタアレイ。 2. The thin film transistor array according to claim 1, wherein the extending direction of the stripe of the first protective layer is the same as the extending direction of the source wiring.
  3.  前記第2の保護層はストライプ形状であり、前記第1の保護層と平行であり、ソース配線の延伸方向と平行な方向に延伸するように、前記表示有効領域の前記ソース配線の延伸方向と直交する方向に隣接して配置されていることを特徴とする請求項1に記載の薄膜トランジスタアレイ。 The second protective layer has a stripe shape, is parallel to the first protective layer, and extends in a direction parallel to the extending direction of the source wiring. 2. The thin film transistor array according to claim 1, wherein the thin film transistor array is disposed adjacent to each other in a direction orthogonal to each other.
  4.  前記複数の第2の保護層が、前記表示有効領域の最も外側の素子のチャネル領域から、ソース配線の延伸方向に、前記第1の保護層の少なくとも2mm以上延伸した部分として形成されていることを特徴とする、請求項1に記載の薄膜トランジスタアレイ。 The plurality of second protective layers are formed as portions extending at least 2 mm or more of the first protective layer in the extending direction of the source wiring from the channel region of the outermost element of the display effective region. The thin film transistor array according to claim 1, wherein:
  5.  前記保護層が、有機絶縁材料により形成されていることを特徴とする請求項1に記載の薄膜トランジスタアレイ。 2. The thin film transistor array according to claim 1, wherein the protective layer is made of an organic insulating material.
  6.  前記保護層が凸版印刷法、インクジェット印刷法、スクリーン印刷法により形成されることを特徴とする請求項1に記載の薄膜トランジスタアレイ。 The thin film transistor array according to claim 1, wherein the protective layer is formed by a relief printing method, an ink jet printing method, or a screen printing method.
  7.  前記絶縁基板はプラスチック基板であることを特徴とする請求項1に記載の薄膜トランジスタアレイ。 2. The thin film transistor array according to claim 1, wherein the insulating substrate is a plastic substrate.
  8.  前記ゲート絶縁膜が有機材料を含むことを特徴とする請求項1に記載の薄膜トランジスタアレイ。 2. The thin film transistor array according to claim 1, wherein the gate insulating film contains an organic material.
  9.  請求項1に記載の薄膜トランジスタアレイと画像表示媒体とを備えていることを特徴とする画像表示装置。 An image display device comprising the thin film transistor array according to claim 1 and an image display medium.
  10.  前記画像表示媒体が電気泳動方式によるものであることを特徴とする請求項9に記載の画像表示装置。 The image display device according to claim 9, wherein the image display medium is of an electrophoretic method.
PCT/JP2013/005175 2012-09-27 2013-09-02 Thin film transistor array and image display apparatus WO2014049970A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012214294A JP2014067981A (en) 2012-09-27 2012-09-27 Thin film transistor array and image display device
JP2012-214294 2012-09-27

Publications (1)

Publication Number Publication Date
WO2014049970A1 true WO2014049970A1 (en) 2014-04-03

Family

ID=50387419

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/005175 WO2014049970A1 (en) 2012-09-27 2013-09-02 Thin film transistor array and image display apparatus

Country Status (3)

Country Link
JP (1) JP2014067981A (en)
TW (1) TWI591807B (en)
WO (1) WO2014049970A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6331644B2 (en) * 2014-04-22 2018-05-30 凸版印刷株式会社 Thin film transistor array and manufacturing method thereof
JP7250387B1 (en) * 2022-09-10 2023-04-03 株式会社グランドアドレス Photoplate with communication tag and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01105219A (en) * 1987-07-02 1989-04-21 Seiko Epson Corp Liquid crystal picture display device
JPH0943629A (en) * 1995-07-31 1997-02-14 Sony Corp Liquid crystal display device
JP2007148333A (en) * 2005-10-24 2007-06-14 Ricoh Co Ltd Electrode forming method, active matrix driving circuit, manufacturing method for active matrix driving circuit, flat panel display, manufacturing method of flat panel display, and screen plate
JP2008270744A (en) * 2007-03-28 2008-11-06 Toppan Printing Co Ltd Thin-film transistor array, manufacturing method of thin-film transistor array, and active matrix display

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01105219A (en) * 1987-07-02 1989-04-21 Seiko Epson Corp Liquid crystal picture display device
JPH0943629A (en) * 1995-07-31 1997-02-14 Sony Corp Liquid crystal display device
JP2007148333A (en) * 2005-10-24 2007-06-14 Ricoh Co Ltd Electrode forming method, active matrix driving circuit, manufacturing method for active matrix driving circuit, flat panel display, manufacturing method of flat panel display, and screen plate
JP2008270744A (en) * 2007-03-28 2008-11-06 Toppan Printing Co Ltd Thin-film transistor array, manufacturing method of thin-film transistor array, and active matrix display

Also Published As

Publication number Publication date
TWI591807B (en) 2017-07-11
TW201413921A (en) 2014-04-01
JP2014067981A (en) 2014-04-17

Similar Documents

Publication Publication Date Title
KR101891841B1 (en) Thin film transistor, method for manufacturing same, and image display device provided with thin film transistor
JP5286826B2 (en) Thin film transistor array, method for manufacturing thin film transistor array, and active matrix display
US8963141B2 (en) Thin-film transistor, fabrication method thereof, and image display device
JP2013175487A (en) Organic light-emitting display device and method for manufacturing the same
JP2010263182A (en) Thin film transistor, and image display unit
TWI677104B (en) Thin film transistor, method for manufacturing thin film transistor, and image display device using thin film transistor
JP6070073B2 (en) Thin film transistor array
WO2014049970A1 (en) Thin film transistor array and image display apparatus
JP5853390B2 (en) THIN FILM TRANSISTOR, MANUFACTURING METHOD THEREOF, AND IMAGE DISPLAY DEVICE
JP6123413B2 (en) Thin film transistor array and image display device
JP6064356B2 (en) Thin film transistor array and image display device
JP6209920B2 (en) Thin film transistor array and image display device
JP6221243B2 (en) Thin film transistor array and image display device
JP2018041759A (en) Thin-film transistor and image display device
TWI655678B (en) Thin film transistor array and image display device
JP2016163029A (en) Thin film transistor array, thin film transistor array manufacturing method and pixel display device
JP2013201201A (en) Thin film transistor array, thin film transistor array manufacturing method and image display device
JP2010134362A (en) Thin film transistor array and method for manufacturing the same
JP2015185789A (en) Thin film transistor and manufacturing method of the same
WO2019078267A1 (en) Organic thin-film transistor, manufacturing method therefor, active matrix array and image display device
JP2020088096A (en) Thin film transistor and image display device
JP2014183265A (en) Thin film transistor array, manufacturing method thereof and image display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13840808

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13840808

Country of ref document: EP

Kind code of ref document: A1