WO2019077664A1 - 電解質シート、二次電池用電池部材及び二次電池、並びにこれらの製造方法 - Google Patents

電解質シート、二次電池用電池部材及び二次電池、並びにこれらの製造方法 Download PDF

Info

Publication number
WO2019077664A1
WO2019077664A1 PCT/JP2017/037421 JP2017037421W WO2019077664A1 WO 2019077664 A1 WO2019077664 A1 WO 2019077664A1 JP 2017037421 W JP2017037421 W JP 2017037421W WO 2019077664 A1 WO2019077664 A1 WO 2019077664A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte
layer
sensitive adhesive
electrolyte layer
pressure
Prior art date
Application number
PCT/JP2017/037421
Other languages
English (en)
French (fr)
Inventor
西村 勝憲
秀之 小川
紘揮 三國
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to JP2019548805A priority Critical patent/JPWO2019077664A1/ja
Priority to PCT/JP2017/037421 priority patent/WO2019077664A1/ja
Publication of WO2019077664A1 publication Critical patent/WO2019077664A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an electrolyte sheet, a battery member for a secondary battery, a secondary battery, and a method of manufacturing them.
  • lithium secondary batteries are attracting attention as power sources for batteries for electric vehicles, batteries for electric power storage and the like because they have high energy density.
  • lithium secondary batteries as batteries for electric vehicles include zero-emission electric vehicles not equipped with an engine, hybrid electric vehicles equipped with both an engine and a secondary battery, and plug-in hybrids that are directly charged from an electric power system It is adopted for electric vehicles such as electric vehicles.
  • a lithium secondary battery as a power storage battery is used in a stationary power storage system or the like that supplies power stored in advance in an emergency when the power system is shut off.
  • lithium secondary batteries for electric vehicles are required to have high safety in addition to high input / output characteristics and high energy density, so to ensure safety. More advanced technology is required. Therefore, a solid electrolyte battery in which the electrolyte solution is changed to a solid electrolyte such as a gel electrolyte has been developed as a lithium secondary battery with higher safety.
  • Patent Document 1 discloses a battery using a gel electrolyte layer containing a plasticizer containing a lithium salt, a matrix polymer in which the plasticizer is dispersed, and a fibrous insoluble matter.
  • Patent Document 2 discloses a battery using a gel electrolyte formed by swelling a matrix polymer with an electrolytic solution.
  • Patent Document 3 a sheet-like porous substrate is filled with an electrode material and a pressure-sensitive adhesive by inserting a pressure-sensitive adhesive between a sheet-like porous substrate and an electrode material and pressing in an integrated state.
  • An electrode sheet and a lithium ion battery having a solid electrolyte layer laminated thereon are disclosed.
  • an electrolyte layer is laminated between the positive electrode and the negative electrode, but in the production of a conventional solid electrolyte battery, wrinkles or waves are formed in each layer when laminating the electrolyte layer with the electrode. May occur.
  • a wound secondary battery since a long electrode and an electrolyte layer are wound to produce an electrode group, the adverse effect due to the generation of wrinkles or waves is large and the performance of the secondary battery may be greatly impaired. There is.
  • the electrolyte sheet itself has excellent performance, there is a case in which the performance of the electrolyte sheet is not sufficiently exhibited because a technology for suitably laminating the electrode and the electrolyte layer has not been established.
  • the present invention aims to provide an electrolyte sheet capable of suitably laminating an electrolyte layer with an electrode, a battery member for a secondary battery using the electrolyte sheet, a secondary battery, and a method for producing them. I assume.
  • This invention provides an electrolyte sheet provided with an electrolyte layer and the adhesive layer provided in at least one part on the main surface of an electrolyte layer as a 1st aspect.
  • the electrolyte sheet may further include an elongated base, and the electrolyte layer may be an elongated electrolyte layer provided on the main surface of the base.
  • a plurality of pressure-sensitive adhesive layers may be provided at predetermined intervals in the longitudinal direction of the electrolyte layer on the main surface of the electrolyte layer opposite to the substrate.
  • Each of the plurality of pressure-sensitive adhesive layers may have an elongated shape extending along the short direction of the electrolyte sheet.
  • Each of the plurality of pressure-sensitive adhesive layers may have an elongated shape extending along the longitudinal direction of the electrolyte sheet.
  • the electrolyte sheet may further include a protective layer provided on the electrolyte layer and the pressure-sensitive adhesive layer.
  • the electrolyte sheet may further comprise a release layer on the side of the substrate opposite to the electrolyte layer.
  • the pressure-sensitive adhesive layer may be provided at one end of the electrolyte layer.
  • the pressure-sensitive adhesive layer may be provided to cover the entire edge of one end of the electrolyte layer.
  • the thickness of the electrolyte layer in the area where the adhesive layer is provided may be thinner toward the edge.
  • the electrolyte layer contains one or more polymers, oxide particles, at least one electrolyte salt selected from the group consisting of lithium salt, sodium salt, calcium salt, and magnesium salt, and a solvent. You may
  • the pressure-sensitive adhesive layer may contain at least one selected from the group consisting of acrylic resin, methacrylic resin, silicone resin, urethane resin, polyvinyl ether, and styrene butadiene rubber.
  • an electrolyte sheet wound body comprising: a core; and the above-mentioned electrolyte sheet wound around the core.
  • a step of providing a long electrolyte layer on the main surface of a long substrate, and a longitudinal direction of the electrolyte layer on the surface of the electrolyte layer opposite to the substrate Providing a plurality of pressure-sensitive adhesive layers at predetermined intervals, and a method of producing an electrolyte sheet.
  • a current collector an electrode mixture layer provided on the main surface of the current collector, and a surface of the electrode mixture layer opposite to the current collector are provided.
  • a battery member for a secondary battery comprising: an electrolyte layer; and a pressure-sensitive adhesive layer that adheres the electrolyte layer to a current collector or an electrode mixture layer is provided on at least a part of the electrolyte layer.
  • the pressure-sensitive adhesive layer may adhere the electrolyte layer to the current collector.
  • the present invention provides, as a fifth aspect, a secondary battery comprising the above-described battery member.
  • This invention provides the manufacturing method of the battery member for secondary batteries provided with the process of bonding an electrode and the electrolyte layer of an electrolyte sheet through an adhesive layer as a 6th aspect.
  • a step of unwinding an electrolyte layer provided with a pressure-sensitive adhesive layer from an electrolyte sheet winding body, and a pressure-sensitive adhesive layer comprising at least one of the unwound electrolyte layer and a positive electrode and a negative electrode Providing a laminate including the positive electrode, the electrolyte layer, and the negative electrode in this order after bonding, and winding the laminate, thereby providing a method of manufacturing a secondary battery.
  • an electrolyte sheet capable of suitably laminating an electrolyte layer with an electrode, a battery member for a secondary battery using the electrolyte sheet, a secondary battery, and a method of manufacturing them. it can.
  • FIG. 1 is a perspective view which shows the whole structure and internal structure of the secondary battery which concern on 1st Embodiment. It is a schematic cross section which shows the area
  • A) is a perspective view which shows the electrolyte sheet winding body which concerns on one Embodiment
  • (b) is a schematic cross section which shows the electrolyte sheet of the electrolyte sheet winding body of (a). It is a schematic diagram which shows the manufacturing method of the secondary battery which concerns on 1st Embodiment. It is a schematic cross section which shows the modification of an electrolyte sheet.
  • FIG. 1 It is a perspective view which shows the modification of an electrolyte sheet winding body. It is a perspective view which shows the electrolyte sheet which cut out a part of electrolyte sheet winding body shown in FIG. It is a schematic cross section which shows the area
  • a numerical range indicated by using “to” indicates a range including numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • the upper limit or the lower limit described in one numerical range may be replaced with the upper limit or the lower limit described in the other stepwise descriptions.
  • the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples.
  • FIG. 1 is a perspective view showing an entire configuration and an internal structure of a secondary battery according to a first embodiment.
  • the secondary battery 1 includes an elongated positive electrode 2 and a negative electrode 3, and an electrode group 5 formed by spirally winding an elongated electrolyte layer 4 interposed therebetween.
  • It is a secondary battery of 18650 type (cylindrical type) provided with a cylindrical battery housing 6 accommodating the electrode group 5 and having a battery container 6 whose upper surface is open, and a lid 7 for closing the opening of the battery container 6.
  • An insulating coating (not shown) is provided on the entire periphery of the outer peripheral surface of the electrode group 5.
  • the battery case 6 may be, for example, a nickel-plated steel case.
  • the lid 7 is crimped to the top of the battery case 6 via, for example, an insulating resin gasket.
  • the positive electrode 2 and the negative electrode 3 are provided with a positive electrode current collecting tab and a negative electrode current collecting tab (not shown) so that the positive electrode 2 and the negative electrode 3 can be electrically connected to the outside of the secondary battery 1 respectively.
  • One end of the positive electrode current collection tab is joined to the lower surface of the lid 7 of the secondary battery 1 by ultrasonic welding, for example.
  • One end of the negative electrode current collection tab is joined to the inner bottom portion 6 a of the battery case 6 by, for example, resistance welding.
  • the positive electrode current collection tab is formed of aluminum and the negative electrode current collection tab is formed of copper.
  • FIG. 2 is a schematic cross-sectional view showing a region at the beginning of winding of the electrode group 5 in the secondary battery 1 shown in FIG.
  • the electrode group 5A according to the present embodiment includes the elongated first electrolyte layer 4, the positive electrode 2, the second electrolyte layer 4, and the negative electrode 3 in this order.
  • the positive electrode 2 includes a positive electrode current collector 8 and a positive electrode mixture layer 9 provided on both sides of the positive electrode current collector 8.
  • the negative electrode 3 includes a negative electrode current collector 10 and a negative electrode mixture layer 11 provided on both sides of the negative electrode current collector 10.
  • the first electrolyte layer 4 and the second electrolyte layer 4 may be collectively referred to as the electrolyte layer 4.
  • a plurality of pressure-sensitive adhesive layers 12 are provided at predetermined intervals in the longitudinal direction of the electrolyte layer 4 on the surface 4 a of the electrolyte layer 4 on the positive electrode mixture layer 9 side.
  • the pressure-sensitive adhesive layer 12 provided on the edge 4 b adheres the first electrolyte layer 4 and the second electrolyte layer 4 to the positive electrode mixture layer 9 (the details of the pressure-sensitive adhesive layer 12 will be described later) ).
  • the secondary battery 1 includes a positive electrode current collector 8, a positive electrode mixture layer 9 provided on both sides of the positive electrode current collector 8, and a surface of the positive electrode mixture layer 9 opposite to the positive electrode current collector 8. It can also be considered that the positive electrode member 13A having the provided first electrolyte layer 4 and second electrolyte layer 4 is provided. In the positive electrode member 13A, at least a part of the first electrolyte layer 4 and the second electrolyte layer 4 is in contact with the positive electrode mixture layer 9 via the adhesive layer 12.
  • the positive electrode current collector 8 may be formed of aluminum, stainless steel, titanium or the like.
  • the thickness of the positive electrode current collector 8 may be, for example, 10 ⁇ m or more and 100 ⁇ m or less.
  • the positive electrode mixture layer 9 contains a positive electrode active material, a conductive agent, and a binder.
  • the thickness of the positive electrode mixture layer 9 may be, for example, 5 ⁇ m or more and 100 ⁇ m or less.
  • Fe (MoO 4 ) 3 FeF 3 , LiFePO 4 , LiMnPO 4, etc. Good.
  • the conductive agent may be carbon black, graphite, carbon fiber, carbon nanotube or the like.
  • the binder is not limited as long as it does not decompose at the surface of the positive electrode 2, and is, for example, a polymer.
  • the binder may be polyvinylidene fluoride, styrene butadiene rubber, carboxyl methyl cellulose, cellulose acetate or cellulose such as ethyl cellulose, fluoro rubber, ethylene propylene rubber, polyacrylic acid, polyimide, polyamide and the like.
  • the negative electrode current collector 10 may be made of copper, stainless steel, titanium, nickel or the like.
  • the thickness of the negative electrode current collector 10 may be, for example, 10 ⁇ m or more and 100 ⁇ m or less.
  • the negative electrode mixture layer 11 contains a negative electrode active material, a conductive agent, and a binder.
  • the thickness of the negative electrode mixture layer 11 may be, for example, 10 ⁇ m or more and 50 ⁇ m or less.
  • the negative electrode active material may be natural graphite coated with amorphous carbon (theoretical capacity: 372 Ah / kg), and silicon, tin or a compound containing these elements (oxide, nitride, alloy with other metals) ) May be.
  • the binder and the conductive agent may be the same as the binder and the conductive agent in the positive electrode mixture layer 9 described above.
  • the electrolyte layer 4 is made of an electrolyte composition.
  • the compositions of the first electrolyte layer 4 and the second electrolyte layer 4 may be the same or different, and are preferably the same.
  • the electrolyte composition comprises one or more polymers, an oxide particle, and at least one electrolyte salt selected from the group consisting of lithium salt, sodium salt, calcium salt, and magnesium salt. , Solvent, and.
  • the thickness of the electrolyte layer 4 may be 5 ⁇ m or more and 100 ⁇ m or less.
  • a first structural unit selected from the group consisting of tetrafluoroethylene and vinylidene fluoride, and hexafluoropropylene
  • a second structural unit selected from the group consisting of acrylic acid, maleic acid, ethyl methacrylate and methyl methacrylate.
  • the first structural unit and the second structural unit may be included in one type of polymer to constitute a copolymer, or may be included in different polymers, and may be a first polymer having a first structural unit. And at least two polymers of a second polymer having a second structural unit.
  • Examples of combinations of the first polymer and the second polymer include polyvinylidene fluoride and polyacrylic acid, polytetrafluoroethylene and polymethyl methacrylate, and polyvinylidene fluoride and polymethyl methacrylate.
  • the content of the polymer may be 10% by mass or more and 40% by mass or less based on the total amount of the electrolyte composition.
  • the oxide particles are, for example, particles of inorganic oxide.
  • the inorganic oxide is, for example, an inorganic oxide containing Li, Mg, Al, Si, Ca, Ti, Zr, La, Na, K, Ba, Sr, V, Nb, B, Ge and the like as constituent elements. Good.
  • the oxide particles are preferably at least one selected from the group consisting of SiO 2 , Al 2 O 3 , AlOOH, MgO, CaO, ZrO 2 , TiO 2 , Li 7 La 3 Zr 2 O 12 , and BaTiO 3 . It is a particle.
  • the average particle diameter of the oxide particles is, for example, not less than 0.05 ⁇ m and not more than 6 ⁇ m.
  • the content of the oxide particles may be 10% by mass or more and 40% by mass or less based on the total amount of the electrolyte composition.
  • lithium salts which are electrolyte salts are lithium bis (trifluoromethanesulfonyl) imide (LiTFSI), lithium bis (fluorosulfonyl) imide (LiFSI), lithium trifluoroacetate, lithium borofluoride, and phosphorus hexafluoride It may be lithium acid or the like, and it is possible to use a known lithium salt used in a lithium secondary battery.
  • the sodium salt which is an electrolyte salt may be NaClO 4 , NaBF 4 , NaPF 6 , sodium bis (trifluoromethanesulfonyl) imide (NaTFSI), sodium bis (fluorosulfonyl) imide (NaFSI) or the like
  • the magnesium salt is Mg (ClO 4 ) 2 , Mg (TFSI) 2 , magnesium dibutyldiphenyl (Mg (BPh 2 Bu 2 ) 2 ), magnesium tributylphenyl (Mg (BPhBu 3 ) 2 ), Mg (BH 4 ) 2 or the like.
  • the calcium salt may be Ca (ClO 4 ) 2 , Ca (BF 4) 2 , Ca (TFSI) 2 or the like.
  • the content of the electrolyte salt may be 10% by mass or more and 60% by mass or less based on the total amount of the electrolyte composition.
  • the solvent may be a glyme represented by the following formula (1).
  • R 1 O- (CH 2 CH 2 O) n -R 2 (1)
  • R 1 and R 2 each independently represent an alkyl group having 4 or less carbon atoms or a fluoroalkyl group having 4 or less carbon atoms, and n represents an integer of 1 to 6.
  • R 1 and R 2 are each independently preferably either CH 3 or C 2 H 5 .
  • the electrolyte composition contains glyme as a solvent, part or all of the glyme may form a complex with the electrolyte salt.
  • the solvent may be an ionic liquid.
  • the ionic liquid may be, for example, at least one ionic liquid selected from the group consisting of an imidazolium-based ionic liquid and a pyridinium-based ionic liquid.
  • the imidazolium-based ionic liquid is a compound containing an imidazolium cation represented by the following general formula (2).
  • R 3 to R 7 each independently represent an alkyl group having 1 to 20 carbon atoms, or an alkoxyalkyl group represented by R—O— (CH 2 ) m — (R is a methyl group Or represents an ethyl group, m represents an integer of 1 to 4) or a hydrogen atom.
  • the carbon number of the alkyl group represented by R 3 to R 7 is preferably 1 to 20, more preferably 1 to 10, and still more preferably 1 to 5. ]
  • the pyridinium-based ionic liquid is a compound containing a pyridinium cation represented by the following general formula (3).
  • R 8 to R 12 each independently represent an alkyl group having 1 to 20 carbon atoms, or an alkoxyalkyl group represented by R—O— (CH 2 ) m — (R is a methyl group Or represents an ethyl group, m represents an integer of 1 to 4) or a hydrogen atom.
  • the carbon number of the alkyl group represented by R 8 to R 12 is preferably 1 to 20, more preferably 1 to 10, and still more preferably 1 to 5. ]
  • the anion component of the ionic liquid is not particularly limited, but anions of halogen such as Cl ⁇ , Br ⁇ , I ⁇ , etc., inorganic anions such as BF 4 ⁇ , N (SO 2 F) 2 ⁇ , etc., B (C 6 H 5 ) 4 -, CH 3 SO 3 - , CF 3 SO 3 -, N (C 4 F 9 SO 2) 2 -, N (SO 2 CF 3) 2 -, N (SO 2 CF 2 CF 3) 2 - , etc. It may be an organic anion or the like.
  • halogen such as Cl ⁇ , Br ⁇ , I ⁇ , etc.
  • inorganic anions such as BF 4 ⁇ , N (SO 2 F) 2 ⁇ , etc., B (C 6 H 5 ) 4 -, CH 3 SO 3 - , CF 3 SO 3 -, N (C 4 F 9 SO 2) 2 -, N (SO 2 CF 3) 2 -
  • the anionic component of the ionic liquid is preferably B (C 6 H 5 ) 4 ⁇ , CH 3 SO 3 ⁇ , N (C 4 F 9 SO 2 ) 2 ⁇ , CF 3 SO 3 ⁇ , N (SO 2 F) 2 -, N (SO 2 CF 3) 2 - and N (SO 2 CF 2 CF 3 ) 2 - is at least one selected from the group consisting of.
  • the anion component of the ionic liquid is more preferably N (C 4 F 9 SO 2 ) 2 ⁇ , CF 3 SO 2 from the viewpoint of further improving the ion conductivity with a relatively low viscosity and further improving the charge and discharge characteristics.
  • N (SO 2 F ) 2 -, N (SO 2 CF 3) 2 -, and N (SO 2 CF 2 CF 3 ) 2 - is at least one selected from the group consisting of, more preferably N (SO 2 F) 2 - a.
  • the content of the solvent may be 10% by mass or more and 60% by mass or less based on the total amount of the electrolyte composition.
  • the total content of the electrolyte salt and the solvent may be 10% by mass or more and 80% by mass or less based on the total amount of the electrolyte composition.
  • the pressure-sensitive adhesive layer 12 may have a three-layer structure in which a pressure-sensitive adhesive is provided on both sides of a support film. Thereby, the strength of the pressure-sensitive adhesive layer 12 can be increased, and the handling can be facilitated.
  • the support film may be, for example, a film of polyethylene terephthalate having a thickness of about 10 ⁇ m.
  • the pressure-sensitive adhesive layer 12 may have a single-layer structure consisting only of a pressure-sensitive adhesive. Thereby, the thickness of the adhesive layer 12 becomes thin.
  • the pressure-sensitive adhesive forming the pressure-sensitive adhesive layer 12 is an acrylic pressure-sensitive adhesive containing an acrylic resin or a methacrylic resin, a silicone-based pressure-sensitive adhesive containing a silicone resin, a urethane-based pressure-sensitive adhesive containing a urethane resin, an ether-based pressure-sensitive adhesive containing polyvinyl ether, It may be a rubber-based pressure-sensitive adhesive containing styrene butadiene rubber.
  • the pressure-sensitive adhesive layer 12 is preferably an acrylic pressure-sensitive adhesive from the viewpoint of being difficult to be dissolved or decomposed by the solvent contained in the electrolyte layer 4.
  • FIG. 3 is a schematic cross-sectional view showing a modification of electrode group 5 in secondary battery 1 shown in FIG.
  • the pressure-sensitive adhesive layer 12 provided at the edge 4 b of the electrolyte layer 4 may adhere the electrolyte layer 4 to the positive electrode current collector 8.
  • the edge 8a of the positive electrode current collector 8 protrudes outside the edge 9a of the positive electrode mixture layer 9 when viewed in the stacking direction. Therefore, the electrolyte layer 4 is bonded to the positive electrode current collector 8 via the pressure-sensitive adhesive layer 12 formed at the edge 4 b of the electrolyte layer 4.
  • the portion of the positive electrode mixture layer 9 covered by the pressure-sensitive adhesive layer 12 is reduced, so that the capacity loss of the positive electrode 2 can be further reduced.
  • the manufacturing method of the secondary battery 1 mentioned above is demonstrated.
  • a third step of obtaining a laminate including the first step of obtaining the negative electrode 3, the first electrolyte layer 4, the positive electrode 2, the second electrolyte layer 4 and the negative electrode 3 in this order, and winding the laminate And a process.
  • the positive electrode 2 is applied onto the positive electrode current collector 8 by a doctor blade method, a dipping method, a spray method or the like, and then obtained by volatilizing the dispersion medium. After volatilizing the dispersion medium, if necessary, a compression molding process by a roll press may be provided.
  • the positive electrode mixture layer 9 may be formed as a positive electrode mixture layer having a multilayer structure by performing the steps from application of the positive electrode mixture to volatilization of the dispersion medium a plurality of times.
  • the positive electrode 2 may be stored as a wound body (positive electrode wound body) until the secondary battery 1 is manufactured.
  • the dispersion medium used in the first step may be water, 1-methyl-2-pyrrolidone (NMP) or the like.
  • the method of forming the negative electrode mixture layer 11 on the negative electrode current collector 10 may be the same method as the first step described above.
  • the negative electrode 3 may be stored as a wound body (negative electrode wound body) until the secondary battery 1 is manufactured.
  • FIG. 4 (a) is a perspective view showing an electrolyte sheet winding body according to one embodiment
  • FIG. 4 (b) is a schematic cross-sectional view taken along line IVb-IVb of FIG. 4 (a).
  • electrolyte sheet winding body 15A which concerns on one Embodiment is equipped with the winding core 16 and the electrolyte sheet 17A wound on the winding core 16 which has the electrolyte layer 4.
  • FIG. As shown in FIG. As shown in FIG. As shown in FIG.
  • the electrolyte sheet 17 A includes an elongated base 18, an elongated electrolyte layer 4 provided on the major surface 18 a of the base 18, and a base of the electrolyte layer 4. And a plurality of pressure-sensitive adhesive layers 12 provided on the surface 4 c on the opposite side of the material 18.
  • Each adhesive layer 12 has an elongated shape (long rectangular shape) extending in the short direction of the electrolyte layer 4.
  • Width (length of the short side) W 12 of each pressure-sensitive adhesive layer 12 is, for example, may be at 1mm or more, may be at 50mm or less.
  • Length (length side length) L 12 of each pressure-sensitive adhesive layer 12 is preferably the same as the length of the lateral direction of the electrolyte layer 4, for example, it may be at 1mm or more, and the lateral direction Or less.
  • the length L 12 of the adhesive layer 12 is a short of the electrolyte layer 4 It may be smaller than the length in the hand direction.
  • the pressure-sensitive adhesive layer may be divided into a plurality of spots (dots) in the short direction of the electrolyte layer 4 or may be a shape other than a rectangular shape.
  • the thickness T 12 of the adhesive layer 12 is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, more preferably it may be at 30 ⁇ m or more, and preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less, more preferably 30 ⁇ m It may be the following.
  • the pressure-sensitive adhesive layer 12 is adhered to the electrolyte layer 4 because the thickness T 12 of the pressure-sensitive adhesive layer is 5 ⁇ m or more, the amount of displacement due to compression of the pressure-sensitive adhesive layer 12 is not too small.
  • the pressure-sensitive adhesive can bite into the irregularities of the surface of the electrolyte layer 4, and a sufficient adhesion can be obtained.
  • the thickness T 12 of the pressure-sensitive adhesive layer is 100 ⁇ m or less, no large step is generated in the vicinity of the pressure-sensitive adhesive layer 12, so the positive electrode 2 and the negative electrode 3 sufficiently adhere to each other to enhance battery performance. .
  • the plurality of pressure-sensitive adhesive layers 12 are provided at predetermined intervals G 12 in the longitudinal direction of the electrolyte layer 4.
  • Adhesive layer 12 spacing G 12 between, for example, may be at 10mm or more, may be at less than 100mm.
  • the substrate 18 is not limited as long as it has heat resistance that can withstand heating when volatilizing the dispersion medium, does not react with the electrolyte composition, and does not swell with the electrolyte composition, for example, a film Resin.
  • the substrate 18 may be a film made of a resin (general purpose engineering plastic) such as polyethylene terephthalate, polytetrafluoroethylene, polyimide, polyether sulfone, and polyether ketone.
  • the substrate 18 withstands the processing temperature at which the dispersion medium is vaporized in the process of manufacturing the electrolyte layer 4.
  • the lower temperature of the softening point (temperature at which plastic deformation starts) or the melting point of the substrate 18 is taken as the heat resistant temperature, which is preferably 50 ° C. or higher from the viewpoint of adaptability with the solvent used for the electrolyte layer 4 More preferably, it is 100 degreeC or more, More preferably, it is 150 degreeC or more, for example, may be 400 degrees C or less. If a substrate having the above-mentioned heat resistance temperature is used, a dispersion medium used when forming the electrolyte layer 4 on the substrate 18 can be suitably used.
  • the thickness of the substrate 18 is preferably as thin as possible while maintaining the strength to withstand the tensile force in the coating apparatus.
  • the thickness of the substrate 18 is preferably 5 ⁇ m or more, and more preferably 10 ⁇ m or more from the viewpoint of securing strength when applying the electrolyte composition to the substrate 18 while reducing the volume of the entire electrolyte sheet 17A. , More preferably 25 ⁇ m or more, and preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less, and still more preferably 40 ⁇ m or less.
  • the electrolyte layer 4 is provided on the major surface 18a of the elongated base material 18.
  • the electrolyte layer 4 is prepared by dispersing the material used for the electrolyte layer 4 in a dispersion medium to obtain a slurry, and applying the slurry on the substrate 18 and then evaporating the dispersion medium.
  • the dispersion medium is preferably water, NMP, toluene or the like.
  • a plurality of pressure-sensitive adhesive layers 12 are provided at predetermined intervals G 12 in the longitudinal direction of the electrolyte layer 4.
  • the pressure-sensitive adhesive layer 12 is formed, for example, by pressure-bonding a film-like pressure-sensitive adhesive, or by pressure-bonding the pressure-sensitive adhesive layer 12 prepared on the release film to the electrolyte layer 4 and peeling off the release film to transfer the pressure-sensitive adhesive layer 12 Alternatively, it can be provided by applying a liquid pressure-sensitive adhesive to the electrolyte layer 4. Thereby, an electrolyte sheet 17A is obtained. By winding the obtained electrolyte sheet 17A around the core 16, the electrolyte sheet winding body 15A can be obtained.
  • the adhesive layer 12 is provided so as to cover the entire edge (short side) of one end of the electrolyte layer 4, but the adhesive layer 12 is an edge of the electrolyte layer 4. It may be provided separately from (short side and long side).
  • the pressure-sensitive adhesive layer 12 may be formed only at one end of the winding start of the electrolyte layer 4.
  • the electrolyte layer 4 can be wound together with the positive electrode 2 and the negative electrode 3 and preferably laminated, and the area of the pressure-sensitive adhesive layer 12 can be reduced, which is more preferable.
  • FIG. 5 is a schematic view showing a third step of the method of manufacturing secondary battery 1.
  • a positive electrode winding body 19, a negative electrode winding body 20, and two electrolyte sheet winding bodies 15A are prepared.
  • the electrolyte sheet 17A is unwound from each of the two electrolyte sheet wound bodies 15A, and the electrolyte layer 4 obtained by peeling off the substrate 18 from each electrolyte sheet 17A is wound from the positive electrode wound body 19 It paste
  • the positive electrode mixture layer 9 and the electrolyte layer 4 are bonded to each other through the pressure-sensitive adhesive layer 12.
  • the positive electrode current collector 8, the positive electrode mixture layer 9 provided on both sides of the positive electrode current collector 8, and the surfaces of the positive electrode mixture layers 9 on the opposite side of the positive electrode current collector 8 are provided.
  • a battery member (positive electrode member) 13A for a secondary battery is formed, which includes the electrolyte layer 4 and a part of the electrolyte layer 4 is bonded to the positive electrode mixture layer 9 through the pressure-sensitive adhesive layer 12.
  • the negative electrode 3 is unwound from the negative electrode wound body 20, and the positive electrode member 13A and the negative electrode 3 are laminated such that the obtained electrolyte layer 4 of the positive electrode member 13A and the negative electrode mixture layer 11 of the negative electrode 3 are in contact with each other. While being wound around the winding shaft 21, an electrode group 5A (5) is obtained.
  • the positive electrode 2 and the electrolyte layer 4 are bonded via the pressure-sensitive adhesive layer 12, the positive electrode 2 and the electrolyte layer 4 can be suitably laminated. Wrinkles or waves are particularly likely to occur at the end where the electrolyte layer 4 and the positive electrode 2 start to be laminated, and once generated at the end, the same problem may occur in the entire electrode assembly 5
  • the pressure-sensitive adhesive layer 12 is provided at the end of the electrolyte layer 4 so that it is possible to effectively suppress wrinkles or waves at the end of the positive electrode 2 and the electrolyte layer 4 in particular.
  • FIG. 6 is a schematic cross-sectional view of an electrolyte sheet according to a modification.
  • the electrolyte sheet 17B shown in FIG. 6A further includes a protective layer 22 provided on the electrolyte layer 4 and the pressure-sensitive adhesive layer 12 (the side opposite to the base 18 of the electrolyte layer 4). ing.
  • the protective layer 22 is not provided, when the electrolyte sheet is wound around a core to produce an electrolyte sheet wound body, adhesion to the surface (rear surface of the base) 18b of the base 18 opposite to the electrolyte layer 4 is performed.
  • the agent layer may adhere and it may be difficult to smoothly unwind the electrolyte sheet in the third step.
  • the protective layer 22 adhesion of the pressure-sensitive adhesive layer 12 to the back surface 18b of the base material is suppressed, and an electrolyte sheet wound body can be suitably manufactured, and the electrolyte sheet wound body It becomes easy to unroll when unrolling 17B.
  • the protective layer 22 is provided, in the third step in the production of the secondary battery, the protective layer 22 is also peeled off in addition to the base 18 before the positive electrode 2 and the electrolyte layer 4 are bonded. Make it
  • the protective layer 22 may be one that can be easily peeled off from the electrolyte layer 4 and the pressure-sensitive adhesive layer 12, and is preferably a nonpolar resin film such as polyethylene, polypropylene, polytetrafluoroethylene or the like. When a nonpolar resin film is used, the electrolyte layer 4 and the pressure-sensitive adhesive layer 12 and the protective layer 22 do not stick, and the protective layer 22 can be easily peeled off.
  • a nonpolar resin film such as polyethylene, polypropylene, polytetrafluoroethylene or the like.
  • the thickness of the protective layer 22 is preferably 5 ⁇ m or more, more preferably 10 ⁇ m, and preferably 100 ⁇ m or less from the viewpoint of securing strength while reducing the volume of the entire electrolyte sheet 17B. Preferably it is 50 micrometers or less, More preferably, it is 30 micrometers or less.
  • an electrolyte sheet 17C shown in FIG. 6B includes a release layer 23 on the back surface 18b of the base material 18.
  • the release layer 23 is formed by release treatment using a polymer such as polyethylene, polypropylene, polystyrene or polyethylene terephthalate, and may be a layer containing such a polymer.
  • the thickness of the release layer 23 is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, still more preferably 30 ⁇ m or more, preferably 200 ⁇ m or less, more preferably 100 ⁇ m or less, and further Preferably it is 50 micrometers or less.
  • the pressure-sensitive adhesive layer 12 provided on the edge 4b of the electrolyte layer 4 is directed from the central portion of the electrolyte layer 4 to the edge 4b. It gradually becomes thinner and has a shoulder shape (taper shape). That is, the thickness of the edge 4 b of the electrolyte layer 4 is thinner than the central portion of the electrolyte layer 4.
  • FIG. 7 is a perspective view showing another modification of the electrolyte sheet winding body.
  • the electrolyte sheet winding body 15 B is formed on the long side of the base 18, the electrolyte layer 4 provided on the main surface of the base 18, and the longitudinal direction on the surface of the electrolyte layer 4 opposite to the base 18. and a plurality of pressure-sensitive adhesive layer 32 provided at predetermined intervals G 32, the adhesive layer 32 has an elongated shape extending along the long sides of the electrolyte sheet 17E.
  • the above-mentioned protective layer or release layer can be provided as a further modification.
  • Number adhesive layer 32 between the interval G 32 is, for example, may be at 1mm or more, but may be at 1000mm or less, more larger adhesive layer 32 spacing G 32 between is provided with a pressure-sensitive adhesive layer 32 Is more preferable because it can reduce the In the electrolyte sheet winding body 15B shown in FIG. 7, the gap G 32 between the pressure-sensitive adhesive layers 32 may be zero, that is, all the pressure-sensitive adhesive layers 32 may be continuously connected.
  • the width (short side length) W 32 of each pressure-sensitive adhesive layer 32 may be, for example, 1 mm or more, and may be 5 mm or less.
  • the length (long side length) L 32 of each pressure-sensitive adhesive layer 32 may be, for example, 1 mm or more, and may be 1000 mm or less.
  • the pressure-sensitive adhesive layer 32 is formed on the edge of one end of the electrolyte layer 4 as shown in FIG. 8 by cutting between the pressure-sensitive adhesive layers 32 along the short direction of the electrolyte sheet 17E.
  • a piece of electrolyte sheet 17F can be obtained. This makes it possible to preferably laminate the electrolyte layer 4 and the electrode particularly in the production of secondary batteries other than wound batteries, such as laminate batteries and coin batteries.
  • the piece-like electrolyte sheet 17F shown in FIG. 8 is cut out from the electrolyte sheet 17E shown in FIG. 7, the electrolyte layer 4 and the pressure-sensitive adhesive layer 12 are formed on the main surface of the piece-like base 18 from the beginning. And the individual pieces of the electrolyte sheet 17F may be manufactured.
  • the pressure-sensitive adhesive layer 32 is provided to cover the edge (long side) of the electrolyte layer 4, but the pressure-sensitive adhesive layer 32 is the edge (long side) of the electrolyte layer 4. It may be provided separately from the above.
  • the pressure-sensitive adhesive layer 32 is provided so as to cover the entire edge (short side) of one end of the electrolyte layer 4, but the pressure-sensitive adhesive layer 32 is the electrolyte layer 4. It may be provided apart from the edge (short side and long side) of
  • FIG. 9 is a schematic cross-sectional view showing a region at the start of winding of the electrode assembly in the secondary battery according to the second embodiment.
  • the electrode group 5C according to the second embodiment one positive electrode mixture layer 9 and the first electrolyte layer 4 in the positive electrode 2 are adhered via the pressure-sensitive adhesive layer 12, and The one negative electrode mixture layer 11 and the second electrolyte layer 4 in the negative electrode 3 are bonded via the pressure-sensitive adhesive layer 12.
  • the electrode group 5C according to the present embodiment includes a positive electrode 2 having a positive electrode current collector 8 and a positive electrode mixture layer 9 provided on both sides of the positive electrode current collector 8, a first electrolyte layer 4, and a negative electrode collector.
  • the positive electrode 2 and the first electrolyte layer 4 are provided in this order with the negative electrode 3 having the negative electrode mixture layer 11 provided on both surfaces of the current collector 10 and the negative electrode current collector 10, and the second electrolyte layer 4.
  • a pressure-sensitive adhesive layer 12 is provided between the negative electrode 3 and the second electrolyte layer 4.
  • This secondary battery is considered to be provided with a battery member for a secondary battery (positive electrode member) 13C having a positive electrode 2 and an electrolyte layer 4 adhered to one surface of the positive electrode 2 via an adhesive layer 12. It can also be seen that the battery member (negative electrode member) 13D for the secondary battery has the negative electrode 3 and the electrolyte layer 4 bonded to the one surface of the negative electrode 3 via the adhesive layer 12. You can also.
  • FIG. 10 is a schematic view showing a method of manufacturing a secondary battery according to the second embodiment.
  • the method of manufacturing the secondary battery includes first and second steps similar to the method of manufacturing the secondary battery according to the first embodiment, the positive electrode 2 and the electrolyte layer 4, and the negative electrode 3 and the electrolyte layer. 4 is laminated through the pressure-sensitive adhesive layer 12 respectively, to obtain a laminate including the positive electrode 2, the first electrolyte layer 4, the negative electrode 3 and the second electrolyte layer 4 in this order, and the laminate And a third step of winding
  • the electrolyte layer 4 obtained by peeling off the substrate 18 from the electrolyte sheet 17A is wound on the positive electrode. It paste
  • the positive electrode mixture layer 9 of the positive electrode 2 and the electrolyte layer 4 are attached to each other via the pressure-sensitive adhesive layer 12.
  • the positive electrode current collector 8, the positive electrode mixture layer 9 provided on both sides of the positive electrode current collector 8, and the pressure sensitive adhesive layer 12 are provided on one main surface of the positive electrode mixture layer 9.
  • the positive electrode member 13C including the electrolyte layer 4 is obtained.
  • the positive electrode member 13C and the negative electrode member 13D are wound around the winding shaft 21 while being stacked so that the first electrolyte layer 4 of the obtained positive electrode member 13C and the negative electrode 3 of the negative electrode member 13D are in contact with each other.
  • An electrode group 5C is obtained.
  • the positive electrode 2 and the electrolyte layer 4 and the negative electrode 3 and the electrolyte layer 4 are also bonded to each other via the pressure-sensitive adhesive layer 12 according to the manufacturing method of the present embodiment, the positive electrode 2 and the electrolyte layer 4 and the negative electrode 3 and the electrolyte layer 4 can be suitably laminated.
  • the electrode group includes a positive electrode mixture layer on one side of the bipolar electrode current collector and a negative electrode mixture layer on the side opposite to the positive electrode mixture layer. It may further comprise an electrode.
  • the secondary battery in this case includes, for example, a first electrolyte layer, a positive electrode, a second electrolyte layer, a bipolar electrode, a third electrolyte layer, and a negative electrode in this order.
  • the bipolar electrode is disposed with the positive electrode mixture layer on the negative electrode side and the negative electrode mixture layer on the positive electrode side.
  • the surface of the first electrolyte layer on the positive electrode side, the surface of the second electrolyte layer on the positive electrode side or the bipolar electrode side, and the surface of the third electrolyte layer on the bipolar electrode side or the surface of the negative electrode may be provided. Also in this secondary battery, the positive electrode, the bipolar electrode, and the negative electrode can be bonded to the electrolyte layer provided therebetween during the production via the pressure-sensitive adhesive layer. It can be suitably laminated.
  • Reference Signs List 1 secondary battery 2: positive electrode 3: negative electrode 4: electrolyte layer 8: positive electrode current collector 9: positive electrode mixture layer 10: negative electrode current collector 11: negative electrode mixture layer 12, 32 ... adhesive layer 13A, 13B, 13C, 13D ... battery member for secondary battery, 15A, 15B ... electrolyte sheet wound body, 16 ... winding core, 17A, 17B, 17C, 17D, 17E, 17F ... electrolyte sheet, 18: base material, 18a: main surface of base material, 22: protective layer, 23: release layer.

Abstract

本発明は、一態様として、電解質層と、前記電解質層の主面上の少なくとも一部に設けられた粘着剤層と、を備える電解質シートを提供する。

Description

電解質シート、二次電池用電池部材及び二次電池、並びにこれらの製造方法
 本発明は、電解質シート、二次電池用電池部材及び二次電池、並びにこれらの製造方法に関する。
 近年、携帯型電子機器、電気自動車等の普及により、高性能な二次電池が必要とされている。中でもリチウム二次電池は、高いエネルギ密度を有するため、電気自動車用電池、電力貯蔵用電池等の電源として注目されている。具体的には、電気自動車用電池としてのリチウム二次電池は、エンジンを搭載しないゼロエミッション電気自動車、エンジン及び二次電池の両方を搭載したハイブリッド電気自動車、電力系統から直接充電させるプラグイン・ハイブリッド電気自動車等の電気自動車に採用されている。また、電力貯蔵用電池としてのリチウム二次電池は、電力系統が遮断された非常時に、予め貯蔵しておいた電力を供給する定置式電力貯蔵システム等に用いられている。
 このような二次電池の中でも、特に、電気自動車用のリチウム二次電池には、高い入出力特性及び高いエネルギ密度に加えて、高い安全性が要求されるため、安全性を確保するためのより高度な技術が求められている。そのため、より安全性の高いリチウム二次電池として、電解液をゲル電解質等の固体電解質へ変更した固体電解質電池が開発されている。
 特許文献1は、リチウム塩を含有する可塑剤と、可塑剤を分散するマトリクス高分子と、繊維状不溶物とを含有したゲル状電解質層を用いた電池を開示している。特許文献2は、マトリクス高分子を電解液により膨潤させて形成されたゲル電解質を用いた電池を開示している。特許文献3は、シート状多孔質基材と電極材料との間に粘着剤を挿入し、一体化した状態で加圧することにより、シート状多孔質基材に電極材と粘着剤を充填させた電極シートと、これに固体電解質層を積層させたリチウムイオン電池を開示している。
特開2000-164254号公報 特開2007-141467号公報 特開2015-153459号公報
 このような固体電解質電池においては、正極と負極との間に電解質層が積層されるが、従来の固体電解質電池の製造においては、電解質層を電極と積層させる際に、各層にしわ又は波うちが発生してしまう場合がある。特に巻回型の二次電池の場合、長尺の電極及び電解質層を巻回して電極群を作製するため、しわ又は波うちの発生による悪影響が大きく、二次電池の性能が大きく損なわれるおそれがある。このように、電解質シート自体が優れた性能を有していても、電極と電解質層とを好適に積層する技術が確立していないため、電解質シートの性能が充分に発揮されない場合がある。
 そこで本発明は、電解質層を電極と好適に積層させることが可能な電解質シート、該電解質シートを用いた二次電池用電池部材及び二次電池、並びに、これらの製造方法を提供することを目的とする。
 本発明は、第1の態様として、電解質層と、電解質層の主面上の少なくとも一部に設けられた粘着剤層と、を備える電解質シートを提供する。
 電解質シートは、長尺状の基材を更に備え、電解質層は、基材の主面上に設けられた長尺状の電解質層であってよい。
 粘着剤層は、電解質層の基材と反対側の主面上において、電解質層の長手方向に所定の間隔で複数設けられていてよい。
 複数の粘着剤層のそれぞれは、電解質シートの短手方向に沿って延在する細長形状であってよい。
 複数の粘着剤層のそれぞれは、電解質シートの長手方向に沿って延在する細長形状であってもよい。
 電解質シートは、電解質層及び粘着剤層上に設けられた保護層を更に備えてもよい。
 電解質シートは、基材の電解質層と反対側の面上に離型層を更に備えてもよい。
 粘着剤層は、電解質層の一端部に設けられていてもよい。
 粘着剤層は、電解質層の一端部の縁部をすべて覆うように設けられていてもよい。
 粘着剤層が設けられている領域の電解質層の厚さは、縁部に向けて薄くなっていてもよい。
 電解質層は、1種又は2種以上のポリマと、酸化物粒子と、リチウム塩、ナトリウム塩、カルシウム塩、及びマグネシウム塩からなる群より選ばれる少なくとも1種の電解質塩と、溶媒と、を含有してよい。
 粘着剤層は、アクリル樹脂、メタクリル樹脂、シリコーン樹脂、ウレタン樹脂、ポリビニルエーテル、及びスチレン・ブタジエンゴムからなる群より選ばれる少なくとも1種を含んでよい。
 本発明は、第2の態様として、巻芯と、巻芯に巻回された上記の電解質シートと、を備える電解質シート巻回体を提供する。
 本発明は、第3の態様として、長尺状の基材の主面上に長尺状の電解質層を設ける工程と、電解質層の基材と反対側の面上に、電解質層の長手方向に所定の間隔で複数の粘着剤層を設ける工程と、を備える、電解質シートの製造方法を提供する。
 本発明は、第4の態様として、集電体と、集電体の主面上に設けられた電極合剤層と、電極合剤層の集電体と反対側の面上に設けられた電解質層と、を備え、電解質層の少なくとも一部には、電解質層を集電体又は電極合剤層に接着させる粘着剤層が設けられている、二次電池用電池部材を提供する。
 第4の態様において、粘着剤層は、電解質層を集電体に接着させていてよい。
 本発明は、第5の態様として、上記の電池部材を備える二次電池を提供する。
 本発明は、第6の態様として、電極と、電解質シートの電解質層とを粘着剤層を介して貼合する工程を備える、二次電池用電池部材の製造方法を提供する。
 本発明は、第7の態様として、電解質シート巻回体から粘着剤層が設けられた電解質層を巻き出す工程と、巻き出された電解質層と正極及び負極の少なくとも一方とを粘着剤層を介して貼合した後、正極、電解質層及び負極をこの順に備える積層体を得ると共に、該積層体を巻回する工程と、を備える、二次電池の製造方法を提供する。
 本発明によれば、電解質層を電極と好適に積層させることが可能な電解質シート、該電解質シートを用いた二次電池用電池部材及び二次電池、並びに、これらの製造方法を提供することができる。
第1実施形態に係る二次電池の全体構成及び内部構造を示す斜視図である。 図1に示した二次電池における電極群の巻き始めの領域を示す模式断面図である。 図1に示した二次電池における電極群の変形例を示す模式断面図である。 (a)は一実施形態に係る電解質シート巻回体を示す斜視図であり、(b)は(a)の電解質シート巻回体の電解質シートを示す模式断面図である。 第1実施形態に係る二次電池の製造方法を示す模式図である。 電解質シートの変形例を示す模式断面図である。 電解質シート巻回体の変形例を示す斜視図である。 図7に示す電解質シート巻回体の一部を切り出した電解質シートを示す斜視図である。 第2実施形態に係る二次電池の電極群の巻き始めの領域を示す模式断面図である。 第2実施形態に係る二次電池の製造方法を示す模式図である。
 以下、図面を適宜参照しながら、本発明の実施形態について説明する。ただし、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(ステップ等も含む)は、特に明示した場合を除き、必須ではない。各図における構成要素の大きさは概念的なものであり、構成要素間の大きさの相対的な関係は各図に示されたものに限定されない。
 本明細書における数値及びその範囲は、本発明を制限するものではない。本明細書において、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。本明細書において段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の上限値又は下限値に置き換えてもよい。また、本明細書中に記載される数値範囲において、その数値範囲の上限値又は下限値は、実施例中に示されている値に置き換えてもよい。
 図1は、第1実施形態に係る二次電池の全体構成及び内部構造を示す斜視図である。図1に示すように、二次電池1は、長尺状の正極2及び負極3、並びにこれらの間に介在する長尺状の電解質層4を渦巻状に巻回させた電極群5と、電極群5を収容する円筒状で上面が開口した電池容器6と、電池容器6の開口を閉じる蓋7とを備える、18650型(円筒型)の二次電池である。電極群5の外周面全周には、図示されない絶縁被覆が施されている。電池容器6は、例えばニッケルメッキが施されたスチール製の容器であってよい。蓋7は、例えば、絶縁性の樹脂製ガスケットを介して電池容器6の上部にカシメ固定されている。
 正極2及び負極3には、正極2及び負極3がそれぞれ二次電池1の外部と電気的に接続可能なように、図示されない正極集電タブ及び負極集電タブが設けられている。正極集電タブの一端は、二次電池1の蓋7の下面に、例えば超音波溶接で接合されている。負極集電タブの一端は、電池容器6の内底部6aに、例えば抵抗溶接で接合されている。一実施形態において、正極集電タブはアルミニウムで形成されており、負極集電タブは銅で形成されている。
 図2は、図1に示した二次電池1における電極群5の巻き始めの領域を示す模式断面図である。図2に示すように、本実施形態に係る電極群5Aは、それぞれ長尺状の、第1の電解質層4と、正極2と、第2の電解質層4と、負極3とをこの順に備える。正極2は、正極集電体8と、正極集電体8の両面に設けられた正極合剤層9とを備えている。負極3は、負極集電体10と、負極集電体10の両面に設けられた負極合剤層11とを備えている。以下、第1の電解質層4と第2の電解質層4をまとめて電解質層4と呼ぶことがある。
 電解質層4の正極合剤層9側の面4a上には、電解質層4の長手方向に所定の間隔で複数の粘着剤層12が設けられており、各粘着剤層12(電解質層4の縁部4bに設けられた粘着剤層12を含む)は、第1の電解質層4及び第2の電解質層4を正極合剤層9に接着させている(粘着剤層12の詳細は後述する)。この二次電池1は、正極集電体8と、正極集電体8の両面に設けられた正極合剤層9と、正極合剤層9の正極集電体8と反対側の面上に設けられた第1の電解質層4及び第2の電解質層4と、を有する正極部材13Aを備えていると見ることもできる。この正極部材13Aでは、第1の電解質層4及び第2の電解質層4の少なくとも一部は、粘着剤層12を介して正極合剤層9と接している。
 正極集電体8は、アルミニウム、ステンレス鋼、チタン等で形成されていてよい。正極集電体8の厚さは、例えば10μm以上100μm以下であってよい。
 正極合剤層9は、一実施形態において、正極活物質と、導電剤と、バインダとを含有する。正極合剤層9の厚さは、例えば5μm以上100μm以下であってよい。
 正極活物質は、LiCoO、LiNiO、LiMn、LiMnO、LiMn、LiMnO、LiMn12、LiMn2-a (ただし、M=Co、Ni、Fe、Cr、Zn、及びTaからなる群より選ばれる1種であり、a=0.01~0.2である。)、LiMn(ただし、M=Fe、Co、Ni、Cu、及びZnからなる群より選ばれる1種である。)、Li1-b Mn(ただし、M=Mg、B、Al、Fe、Co、Ni、Cr、Zn、及びCaからなる群より選ばれる1種であり、b=0.01~0.1である。)、LiFeO、Fe(SO、LiCo1-d (ただし、M=Ni、Fe、及びMnからなる群より選ばれる1種であり、d=0.01~0.2である。)、LiNi1-e (ただし、M=Mn、Fe、Co、Al、Ga、Ca、及びMgからなる群より選ばれる1種であり、e=0.01~0.2である。)、Fe(MoO、FeF、LiFePO、LiMnPO等であってよい。
 導電剤は、カーボンブラック、黒鉛、炭素繊維、カーボンナノチューブ等であってよい。バインダは、正極2の表面で分解しないものであれば制限されないが、例えばポリマである。バインダは、ポリフッ化ビニリデン、スチレン・ブタジエンゴム、カルボキシル・メチルセルロース、酢酸セルロース、又はエチルセルロースのようなセルロース類、フッ素ゴム、エチレン・プロピレンゴム、ポリアクリル酸、ポリイミド、ポリアミド等であってよい。
 負極集電体10は、銅、ステンレス鋼、チタン、ニッケル等で形成されていてよい。負極集電体10の厚さは、例えば10μm以上100μm以下であってよい。
 負極合剤層11は、一実施形態において、負極活物質と、導電剤と、バインダとを含有する。負極合剤層11の厚さは、例えば10μm以上50μm以下であってよい。
 負極活物質は、非晶質炭素で被覆した天然黒鉛(理論容量:372Ah/kg)であってよく、シリコン、スズ又はこれらの元素を含む化合物(酸化物、窒化物、他の金属との合金)であってもよい。
 バインダ及び導電剤は、上述した正極合剤層9におけるバインダ及び導電剤と同様のものであってよい。
 電解質層4は、電解質組成物からなっている。第1の電解質層4と第2の電解質層4の組成は同一でも異なっていてもよく、好ましくは同一である。電解質組成物は、一実施形態において、1種又は2種以上のポリマと、酸化物粒子と、リチウム塩、ナトリウム塩、カルシウム塩、及びマグネシウム塩からなる群より選ばれる少なくとも1種の電解質塩と、溶媒と、を含有する。電解質層4の厚さは、5μm以上100μm以下であってよい。
 1種又は2種以上のポリマを構成する構造単位(モノマ単位)の中には、4フッ化エチレン及びフッ化ビニリデンからなる群より選ばれる第1の構造単位(モノマ単位)と、ヘキサフルオロプロピレン、アクリル酸、マレイン酸、エチルメタクリレート、及びメチルメタクリレートからなる群より選ばれる第2の構造単位(モノマ単位)とが含まれる。
 第1の構造単位及び第2の構造単位は、1種のポリマに含まれてコポリマを構成してもよいし、それぞれ別のポリマに含まれて、第1の構造単位を有する第1のポリマと、第2の構造単位を有する第2のポリマとの少なくとも2種のポリマを構成していてもよい。
 第1のポリマと第2のポリマとの組合せとしては、ポリフッ化ビニリデンとポリアクリル酸、ポリ4フッ化エチレンとポリメチルメタクリレート、ポリフッ化ビニリデンとポリメチルメタクリレート等が挙げられる。
 ポリマの含有量は、電解質組成物全量を基準として、10質量%以上40質量%以下であってよい。
 酸化物粒子は、例えば無機酸化物の粒子である。無機酸化物は、例えば、Li、Mg、Al、Si、Ca、Ti、Zr、La、Na、K、Ba、Sr、V、Nb、B、Ge等を構成元素として含む無機酸化物であってよい。酸化物粒子は、好ましくは、SiO、Al、AlOOH、MgO、CaO、ZrO、TiO、LiLaZr12、及びBaTiOからなる群より選ばれる少なくとも1種の粒子である。酸化物粒子の平均粒径は、例えば、0.05μm以上6μm以下である。酸化物粒子の含有量は、電解質組成物全量を基準として、10質量%以上40質量%以下であってよい。
 電解質塩であるリチウム塩は、具体的には、リチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)、リチウムビス(フルオロスルホニル)イミド(LiFSI)、トリフルオロ酢酸リチウム、ホウフッ化リチウム、及び6フッ化リン酸リチウム等であってよく、リチウム二次電池に使用される公知のリチウム塩を使用することが可能である。
 電解質塩であるナトリウム塩は、NaClO、NaBF、NaPF、ナトリウムビス(トリフルオロメタンスルホニル)イミド(NaTFSI)、ナトリウムビス(フルオロスルホニル)イミド(NaFSI)等であってよく、マグネシウム塩は、Mg(ClO、Mg(TFSI)、マグネシウムジブチルジフェニル(Mg(BPhBu)、マグネシウムトリブチルフェニル(Mg(BPhBu)、Mg(BH等であってよく、カルシウム塩は、Ca(ClO、Ca(BF4)2、Ca(TFSI)等であってよい。
 電解質塩の含有量は、電解質組成物全量を基準として、10質量%以上60質量%以下であってよい。
 溶媒は、下記式(1)で表されるグライムであってよい。
 RO-(CHCHO)-R   (1)
式(1)中、R及びRは、それぞれ独立に、炭素数4以下のアルキル基又は炭素数4以下のフルオロアルキル基を表し、nは1~6の整数を表す。RとRは、それぞれ独立に、好ましくはCH、Cのいずれかである。
 グライムは、具体的には、モノグライム(n=1)、ジグライム(n=2)、トリグライム(n=3)、テトラグライム(n=4)、ペンタグライム(n=5)、ヘキサグライム(n=6)であってよい。
 電解質組成物が溶媒としてグライムを含有する場合、グライムの一部又は全部は、電解質塩と錯体を形成していてよい。
 溶媒は、イオン液体であってもよい。イオン液体は、例えば、イミダゾリウム系イオン液体及びピリジニウム系イオン液体からなる群より選ばれる少なくとも1種のイオン液体であってよい。
 イミダゾリウム系イオン液体は、下記の一般式(2)で表されるイミダゾリウムカチオンを含有する化合物である。
Figure JPOXMLDOC01-appb-C000001
[式(2)中、R~Rは、それぞれ独立に、炭素数が1~20のアルキル基、R-O-(CH-で表されるアルコキシアルキル基(Rはメチル基又はエチル基を表し、mは1~4の整数を表す)、又は水素原子を表す。R~Rで表されるアルキル基の炭素数は、好ましくは1~20、より好ましくは1~10、更に好ましくは1~5である。]
 ピリジニウム系イオン液体は、下記の一般式(3)で表されるピリジウムカチオンを含有する化合物である。
Figure JPOXMLDOC01-appb-C000002
[式(3)中、R~R12は、それぞれ独立に、炭素数が1~20のアルキル基、R-O-(CH-で表されるアルコキシアルキル基(Rはメチル基又はエチル基を表し、mは1~4の整数を表す)、又は水素原子を表す。R~R12で表されるアルキル基の炭素数は、好ましくは1~20、より好ましくは1~10、更に好ましくは1~5である。]
 イオン液体のアニオン成分は、特に限定されないが、Cl、Br、I等のハロゲンのアニオン、BF 、N(SOF) 等の無機アニオン、B(C 、CHSO 、CFSO 、N(CSO 、N(SOCF 、N(SOCFCF 等の有機アニオンなどであってよい。イオン液体のアニオン成分は、好ましくは、B(C 、CHSO 、N(CSO 、CFSO 、N(SOF) 、N(SOCF 及びN(SOCFCF からなる群より選ばれる少なくとも1種である。イオン液体のアニオン成分は、比較的低粘度でイオン伝導度を更に向上させるとともに、充放電特性も更に向上させる観点から、より好ましくは、N(CSO 、CFSO 、N(SOF) 、N(SOCF 、及びN(SOCFCF からなる群より選ばれる少なくとも1種であり、更に好ましくはN(SOF) である。
 溶媒の含有量は、電解質組成物全量を基準として、10質量%以上60質量%以下であってよい。電解質塩と溶媒との合計の含有量は、電解質組成物全量を基準として、10質量%以上80質量%以下であってよい。
 粘着剤層12は、一実施形態において、支持フィルムの両面に粘着剤が設けられた3層構造を有していてよい。これにより、粘着剤層12の強度が増し、取り扱いを容易にすることができる。支持フィルムは、例えば、厚さ10μm程度のポリエチレンテレフタレートのフィルム等であってよい。粘着剤層12は、他の実施形態において、粘着剤のみからなる単層構造であってもよい。これにより、粘着剤層12の厚さが薄くなる。
 粘着剤層12を形成する粘着剤は、アクリル樹脂又はメタクリル樹脂を含むアクリル系粘着剤、シリコーン樹脂を含むシリコーン系粘着剤、ウレタン樹脂を含むウレタン系粘着剤、ポリビニルエーテルを含むエーテル系粘着剤、スチレン・ブタジエンゴムを含むゴム系粘着剤等であってよい。粘着剤層12は、電解質層4に含まれる溶媒によって溶解又は分解されにくいという観点から、好ましくはアクリル系粘着剤である。
 二次電池1における電極群5は、変形例をとり得る。図3は、図1に示した二次電池1における電極群5の変形例を示す模式断面図である。図3に示すように、電極群5Bでは、電解質層4の縁部4bに設けられた粘着剤層12は、電解質層4を正極集電体8に接着させていてもよい。この電極群5Bにおいては、積層方向から見たときに、正極集電体8の縁部8aが正極合剤層9の縁部9aよりも外側にはみ出している。そのため、電解質層4は、電解質層4の縁部4bに形成された粘着剤層12を介して、正極集電体8に接着されている。この二次電池においては、正極合剤層9が粘着剤層12に覆われる部分が少なくなるため、正極2の容量損失をより小さくすることができる。
 続いて、上述した二次電池1の製造方法について説明する。二次電池1の製造方法は、正極集電体8上に正極合剤層9を形成させて正極2を得る第1の工程と、負極集電体10上に負極合剤層11を形成させて負極3を得る第2の工程と、第1の電解質層4、正極2、第2の電解質層4及び負極3をこの順に備える積層体を得ると共に、該積層体を巻回する第3の工程と、を備える。
 第1の工程では、正極2は、例えば、正極合剤層9に用いる材料を混練機、分散機等を用いて分散媒に分散させてスラリ状の正極合剤を得た後、この正極合剤をドクターブレード法、ディッピング法、スプレー法等により正極集電体8上に塗布し、その後分散媒を揮発させることにより得られる。分散媒を揮発させた後、必要に応じて、ロールプレスによる圧縮成型工程が設けられてもよい。正極合剤層9は、上述した正極合剤の塗布から分散媒の揮発までの工程を複数回行うことにより、多層構造の正極合剤層として形成されてもよい。正極2は、二次電池1を製造するまで、巻回体(正極巻回体)として保管されていてよい。
 第1の工程において用いられる分散媒は、水、1-メチル-2-ピロリドン(NMP)等であってよい。
 第2の工程において、負極集電体10に負極合剤層11を形成させる方法は、上述した第1の工程と同様の方法であってよい。負極3は、二次電池1を製造するまで、巻回体(負極巻回体)として保管されていてよい。
 第3の工程では、まず、正極2と電解質層4とを貼合する。この際、電解質層4は、一実施形態において、電解質シート巻回体から巻き出されて用いられる。図4(a)は、一実施形態に係る電解質シート巻回体を示す斜視図であり、図4(b)は、図4(a)のIVb-IVb線に沿った模式断面図である。図4(a)に示すように、一実施形態に係る電解質シート巻回体15Aは、巻芯16と、巻芯16に巻回された、電解質層4を有する電解質シート17Aと、を備える。図4(b)に示すように、電解質シート17Aは、長尺状の基材18と、基材18の主面18a上に設けられた長尺状の電解質層4と、電解質層4の基材18と反対側の面4c上に設けられた複数の粘着剤層12と、を備えている。
 各粘着剤層12は、電解質層4の短手方向に延在する細長形状(細長の矩形状)を有している。各粘着剤層12の幅(短辺の長さ)W12は、例えば、1mm以上であってよく、また、50mm以下であってよい。各粘着剤層12の長さ(長辺の長さ)L12は、好ましくは、電解質層4の短手方向の長さと同じであり、例えば、1mm以上であってよく、また、短手方向の長さ以下であってよい。電池組立の際に電解質層4の長手方向に張力を加えても、粘着剤層12が剥離しないほどに粘着力が十分に強ければ、粘着剤層12の長さL12が電解質層4の短手方向の長さより小さくてもよい。粘着剤層は、電解質層4の短手方向にスポット状(点状)に複数に分割されていてもよく、矩形状以外の形状であってもよい。
 各粘着剤層12の厚さT12は、好ましくは5μm以上、より好ましくは10μm以上、更に好ましくは30μm以上であってよく、また、好ましくは100μm以下、より好ましくは50μm以下、更に好ましくは30μm以下であってよい。粘着剤層の厚さT12が5μm以上であることにより、粘着剤層12を電解質層4に接着する際に、粘着剤層12の圧縮による変位量が小さくなりすぎないため、粘着剤層12の粘着剤が電解質層4の表面の凹凸に食い込むことができ、十分な粘着力を得ることができる。粘着剤層の厚さT12が100μm以下であることにより、粘着剤層12の近傍で大きな段差が生じないため、正極2と負極3とが十分に密着して、電池性能を高めることができる。
 複数の粘着剤層12は、電解質層4の長手方向に所定の間隔G12で設けられている。粘着剤層12同士の間隔G12は、例えば、10mm以上であってよく、また、100mm以下であってよい。
 基材18は、分散媒を揮発させる際の加熱に耐えうる耐熱性を有するものであって、電解質組成物と反応せず、電解質組成物により膨潤しないものであれば制限されないが、例えばフィルム状の樹脂である。基材18は、具体的には、ポリエチレンテレフタレート、ポリ4フッ化エチレン、ポリイミド、ポリエーテルサルフォン、ポリエーテルケトン等の樹脂(汎用のエンジニアプラスチック)からなるフィルムであってよい。
 基材18は、電解質層4を製造する過程で分散媒を気化する処理温度に耐えることが条件である。基材18の軟化点(塑性変形し始める温度)または融点のうち、より低い温度を耐熱温度とし、その温度は、電解質層4に用いられる溶媒との適応性の観点から、好ましくは50℃以上であり、より好ましくは100℃以上であり、更に好ましくは150℃以上であり、また、例えば400℃以下であってよい。上記の耐熱温度を有する基材を使用すれば、基材18上に電解質層4を形成させる際に用いられる分散媒を好適に使用できる。
 基材18の厚さは、塗布装置での引張り力に耐えうる強度を維持しつつ、可能な限り薄いことが好ましい。基材18の厚さは、電解質シート17A全体の体積を小さくしつつ、電解質組成物を基材18に塗布する際に強度を確保する観点から、好ましくは5μm以上であり、より好ましくは10μm以上であり、更に好ましくは25μm以上であり、また、好ましくは100μm以下であり、より好ましくは50μm以下であり、更に好ましくは40μm以下である。
 電解質シート巻回体15Aを製造する方法では、例えば、まず、長尺状の基材18の主面18a上に電解質層4を設ける。具体的には、電解質層4は、電解質層4に用いる材料を分散媒に分散させてスラリを得た後、これを基材18上に塗布してから分散媒を揮発させることにより作製される。分散媒は、好ましくは水、NMP、トルエン等である。
 次に、電解質層4の基材18と反対側の面4c上に、電解質層4の長手方向に所定の間隔G12で複数の粘着剤層12を設ける。粘着剤層12は、例えば、フィルム状の粘着剤を圧着したり、離型フィルムの上に作製した粘着剤層12を電解質層4に圧着し離型フィルムを剥離させて粘着剤層12を転写したり、液状の粘着剤を電解質層4に塗布したりすることにより設けることができる。これにより、電解質シート17Aを得る。得られた電解質シート17Aを、巻芯16に巻回させることで、電解質シート巻回体15Aを得ることができる。
 図4に示した電解質シート17Aでは、粘着剤層12が電解質層4の一端部の縁部(短辺)をすべて覆うよう設けられているが、粘着剤層12は、電解質層4の縁部(短辺及び長辺)から離間して設けられていてもよい。
 図4に示す電解質シート17Aでは、複数の粘着剤層12が形成されているが、粘着剤層12は、電解質層4の巻き始めの端部1箇所のみに形成されていてもよい。この場合、電解質層4を正極2及び負極3と一緒に巻き込んで好適に積層することができると共に、粘着剤層12の面積が小さくなるため、更に好適である。
 第3の工程では、上述した電解質シート巻回体15Aを用いる。図5は、二次電池1の製造方法の第3の工程を示す模式図である。第3の工程では、まず、正極巻回体19、負極巻回体20、2個の電解質シート巻回体15Aをそれぞれ用意する。次に、2個の電解質シート巻回体15Aそれぞれから電解質シート17Aを巻き出すと共に、それぞれの電解質シート17Aから基材18を剥がし取って得られた電解質層4を、正極巻回体19から巻き出した正極2の両面(正極合剤層9)それぞれに貼合する。このとき、正極合剤層9と電解質層4とが、粘着剤層12を介して貼り合わされるようにする。これにより、正極集電体8と、正極集電体8の両面に設けられた正極合剤層9と、それぞれの正極合剤層9の正極集電体8の反対側の面上に設けられた電解質層4とを備え、電解質層4の一部が、粘着剤層12を介して正極合剤層9に接着されている二次電池用電池部材(正極部材)13Aが形成される。さらに、負極巻回体20から負極3を巻き出して、得られた正極部材13Aの電解質層4と負極3の負極合剤層11とが互いに接するように、正極部材13A及び負極3を積層しながら巻回軸21に巻回することにより、電極群5A(5)が得られる。
 本実施形態の製造方法によれば、正極2と電解質層4とが粘着剤層12を介して貼合されるので、正極2と電解質層4とを好適に積層できる。しわ又は波うちは、電解質層4と正極2とを積層し始める領域である端部において特に発生しやすく、端部でひとたび発生すると、電極群5全体に同様の不具合が生じるおそれがあるが、本実施形態の製造方法では、電解質層4の端部に粘着剤層12が設けられていることにより、特に正極2及び電解質層4を端部におけるしわ又は波うちを効果的に抑制できる。
 第3の工程で用いられる電解質シート巻回体15Aに巻回された電解質シート17Aは、種々の変形態様をとりうる。図6は、変形例に係る電解質シートの模式断面図である。第1の変形例として、図6(a)に示す電解質シート17Bは、電解質層4及び粘着剤層12上(電解質層4の基材18と反対側)に設けられた保護層22を更に備えている。保護層22が設けられていない場合、電解質シートを巻芯に巻き取って電解質シート巻回体を製造する際、基材18の電解質層4と反対側の面(基材の裏面)18bに粘着剤層が接着してしまい、第3の工程において電解質シートをスムーズに巻き出すことが難しくなる場合がある。しかし、保護層22が設けられていることにより、基材の裏面18bへの粘着剤層12の接着が抑制され、電解質シート巻回体を好適に製造できるとともに、電解質シート巻回体から電解質シート17Bを巻き出すときに巻き出しやすくなる。保護層22が設けられている場合、二次電池の製造における第3の工程では、正極2と電解質層4とを貼合する前に、基材18に加えて、保護層22も剥がし取るようにする。
 保護層22は、電解質層4及び粘着剤層12から容易に剥離可能なものであればよく、好ましくはポリエチレン、ポリプロピレン、ポリ4フッ化エチレン等の無極性の樹脂フィルムである。無極性の樹脂フィルムを用いると、電解質層4及び粘着剤層12と保護層22とが貼りつかず、保護層22を容易に剥離することができる。
 保護層22の厚さは、電解質シート17B全体の体積を小さくしつつ、強度を確保する観点から、好ましくは5μm以上であり、より好ましくは10μmであり、また、好ましくは100μm以下であり、より好ましくは50μm以下であり、更に好ましくは30μm以下である。
 第2の変形例として、図6(b)に示す電解質シート17Cは、基材18の裏面18b上に離型層23を備えている。離型層23が設けられていることにより、保護層を設けなくとも、電解質シート巻回体を作製したときに基材の裏面18bと粘着剤層12とが接着することを抑制することができる。離型層23は、一実施形態において、ポリエチレン、ポリプロピレン、ポリスチレン、ポリエチレンテレフタレート等のポリマを用いた離型処理によって形成され、かかるポリマを含む層であってよい。
 離型層23の厚さは、好ましくは5μm以上であり、より好ましくは10μm以上であり、更に好ましくは30μm以上であり、また、好ましくは200μm以下であり、より好ましくは100μm以下であり、更に好ましくは50μm以下である。
 第3の変形例として、図6(c)に示す電解質シート17Dにおいては、電解質層4の縁部4bに設けられた粘着剤層12が、電解質層4の中央部から縁部4bに向けて徐々に薄くなる、なで肩状の形状(テーパー形状)になっている。すなわち、電解質層4の縁部4bの厚さは、電解質層4の中央部よりも薄くなっている。
 図7は、電解質シート巻回体の他の変形例を示す斜視図である。この電解質シート巻回体15Bは、長尺状の基材18と、基材18の主面上に設けられた電解質層4と、電解質層4の基材18の反対側の面上において長手方向に所定の間隔G32で設けられた複数の粘着剤層32とを備えており、粘着剤層32は、電解質シート17Eの長辺に沿うように延在する細長形状を有している。この電解質シート17Eにおいても、更なる変形例として、上述した保護層又は離型層を設けることができる。
 粘着剤層32同士の間隔G32は、例えば、1mm以上であってよく、また、1000mm以下であってよいが、粘着剤層32同士の間隔G32が大きいほうが、粘着剤層32を設ける数を少なくすることができるので、より好適である。図7に示す電解質シート巻回体15Bにおいて、粘着剤層32同士の間隔G32がゼロ、すなわち、粘着剤層32が全て連続的につながっていてもよい。各粘着剤層32の幅(短辺の長さ)W32は、例えば、1mm以上であってよく、また、5mm以下であってよい。各粘着剤層32の長さ(長辺の長さ)L32は、例えば、1mm以上であってよく、また、1000mm以下であってよい。
 この電解質シート17Eにおいては、粘着剤層32同士の間を電解質シート17Eの短手方向に沿って切断することにより、図8に示すような、電解質層4の一端の縁部に粘着剤層32を備えた、個片状の電解質シート17Fを得ることができる。これにより、特に、ラミネート型電池、コイン型電池等の巻回型電池以外の二次電池の製造の際にも、電解質層4と電極とを好適に積層させることが可能となる。図8に示す個片状の電解質シート17Fは、図7に示す電解質シート17Eから切り出したものであるが、初めから個片状の基材18の主面上に電解質層4と粘着剤層12とを設けて、個片状の電解質シート17Fを製造してもよい。
 図7に示した電解質シート17Eでは、粘着剤層32が電解質層4の縁部(長辺)を覆うよう設けられているが、粘着剤層32は、電解質層4の縁部(長辺)から離間して設けられていてもよい。同様に、図8に示した電解質シート17Fでは、粘着剤層32が電解質層4の一端部の縁部(短辺)をすべて覆うよう設けられているが、粘着剤層32は、電解質層4の縁部(短辺及び長辺)から離間して設けられていてもよい。
 [第2実施形態]
 次に、第2実施形態に係る二次電池について説明する。以下、第1実施形態に係る二次電池と対応する構成については同一の符号を付し、重複する説明を省略する。
 図9は、第2実施形態に係る二次電池における電極群の巻き始めの領域を示す模式断面図である。図9に示すように、第2実施形態に係る電極群5Cは、正極2における一方の正極合剤層9と第1の電解質層4とが粘着剤層12を介して接着されており、かつ、負極3における一方の負極合剤層11と第2の電解質層4とが粘着剤層12を介して接着されている。すなわち、本実施形態に係る電極群5Cは、正極集電体8及び正極集電体8の両面に設けられた正極合剤層9を有する正極2と、第1の電解質層4と、負極集電体10及び負極集電体10の両面に設けられた負極合剤層11を有する負極3と、第2の電解質層4と、をこの順に備えており、正極2と第1の電解質層4との間、及び、負極3と第2の電解質層4との間にはそれぞれ粘着剤層12が設けられている。
 この二次電池は、正極2と、正極2の一方の面に粘着剤層12を介して接着された電解質層4と有する二次電池用電池部材(正極部材)13Cを備えていると見ることができ、また、負極3と、負極3の一方の面に粘着剤層12を介して接着された電解質層4とを有する二次電池用電池部材(負極部材)13Dを備えていると見ることもできる。
 図10は、第2実施形態に係る二次電池の製造方法を示す模式図である。この二次電池の製造方法は、第1実施形態に係る二次電池の製造方法と同様の第1の工程及び第2の工程と、正極2と電解質層4と、及び、負極3と電解質層4とを、それぞれ粘着剤層12を介して貼合した後、正極2、第1の電解質層4、負極3及び第2の電解質層4をこの順で備える積層体を得ると共に、該積層体を巻回する第3の工程と、を備える。
 本実施形態に係る第3の工程では、電解質シート巻回体15Aの一方から電解質シート17Aを巻き出すとともに、電解質シート17Aから基材18を剥がし取って得られた電解質層4を、正極巻回体19から巻き出した正極2における一方の正極合剤層9上に貼合する。このとき、正極2の正極合剤層9と電解質層4とが、粘着剤層12を介して貼り合わされるようにする。これにより、正極集電体8と、正極集電体8の両面に設けられた正極合剤層9と、正極合剤層9の一方の主面上に粘着剤層12を介して設けられた電解質層4とを備える正極部材13Cが得られる。
 その一方で、電解質シート巻回体15Aの他方から電解質シート17Aを巻き出すとともに、電解質シート17Aから基材18を剥がし取って得られた電解質層4を、負極巻回体20から巻き出した負極3における一方の負極合剤層11上に貼合する。このとき、負極3の負極合剤層11と電解質層4とが、粘着剤層12を介して貼り合わされるようにする。これにより、負極集電体10と、負極集電体10の両面に設けられた負極合剤層11と、負極合剤層11の一方の主面上に粘着剤層12を介して設けられた電解質層4とを備える負極部材13Dが得られる。そして、得られた正極部材13Cの第1の電解質層4と負極部材13Dの負極3とが接するように、正極部材13C及び負極部材13Dを積層しながら巻回軸21に巻回することにより、電極群5Cが得られる。
 本実施形態の製造方法によっても、正極2及び電解質層4、並びに、負極3及び電解質層4が、それぞれ粘着剤層12を介して貼合されるので、正極2及び電解質層4、並びに、負極3及び電解質層4をそれぞれ好適に積層できる。
 二次電池の更なる他の実施形態として、電極群が、バイポーラ電極集電体の一方の面に正極合剤層を備え、正極合剤層と反対側の面に負極合剤層を備えるバイポーラ電極を更に備えてもよい。この場合の二次電池は、例えば、第1の電解質層と、正極と、第2の電解質層と、バイポーラ電極と、第3の電解質層と、負極とをこの順に備える。バイポーラ電極は、正極合剤層を負極側に、負極合剤層を正極側に向けて配置される。この二次電池では、第1の電解質層の正極側の面、第2の電解質層の正極側又はバイポーラ電極側の面、及び、第3の電解質層のバイポーラ電極側の面又は負極側の面に上述した粘着剤層が設けられていてよい。この二次電池においても、製造時に、正極、バイポーラ電極、及び負極と、これらの間に設けられる電解質層とを粘着剤層を介して貼合させることができるため、各電極と電解質層とを好適に積層させることができる。
 1…二次電池、2…正極、3…負極、4…電解質層、8…正極集電体、9…正極合剤層、10…負極集電体、11…負極合剤層、12,32…粘着剤層、13A,13B,13C,13D…二次電池用電池部材、15A,15B…電解質シート巻回体、16…巻芯、17A,17B,17C,17D,17E,17F…電解質シート、18…基材、18a…基材の主面、22…保護層、23…離型層。

Claims (19)

  1.  電解質層と、
     前記電解質層の主面上の少なくとも一部に設けられた粘着剤層と、を備える電解質シート。
  2.  長尺状の基材を更に備え、
     前記電解質層は、前記基材の主面上に設けられた長尺状の電解質層である、請求項1に記載の電解質シート。
  3.  前記粘着剤層は、前記電解質層の前記基材と反対側の主面上において、前記電解質層の長手方向に所定の間隔で複数設けられている、請求項2に記載の電解質シート。
  4.  前記粘着剤層のそれぞれは、前記電解質層の短手方向に沿って延在する細長形状である、請求項3に記載の電解質シート。
  5.  前記粘着剤層のそれぞれは、前記電解質層の長手方向に沿って延在する細長形状である、請求項3に記載の電解質シート。
  6.  前記電解質層及び前記粘着剤層上に設けられた保護層を更に備える、請求項2~5のいずれか一項に記載の電解質シート。
  7.  前記基材の前記電解質層と反対側の面上に離型層を更に備える、請求項2~5のいずれか一項に記載の電解質シート。
  8.  前記粘着剤層は、前記電解質層の一端部に設けられている、請求項1~7のいずれか一項に記載の電解質シート。
  9.  前記粘着剤層は、前記電解質層の前記一端部の縁部をすべて覆うように設けられている、請求項8に記載の電解質シート。
  10.  前記粘着剤層が設けられている領域の前記電解質層の厚さは、前記縁部に向けて薄くなっている、請求項9に記載の電解質シート。
  11.  前記電解質層は、
     1種又は2種以上のポリマと、
     酸化物粒子と、
     リチウム塩、ナトリウム塩、カルシウム塩、及びマグネシウム塩からなる群より選ばれる少なくとも1種の電解質塩と、
     溶媒と、を含有する、請求項1~10のいずれか一項に記載の電解質シート。
  12.  前記粘着剤層は、アクリル樹脂、メタクリル樹脂、シリコーン樹脂、ウレタン樹脂、ポリビニルエーテル、及びスチレン・ブタジエンゴムからなる群より選ばれる少なくとも1種を含む、請求項1~11のいずれか一項に記載の電解質シート。
  13.  巻芯と、
     前記巻芯に巻回された請求項1~12のいずれか一項に記載の電解質シートと、を備える電解質シート巻回体。
  14.  長尺状の基材の主面上に長尺状の電解質層を設ける工程と、
     前記電解質層の前記基材と反対側の面上に、前記電解質層の長手方向に所定の間隔で複数の粘着剤層を設ける工程と、を備える、電解質シートの製造方法。
  15.  集電体と、前記集電体の主面上に設けられた電極合剤層と、前記電極合剤層の前記集電体と反対側の面上に設けられた電解質層と、を備え、
     前記電解質層の少なくとも一部には、前記電解質層を前記集電体又は前記電極合剤層に接着させる粘着剤層が設けられている、二次電池用電池部材。
  16.  前記粘着剤層は、前記電解質層を前記集電体に接着させている、請求項15に記載の電池部材。
  17.  請求項15又は16に記載の電池部材を備える二次電池。
  18.  電極と、請求項1~12のいずれか一項に記載の電解質シートの前記電解質層とを前記粘着剤層を介して貼合する工程を備える、二次電池用電池部材の製造方法。
  19.  請求項13に記載の電解質シート巻回体から前記粘着剤層が設けられた前記電解質層を巻き出す工程と、
     巻き出された前記電解質層と正極及び負極の少なくとも一方とを前記粘着剤層を介して貼合した後、前記正極、前記電解質層及び前記負極をこの順に備える積層体を得ると共に、該積層体を巻回する工程と、を備える、二次電池の製造方法。
PCT/JP2017/037421 2017-10-16 2017-10-16 電解質シート、二次電池用電池部材及び二次電池、並びにこれらの製造方法 WO2019077664A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019548805A JPWO2019077664A1 (ja) 2017-10-16 2017-10-16 電解質シート、二次電池用電池部材及び二次電池、並びにこれらの製造方法
PCT/JP2017/037421 WO2019077664A1 (ja) 2017-10-16 2017-10-16 電解質シート、二次電池用電池部材及び二次電池、並びにこれらの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/037421 WO2019077664A1 (ja) 2017-10-16 2017-10-16 電解質シート、二次電池用電池部材及び二次電池、並びにこれらの製造方法

Publications (1)

Publication Number Publication Date
WO2019077664A1 true WO2019077664A1 (ja) 2019-04-25

Family

ID=66173610

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/037421 WO2019077664A1 (ja) 2017-10-16 2017-10-16 電解質シート、二次電池用電池部材及び二次電池、並びにこれらの製造方法

Country Status (2)

Country Link
JP (1) JPWO2019077664A1 (ja)
WO (1) WO2019077664A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220029246A1 (en) * 2020-07-27 2022-01-27 Prime Planet Energy & Solutions, Inc. Secondary Battery and Method of Manufacturing Same

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07161364A (ja) * 1993-11-19 1995-06-23 Hydro Quebec 電気化学セルおよびその製造方法
JPH1140201A (ja) * 1997-07-15 1999-02-12 Japan Storage Battery Co Ltd 非水電解質電池
JP2001256826A (ja) * 2000-03-09 2001-09-21 Hitachi Chem Co Ltd 高分子電解質エレメント、高分子電解質エレメントロールの製造法、高分子電解質エレメントロール及び電池の製造法
JP2004160764A (ja) * 2002-11-12 2004-06-10 Toppan Printing Co Ltd 電解質膜の製膜装置および製膜方法
JP2004349159A (ja) * 2003-05-23 2004-12-09 Toyota Motor Corp ゲル電解質膜の製造方法及びゲル電解質二次電池の製造方法
JP2010092696A (ja) * 2008-10-07 2010-04-22 Nissan Motor Co Ltd 非水電解質二次電池
JP2010198757A (ja) * 2009-02-23 2010-09-09 Sony Corp 非水電解質組成物及び非水電解質二次電池
JP2014056695A (ja) * 2012-09-12 2014-03-27 Sony Corp 二次電池、電池パックおよび電動車両
JP2014120456A (ja) * 2012-12-19 2014-06-30 Nissan Motor Co Ltd 二次電池
JP2016152221A (ja) * 2015-02-19 2016-08-22 アルプス電気株式会社 二次電池および二次電池の製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07161364A (ja) * 1993-11-19 1995-06-23 Hydro Quebec 電気化学セルおよびその製造方法
JPH1140201A (ja) * 1997-07-15 1999-02-12 Japan Storage Battery Co Ltd 非水電解質電池
JP2001256826A (ja) * 2000-03-09 2001-09-21 Hitachi Chem Co Ltd 高分子電解質エレメント、高分子電解質エレメントロールの製造法、高分子電解質エレメントロール及び電池の製造法
JP2004160764A (ja) * 2002-11-12 2004-06-10 Toppan Printing Co Ltd 電解質膜の製膜装置および製膜方法
JP2004349159A (ja) * 2003-05-23 2004-12-09 Toyota Motor Corp ゲル電解質膜の製造方法及びゲル電解質二次電池の製造方法
JP2010092696A (ja) * 2008-10-07 2010-04-22 Nissan Motor Co Ltd 非水電解質二次電池
JP2010198757A (ja) * 2009-02-23 2010-09-09 Sony Corp 非水電解質組成物及び非水電解質二次電池
JP2014056695A (ja) * 2012-09-12 2014-03-27 Sony Corp 二次電池、電池パックおよび電動車両
JP2014120456A (ja) * 2012-12-19 2014-06-30 Nissan Motor Co Ltd 二次電池
JP2016152221A (ja) * 2015-02-19 2016-08-22 アルプス電気株式会社 二次電池および二次電池の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220029246A1 (en) * 2020-07-27 2022-01-27 Prime Planet Energy & Solutions, Inc. Secondary Battery and Method of Manufacturing Same
US11923560B2 (en) * 2020-07-27 2024-03-05 Prime Planet Energy & Solutions, Inc. Secondary battery having greater adhesion between electrode plate and separator closer to electrode terminal and method of manufacturing the same

Also Published As

Publication number Publication date
JPWO2019077664A1 (ja) 2020-10-22

Similar Documents

Publication Publication Date Title
US11626581B2 (en) Current collector, comprising a slit and secondary battery comprising thereof
JP5156406B2 (ja) リチウム二次電池用正極及びその製造方法、並びにリチウム二次電池
JP4665931B2 (ja) アノード及びリチウムイオン二次電池
JP4665930B2 (ja) アノード及びリチウムイオン二次電池
JP7069612B2 (ja) 積層電極体、蓄電素子及び積層電極体の製造方法
JP2014127272A (ja) 全固体電池用電極体の製造方法
WO2013108516A1 (ja) 電極体及びその製造方法
JP6243666B2 (ja) リチウムイオン二次電池用セパレータおよびその製造方法、並びにリチウムイオン二次電池およびその製造方法
JP6943208B2 (ja) 全固体電池の製造方法および全固体電池
JPWO2020059711A1 (ja) リチウムイオン二次電池、その製造方法、及びリチウムイオン二次電池用正極
JP2020140932A (ja) 全固体電池及びその製造方法
JP2012256544A (ja) 二次電池用電極の製造方法
JP2008235252A (ja) 電極用活物質粒子、電極、電気化学デバイス及び電極の製造方法
WO2019077664A1 (ja) 電解質シート、二次電池用電池部材及び二次電池、並びにこれらの製造方法
WO2019181943A1 (ja) 電解質組成物、電解質シート及び二次電池
JP2015216077A (ja) 全固体電池の製造方法
JPWO2018221668A1 (ja) 電解質組成物及び二次電池
JP6908073B2 (ja) 非水電解液二次電池
JP2013058362A (ja) 二次電池用電極の製造方法
JP7177210B2 (ja) リチウムイオン二次電池用電極、及びリチウムイオン二次電池
JP6642781B1 (ja) 電解質シート及び二次電池
WO2021192258A1 (ja) 電極体、蓄電素子および蓄電モジュール
JP2006147185A (ja) 捲回電極およびその製造方法、並びにそれを用いた電池
WO2021010185A1 (ja) 正極及びリチウムイオン二次電池
WO2021192256A1 (ja) 電極体、蓄電素子および蓄電モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17929136

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019548805

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17929136

Country of ref document: EP

Kind code of ref document: A1