WO2019078195A1 - シクロペンタジエニルニッケル錯体化合物 - Google Patents

シクロペンタジエニルニッケル錯体化合物 Download PDF

Info

Publication number
WO2019078195A1
WO2019078195A1 PCT/JP2018/038461 JP2018038461W WO2019078195A1 WO 2019078195 A1 WO2019078195 A1 WO 2019078195A1 JP 2018038461 W JP2018038461 W JP 2018038461W WO 2019078195 A1 WO2019078195 A1 WO 2019078195A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel
cyclopentadienyl
complex compound
nickel complex
layer
Prior art date
Application number
PCT/JP2018/038461
Other languages
English (en)
French (fr)
Inventor
藤井 裕雄
重雄 安原
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2019078195A1 publication Critical patent/WO2019078195A1/ja
Priority to US16/819,538 priority Critical patent/US11332487B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/04Nickel compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F17/00Metallocenes
    • C07F17/02Metallocenes of metals of Groups 8, 9 or 10 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/405Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation

Definitions

  • the present invention relates to a novel cyclopentadienyl nickel complex compound and a film forming method using the compound.
  • Patent Document 1 discloses a method of forming a nickel layer by reducing Ni (CH 3 C 5 H 4 ) 2 with formic acid (HCOOH) as a method of forming a metal layer satisfying the above requirements. ing. Further, Patent Document 2 describes a method of forming a nickel layer by chemical vapor deposition using Ni (RC 5 H 4 ) 2 (wherein R is hydrogen or an alkyl group having 1 to 4 carbon atoms). Is disclosed.
  • the cyclopentadienyl derivatives used in the methods of Patent Document 1 and Patent Document 2 are difficult to handle because they are easy to polymerize and solidify, and there is a problem that they are inferior in long-term storage stability.
  • An object of the present invention is to provide a cyclopentadienyl nickel complex compound which is excellent in stability and can be used for film formation of a nickel layer.
  • the inventors of the present invention conducted extensive studies to solve the above problems, and as a result, by introducing a plurality of alkyl groups having 1 to 4 carbon atoms into a cyclopentadienyl group, excellent stability and film forming property were obtained. It has been found that a cyclopentadienyl nickel complex compound can be obtained, leading to the present invention.
  • a film forming method for forming a nickel layer on a substrate characterized by using the cyclopentadienyl nickel complex compound of the present invention described above. Provided.
  • the cyclopentadienyl nickel complex compound of the present invention has high stability and film forming property by having a plurality of alkyl groups having 1 to 4 carbon atoms on a cyclopentadienyl group.
  • the cyclopentadienyl nickel complex compound of the present invention has the following formula (I): Ni (R 1 n C 5 H 5-n) 2 (I) Is represented by
  • R 1 is independently an alkyl group having 1 to 4 carbon atoms at each occurrence.
  • the C 1 -C 4 alkyl group may be linear or branched.
  • the alkyl group having 1 to 4 carbon atoms is an alkyl group having 1 to 3 carbon atoms.
  • the alkyl group having 1 to 4 carbon atoms is a methyl group (hereinafter also referred to as "Me”), an ethyl group (hereinafter also referred to as “Et”), or an isopropyl group (hereinafter referred to as "iPr”) Also called).
  • Me methyl group
  • Et ethyl group
  • iPr isopropyl group
  • n 2, 3 or 4.
  • n is 2 or 3, preferably 2.
  • the positions of R 1 are preferably at the 1 and 3 positions of the cyclopentadienyl group.
  • the position of R 1 is preferably at the 1-, 2- and 4-positions of the cyclopentadienyl group.
  • the cyclopentadienyl nickel complex compound represented by the above formula (I) comprises the following compound group: Ni (Me 2 C 5 H 3 ) 2 Ni (Et 2 C 5 H 3 ) 2 Ni (iPr 2 C 5 H 3 ) 2 Ni (MeEtC 5 H 3 ) 2 Ni (MeiPrC 5 H 3 ) 2 Ni (EtiPrC 5 H 3) 2 , and Ni (Me 3 C 5 H 2 ) 2 It is selected from
  • the cyclopentadienyl nickel complex compound represented by the above formula (I) comprises the following compound group: Bis (1,3-dimethylcyclopentadienyl) nickel bis (1,3-diethylcyclopentadienyl) nickel bis (1,3-diisopropylcyclopentadienyl) nickel bis (1-methyl-3-ethylcyclopenta) Dienyl) nickel bis (1-methyl-3-isopropylcyclopentadienyl) nickel bis (1-ethyl-3-isopropylcyclopentadienyl) nickel and bis (1,2,4-trimethylcyclopentadienyl) nickel It is selected from nickel.
  • the cyclopentadienyl nickel complex compound represented by the above formula (I) comprises the following compound group: Bis (1,3-dimethylcyclopentadienyl) nickel bis (1,3-diethylcyclopentadienyl) nickel, and bis (1,3-diisopropylcyclopentadienyl) nickel selected from, in particular 3-Dimethylcyclopentadienyl) nickel is preferred.
  • the compounds according to the invention are, for example, nickel complexes, preferably hexaamminenickel (II) salts, such as hexaamminenickel (II) chloride, and cyclopentadienyl salts having the desired substituents, such as cyclopentadienyl potassium.
  • nickel complexes preferably hexaamminenickel (II) salts, such as hexaamminenickel (II) chloride
  • cyclopentadienyl salts having the desired substituents such as cyclopentadienyl potassium.
  • the cyclopentadienyl nickel complex compound of the present invention has high stability and excellent film formability by having a plurality of alkyl groups having 1 to 4 carbon atoms on a cyclopentadienyl group.
  • the present invention is not restricted by any theory, but a plurality of alkyl groups having 1 to 4 carbon atoms introduced onto a cyclopentadienyl group is high by giving appropriate steric hindrance and suppressing self-polymerization. It is believed that stability can be obtained. This stability can also suppress an increase in temperature required for gasification of the compound.
  • the compound of the present invention can be suitably used as a raw material in film formation of a nickel layer.
  • the present invention also provides a film forming method for forming a nickel layer on a substrate, and using the cyclopentadienyl nickel complex compound of the present invention.
  • the base material is not particularly limited, and a base material such as metal, ceramic, or resin can be used, and the shape thereof is not limited.
  • atomic layer deposition is used in the film forming method of the present invention.
  • a nickel layer is formed by reducing the cyclopentadienyl nickel complex compound of the present invention on a substrate using hydrogen or NH 3 as a reducing agent.
  • the cyclopentadienyl nickel complex compound is preferably gasified at a temperature of 50 ° C. or more and 70 ° C. or less.
  • the substrate is preferably heated to 150 ° C. or more and 450 ° C. or less.
  • the cyclopentadienyl nickel complex compound of the present invention is used to form a nickel oxide layer, and then film formation is performed using diethylaluminum hydride, diisobutylaluminum hydride, or dimethylaluminum hydride, and this film formation is carried out.
  • the nickel oxide layer is reduced to a nickel layer, and at the same time an aluminum oxide layer is formed on the nickel layer.
  • the formation of the nickel oxide layer can be carried out by a conventional method.
  • the formation of the nickel oxide layer can be performed by atomic layer deposition using the cyclopentadienyl nickel complex compound of the present invention as a raw material and using oxygen as a reaction gas.
  • the film formation using the above diethylaluminum hydride, diisobutylaluminum hydride or dimethylaluminum hydride is an aluminum film formation process.
  • the aluminum film formation process is preferably performed by atomic layer deposition and can be performed as in the prior art.
  • the oxygen of nickel oxide is deprived of aluminum, nickel oxide is reduced to nickel, and aluminum is converted to aluminum oxide. Oxidize.
  • Such treatment forms a nickel layer and an aluminum oxide layer on the substrate.
  • diethylaluminum hydride, diisobutylaluminum hydride or dimethylaluminum hydride is used as a raw material, and hydrogen is used as a reaction gas.
  • the thickness of the nickel layer obtained above may be preferably 100 nm or less, more preferably 80 nm or less, still more preferably 50 nm or less, still more preferably 30 nm or less, particularly preferably 20 nm or less.
  • the thickness of the nickel layer may be preferably 1 nm or more, more preferably 3 nm or more, and further preferably 10 nm or more.
  • the thickness of the nickel layer may be 1 nm or more and 100 nm or less, preferably 3 nm or more and 80 nm or less, more preferably 10 nm or more and 50 nm or less, for example 30 nm or less or 20 nm or less.
  • the thickness of the aluminum oxide layer obtained above may be preferably 100 nm or less, more preferably 80 nm or less, still more preferably 50 nm or less, still more preferably 30 nm or less, particularly preferably 20 nm or less.
  • the thickness of the aluminum oxide layer may be preferably 1 nm or more, more preferably 3 nm or more, and further preferably 10 nm or more. By setting the thickness of the aluminum oxide layer to 1 nm or more, sufficient strength can be obtained.
  • the thickness of the aluminum oxide layer may be 1 nm or more and 100 nm or less, preferably 3 nm or more and 80 nm or less, more preferably 10 nm or more and 50 nm or less, for example 30 nm or less or 20 nm or less.
  • the present invention also provides a film formation method using bis (trimethylsilylcyclopentadienyl) nickel instead of using the cyclopentadienyl nickel complex compound of the present invention. That is, the present invention provides a film forming method of forming a nickel layer on a substrate, and using bis (trimethylsilylcyclopentadienyl) nickel.
  • Example 1 Synthesis of bis (1,3-dimethylcyclopentadienyl) nickel In a nitrogen-substituted 2 L three-necked flask, hexaamminenickel (II) chloride (55 g, 237 mmol), 1,3-dimethylcyclopentadienyl Potassium (64 g, 484 mmol) and dry tetrahydrofuran (500 ml) were added and heated to reflux for 6 hours. After distilling off the solvent, 41 g of a green liquid having a boiling point of 80 ° C./0.1 Torr was obtained by distillation under reduced pressure.
  • hexaamminenickel (II) chloride 55 g, 237 mmol
  • 1,3-dimethylcyclopentadienyl Potassium 64 g, 484 mmol
  • dry tetrahydrofuran 500 ml
  • carbon analysis value was 68.2 w% (theoretical value 68.6 w%)
  • hydrogen analysis value was 7.3 w% (theoretical value 7.4 w%).
  • the presence of Ni was confirmed by fluorescent X-ray analysis. This confirmed that bis (1,3-dimethylcyclopentadienyl) nickel was obtained.
  • the obtained 41 g of bis (1,3-dimethylcyclopentadienyl) nickel corresponded to 167 mmol, and the yield was 70.5%.
  • Example 2 Synthesis of bis (1,3-diisopropylcyclopentadienyl) nickel In a nitrogen-substituted 2 L three-necked flask, hexaamminenickel (II) chloride (40 g, 173 mmol), 1,3-diisopropylcyclopentadienyl Potassium (69 g, 366 mmol) and dry tetrahydrofuran (500 ml) were added and heated to reflux for 6 hours. After distilling off the solvent, distillation under reduced pressure gave 47 g of a green liquid having a boiling point of 50 ° C./0.1 Torr.
  • II hexaamminenickel
  • the carbon analysis value was 73.5 w% (theoretical value 74.0 w%), and the hydrogen analysis value was 9.5 w% (theoretical value 9.6 w%).
  • the presence of Ni was confirmed by fluorescent X-ray analysis. This confirmed that bis (1,3-diisopropylcyclopentadienyl) nickel was obtained.
  • the obtained 47 g of bis (1,3-diisopropylcyclopentadienyl) nickel corresponded to 132 mmol, and the yield was 76.3%.
  • the compound of the present invention having two or more substituents on the cyclopentadienyl group is capable of Ni film formation and is not solidified even after 3 months in a long-term storage test.
  • the cyclopentadienyl nickel complex compound of the present invention can be suitably used for film formation of a nickel layer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本発明は、下記式(I):Ni(R1 nC5H5-n)2 (I)[式中:R1は、各出現においてそれぞれ独立して、炭素数1~4のアルキル基であり;nは、2、3または4である。]で表されるシクロペンタジエニルニッケル錯体化合物を提供する。

Description

シクロペンタジエニルニッケル錯体化合物
 本発明は、新規なシクロペンタジエニルのニッケル錯体化合物、および該化合物を用いる成膜方法に関する。
 近年、電子部品の小型化に伴って、各電子部品に含まれる構成部品、例えば電極、配線についてもより一層の微細化が求められている。従来、電極、配線等の金属層を形成する場合には、物理蒸着、特に真空蒸着が利用されている。しかしながら、真空蒸着では、近年求められる微細な金属層の形成に必ずしも十分であるとは言えなかった。
 上記のような要求を満たす金属層の形成方法として、特許文献1には、Ni(CHを、ギ酸(HCOOH)で還元してニッケル層を成膜する方法が開示されている。また、特許文献2には、Ni(RC(式中、Rは、水素または炭素数1~4のアルキル基である)を用いて化学蒸着法によりニッケル層を成膜する方法が開示されている。
特開2010-070781号公報 特開2006-124743号公報
 特許文献1および特許文献2の方法で用いられるシクロペンタジエニル誘導体は、重合して固化しやすいことから、取り扱いが難しく、また、長期の保存安定性に劣るという問題がある。
 本発明の目的は、安定性に優れ、ニッケル層の成膜に用いることができる、シクロペンタジエニルニッケル錯体化合物を提供することにある。
 本発明者らは、上記の問題を解決するべく鋭意検討した結果、シクロペンタジエニル基に、炭素数1~4のアルキル基を複数個導入することにより、安定性と成膜性に優れたシクロペンタジエニルニッケル錯体化合物を得ることができることを見出し、本発明に至った。
 本発明の第1の要旨によれば、下記式(I):
   Ni(R 5-n   (I)
[式中:
 Rは、各出現においてそれぞれ独立して、炭素数1~4のアルキル基であり;
 nは、2、3または4である。]
で表されるシクロペンタジエニルニッケル錯体化合物が提供される。
 本発明の第2の要旨によれば、基材上にニッケル層を形成する成膜方法であって、上記の本発明のシクロペンタジエニルニッケル錯体化合物を用いることを特徴とする成膜方法が提供される。
 本発明のシクロペンタジエニルニッケル錯体化合物は、シクロペンタジエニル基上に炭素数1~4のアルキル基を複数有することにより、高い安定性と成膜性を有する。
 本発明のシクロペンタジエニルニッケル錯体化合物は、下記式(I):
   Ni(R 5-n   (I)
で表される。
 上記式中、Rは、各出現においてそれぞれ独立して、炭素数1~4のアルキル基である。かかる炭素数1~4のアルキル基は、直鎖であっても、分枝鎖であってもよい。
 好ましい態様において、上記炭素数1~4のアルキル基は、炭素数1~3のアルキル基である。
 より好ましい態様において、上記炭素数1~4のアルキル基は、メチル基(以下、「Me」とも称する)、エチル基(以下、「Et」とも称する)、またはイソプロピル基(以下、「iPr」)とも称する)である。
 上記式中、nは2、3または4である。
 好ましい態様において、nは、2または3であり、好ましくは2である。
 nが2の場合、Rの位置は、好ましくは、シクロペンタジエニル基の1位および3位である。
 nが3の場合、Rの位置は、好ましくは、シクロペンタジエニル基の1位、2位および4位である。
 好ましい態様において、上記式(I)で表されるシクロペンタジエニルニッケル錯体化合物は、下記化合物群:
 Ni(Me
 Ni(Et
 Ni(iPr
 Ni(MeEtC
 Ni(MeiPrC
 Ni(EtiPrC、および
 Ni(Me
から選択される。
 より好ましい態様において、上記式(I)で表されるシクロペンタジエニルニッケル錯体化合物は、下記化合物群:
 ビス(1,3-ジメチルシクロペンタジエニル)ニッケル
 ビス(1,3-ジエチルシクロペンタジエニル)ニッケル
 ビス(1,3-ジイソプロピルシクロペンタジエニル)ニッケル
 ビス(1-メチル-3-エチルシクロペンタジエニル)ニッケル
 ビス(1-メチル-3-イソプロピルシクロペンタジエニル)ニッケル
 ビス(1-エチル-3-イソプロピルシクロペンタジエニル)ニッケル、および
 ビス(1,2,4-トリメチルシクロペンタジエニル)ニッケル
から選択される。
 さらに好ましい態様において、上記式(I)で表されるシクロペンタジエニルニッケル錯体化合物は、下記化合物群:
 ビス(1,3-ジメチルシクロペンタジエニル)ニッケル
 ビス(1,3-ジエチルシクロペンタジエニル)ニッケル、および
 ビス(1,3-ジイソプロピルシクロペンタジエニル)ニッケル
から選択され、特に
 ビス(1,3-ジメチルシクロペンタジエニル)ニッケル
が好ましい。
 本発明の化合物は、例えば、ニッケル錯体、好ましくはヘキサアンミンニッケル(II)塩、例えば塩化ヘキサアンミンニッケル(II)と、所望の置換基を有するシクロペンタジエニル塩、例えばシクロペンタジエニルカリウムとを反応させることにより得ることができる。
 本発明のシクロペンタジエニルニッケル錯体化合物は、シクロペンタジエニル基上に炭素数1~4のアルキル基を複数有することにより、高い安定性と優れた成膜性を有する。本発明は、いかなる理論にも拘束されないが、シクロペンタジエニル基上に導入された複数の炭素数1~4のアルキル基が、適度な立体障害を与え、自己重合を抑制することにより、高い安定性が得られると考えられる。この安定性により化合物のガス化に必要な温度の上昇も抑制することができる。また、シクロペンタジエニル基上に導入された置換基を、炭素数1~4のアルキル基とすることにより、過度な立体障害とはならず、成膜性への悪影響を抑制することができ、優れた成膜性を保持していると考えられる。
 従って、本発明の化合物は、ニッケル層の成膜における原料として好適に利用することができる。
 本発明は、基材上にニッケル層を形成する成膜方法であって、本発明のシクロペンタジエニルニッケル錯体化合物を用いることを特徴とする成膜方法をも提供する。
 上記基材は、特に限定されず、金属、セラミック、樹脂などの基材を用いることができ、また、その形状も限定されない。
 好ましくは、本発明の成膜方法では、原子層堆積法が用いられる。
 一の態様において、還元剤として水素またはNHを用い、基材上で本発明のシクロペンタジエニルニッケル錯体化合物を還元することにより、ニッケル層を形成する。
 上記態様において、シクロペンタジエニルニッケル錯体化合物は、50℃以上70℃以下の温度でガス化することが好ましい。
 上記の態様において、基材は、150℃以上450℃以下に加熱することが好ましい。
 別の態様において、本発明のシクロペンタジエニルニッケル錯体化合物を用いて酸化ニッケル層を形成し、次いで、ジエチルアルミニウムハイドライド、ジイソブチルアルミニウムハイドライド、またはジメチルアルミニウムハイドライドを用いて成膜を行い、この成膜処理により、上記酸化ニッケル層を還元してニッケル層とし、同時に該ニッケル層上に酸化アルミニウム層を形成する。
 上記酸化ニッケル層の形成は、従来行われている方法により行うことができる。例えば、上記酸化ニッケル層の形成は、原子層堆積法により、原料として本発明のシクロペンタジエニルニッケル錯体化合物を用い、反応ガスとして酸素を用いて行うことができる。
 上記ジエチルアルミニウムハイドライド、ジイソブチルアルミニウムハイドライド、またはジメチルアルミニウムハイドライドを用いる成膜は、アルミニウム成膜処理である。かかるアルミニウム成膜処理は、好ましくは原子層堆積法により行われ、従来同様に行うことができる。
 上記酸化ニッケル層上に、アルミニウム成膜処理、好ましくは原子層堆積法によるアルミニウム成膜処理を行うことにより、酸化ニッケルの酸素をアルミニウムが奪い、酸化ニッケルがニッケルに還元され、アルミニウムが酸化アルミニウムに酸化する。かかる処理により、基材上にニッケル層および酸化アルミニウム層が形成される。
 一の態様において、上記アルミニウム成膜処理において、原料としてジエチルアルミニウムハイドライド、ジイソブチルアルミニウムハイドライド、またはジメチルアルミニウムハイドライドを用い、反応ガスとして水素が用いられる。
 上記で得られるニッケル層の厚みは、好ましくは100nm以下、より好ましくは80nm以下、さらに好ましくは50nm以下、さらにより好ましくは30nm以下、特に好ましくは20nm以下であり得る。ニッケル層の厚みを100nm以下とすることにより、細部への層形成が容易になる。ニッケル層の厚みをより小さくすることにより、より細部への層形成が容易になる。また、上記ニッケル層の厚みは、好ましくは1nm以上、より好ましくは3nm以上、さらに好ましくは10nm以上であり得る。ニッケル層の厚みを1nm以上とすることにより、抵抗を小さくすることができ、また十分な強度を得ることが可能になる。ニッケル層の厚みをより大きくすることにより、抵抗をより小さくすることができ、強度をより高くすることができる。好ましい態様において、ニッケル層の厚みは、1nm以上100nm以下、好ましくは3nm以上80nm以下、より好ましくは10nm以上50nm以下、例えば30nm以下または20nm以下であり得る。
 上記で得られる酸化アルミニウム層の厚みは、好ましくは100nm以下、より好ましくは80nm以下、さらに好ましくは50nm以下、さらにより好ましくは30nm以下、特に好ましくは20nm以下であり得る。酸化アルミニウムの厚みを100nm以下とすることにより、細部への層形成が容易になる。酸化アルミニウム層の厚みをより小さくすることにより、より細部への層形成が容易になる。また、上記酸化アルミニウム層の厚みは、好ましくは1nm以上、より好ましくは3nm以上、さらに好ましくは10nm以上であり得る。酸化アルミニウム層の厚みを1nm以上とすることにより、十分な強度を得ることが可能になる。また、絶縁膜として利用した場合に、絶縁性が向上し、信頼性および耐電圧性が向上する。酸化アルミニウム層の厚みをより大きくすることにより、強度をより高くし、より絶縁性を向上することができる。好ましい態様において、酸化アルミニウム層の厚みは、1nm以上100nm以下、好ましくは3nm以上80nm以下、より好ましくは10nm以上50nm以下、例えば30nm以下または20nm以下であり得る。
 別の態様において、本発明は、本発明のシクロペンタジエニルニッケル錯体化合物を用いる代わりに、ビス(トリメチルシリルシクロペンタジエニル)ニッケルを用いる成膜方法をも提供する。即ち、本発明は、基材上にニッケル層を形成する成膜方法であって、ビス(トリメチルシリルシクロペンタジエニル)ニッケルを用いることを特徴とする成膜方法を提供する。
 実施例1:ビス(1,3-ジメチルシクロペンタジエニル)ニッケルの合成
 窒素置換した2Lの三口フラスコに、塩化ヘキサアンミンニッケル(II)(55g、237mmol)、1,3-ジメチルシクロペンタジエニルカリウム(64g、484mmol)、および乾燥テトラヒドロフラン(500ml)を加え、6時間加熱還流した。溶媒留去後、減圧蒸留により沸点80℃/0.1Torrの緑色液体を41g得た。
 元素分析によると炭素分析値は68.2w%(理論値68.6w%)、水素分析値は7.3w%(理論値7.4w%)であった。また、蛍光X線分析法によりNiの存在を確認した。これにより、ビス(1,3-ジメチルシクロペンタジエニル)ニッケルが得られたことを確認した。得られたビス(1,3-ジメチルシクロペンタジエニル)ニッケル41gは167mmolに相当し、収率は70.5%であった。
 実施例2:ビス(1,3-ジイソプロピルシクロペンタジエニル)ニッケルの合成
 窒素置換した2Lの三口フラスコに、塩化ヘキサアンミンニッケル(II)(40g、173mmol)、1,3-ジイソプロピルシクロペンタジエニルカリウム(69g、366mmol)、および乾燥テトラヒドロフラン(500ml)を加え、6時間加熱還流した。溶媒留去後、減圧蒸留により沸点50℃/0.1Torrの緑色液体を47g得た。
 元素分析によると炭素分析値は73.5w%(理論値74.0w%)、水素分析値は9.5w%(理論値9.6w%)であった。また、蛍光X線分析法によりNiの存在を確認した。これにより、ビス(1,3-ジイソプロピルシクロペンタジエニル)ニッケルが得られたことを確認した。得られたビス(1,3-ジイソプロピルシクロペンタジエニル)ニッケル47gは132mmolに相当し、収率は76.3%であった。
 実施例3:ビス(1,3-ジエチルシクロペンタジエニル)ニッケルの合成
 実施例1および2と同様の方法で、標記化合物を調製した。
 実施例4:ビス(1,2,4-トリメチルシクロペンタジエニル)ニッケルの合成
 実施例1および2と同様の方法で、標記化合物を調製した。
 実験例1
 上記実施例1~4で合成した化合物を用いて、Si基板上に、原子層堆積法(ALD法)を用いて、200サイクル成膜し、ニッケル膜を形成した。使用した化合物と成膜条件を下記表に示す。尚、比較例の化合物は、ビス(イソプロピルシクロペンタジエニル)ニッケルである。成膜の可否は、Ni膜中のO比率が30%未満であり、シート抵抗が500μΩcm未満であるものを「可」と判定した。上記を満たさないものを「不可」と判定した。結果を下記表に示す。
 実験例2
 上記実施例1~4で合成した化合物を3ヶ月保管した後、成膜を行い、Ni膜を成膜した。一方、比較例1の化合物を1ヶ月保管した後、成膜を行ったが、Ni膜を成膜することができなかった。
Figure JPOXMLDOC01-appb-T000001
 上記の結果から、シクロペンタジエニル基上に2つ以上の置換基を有する本発明の化合物は、Ni成膜が可能であり、さらに、長期保管試験において3ヶ月後にも固化しないことが確認された。
 本発明のシクロペンタジエニルニッケル錯体化合物は、ニッケル層の成膜に好適に用いることができる。

Claims (10)

  1.  下記式(I):
       Ni(R 5-n   (I)
    [式中:
     Rは、各出現においてそれぞれ独立して、炭素数1~4のアルキル基であり;
     nは、2、3または4である。]
    で表されるシクロペンタジエニルニッケル錯体化合物。
  2.  Rが、各出現においてそれぞれ独立して、炭素数1~3のアルキル基である、請求項1に記載のシクロペンタジエニルニッケル錯体化合物。
  3.  nが、2または3である、請求項1または2に記載のシクロペンタジエニルニッケル錯体化合物。
  4.  nが、2である、請求項1または2に記載のシクロペンタジエニルニッケル錯体化合物。
  5.  下記化合物群:
     Ni(Me
     Ni(Et
     Ni(iPr
     Ni(MeEtC
     Ni(MeiPrC
     Ni(EtiPrC、および
     Ni(Me
    [式中、
     Meは、メチル基であり、
     Etは、エチル基であり、
     iPrは、イソプロピル基である。]
    から選択される、請求項1または2に記載のシクロペンタジエニルニッケル錯体化合物。
  6.  nが2であり、Rの位置が、シクロペンタジエニル基の1位および3位である、請求項1~5のいずれか1項に記載のシクロペンタジエニルニッケル錯体化合物。
  7.  基材上にニッケル層を形成する成膜方法であって、請求項1~6のいずれか1項に記載のシクロペンタジエニルニッケル錯体化合物を用いることを特徴とする、成膜方法。
  8.  原子層堆積法により成膜を行う、請求項7に記載の成膜方法。
  9.  還元剤として水素またはNHを用い、基材上で請求項1~6のいずれか1項に記載のシクロペンタジエニルニッケル錯体化合物を還元して、ニッケル層を形成する、請求項7または8に記載の成膜方法。
  10.  請求項1~6のいずれか1項に記載のシクロペンタジエニルニッケル錯体化合物を用いて酸化ニッケル層を形成し、次いで、ジエチルアルミニウムハイドライド、ジイソブチルアルミニウムハイドライド、またはジメチルアルミニウムハイドライドを用いて成膜を行い、この成膜処理により、上記酸化ニッケル層を還元してニッケル層とし、同時に該ニッケル層上に酸化アルミニウム層を形成する、請求項7~9のいずれか1項に記載の成膜方法。
PCT/JP2018/038461 2017-10-19 2018-10-16 シクロペンタジエニルニッケル錯体化合物 WO2019078195A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/819,538 US11332487B2 (en) 2017-10-19 2020-03-16 Cyclopentadienyl nickel complex compound

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-202842 2017-10-19
JP2017202842A JP6589112B2 (ja) 2017-10-19 2017-10-19 シクロペンタジエニルニッケル錯体化合物

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/819,538 Continuation US11332487B2 (en) 2017-10-19 2020-03-16 Cyclopentadienyl nickel complex compound

Publications (1)

Publication Number Publication Date
WO2019078195A1 true WO2019078195A1 (ja) 2019-04-25

Family

ID=66174140

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/038461 WO2019078195A1 (ja) 2017-10-19 2018-10-16 シクロペンタジエニルニッケル錯体化合物

Country Status (3)

Country Link
US (1) US11332487B2 (ja)
JP (1) JP6589112B2 (ja)
WO (1) WO2019078195A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6907876B2 (ja) * 2017-10-19 2021-07-21 株式会社村田製作所 成膜方法
KR20240140487A (ko) * 2023-03-17 2024-09-24 (주)후성 비스(메틸시클로펜타디에닐) 니켈의 제조방법 및 이를 이용한 니켈옥사이드 박막

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006124743A (ja) * 2004-10-27 2006-05-18 Mitsubishi Materials Corp 有機金属化学蒸着用有機ニッケル化合物及び該化合物を用いたニッケル含有膜の製造方法
WO2014018372A1 (en) * 2012-07-23 2014-01-30 Applied Materials, Inc. Method for producing nickel-containing films
WO2014188629A1 (ja) * 2013-05-22 2014-11-27 田中貴金属工業株式会社 有機ニッケル化合物からなる化学蒸着用原料及び該化学蒸着用原料を用いた化学蒸着法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5281856B2 (ja) 2008-09-16 2013-09-04 東京エレクトロン株式会社 成膜方法および成膜装置、ならびに記憶媒体

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006124743A (ja) * 2004-10-27 2006-05-18 Mitsubishi Materials Corp 有機金属化学蒸着用有機ニッケル化合物及び該化合物を用いたニッケル含有膜の製造方法
WO2014018372A1 (en) * 2012-07-23 2014-01-30 Applied Materials, Inc. Method for producing nickel-containing films
WO2014188629A1 (ja) * 2013-05-22 2014-11-27 田中貴金属工業株式会社 有機ニッケル化合物からなる化学蒸着用原料及び該化学蒸着用原料を用いた化学蒸着法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF ORGANOMETALLIC CHEMISTRY, vol. 809, 2016, pages 63 - 73, XP029490490 *
JOURNAL OF PHYSICAL CHEMISTRY C, vol. 116, 2012, pages 23569 - 23576, XP055596087 *
ORGANIC AND BIOLOGICAL CHEMISTRY, vol. 1, January 1971 (1971-01-01), pages 106 - 110, ISSN: 0002-3353 *
ORGANOMETALLICS, vol. 30, 2011, pages 6351 - 6364, XP055596088 *
TRANSITION METAL CHEMISTRY, vol. 6, 1981, pages 126 - 127, XP055596086, ISSN: 0340-4285 *
Z. NATURFORSCH., vol. 376, 1982, pages 144 - 150, ISSN: 0340-5087 *

Also Published As

Publication number Publication date
US20200216482A1 (en) 2020-07-09
US11332487B2 (en) 2022-05-17
JP6589112B2 (ja) 2019-10-16
JP2019073491A (ja) 2019-05-16

Similar Documents

Publication Publication Date Title
JP4700103B2 (ja) 揮発性ニッケルアミノアルコキシド錯体及びそれを用いたニッケル薄膜の蒸着法
WO2017043620A1 (ja) 有機ルテニウム化合物からなる化学蒸着用原料及び該化学蒸着用原料を用いた化学蒸着法
WO2017033913A1 (ja) 複核ルテニウム錯体からなる化学蒸着用原料及び該化学蒸着用原料を用いた化学蒸着法
US11332487B2 (en) Cyclopentadienyl nickel complex compound
KR20210156444A (ko) 몰리브데넘 함유 전구체, 이를 이용한 몰리브데넘 함유 박막 및 이의 제조 방법.
JP2020517579A (ja) 金属トリアミン化合物、その製造方法およびこれを含む金属含有薄膜蒸着用組成物
CN109071571B (zh) 过渡金属化合物、其制造方法及包含其的含过渡金属薄膜蒸镀用组合物
TWI532869B (zh) 由釕錯合物所構成的化學蒸鍍原料及其製造方法和化學蒸鍍法
KR20150124603A (ko) 지르코늄 산화물 박막 형성용 전구체 화합물, 이의 제조방법 및 이를 이용한 박막의 제조방법
KR102288641B1 (ko) 이리듐 착체를 포함하는 화학 증착용 원료 및 해당 화학 증착용 원료를 사용한 화학 증착법
JP5960321B1 (ja) 有機白金化合物からなる化学蒸着用原料及び該化学蒸着用原料を用いた化学蒸着法
KR20220157741A (ko) 신규한 하프늄 함유 화합물, 이를 함유하는 하프늄 전구체 조성물, 상기 하프늄 전구체 조성물을 이용한 하프늄 함유 박막 및 이의 제조방법.
JP6407370B1 (ja) 有機白金化合物からなる気相蒸着用原料及び該気相蒸着用原料を用いた気相蒸着法
KR20180115382A (ko) 신규한 텅스텐 전구체 화합물 및 이를 이용한 박막 형성 방법
KR101965217B1 (ko) 탄탈럼 화합물, 이의 제조 방법, 이를 포함하는 막 증착용 전구체 조성물, 및 이를 이용하는 막의 증착 방법
JP2006063065A (ja) アルキルテトラゾール誘導体及び該誘導体を用いた窒素含有膜の製造方法並びにアルキルテトラゾール誘導体の精製方法
JP5952460B1 (ja) 有機白金化合物からなる化学蒸着用原料及び該化学蒸着用原料を用いた化学蒸着法
KR20230173942A (ko) 신규한 이트륨 화합물, 상기 이트륨 화합물을 함유하는 전구체, 상기 이트륨 전구체를 이용한 이트륨 함유 박막 및 이의 제조방법.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18867667

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18867667

Country of ref document: EP

Kind code of ref document: A1