WO2019078155A1 - タブリード用フィルム、及びこれを用いたタブリード - Google Patents

タブリード用フィルム、及びこれを用いたタブリード Download PDF

Info

Publication number
WO2019078155A1
WO2019078155A1 PCT/JP2018/038311 JP2018038311W WO2019078155A1 WO 2019078155 A1 WO2019078155 A1 WO 2019078155A1 JP 2018038311 W JP2018038311 W JP 2018038311W WO 2019078155 A1 WO2019078155 A1 WO 2019078155A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
tab lead
surface layer
inorganic filler
thickness
Prior art date
Application number
PCT/JP2018/038311
Other languages
English (en)
French (fr)
Inventor
正道 大山
龍太郎 大澤
由明 丸岡
Original Assignee
大倉工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大倉工業株式会社 filed Critical 大倉工業株式会社
Priority to JP2019549266A priority Critical patent/JP7296884B2/ja
Priority to CN201880067242.9A priority patent/CN111279511B/zh
Priority to KR1020207012523A priority patent/KR102405398B1/ko
Publication of WO2019078155A1 publication Critical patent/WO2019078155A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • H01M50/174Arrangements of electric connectors penetrating the casing adapted for the shape of the cells
    • H01M50/178Arrangements of electric connectors penetrating the casing adapted for the shape of the cells for pouch or flexible bag cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/74Terminals, e.g. extensions of current collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • H01G11/80Gaskets; Sealings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • H01M50/557Plate-shaped terminals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a film for tab lead thermally fused to a tab lead for extracting electricity from the inside in a lithium ion battery, a lithium ion capacitor or the like using a laminate film as an outer packaging material.
  • the present invention also relates to a tab lead using the tab lead film.
  • lithium batteries etc. lithium ion batteries and lithium ion capacitors
  • a laminate film in which a sealant layer made of polyolefin or the like is laminated on metal foil such as aluminum foil as an outer wrapping material, and inside the outer wrapping material, a positive electrode, a negative electrode, a separator, a non-aqueous electrolyte, etc.
  • a tab lead for electrically connecting the inside and the outside of the lithium battery etc. is attached.
  • Patent Document 1 discloses that the metal terminal (lead wire) is corroded by hydrogen fluoride (hydrofluoric acid) generated by the entry of water, and the film for tab lead (insulation material for lead wire) is prevented from peeling off. It is proposed to add an acid trapping function to a tab lead film.
  • the main components are 100 parts by weight of a thermoplastic resin and one or more selected from carboxylic acid metal salts, metal oxides, and hydrotalcites in a total of 20 parts by weight or more and 100 parts by weight or less. It is proposed to use the resin composition to be used as a film for tab lead.
  • the film for tab lead disclosed herein is a single layer film, and a large amount of filler (metal carboxylate, metal oxide, hydrotalcites, etc.) is present on the film surface. Therefore, the filler may fall off from the film surface, which may contaminate the production line of the tab lead and the production line such as a lithium battery.
  • the filler may fall off from the film surface, which may contaminate the production line of the tab lead and the production line such as a lithium battery.
  • the adhesion between the metal terminal and the film for tab lead is lowered.
  • the tab lead film is heat-sealed to the metal terminal by heat sealing, but the filler does not melt even at the heat seal temperature (usually 150 to 250 ° C.) and does not heat-seal to the metal terminal.
  • Patent document 2 is also invention which solves the problem that the metal terminal (lead terminal) is corroded by hydrogen fluoride, and the adhesive force between a metal terminal and the film for tab leads (tape for terminal adhesion) falls.
  • a film for tab lead is made to have a three-layer structure, a layer containing an inorganic filler is used as an intermediate layer, one of the intermediate layers is a resin layer having good adhesion to metal terminals, and the other is an outer packaging material.
  • Patent Document 2 It is disclosed to provide a resin layer with good adhesion to The three-layered tab lead film disclosed in Patent Document 2 does not contaminate a production line for a tab lead or a production line for a lithium battery or the like because there is no inorganic filler on the film surface. However, even in the case of the three-layered tab lead film, depending on the type of the metal terminal, the adhesive strength to the terminal is low.
  • FIG. 9 is a schematic plan view (A) of a tab lead TL adopting a relatively thick metal terminal 2, its ⁇ - ⁇ sectional view (B), and its ⁇ - ⁇ sectional view (C).
  • the present inventors often heat-seal the tab lead film 1 having a general three-layer structure to the relatively thick metal terminal 2, often breaking the surface layer 11 of the tab lead film 1 at the corner 2a of the metal terminal 2. It was discovered that the metal terminal 2 was in contact with the core layer 12.
  • the core layer 12 Since the surface layer 11 of the general film 1 for tab lead is made of acid-modified polyolefin and the core layer 12 is made of a polyolefin resin, the core layer 12 usually has heat fusion with the metal terminal 2 more than the surface layer 11 It is inferior.
  • a film containing an inorganic filler in the core layer such as a film for tab lead disclosed in Patent Document 2 has very poor heat fusion between the core layer and the metal terminal due to the influence of the inorganic filler. Therefore, the three-layered tab lead film disclosed in Patent Document 2 is not heat-sealed to the terminal at the corner of the metal terminal, and as a result, the adhesion between the metal terminal and the tab lead film is considered to be reduced.
  • the present inventors made the thickness or thickness ratio of one surface layer (A) of the film for tab lead sufficiently large, and that the surface layer (A) of the film for tab lead is broken at the corner of the metal terminal. I decided to prevent it.
  • the thickness or thickness ratio of the surface layer (A) increases, the thickness of the core layer (B) or the other surface layer (C) decreases, but the core layer (B) As the thickness of the layer decreases, the amount of inorganic filler contained in the layer also decreases. Therefore, the present inventors have further studied the addition amount of the inorganic filler and the influence on the hydrogen fluoride, and reached the present invention.
  • Tab lead having a core layer (B) mainly composed of an inorganic filler reacting with hydrogen and / or the polyolefin resin, and a surface layer (C) mainly composed of an acid-modified polyolefin resin and / or a polyolefin resin
  • the content of the inorganic filler in the surface layer (A) and the content of the inorganic filler in the surface layer (C) are each 0 to 10% by weight
  • the film for tab lead is hydrogen fluoride.
  • a film for tab lead characterized by containing 9.0% by weight or more of an inorganic filler which reacts with.
  • the film for a tab lead contains 9.6% by weight or more of an inorganic filler which reacts with hydrogen fluoride.
  • the median diameter of the inorganic filler which reacts with the hydrogen fluoride in the said film for tab leads is 1.0 micrometer or less.
  • a film for tab lead wherein the content of the inorganic filler that reacts with the hydrogen fluoride in the core layer is 13 to 60% by weight. Furthermore, when the thickness of the surface layer (A) is t1, the thickness of the core layer (B) is t2, and the thickness of the surface layer (C) is t3, the following equation (1) and equation (1) A film for tab lead characterized by satisfying 2) is provided.
  • the inorganic filler which reacts with the hydrogen fluoride is a metal carbonate.
  • the metal carbonate is calcium carbonate.
  • the calcium carbonate is a synthetic calcium carbonate.
  • the tab lead film is heat-sealed on at least one surface of the metal terminal, and the surface of the metal terminal and the surface layer (A) of the tab lead film are heat-sealed.
  • a featured tab lead is provided. Furthermore, when the thickness of the metal terminal is T (mt) and the thickness of the tab lead film is T (tf), the tab lead is characterized by 0.5 T (mt) ⁇ T (tf). Provided.
  • the film for tab lead according to the present invention comprises a surface layer (A) containing an acid-modified polyolefin resin as a main component, an inorganic filler that reacts with hydrogen fluoride, and / or a core layer (B) containing a polyolefin resin as a main component
  • Content of the inorganic filler in the surface layer (A) and the content of the inorganic filler in the surface layer (C) are sequentially provided with the surface layer (C) mainly composed of the acid-modified polyolefin resin and / or the polyolefin resin Since each of the amounts is 0 to 10% by weight, it does not contaminate the production line for tab leads and production lines for lithium batteries and the like.
  • the film contains at least 9.0% by weight of an inorganic filler that reacts with hydrogen fluoride, even if hydrogen fluoride is generated from the inside of the battery, it is caused by the corrosion or corrosion of the metal terminal by the hydrogen fluoride. Can be efficiently suppressed.
  • the film contains 9.6% by weight or more of an inorganic filler that reacts with hydrogen fluoride, it is possible to further suppress the decrease in the adhesion between the tab lead film and the metal terminal due to the hydrogen fluoride.
  • the median diameter of the inorganic filler that reacts with hydrogen fluoride is 1.0 ⁇ m or less, it is suitable for suppressing the decrease in adhesion due to the hydrogen fluoride.
  • the resin layer breaks off at the corner of the terminal when heat-sealed with the metal terminal. Is suppressed.
  • the content of the inorganic filler that reacts with hydrogen fluoride in the core layer is 13 to 60% by weight, the corrosion of the metal terminal due to the hydrogen fluoride can be effectively suppressed, and the film forming property of the film for tab lead Also stable.
  • the inorganic filler that reacts with hydrogen fluoride is a metal carbonate, the decrease in adhesion due to hydrogen fluoride can be particularly suppressed without using an expensive filler.
  • FIG. 1 is a schematic plan view (A) of a tab lead according to the present invention, an ⁇ - ⁇ sectional view (B) thereof, and a ⁇ - ⁇ sectional view (C) thereof.
  • 7 is a photograph of a digital microscope of the tab lead cross section of Test Example 1; 7 is a photograph of a digital microscope of the tab lead cross section of Test Example 2.
  • FIG. 7 is a photograph of a digital microscope of the tab lead cross section of Test Example 3.
  • FIG. 21 is a photograph of a digital microscope of the tab lead cross section of Test Example 4.
  • FIG. 21 is a photograph of a digital microscope of the tab lead cross section of Test Example 5.
  • FIG. 1 is a schematic plan view (A) of a tab lead according to the present invention, an ⁇ - ⁇ sectional view (B) thereof, and a ⁇ - ⁇ sectional view (C) thereof.
  • FIG. 1 is a schematic cross-sectional view of a tablead film 1 of the present invention.
  • the tab lead film 1 of the present invention comprises a surface layer (A) 11, a core layer (B) 12 and a surface layer (C) 13 in this order.
  • the surface layer (A) 11 is a layer in contact with a metal terminal in a tab lead described later, and is mainly composed of an acid-modified polyolefin excellent in metal adhesiveness.
  • the acid-modified polyolefin is not particularly limited as long as it is an acid-modified polyolefin, but a polyolefin grafted and modified with an unsaturated carboxylic acid or an anhydride thereof is preferably used.
  • polyethylene such as low density polyethylene, medium density polyethylene, high density polyethylene, linear low density polyethylene, homopolypropylene, block copolymer of propylene and ethylene, polypropylene such as random copolymer of propylene and ethylene
  • polyethylene and polypropylene are preferably used.
  • unsaturated carboxylic acid or its anhydride used for the acid modification of polyolefin maleic acid, acrylic acid, itaconic acid, crotonic acid, maleic anhydride, itaconic anhydride etc. are mentioned, for example.
  • the surface layer (A) 11 may contain one or more of acid-modified polyolefins as appropriate, and may contain other resins such as non-modified polyolefins and thermoplastic elastomers as long as it is a main component.
  • the "main component” means the component having the largest weight ratio among the components constituting the layer.
  • the surface layer (A) 11 has an inorganic filler content of 10% by weight or less. If the content of the inorganic filler exceeds 10% by weight, the adhesion between the tab lead film and the metal terminal may be reduced. In addition, there is a risk that the inorganic filler may fall off in the step of producing the tab lead, and contaminate the production line.
  • the amount of the inorganic filler in the surface layer (A) 11 is preferably 5% by weight or less, preferably 3% by weight or less, and particularly preferably 1% by weight or less. In addition, as an inorganic filler, it does not restrict to the inorganic filler which reacts with the hydrogen fluoride mentioned later, An anti blocking agent etc. are also contained in an inorganic filler.
  • the thickness t1 of the surface layer (A) 11 is preferably 23 ⁇ m or more, particularly 27 ⁇ m or more, and further preferably 30 ⁇ m or more. If the thickness t1 of the surface layer (A) 11 is less than 23 ⁇ m, the surface layer (A) 11 may be broken at the corners of the metal terminal, and the metal terminal may be in contact with the core layer of the tab lead film.
  • the ratio of the thickness t1 of the surface layer (A) 11 in the entire tab lead film is 23% or more of the thickness T (tf) of the entire tab lead film 1 (t1 T 0.23 T (tf)), 80%
  • the following (t1 ⁇ 0.8 T (tf)) is preferable.
  • the upper limit value of 75%, 70%, 65%, 60%, 55% or 50% is preferred.
  • the thickness T (tf) of the tab lead film 1 and the thickness T (mt) of the metal terminal are almost equal.
  • the thickness t1 of the surface layer (A) 11 is If it is less than 23% of the thickness T (tf) of the film 1, as described above, the surface layer (A) 11 is broken at the corners of the metal terminal, and the metal terminal is the core layer (B) of the tab lead film 1 There is a risk of contact with 12.
  • the thickness t1 of the surface layer (A) 11 exceeds 80% of the film 1, the core layer (B) 12 becomes too thin and can not contain sufficient inorganic filler, or the other surface layer ( C) 13 may be too thin, and the adhesion to the outer packaging material such as a lithium battery may be reduced.
  • the core layer (B) 12 in the tab lead film 1 of the present invention is composed of an inorganic filler that reacts with hydrogen fluoride and a polyolefin resin, and one or both of them are main components.
  • the inorganic filler that reacts with hydrogen fluoride is not particularly limited, but it is particularly preferable to be an inorganic filler that reacts with hydrogen fluoride having a median diameter of 1.0 ⁇ m or less.
  • the inorganic filler that reacts with hydrogen fluoride having a median diameter of 1.0 ⁇ m or less has the same amount of inorganic filler for tabled as compared to the inorganic filler that reacts with hydrogen fluoride having a median diameter of more than 1.0 ⁇ m.
  • the adhesive fall by hydrogen fluoride can be controlled more.
  • the inorganic filler that reacts with hydrogen fluoride having a median diameter of 1.0 ⁇ m or less has a median diameter of greater than 1.0 ⁇ m when the decrease in adhesion (adhesion retention) due to hydrogen fluoride is made to the same extent.
  • the amount to be contained in the tab lead film can be smaller than that of the inorganic filler that reacts with hydrogen fluoride.
  • the lower limit value of the median diameter is preferably 0.05 ⁇ m, 0.1 ⁇ m or 0.2 ⁇ m, because it is difficult to produce an inorganic filler that reacts with hydrogen fluoride to a very small diameter.
  • the upper limit value of the median diameter is particularly preferably 0.8 ⁇ m, 0.6 ⁇ m or 0.5 ⁇ m from the viewpoint of being able to further suppress the decrease in adhesiveness due to hydrogen fluoride.
  • metal carbonates such as calcium carbonate and magnesium carbonate
  • calcium carbonate is preferably used because it is inexpensive and easy to obtain.
  • synthetic calcium carbonate is excellent in the function of catching hydrogen fluoride and can be suitably used.
  • the synthetic calcium carbonate can be produced, for example, by reacting calcium hydroxide with carbon dioxide gas, and it is possible to produce particles having a particle size (median diameter) smaller than that of ground calcium carbonate.
  • the polyolefin-based resin used for the core layer (B) 12 is not particularly limited, but, for example, polyethylene such as low density polyethylene, medium density polyethylene, high density polyethylene, linear low density polyethylene, homopolypropylene, propylene and the like
  • polyethylene such as low density polyethylene, medium density polyethylene, high density polyethylene, linear low density polyethylene, homopolypropylene, propylene and the like
  • a block copolymer of ethylene, a polypropylene such as a random copolymer of propylene and ethylene, a terpolymer of ethylene-butene-propylene, and the like can be used.
  • polyethylene and polypropylene are preferably used. One or more of these may be selected to form a polyolefin resin that forms the core layer (B) 12.
  • the core layer (B) 12 may contain, in addition to the above-mentioned polyolefin resin, another resin such as a thermoplastic elastomer, a colorant and the like.
  • another resin such as a thermoplastic elastomer, a colorant and the like.
  • an acid-modified resin such as an acid-modified polyolefin is contained, the hydrophilicity is increased, the water resistance is decreased, and the generation of hydrogen fluoride may be promoted.
  • the content of the inorganic filler that reacts with the hydrogen fluoride blended in the core layer (B) 12 is preferably 13 to 60% by weight.
  • the content of the inorganic filler in the core layer (B) 12 is less than 13% by weight, the content of the inorganic filler in the film for tab lead 1 is 9 while the film thickness of the surface layer (A) is 23% or more.
  • the thickness t2 of the core layer (B) 12 is preferably 15 to 72%, more preferably 20 to 60%, and further preferably 25 to 50% of the thickness T (tf) of the entire film.
  • the tablead film 1 is blended with an inorganic filler that reacts with hydrogen fluoride of 9.0 wt% or more It becomes difficult.
  • the thickness t2 of the core layer (B) 12 exceeds 72% of the total film thickness T (tf), the thicknesses of the surface layer (A) 11 and the surface layer (C) 13 become too thin, and There is a fear that the function can not be exhibited.
  • the surface layer (C) 13 is a layer to be the outermost layer (surface layer not in contact with metal terminals) in a tab lead described later, and is a layer thermally fused with a laminate film which is an outer packaging material in a lithium battery or the like.
  • the surface layer (C) 13 contains an acid-modified polyolefin resin and / or a polyolefin resin as a main component.
  • the sealant layer of the laminate film is made of a resin having poor adhesion to the film for tab lead, it is recommended to select an acid-modified polyolefin resin as the main component of the surface layer (C) 13, and the sealant layer of the laminate film is adhesive When rich, it is good to select polyolefin resin as a main component of surface layer (C) 13.
  • the acid-modified polyolefin resin a resin similar to the resin exemplified as the main component of the surface layer (A) 11 can be appropriately adopted, and the polyolefin resin is the resin exemplified in the core layer (B) 12 Similar resins can be employed.
  • the thickness t3 of the surface layer (C) 13 is preferably 5 ⁇ m or more. If the thickness is less than 5 ⁇ m, thickness control in film formation is difficult, and adhesion to the sealant layer of the laminate film may be insufficient. Further, the ratio of the thickness t3 of the surface layer (C) 13 in the entire tab lead film 1 is preferably 5 to 62% of the thickness T (tf) of the entire film, in particular 10 to 50%, more preferably It is preferably 15 to 30%. If the thickness t3 of the surface layer (C) 13 is less than 5% of the thickness T (tf) of the entire film, the adhesion of the laminate film to the sealant layer may be insufficient.
  • the surface layer (C) 13 has an inorganic filler content of 10% by weight or less. If the content of the inorganic filler exceeds 10% by weight, the adhesion between the tab lead film 1 and the laminate film may be reduced. In addition, there is a risk that the inorganic filler may fall off in the step of manufacturing a tab lead or the step of manufacturing a lithium battery or the like to contaminate the manufacturing line.
  • the amount of the inorganic filler in the surface layer (C) 13 is preferably 5% by weight or less, preferably 3% by weight or less, and particularly preferably 1% by weight or less.
  • the tab lead film 1 is a three-layer film of surface layer (A) 11 / core layer 12 (B) / surface layer (C) 13 has been described, but the film 1 has the effect of the present invention. May contain other resin layers.
  • FIG. 2 is a plan view (A) of the tab lead TL of the present invention and its ⁇ - ⁇ sectional view (B).
  • the tab lead TL of the present invention comprises the tab lead film 1 and the metal terminal 2 of the present invention.
  • the metal terminal 2 is a member electrically connected to an electrode (positive electrode or negative electrode) of a lithium battery or the like, and is made of a metal material. It does not restrict
  • the metal terminal connected to the positive electrode of a lithium battery or the like is usually made of aluminum or the like.
  • the metal terminal connected to the negative electrode of a lithium battery or the like is usually made of copper, nickel or the like.
  • the surface of the metal terminal 2 is preferably subjected to a chemical conversion treatment from the viewpoint of enhancing the electrolytic solution resistance. For example, when the metal terminal is formed of aluminum, specific examples of the chemical conversion treatment include known methods for forming an acid-resistant film such as phosphate, chromate, fluoride, triazine thiol compound and the like.
  • the size of the metal terminal 2 may be appropriately set according to the size of the battery to be used.
  • the thickness T (mt) of the metal terminal 2 is preferably 50 ⁇ m to 400 ⁇ m, more preferably 100 ⁇ m to 300 ⁇ m.
  • the length of the metal terminal 2 is preferably 1 mm or more and 200 mm or less, more preferably 3 mm or more and 150 mm or less.
  • variety of the metal terminal 2 Preferably 1 mm or more and 200 mm or less, More preferably, 3 mm or more and 150 mm or less are mentioned.
  • the present invention exhibits its effect particularly when using the metal terminal 2 which is not chamfered.
  • the resin composition, thickness, and thickness ratio of each layer constituting the tab lead film 1 are as described above.
  • the total thickness T (tf) of the tab lead film 1 is not particularly limited, but it is desirable to determine the thickness of the metal terminal 2 determined by the size of the battery or the like based on T (mt). Specifically, it is preferable that 0.5T (mt) ⁇ T (tf), and particularly preferably 0.7T (mt) ⁇ T (tf), and further, 0.8T (mt) ⁇ T (tf). Is desirable.
  • the film 1 for tab lead 1 When the thickness T (tf) of the film for tab lead 1 is less than 0.5 times the thickness T (mt) of the metal terminal 2, the film 1 for tab lead is attached to the side portion 2b of the metal terminal 2 There is a possibility that the tab lead film 1 may be lifted from the terminal 2 at the side portion 2 b without turning around. If the thickness T (tf) of the tab lead film 1 is sufficiently thicker than the thickness T (mt) of the metal terminal 2, the problem of the tab lead film 1 rising from the metal terminal 2 is eliminated, but lithium When heat-sealed to an outer packaging material such as a battery, the outer packaging material may be lifted from the tab lead film 1 on the side portion 1 a of the tab lead film 1.
  • the thickness T (tf) of the tab lead film 1 is preferably 400 ⁇ m or less, particularly 200 ⁇ m or less, and more preferably 150 ⁇ m or less.
  • the thickness T (tf) of the film for tab lead 1 is 50 ⁇ m or more, in particular 70 ⁇ m or more, and further 75 ⁇ m or more preferable.
  • a film for tab lead was prepared in which the core layer (B) was colored in gray.
  • a film for tablead having a three-layer structure in which the surface layer (A) is made of acid-modified polypropylene, the core layer (B) is made of polypropylene and a colorant (gray pigment), and the surface layer (C) is made of polypropylene 100 ⁇ m thick).
  • the film was produced by coextrusion molding. The thickness of each layer was 50 ⁇ m for the surface layer (A), 30 ⁇ m for the core layer (B), and 20 ⁇ m for the surface layer (C).
  • the tab lead using the tab lead film of Test Examples 1, 2, 4, and 5 in which the thickness of the surface layer (A) is 23% or more of the thickness of the tab lead film is also acid-modified even at the corner of the metal terminal The surface layer (A) made of polypropylene was in contact with the metal terminal. Particularly in the tab lead of Test Example 1 in which the thickness of the surface layer (A) was 50%, the surface layer (A) was hardly thinned. On the other hand, in the tab lead of Test Example 3 in which the thickness of the surface layer (A) was 20% of the whole, the corner portions of the metal terminals were in contact with the core layer (B).
  • the core layer (B) contains polypropylene as a main component and therefore has poor adhesion.
  • a film for tab lead of 15 mm in width is heat sealed on both sides of a nickel foil of 100 ⁇ m in thickness and 20 mm in width to form a test piece.
  • the tab lead film is disposed such that the surface layer (A) is in contact with the nickel foil.
  • the heat sealing was performed under the conditions of seal bar temperature of 190 ° C. for upper bar, 220 ° C. for lower bar, seal surface pressure of 1.0 MPa, and seal time of 3 seconds.
  • the test piece immediately after sealing and the test piece after immersion in the electrolyte for 2 hours were each peeled 180 °, and the adhesive strength (peel strength) was measured with a tensile tester (Autograph / Shimadzu Corporation). Do.
  • the tensile rate of the tensile tester is 100 mm / min, the measuring atmosphere is 23 ° C., the humidity is 50% RH, and the tab lead film heat-sealed on the upper bar side is peeled off. From the data obtained by the measurement, the adhesive retention ((“adhesive strength after immersion in an electrolyte solution for 2 hours” / “adhesive strength immediately after sealing”) ⁇ 100) was calculated.
  • the median diameter of calcium carbonate to be used is measured using a laser diffraction particle size distribution measuring device, and particle sizes corresponding to 10%, 50% and 90% in the cumulative distribution curve of particle size based on particle size are calculated, The particle diameter (median diameter (D50)) to be 50% was determined.
  • the tab lead films of Examples 1 to 4 hold 50% or more of the adhesion retention rate. This seems to be because calcium carbonate (CaCO 3 ) contained in the film for tab lead reacts with hydrogen fluoride (HF) and the hydrogen fluoride is confined in the film for tab lead in the form of calcium fluoride (CaF 2 ) .
  • CaCO 3 calcium carbonate contained in the film for tab lead reacts with hydrogen fluoride (HF) and the hydrogen fluoride is confined in the film for tab lead in the form of calcium fluoride (CaF 2 ) .
  • the films for tab lead of Comparative Examples 1 to 3 had good initial adhesion, but the adhesion strength after immersion for 2 hours was extremely low. This is considered to be because the nickel foil surface was corroded by hydrogen fluoride contained in the electrolytic solution.
  • the relationship between the amount of added calcium carbonate and the adhesion retention rate in the films for tab lead of Examples 1 to 4 and Comparative Examples 1 to 3 is shown in FIG.
  • the adhesive strength is 0 even if the addition amount is increased, and the tab lead film peels off from the metal terminal.
  • the adhesion retention rate increased as the addition amount increased, but the adhesion retention rate was less than 50%.
  • the adhesion retention rate increased as the addition amount increased, and the adhesion retention rate also exceeded 50%.
  • the addition amount exceeds 11.5% by weight the adhesion retention does not change so much in the state of 80%.
  • Example 5 A film for tab lead similar to that of Example 4 was produced except that another calcium carbonate (CaCO 3 -3) was used from calcium carbonate (CaCO 3 -2) used in Example 4, and the adhesive strength immediately after sealing and The adhesive strength after immersion in the electrolytic solution for 2 hours was measured to calculate the adhesive retention.
  • Table 3 shows the comparison between calcium carbonate (CaCO 3 -2) used in Example 4 and calcium carbonate (CaCO 3 -3) obtained in Example 5. The measurement results of Example 5 are shown in Table 4.
  • the relationship between the amount of added calcium carbonate and the adhesion retention rate in the film for tab lead of Example 5 is added to FIG.
  • the film for tab lead according to Example 1 using calcium carbonate having a smaller median diameter than Example 5 using calcium carbonate having a large median diameter could be as small as two thirds.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Laminated Bodies (AREA)

Abstract

【課題】本発明はフッ化水素の影響により金属端子とタブリード用フィルムの間の接着力が低下することを防止するタブリード用フィルムであって、タブリードの製造ラインやリチウム電池等の製造ラインを汚染することがないタブリード用フィルムを提供する。 【解決手段】酸変性ポリオレフィン系樹脂を主成分とする表面層(A)、フッ化水素と反応する無機充填剤とポリオレフィン系樹脂を含み、前記フッ化水素と反応する無機充填剤及び/又は前記ポリオレフィン系樹脂が主成分であるコア層(B)、酸変性ポリオレフィン系樹脂及び/又はポリオレフィン系樹脂を主成分とする表面層(C)を順に備えるタブリード用フィルムにおいて、前記表面層(A)における無機充填剤の含有量、及び前記表面層(C)における無機充填剤の含有量が、それぞれ0~10重量%で、前記タブリード用フィルムがフッ化水素と反応する無機充填剤を9.0重量%以上含有することを特徴とする。

Description

タブリード用フィルム、及びこれを用いたタブリード
 本発明はラミネートフィルムを外包材とするリチウムイオン電池やリチウムイオンキャパシタ等において、内部から電気を取り出すためのタブリードに熱融着されるタブリード用フィルムに関する。また該タブリード用フィルムを用いたタブリードに関する。
 近年、ノートパソコンや携帯電話等の電子機器の電源やハイブリッド自動車や電気自動車等のバッテリー等として、リチウムイオン電池やリチウムイオンキャパシタ(以下、単に「リチウム電池等」と略称する)が採用されている。これらリチウム電池等の多くは、アルミニウム箔等の金属箔にポリオレフィン等からなるシーラント層等を積層したラミネートフィルムを外包材とし、該外包材の内部に、正極、負極、セパレーター及び非水電解質等が封入され、更にリチウム電池等の内部と外部とを電気的に繋ぐ為のタブリードが取り付けられて成る。
 特許文献1は、水の浸入により発生するフッ化水素(フッ酸)により、金属端子(リード線)が腐食し、タブリード用フィルム(リード線の絶縁材料)が剥がれることを防止する為に、該タブリード用フィルムに酸をトラップさせる機能を付加することを提案するものである。具体的には熱可塑性樹脂100重量部と、カルボン酸金属塩、金属酸化物、ハイドロタルサイト類より選ばれた1種あるいは複数種類を合計で20重量部以上100重量部以下と、を主体とする樹脂組成物をタブリード用フィルムとして使用することを提案する。
 しかしながらここで開示されているタブリード用フィルムは単層のフィルムであり、フィルム表面に多量の充填剤(カルボン酸金属塩、金属酸化物、ハイドロタルサイト類等)が存在する。その為、フィルム表面から充填剤が脱落し、タブリードの製造ラインやリチウム電池等の製造ラインを汚染する恐れがあった。
 また該充填剤がフィルム表面に多く存在すると、金属端子とタブリード用フィルムの接着力が低下するという問題もあった。通常、タブリード用フィルムは金属端子にヒートシールにより熱融着するが、前記充填剤はヒートシール温度(通常、150~250℃)においても溶融せず、金属端子と熱融着しないのである。
 特許文献2も、フッ化水素により金属端子(リード端子)が腐食し、金属端子とタブリード用フィルム(端子接着用テープ)の間の接着力が低下する問題を解決する発明である。
 特許文献2には、タブリード用フィルムを三層構成とし、無機充填剤を含有する層を中間層とし、該中間層の一方に金属端子との接着性が良好な樹脂層を、他方に外包材との接着性が良好な樹脂層を設けることが開示されている。
 特許文献2に開示された三層構成のタブリード用フィルムは、フィルム表面に無機充填剤が存在しない為、タブリードの製造ラインやリチウム電池等の製造ラインを汚染することはない。しかしながら該三層構成のタブリード用フィルムであっても、金属端子の種類によっては、端子との接着力が低いものがあった。
特開平11-354087公報 特開2014-120390公報
 本発明はフッ化水素の影響により金属端子とタブリード用フィルムの間の接着力が低下することを防止するタブリード用フィルムであって、タブリードの製造ラインやリチウム電池等の製造ラインを汚染することがなく、更に金属端子の種類によって端子との接着性が低下することのないタブリード用フィルムの提供を課題とする。併せて該タブリード用フィルムを用いたタブリードの提供を課題とする。
 本発明者らは特許文献2に開示された三層構成のタブリード用フィルムにおいて、金属端子の種類により端子との接着力が低下する理由について検討した。図9は比較的厚い金属端子2を採用したタブリードTLの模式的平面図(A)と、そのα-α断面図(B)、そのβ-β断面図(C)である。本発明者らは一般的な三層構成のタブリード用フィルム1を比較的厚い金属端子2にヒートシールした場合、金属端子2の角部2aにおいて、しばしばタブリード用フィルム1の表面層11が途切れ、金属端子2がコア層12と接することを発見した。
 一般的なタブリード用フィルム1の表面層11は酸変性ポリオレフィンから成り、コア層12はポリオレフィン系樹脂から成る為、通常、コア層12は表面層11よりも金属端子2との熱融着性に劣る。特に特許文献2に開示されたタブリード用フィルムのようにコア層に無機充填剤を含むものは、該無機充填剤の影響により、コア層と金属端子との熱融着性は非常に乏しい。そのため特許文献2に開示された三層のタブリード用フィルムは、金属端子の角部において端子に熱融着せず、その結果、金属端子とタブリード用フィルムとの接着力が低下したものと思われる。
 そこで本発明者らはタブリード用フィルムにおける一方の表面層(A)の厚さまたは厚さ割合を十分に大きくし、金属端子の角部において、タブリード用フィルムの表面層(A)が途切れることを防止することとした。この場合、表面層(A)の厚さまたは厚さ割合の増加に伴い、コア層(B)や、もう一方の表面層(C)の厚さが低減することとなるが、コア層(B)の厚さが低減すると該層に含まれる無機充填剤の量も低減することとなる。よって本発明者らは無機充填剤の添加量とフッ化水素への影響についても検討を進め、本発明に至った。
 即ち本発明によると上記課題を解決する為の手段として、酸変性ポリオレフィン系樹脂を主成分とする表面層(A)、フッ化水素と反応する無機充填剤とポリオレフィン系樹脂を含み、前記フッ化水素と反応する無機充填剤及び/又は前記ポリオレフィン系樹脂が主成分であるコア層(B)、酸変性ポリオレフィン系樹脂及び/又はポリオレフィン系樹脂を主成分とする表面層(C)を順に備えるタブリード用フィルムにおいて、前記表面層(A)における無機充填剤の含有量、及び前記表面層(C)における無機充填剤の含有量が、それぞれ0~10重量%で、前記タブリード用フィルムがフッ化水素と反応する無機充填剤を9.0重量%以上含有することを特徴とするタブリード用フィルムが提供される。
 また、前記タブリード用フィルムがフッ化水素と反応する無機充填剤を9.6重量%以上含有することを特徴とするタブリード用フィルムが提供される。
 更に、前記タブリード用フィルム中のフッ化水素と反応する無機充填剤のメジアン径が1.0μm以下であることを特徴とするタブリード用フィルムが提供される。
 また、前記表面層(A)の厚さが23μm以上であることを特徴とするタブリード用フィルムが提供される。
 更に、前記表面層(A)の厚さがタブリードフィルム全体の厚さの23%以上であることを特徴とするタブリード用フィルムが提供される。
 また、前記コア層における前記フッ化水素と反応する無機充填剤の含有量が13~60重量%であることを特徴とするタブリード用フィルムが提供される。
 更に、前記表面層(A)の厚さをt1、前記コア層(B)の厚さをt2、前記表面層(C)の厚さをt3としたとき、下記の式(1)及び式(2)を満たすことを特徴とするタブリード用フィルムが提供される。
式(1) t1≧t3
式(2) t1:t2:t3=23~80:15~72:5~62
 また、前記フッ化水素と反応する無機充填剤が金属炭酸塩であることを特徴とするタブリード用フィルムが提供される。
 更に、前記金属炭酸塩が、炭酸カルシウムであることを特徴とするタブリード用フィルムが提供される。
 また、前記炭酸カルシウムが、合成炭酸カルシウムであることを特徴とするタブリード用フィルムが提供される。 
 また、金属端子の少なくとも一方の表面に、前記タブリード用フィルムが熱融着されたタブリードであって、前記金属端子の表面と前記タブリード用フィルムの前記表面層(A)を熱融着したことを特徴とするタブリードが提供される。
 更に、前記金属端子の厚さをT(mt)、前記タブリード用フィルムの厚さをT(tf)としたとき、0.5T(mt)≦T(tf)であることを特徴とするタブリードが提供される。
 本発明のタブリード用フィルムは、酸変性ポリオレフィン系樹脂を主成分とする表面層(A)、フッ化水素と反応する無機充填剤及び/又はポリオレフィン系樹脂を主成分とするコア層(B)、酸変性ポリオレフィン系樹脂及び/又はポリオレフィン系樹脂を主成分とする表面層(C)を順に備え、表面層(A)における無機充填剤の含有量、及び表面層(C)における無機充填剤の含有量が、それぞれ0~10重量%である為、タブリードの製造ラインやリチウム電池等の製造ラインを汚染することがない。
 また該フィルムがフッ化水素と反応する無機充填剤を9.0重量%以上含有する為、電池内部からフッ化水素が発生しても、該フッ化水素による金属端子の腐食や、腐食に起因する接着性の低下を効率よく抑制することができる。
 加えて、該フィルムがフッ化水素と反応する無機充填剤を9.6重量%以上含有することで、フッ化水素によるタブリード用フィルムと金属端子の接着力低下をより抑制することができる。
 特に、フッ化水素と反応する無機充填剤のメジアン径が1.0μm以下であることによりフッ化水素による接着性低下の抑制に適している。
 更に表面層(A)の厚さが、23μm以上、又はフィルム全体の厚さの23%以上である為、金属端子と熱融着される際に、端子の角部において該樹脂層が途切れることが抑制される。
 またコア層におけるフッ化水素と反応する無機充填剤の含有量が13~60重量%であると、フッ化水素による金属端子の腐食を効果的に抑制でき、尚且つタブリード用フィルムの製膜性も安定する。
 更にまたフッ化水素と反応する無機充填剤が金属炭酸塩であると、高価な充填剤を用いることなく、フッ化水素による接着性の低下を特に抑制することができる。
本発明のタブリード用フィルムの模式的断面図である。 本発明のタブリードの模式的平面図(A)と、そのα-α断面図(B)、そのβ-β断面図(C)である。 試験例1のタブリード断面のデジタルマイクロスコープの写真である。 試験例2のタブリード断面のデジタルマイクロスコープの写真である。 試験例3のタブリード断面のデジタルマイクロスコープの写真である。 試験例4のタブリード断面のデジタルマイクロスコープの写真である。 試験例5のタブリード断面のデジタルマイクロスコープの写真である。 実施例1~5、比較例1~3のタブリード用フィルムにおける炭酸カルシウムの添加量と電解液浸漬後の試験片の接着強度の関係を表すグラフである。 従来のタブリード用フィルムを用いたタブリードの模式的平面図(A)と、そのα-α断面図(B)、そのβ-β断面図(C)である。
 以下、本発明を図面に基づいて詳細に説明する。尚、各図中、同一符号は同一又は同等の構成要素を表している。また、本発明は以下の形態に限定されるものではなく、種々の形態をとることができる。
 図1は本発明のタブリード用フィルム1の模式的断面図である。本発明のタブリード用フィルム1は、表面層(A)11、コア層(B)12、表面層(C)13を順に備える。
[表面層(A)]
 表面層(A)11は、後述するタブリードにおいて金属端子と接する層で、金属接着性に優れる酸変性ポリオレフィンを主成分とする。該酸変性ポリオレフィンは、酸変性されたポリオレフィンであれば特に制限されないが、不飽和カルボン酸又はその無水物でグラフト変性されたポリオレフィンが好適に用いられる。
 酸変性されるポリオレフィンとしては、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、直鎖状低密度ポリエチレン等のポリエチレン、ホモポリプロピレン、プロピレンとエチレンのブロックコポリマー、プロピレンとエチレンのランダムコポリマー等のポリプロピレン、エチレン-ブテン-プロピレンのターポリマー等を例示することができる。これらのポリオレフィンの中でも、ポリエチレン及びポリプロピレンが好適に用いられる。
 またポリオレフィンの酸変性に使用される不飽和カルボン酸又はその無水物としては、例えば、マレイン酸、アクリル酸、イタコン酸、クロトン酸、無水マレイン酸、無水イタコン酸等が挙げられる。
 表面層(A)11は酸変性ポリオレフィンの一種或いはそれ以上を適宜選択し、これを主成分としていれば、変性されていないポリオレフィンや熱可塑性エラストマー等の他の樹脂を含んでいても良い。尚、本発明において「主成分」とは層を構成する成分のうち最も重量割合が大きい成分を意味する。
 該表面層(A)11は、無機充填剤の含有量が10重量%以下である。無機充填剤の含有量が10重量%を超えると、タブリード用フィルムと金属端子との接着性が低下する恐れがある。またタブリードを製造する工程において無機充填剤が脱落し、該製造ラインを汚染する恐れがある。表面層(A)11における無機充填剤の量は5重量%以下が好ましく、3重量%以下が好ましく、特に1重量%以下であることが好ましい。
 尚、無機充填剤としては、後述するフッ化水素と反応する無機充填剤に限るものではなく、アンチブロッキング剤なども無機充填剤に含まれる。
 本発明のタブリード用フィルム1は、表面層(A)11の厚さt1が、23μm以上、特に27μm以上、更には30μm以上が好ましい。表面層(A)11の厚さt1が23μm未満であると金属端子の角部において表面層(A)11が途切れ、金属端子がタブリード用フィルムのコア層と接する恐れがある。
 また、タブリード用フィルム全体における表面層(A)11の厚さt1の割合は、タブリード用フィルム1全体の厚さT(tf)の23%以上(t1≧0.23T(tf))、80%以下(t1≦0.8T(tf))が好ましい。特に27%、30%、33%、35%、40%または45%の下限値から、75%、70%、65%、60%、55%または50%の上限値であることが好ましい。一般的なタブリードでは、タブリード用フィルム1の厚さT(tf)と、金属端子の厚さT(mt)がほぼ同等であるが、この場合、表面層(A)11の厚さt1が、フィルム1の厚さT(tf)の23%未満であると、上述したように、金属端子の角部において表面層(A)11が途切れ、金属端子がタブリード用フィルム1のコア層(B)12と接する恐れがある。また表面層(A)11の厚さt1が、フィルム1の80%を超えると、コア層(B)12が薄くなり過ぎ、十分な無機充填剤を含有できなくなったり、もう一方の表面層(C)13が薄くなり過ぎ、リチウム電池等の外包材との接着性が低下したりする恐れがある。
[コア層(B)]
 本発明のタブリード用フィルム1におけるコア層(B)12は、フッ化水素と反応する無機充填剤とポリオレフィン系樹脂からなり、これらのうちのいずれか一方、若しくは双方を主成分とする。
 フッ化水素と反応する無機充填剤は特に限定されるものではないが、特に、メジアン径が1.0μm以下のフッ化水素と反応する無機充填剤であることが好ましい。メジアン径が1.0μm以下のフッ化水素と反応する無機充填剤は、メジアン径が1.0μmを超えるフッ化水素と反応する無機充填剤と比較して、同量の無機充填剤をタブリード用フィルムに含有させた場合に、フッ化水素による接着性低下をより抑制することができる。換言すれば、フッ化水素による接着性低下(接着性保持率)を同程度する際、メジアン径が1.0μm以下のフッ化水素と反応する無機充填剤は、メジアン径が1.0μmを超えるフッ化水素と反応する無機充填剤よりも、タブリード用フィルムに含有させる量を少量とすることができる。このように、タブリード用フィルム中の含有量を少量にすることができることで、無機充填剤による製造時の不具合(押出工程での樹脂圧変動やスクリュー摩耗など)をより抑制することができる。
 尚、フッ化水素と反応する無機充填剤は、極めて小径に製造することが困難であることから、メジアン径の下限値は0.05μm、0.1μmまたは0.2μmであることが好ましい。また、メジアン径の上限値は、0.8μm、0.6μmまたは0.5μmであることがフッ化水素による接着性低下をより抑制することができる点から特に好ましい。
 フッ化水素と反応する無機充填剤としては、例えば炭酸カルシウム、炭酸マグネシウム等の金属炭酸塩を例示することができる。該金属炭酸塩の中でも炭酸カルシウムは安価で入手し易い為、好適に用いることができる。特に、合成炭酸カルシウムはフッ化水素をキャッチする機能に優れており、好適に利用することができる。該合成炭酸カルシウムは、例えば水酸化カルシウムを炭酸ガスと反応させることによって製造することができ、重質炭酸カルシウムよりも粒径(メジアン径)が小さい粒子を製造することが可能である。
 コア層(B)12に用いられるポリオレフィン系樹脂も特に限定されるものではないが、例えば低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、直鎖状低密度ポリエチレン等のポリエチレン、ホモポリプロピレン、プロピレンとエチレンのブロックコポリマー、プロピレンとエチレンのランダムコポリマー等のポリプロピレン、エチレン-ブテン-プロピレンのターポリマー等を用いることができる。これらのポリオレフィンの中でも、ポリエチレン及びポリプロピレンが好ましくは用いられる。これらの一種あるいは複数種を選択して、コア層(B)12を形成するポリオレフィン系樹脂とすればよい。
 尚、該コア層(B)12は上述したポリオレフィン系樹脂の他に、熱可塑性エラストマー等の他の樹脂や着色剤等を含んでいても良い。しかしながら酸変性ポリオレフィンのような酸変性樹脂を含んでいると、親水性が高まり、耐水性が低下し、フッ化水素の発生を促進させる恐れがある。
 タブリード用フィルム1全体中にフッ化水素と反応する無機充填剤が9.0重量%以上含まれていれば、コア層(B)12に配合されるフッ化水素と反応する無機充填剤の量は特に限定されない。しかしながらコア層(B)12に配合されるフッ化水素と反応する無機充填剤の含有量は13~60重量%が好ましい。
 コア層(B)12における該無機充填剤の含有量が13重量%未満では、表面層(A)の膜厚を23%以上としながら、タブリード用フィルム1における該無機充填剤の含有量を9.0重量%以上とすることが困難となり、表面層(C)13を薄くしたり、表面層(A)11や表面層(C)13に該無機充填剤を添加したりする必要が生じる。
 またコア層(B)12における該無機充填剤の含有量が60重量%を超えると、コア層(B)12用の樹脂組成物を押出機から押出す際に樹脂圧が変動し易く、該層の厚さが安定し難い。また無機充填剤によって押出機のスクリューが摩耗し、タブリード用フィルムに金属粉が混入する恐れが生じる。
 コア層(B)12の厚さt2は、フィルム全体の厚さT(tf)の15~72%であることが好ましく、特に20~60%、更には25~50%であることが好ましい。コア層(B)12の厚さt2がフィルム全体の厚さT(tf)の15%未満では、タブリード用フィルム1に9.0重量%以上のフッ化水素と反応する無機充填剤を配合することが困難となる。またコア層(B)12の厚さt2がフィルム全体厚さT(tf)の72%を超えると、表面層(A)11や表面層(C)13の厚さが薄くなり過ぎ、各層の機能を発揮できない恐れが生じる。
[表面層(C)]
 表面層(C)13は、後述するタブリードにおいて最表層(金属端子と接しない表面層)となる層であって、リチウム電池等において外包材であるラミネートフィルムと熱融着される層である。該表面層(C)13は酸変性ポリオレフィン系樹脂及び/又はポリオレフィン系樹脂を主成分とする。ラミネートフィルムのシーラント層が、タブリード用フィルムとの接着性に乏しい樹脂から成る場合、表面層(C)13の主成分として酸変性ポリオレフィン系樹脂を選択するとよく、ラミネートフィルムのシーラント層が接着性に富む場合は、表面層(C)13の主成分としてポリオレフィン系樹脂を選択するとよい。
 尚、酸変性ポリオレフィン系樹脂は、表面層(A)11の主成分として例示した樹脂と同様の樹脂を適宜採用することができ、ポリオレフィン系樹脂は、コア層(B)12において例示した樹脂と同様の樹脂を採用することができる。
 表面層(C)13の厚さt3は5μm以上であることが好ましい。5μm未満であると、製膜での厚み制御が困難であり、またラミネートフィルムのシーラント層との接着が不十分となる恐れがある。
 また、タブリード用フィルム1全体における表面層(C)13の厚さt3の割合は、フィルム全体の厚さT(tf)の5~62%であることが好ましく、特に10~50%、更には15~30%であることが好ましい。表面層(C)13の厚さt3がフィルム全体の厚さT(tf)の5%未満では、ラミネートフィルムのシーラント層との接着が不十分となる恐れがある。また表面層(C)13の厚さt3がフィルム全体の厚さT(tf)の62%を超えると、表面層(A)11やコア層(B)12の厚さが薄くなり過ぎ、各層の機能を発揮できない恐れが生じる。
 表面層(C)13は、上述した表面層(A)11と同様に、無機充填剤の含有量が10重量%以下である。無機充填剤の含有量が10重量%を超えると、タブリード用フィルム1とラミネートフィルムとの接着性が低下する恐れがある。またタブリードを製造する工程やリチウム電池等を製造する工程において無機充填剤が脱落し、該製造ラインを汚染する恐れがある。表面層(C)13における無機充填剤の量は5重量%以下が好ましく、3重量%以下が好ましく、特に1重量%以下であることが望ましい。
 以上、タブリード用フィルム1が表面層(A)11/コア層12(B)/表面層(C)13の3層フィルムである場合について説明したが、該フィルム1は本発明の効果を奏する範囲において他の樹脂層を含んでいても良い。
[タブリード]
 図2は本発明のタブリードTLの平面図(A)とそのα―α断面図(B)である。
 本発明のタブリードTLは、本発明のタブリード用フィルム1と金属端子2とからなる。
[金属端子]
 金属端子2は、リチウム電池等の電極(正極又は負極)に電気的に接続される部材であり、金属材料により構成されている。金属端子2を構成する金属材料としては、特に制限されず、例えば、アルミニウム、ニッケル、銅等が挙げられる。尚、リチウム電池等の正極に接続される金属端子は、通常、アルミニウム等により構成されている。また、リチウム電池等の負極に接続される金属端子は、通常、銅、ニッケル等により構成されている。
 金属端子2の表面は、耐電解液性を高める観点から、化成処理が施されていることが好ましい。例えば、金属端子がアルミニウムにより形成されている場合、化成処理の具体例としては、リン酸塩、クロム酸塩、フッ化物、トリアジンチオール化合物等の耐酸性被膜を形成する公知の方法が挙げられる。
 金属端子2の大きさは、使用される電池の大きさ等に応じて適宜設定すればよい。金属端子2の厚さT(mt)としては、好ましくは50μm以上400μm以下、より好ましくは100μm以上300μm以下が挙げられる。また、金属端子2の長さとしては、好ましくは1mm以上200mm以下、より好ましくは3mm以上150mm以下が挙げられる。また、金属端子2の幅としては、好ましくは1mm以上200mm以下、より好ましくは3mm以上150mm以下が挙げられる。
 尚、本発明のタブリード用フィルム1を用いれば、金属端子2が角部2aにおいて面取りされていないものであっても、該角部2aにおいて表面層(A)11が途切れにくい。よって本発明は面取りされていない金属端子2を用いる場合に、特にその効果を発揮する。
[タブリード用フィルム]
 タブリード用フィルム1を構成する各層の樹脂組成や厚さ、厚さの比率は上述した通りである。
 タブリード用フィルム1の全体の厚さT(tf)は特に限定されないが、電池の大きさ等により決定される金属端子2の厚さをT(mt)に基づき決定することが望ましい。詳しくは、0.5T(mt)≦T(tf)であることが望ましく、特に0.7T(mt)≦T(tf)であることが望ましく、更には0.8T(mt)≦T(tf)であることが望ましい。タブリード用フィルム1の厚さT(tf)が金属端子2の厚さT(mt)の0.5倍未満では、熱融着する際にタブリード用フィルム1が金属端子2の側辺部2bに回り込まず、該側辺部2bにおいてタブリード用フィルム1が端子2から浮き上がる恐れがある。
 尚、タブリード用フィルム1の厚さT(tf)が、金属端子2の厚さT(mt)よりも十分に厚いと、金属端子2からタブリード用フィルム1が浮き上がる問題は解消されるが、リチウム電池等の外包材に熱融着される際に、タブリード用フィルム1の側辺部1aにおいて、外包材がタブリード用フィルム1から浮き上がる恐れがある。よってタブリード用フィルム1の厚さT(tf)は400μm以下、特に200μm以下、更には150μm以下であることが好ましい。
 また、金属端子2及びラミネートフィルムのシーラント層との接着を十分保つためには、タブリード用フィルム1の厚さT(tf)は50μm以上、特に、70μm以上、更には、75μm以上であることが好ましい。
[試験例1]
 図9に示す酸変性ポリオレフィンを主成分とする表面層(A)の途切れの問題を確認する為に、コア層(B)をグレーに着色したタブリード用フィルムを製造した。
 詳しくは、表面層(A)が酸変性ポリプロピレンからなり、コア層(B)がポリプロピレンと着色剤(グレー顔料)とからなり、表面層(C)がポリプロピレンからなる三層構成のタブリード用フィルム(厚さ100μm)を製造した。尚、フィルムの製造は共押出成形法により行った。各層の厚さは、表面層(A)が50μm、コア層(B)が30μm、表面層(C)が20μmであった。
[試験例2~5]
 表1に記すように、重質炭酸カルシウムのコア層(B)中への添加の有無、且つ各層の厚さを変更した以外は、試験例1と同様にしてタブリード用フィルムを製造した。該フィルムを用いて途切れ性の評価を行った。
<途切れ性の評価>
 厚さ100μmのニッケル製端子の両面にタブリード用フィルムをヒートシールし、タブリードを作成する。尚、タブリード用フィルムは表面層(A)がニッケル製端子と接するように配置する。またヒートシールは、シールバー温度は上下共に160℃、シール面圧1.0MPa、シール時間2秒の条件で行う。
 得られたタブリードを切断し、切断面をデジタルマイクロスコープにて観察する。金属端子がグレーに着色されたコア層(B)と接していたものを×、金属端子の角部において表面層(A)が薄くなっていたものを△、金属端子の角部においても表面層(A)が十分に厚く残っていたものを○と評価する。
 試験例1~5で製造したタブリード用フィルムの途切れ性の評価結果を表1に併せて記す。また試験例1のタブリード用フィルムを用いたタブリード断面のデジタルマイクロスコープの写真を図3に、試験例2のデジタルマイクロスコープの写真を図4に、試験例3のデジタルマイクロスコープの写真を図5に、試験例4のデジタルマイクロスコープの写真を図6に、試験例5のデジタルマイクロスコープの写真を図7に記す。
Figure JPOXMLDOC01-appb-T000001
 表面層(A)の厚さが、タブリード用フィルムの厚さの23%以上である試験例1、2、4、5のタブリード用フィルムを用いたタブリードは、金属端子の角部においても酸変性ポリプロピレンからなる表面層(A)が金属端子と接していた。特に表面層(A)の厚さが50%である試験例1のタブリードは、表面層(A)がほとんど薄化していなかった。一方、表面層(A)の厚さが全体の20%である試験例3のタブリードは、金属端子の角部分がコア層(B)と接していた。コア層(B)はポリプロピレンを主成分とする為、接着性に劣る。
 また、各層厚みが同じであり、コア層(B)中に炭酸カルシウムを含有する試験例4と、含有しない試験例5を比較すると、どちらも金属端子の角部において表面層(A)が同程度薄くなっており、炭酸カルシウムの有無による違いは見られなかった。
[比較例1~3、実施例1~4]
 表2に記す樹脂を用いて、表2に記す厚さのタブリード用フィルム(膜厚100μm)を製造した。各フィルムのフッ化水素による接着性低下の評価は、以下の方法にて行った。
 また、使用する炭酸カルシウム(CaCO)のメジアン径の測定方法を以下に記す。
<フッ化水素による接着性低下の評価>
 厚さ100μm、幅20mmのニッケル箔の両面に15mm幅のタブリード用フィルムをヒートシールして試験片とする。尚、タブリード用フィルムは表面層(A)がニッケル箔と接するように配置する。またヒートシールは、シールバー温度は上バー190℃、下バー220℃、シール面圧1.0MPa、シール時間3秒の条件で行った。
 試験片は2組作成し、1組の試験片を電解液(エチレンカーボネート:ジメチルカーボネート:ジエチルカーボネート=1:1:1(v/v%)の溶媒にLiPFを1mol/Lの割合で添加したもの)に浸漬し、85℃に加温して2時間保管する。
 シール直後の試験片と、電解液に2時間浸漬後の試験片とを、それぞれ180°剥離し、引張試験機(オートグラフ/(株)島津製作所製)にて接着強度(剥離強度)を測定する。尚、引張試験機の引張速度は100mm/min、測定雰囲気は23℃、湿度50%RHとし、上バー側でヒートシールされたタブリード用フィルムを剥離して行う。
 測定により得られたデータから、接着性保持率((「電解液に2時間浸漬後の接着強度」÷「シール直後の接着強度」)×100)を算出した。<炭酸カルシウムのメジアン径の測定方法>
 使用する炭酸カルシウムのメジアン径は、レーザー回折式粒子径分布測定装置を用いて測定し、体積基準の粒子径の累積分布曲線において10%、50%および90%に相当する粒子径を算出し、50%となる粒子径(メジアン径(D50))を求めた。
Figure JPOXMLDOC01-appb-T000002
 実施例1~4のタブリード用フィルムは接着保持率を50%以上保持するものであった。これはタブリード用フィルムに含まれる炭酸カルシウム(CaCO)がフッ化水素(HF)と反応し、フッ化水素をフッ化カルシウム(CaF)の形でタブリード用フィルム内に閉じ込めた為と思われる。
 一方、比較例1~3のタブリード用フィルムは、初期接着力は良好であったが、2時間浸漬後の接着強度が著しく低かった。これは電解液中に含まれるフッ化水素により、ニッケル箔表面が腐食したためと思われる。
 実施例1~4、比較例1~3のタブリード用フィルムにおける炭酸カルシウムの添加量と接着性保持率の関係を図8に示す。タブリード用フィルム全体における炭酸カルシウムの添加量が0~7重量%の領域においては、添加量を増やしても接着強度は0でありタブリード用フィルムが金属端子から剥がれてしまった。また7~8.9重量%の領域においては、添加量が増えるに従い接着保持率は高くなっているが、接着保持率は50%未満であった。一方、9.0~11.5重量%の領域においては、添加量が増えるに従い接着保持率も高くなり、且つ接着性保持率も50%を上回っていた。そして、添加量が11.5重量%を超えると、接着性保持率が80%の状態であまり変化しなくなっている。
[実施例5]
 実施例4で使用した炭酸カルシウム(CaCO-2)から別の炭酸カルシウム(CaCO-3)を用いた以外は、実施例4と同様のタブリード用フィルムを製造し、シール直後の接着強度と電解液に2時間浸漬後の接着強度を測定し接着性保持率を算出した。実施例4で使用した炭酸カルシウム(CaCO-2)と実施例5した炭酸カルシウム(CaCO-3)の比較を表3に、実施例5の測定結果を表4に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 実施例5のタブリード用フィルムにおける炭酸カルシウムの添加量と接着保持率の関係を図8に加える。
 約60%の接着保持率を有するタブリード用フィルムとする場合、メジアン径が大きい炭酸カルシウムを用いた実施例5よりも、メジアン径が小さい炭酸カルシウムを用いた実施例1の方が、タブリード用フィルムに添加する炭酸カルシウムの量が3分の2の少量とすることができた。
1      タブリード用フィルム
11     表面層(A)
12     コア層(B)
13     表面層(C)
1a     側辺部
2      金属端子
2a     角部
2b     側辺部
TL     タブリード

Claims (12)

  1.  酸変性ポリオレフィン系樹脂を主成分とする表面層(A)、フッ化水素と反応する無機充填剤とポリオレフィン系樹脂を含み、前記フッ化水素と反応する無機充填剤及び/又は前記ポリオレフィン系樹脂が主成分であるコア層(B)、酸変性ポリオレフィン系樹脂及び/又はポリオレフィン系樹脂を主成分とする表面層(C)を順に備えるタブリード用フィルムにおいて、
     前記表面層(A)における無機充填剤の含有量、及び前記表面層(C)における無機充填剤の含有量が、それぞれ0~10重量%で、
     前記タブリード用フィルムがフッ化水素と反応する無機充填剤を9.0重量%以上含有することを特徴とするタブリード用フィルム。
  2.  前記タブリード用フィルムがフッ化水素と反応する無機充填剤を9.6重量%以上含有することを特徴とする請求項1記載のタブリード用フィルム。
  3.  前記タブリード用フィルム中のフッ化水素と反応する無機充填剤のメジアン径が1.0μm以下であることを特徴とする請求項1または2記載のタブリード用フィルム。
  4.  前記表面層(A)の厚さが23μm以上であることを特徴とする請求項1乃至3のいずれか1項に記載のタブリード用フィルム。
  5.  前記表面層(A)の厚さがタブリードフィルム全体の厚さの23%以上であることを特徴とする請求項1乃至4のいずれか1項に記載のタブリード用フィルム。
  6.  前記コア層(B)におけるフッ化水素と反応する無機充填剤の含有量が13~60重量%であることを特徴とする請求項1乃至5のいずれか1項に記載のタブリード用フィルム。
  7.  前記表面層(A)の厚さをt1、前記コア層(B)の厚さをt2、前記表面層(C)の厚さをt3としたとき、下記の式(1)及び式(2)を満たすことを特徴とする請求項1乃至6のいずれか1項に記載のタブリード用フィルム。
    式(1) t1≧t3
    式(2) t1:t2:t3=23~80:15~72:5~62
  8.  前記タブリード用フィルム中のフッ化水素と反応する無機充填剤が金属炭酸塩であることを特徴とする請求項1乃至7のいずれか1項に記載のタブリード用フィルム。
  9.  前記金属炭酸塩が、炭酸カルシウムであることを特徴とする請求項8記載のタブリード用フィルム。
  10.  前記炭酸カルシウムが、合成炭酸カルシウムであることを特徴とする請求項9記載のタブリード用フィルム。
  11.  金属端子の少なくとも一方の表面に、請求項1乃至10のいずれか1項に記載のタブリード用フィルムが熱融着されたタブリードであって、前記金属端子の表面と前記タブリード用フィルムの前記表面層(A)を熱融着したことを特徴とするタブリード。
  12.  前記金属端子の厚さをT(mt)、前記タブリード用フィルムの厚さをT(tf)としたとき、0.5T(mt)≦T(tf)であることを特徴とする請求項11記載のタブリード。
PCT/JP2018/038311 2017-10-17 2018-10-15 タブリード用フィルム、及びこれを用いたタブリード WO2019078155A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019549266A JP7296884B2 (ja) 2017-10-17 2018-10-15 タブリード用フィルム、及びこれを用いたタブリード
CN201880067242.9A CN111279511B (zh) 2017-10-17 2018-10-15 极耳引线用膜、以及采用该极耳引线用膜的极耳引线
KR1020207012523A KR102405398B1 (ko) 2017-10-17 2018-10-15 탭 리드용 필름, 및 이것을 이용한 탭 리드

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-201178 2017-10-17
JP2017201178 2017-10-17

Publications (1)

Publication Number Publication Date
WO2019078155A1 true WO2019078155A1 (ja) 2019-04-25

Family

ID=66174041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/038311 WO2019078155A1 (ja) 2017-10-17 2018-10-15 タブリード用フィルム、及びこれを用いたタブリード

Country Status (4)

Country Link
JP (1) JP7296884B2 (ja)
KR (1) KR102405398B1 (ja)
CN (1) CN111279511B (ja)
WO (1) WO2019078155A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112993451A (zh) * 2019-12-17 2021-06-18 双叶电子工业株式会社 接片引线、锂离子电池及非水电解质器件
CN113632312A (zh) * 2020-01-31 2021-11-09 住友电气工业株式会社 电池用极耳引线

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102515273B1 (ko) * 2020-11-03 2023-03-29 (주)풍산디에이케이 리드 탭용 필름과 이의 제조 방법, 및 이를 포함하는 이차전지
KR102696986B1 (ko) * 2021-06-11 2024-08-20 주식회사 엔에스머티리얼즈 이차전지용 친환경 리드탭 및 그의 제조 방법
KR102645030B1 (ko) * 2021-07-14 2024-03-07 주식회사 에이투비투 이차전지 리드탭용 필름
KR102515279B1 (ko) * 2022-11-22 2023-03-29 (주)풍산디에이케이 리드 탭용 다층 필름 및 이를 포함하는 이차전지

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008016337A (ja) * 2006-07-06 2008-01-24 Showa Denko Packaging Co Ltd 電池用リート゛線被覆フィルム材および電池用フィルム被覆リード線
JP2010245000A (ja) * 2009-04-10 2010-10-28 Showa Denko Kk 電気化学デバイス
JP2012022821A (ja) * 2010-07-13 2012-02-02 Toppan Printing Co Ltd 二次電池用金属端子被覆樹脂フィルム
JP2014123445A (ja) * 2012-12-20 2014-07-03 Okura Ind Co Ltd 収縮が防止された電池リード端子接着用ヒートシールテープ
JP2015141832A (ja) * 2014-01-29 2015-08-03 凸版印刷株式会社 蓄電デバイス用端子フィルム、及び蓄電デバイス
JP2015215960A (ja) * 2014-05-08 2015-12-03 凸版印刷株式会社 蓄電デバイス用端子フィルム、及び蓄電デバイス
JP2016129113A (ja) * 2015-01-09 2016-07-14 株式会社ネッツ 熱溶着絶縁樹脂フィルム及び蓄電装置
JP2017033820A (ja) * 2015-08-04 2017-02-09 凸版印刷株式会社 端子用樹脂フィルム、それを用いたタブ及び蓄電デバイス

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1303073B1 (it) * 1998-05-07 2000-10-23 Ausimont Spa Processo per la preparazione di fluoruro di alluminio
JP3911849B2 (ja) 1998-06-10 2007-05-09 住友電気工業株式会社 非水電解質電池
CN2665058Y (zh) * 2003-11-17 2004-12-22 河南环宇集团有限公司 具有防泄漏密封极耳的软包装锂离子电池
JP4580638B2 (ja) * 2003-12-12 2010-11-17 大日本印刷株式会社 リチウム電池金属端子部密封用接着性フィルムおよびこれを用いたリチウム電池
US20080206636A1 (en) * 2007-02-21 2008-08-28 Riken Technos Corporation Lithium secondary battery with a laminate housing material
KR20130097717A (ko) 2010-08-11 2013-09-03 오꾸라 고교 가부시키가이샤 단자 접착용 테이프의 제조 방법, 및 단자 접착용 테이프
CN103222084B (zh) 2010-11-11 2015-07-08 藤森工业株式会社 密封膜的制造方法及密封膜
JP6055300B2 (ja) 2012-12-18 2016-12-27 大倉工業株式会社 フッ化水素による接着強度の低下が防止できるリード端子接着用テープ
JP6281176B2 (ja) * 2013-01-07 2018-02-21 凸版印刷株式会社 電極端子およびその製造方法ならびに電池パック
KR102275359B1 (ko) * 2013-06-14 2021-07-09 도판 인사츠 가부시키가이샤 수지 필름, 금속 단자 부재 및 이차 전지
CN105518897B (zh) * 2013-09-03 2019-04-26 大日本印刷株式会社 电池用包装材料的密封层用树脂组合物
JP2014026980A (ja) 2013-09-17 2014-02-06 Showa Denko Packaging Co Ltd 電気化学デバイス
JP6648400B2 (ja) 2014-11-10 2020-02-14 凸版印刷株式会社 端子用樹脂フィルム、それを用いたタブ及び蓄電デバイス
CN113871764A (zh) * 2015-06-10 2021-12-31 凸版印刷株式会社 二次电池用外装构件

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008016337A (ja) * 2006-07-06 2008-01-24 Showa Denko Packaging Co Ltd 電池用リート゛線被覆フィルム材および電池用フィルム被覆リード線
JP2010245000A (ja) * 2009-04-10 2010-10-28 Showa Denko Kk 電気化学デバイス
JP2012022821A (ja) * 2010-07-13 2012-02-02 Toppan Printing Co Ltd 二次電池用金属端子被覆樹脂フィルム
JP2014123445A (ja) * 2012-12-20 2014-07-03 Okura Ind Co Ltd 収縮が防止された電池リード端子接着用ヒートシールテープ
JP2015141832A (ja) * 2014-01-29 2015-08-03 凸版印刷株式会社 蓄電デバイス用端子フィルム、及び蓄電デバイス
JP2015215960A (ja) * 2014-05-08 2015-12-03 凸版印刷株式会社 蓄電デバイス用端子フィルム、及び蓄電デバイス
JP2016129113A (ja) * 2015-01-09 2016-07-14 株式会社ネッツ 熱溶着絶縁樹脂フィルム及び蓄電装置
JP2017033820A (ja) * 2015-08-04 2017-02-09 凸版印刷株式会社 端子用樹脂フィルム、それを用いたタブ及び蓄電デバイス

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112993451A (zh) * 2019-12-17 2021-06-18 双叶电子工业株式会社 接片引线、锂离子电池及非水电解质器件
CN113632312A (zh) * 2020-01-31 2021-11-09 住友电气工业株式会社 电池用极耳引线

Also Published As

Publication number Publication date
KR102405398B1 (ko) 2022-06-03
JP7296884B2 (ja) 2023-06-23
KR20200060487A (ko) 2020-05-29
CN111279511A (zh) 2020-06-12
CN111279511B (zh) 2023-05-05
JPWO2019078155A1 (ja) 2020-12-03

Similar Documents

Publication Publication Date Title
JP7296884B2 (ja) タブリード用フィルム、及びこれを用いたタブリード
TWI663765B (zh) 二次電池用金屬端子被覆樹脂薄膜及其製造方法以及電池組
JP6497320B2 (ja) 二次電池用端子被覆樹脂フィルムの製造方法
KR101427541B1 (ko) 전기 부품, 비수 전해질 전지 및 그것에 이용하는 리드선 및 봉입 용기
JP6055300B2 (ja) フッ化水素による接着強度の低下が防止できるリード端子接着用テープ
JP2019220295A (ja) タブリード用フィルム、及びこれを用いたタブリード
JP2009146792A (ja) 非水電解液二次電池
EP3010070B1 (en) Resin film, metal terminal member, and secondary cell
KR20160113650A (ko) 축전 디바이스용 단자 필름 및 축전 디바이스
JP3137061B2 (ja) 非水電解質電池
JP2010033888A (ja) 非水電解質電池用リード線および非水電解質電池
US20180342726A1 (en) Nonaqueous electrolyte secondary battery
JP6593078B2 (ja) リード部材及び蓄電デバイス
KR20200132517A (ko) 이차전지용 리드 탭 필름 및 이를 포함하는 이차전지
WO2023223970A1 (ja) 非水電解質電池用タブリード
JP7354346B1 (ja) 非水電解質電池用タブリード
JP7354348B1 (ja) 非水電解質電池用タブリード
JP7354345B1 (ja) 非水電解質電池用タブリード
JP7354349B1 (ja) 導体
JP2022182409A (ja) 端子用樹脂フィルム、及びそれを用いた蓄電デバイス
CN118285009A (zh) 非水电解质电池用引线、绝缘膜以及非水电解质电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18867584

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019549266

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207012523

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18867584

Country of ref document: EP

Kind code of ref document: A1