WO2019076157A1 - 光学模组组装设备及方法 - Google Patents

光学模组组装设备及方法 Download PDF

Info

Publication number
WO2019076157A1
WO2019076157A1 PCT/CN2018/104384 CN2018104384W WO2019076157A1 WO 2019076157 A1 WO2019076157 A1 WO 2019076157A1 CN 2018104384 W CN2018104384 W CN 2018104384W WO 2019076157 A1 WO2019076157 A1 WO 2019076157A1
Authority
WO
WIPO (PCT)
Prior art keywords
assembled
alignment
dispensing
moved
optical module
Prior art date
Application number
PCT/CN2018/104384
Other languages
English (en)
French (fr)
Inventor
董南京
孙德波
Original Assignee
歌尔股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔股份有限公司 filed Critical 歌尔股份有限公司
Priority to US16/652,353 priority Critical patent/US11077530B2/en
Publication of WO2019076157A1 publication Critical patent/WO2019076157A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/62Optical apparatus specially adapted for adjusting optical elements during the assembly of optical systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P21/00Machines for assembling a multiplicity of different parts to compose units, with or without preceding or subsequent working of such parts, e.g. with programme control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P19/00Machines for simply fitting together or separating metal parts or objects, or metal and non-metal parts, whether or not involving some deformation; Tools or devices therefor so far as not provided for in other classes
    • B23P19/001Article feeders for assembling machines
    • B23P19/006Holding or positioning the article in front of the applying tool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P19/00Machines for simply fitting together or separating metal parts or objects, or metal and non-metal parts, whether or not involving some deformation; Tools or devices therefor so far as not provided for in other classes
    • B23P19/10Aligning parts to be fitted together
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P21/00Machines for assembling a multiplicity of different parts to compose units, with or without preceding or subsequent working of such parts, e.g. with programme control
    • B23P21/004Machines for assembling a multiplicity of different parts to compose units, with or without preceding or subsequent working of such parts, e.g. with programme control the units passing two or more work-stations whilst being composed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1694Programme controls characterised by use of sensors other than normal servo-feedback from position, speed or acceleration sensors, perception control, multi-sensor controlled systems, sensor fusion
    • B25J9/1697Vision controlled systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/025Mountings, adjusting means, or light-tight connections, for optical elements for lenses using glue
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P19/00Machines for simply fitting together or separating metal parts or objects, or metal and non-metal parts, whether or not involving some deformation; Tools or devices therefor so far as not provided for in other classes
    • B23P19/04Machines for simply fitting together or separating metal parts or objects, or metal and non-metal parts, whether or not involving some deformation; Tools or devices therefor so far as not provided for in other classes for assembling or disassembling parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P19/00Machines for simply fitting together or separating metal parts or objects, or metal and non-metal parts, whether or not involving some deformation; Tools or devices therefor so far as not provided for in other classes
    • B23P19/10Aligning parts to be fitted together
    • B23P19/102Aligning parts to be fitted together using remote centre compliance devices
    • B23P19/105Aligning parts to be fitted together using remote centre compliance devices using sensing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P19/00Machines for simply fitting together or separating metal parts or objects, or metal and non-metal parts, whether or not involving some deformation; Tools or devices therefor so far as not provided for in other classes
    • B23P19/10Aligning parts to be fitted together
    • B23P19/107Aligning parts to be fitted together using oscillating, rotating or vibrating movements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P21/00Machines for assembling a multiplicity of different parts to compose units, with or without preceding or subsequent working of such parts, e.g. with programme control
    • B23P21/008Machines for assembling a multiplicity of different parts to compose units, with or without preceding or subsequent working of such parts, e.g. with programme control the assembling machines or tools moving synchronously with the units while these are being assembled
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/06Gripping heads and other end effectors with vacuum or magnetic holding means
    • B25J15/0616Gripping heads and other end effectors with vacuum or magnetic holding means with vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/02Sensing devices
    • B25J19/021Optical sensing devices
    • B25J19/023Optical sensing devices including video camera means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1679Programme controls characterised by the tasks executed
    • B25J9/1687Assembly, peg and hole, palletising, straight line, weaving pattern movement
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/53Means to assemble or disassemble
    • Y10T29/53039Means to assemble or disassemble with control means energized in response to activator stimulated by condition sensor
    • Y10T29/53048Multiple station assembly or disassembly apparatus
    • Y10T29/53052Multiple station assembly or disassembly apparatus including position sensor

Definitions

  • the present invention relates to the field of assembly technology, and in particular, to an optical module assembly apparatus and method.
  • optical modules with independent functions in the market to meet the diverse market demand.
  • These optical modules can be embedded in other devices to perform their functions, such as camera modules, micro projection modules, LED (Light Emitting Diode) optical modules, and VR (Virtual Reality)/AR (Augmented Reality) , augmented reality) optical modules, etc.
  • an optical module is assembled from a plurality of optical components and other components.
  • the camera module can be assembled from components such as an image sensor, a lens holder, a plurality of lenses, and a circuit board.
  • the assembly accuracy of the lens plays a decisive role in the optical performance of the optical module.
  • aspects of the present invention provide an optical module assembly apparatus and method for improving assembly efficiency while ensuring assembly precision of an optical module.
  • the invention provides an optical module assembly device, comprising:
  • the work table is provided with a conveying device, and the conveying device is provided with a plurality of fixing members that can follow the movement of the conveying device; wherein, the working positions of two adjacent mechanical components of the plurality of mechanical components The positional relationship between the two is determined by the positional relationship between two adjacent ones of the plurality of fixing members;
  • the controller is configured to control the movement of the conveying device, control the stopping of the conveying device every time the conveying device moves a set distance, and control the movement of the plurality of mechanical components to the movement when the conveying device stops
  • the fixing members at the respective working positions perform corresponding operations
  • the plurality of mechanical components are configured to perform respective operations on the fixtures that are moved to the respective working positions under the control of the controller.
  • the plurality of mechanical components include: a robot, an alignment mechanism, a power supply component, a first image capture device, and a dispensing mechanism; the robot for moving to a working position of the robot Disposing an optical component to be assembled on the fixing member; the dispensing mechanism for performing a dispensing operation on the optical component to be assembled moving to a working position of the dispensing mechanism; the alignment mechanism for moving to The optical component to be assembled at the working position of the alignment mechanism places the lens to be assembled to obtain an optical module to be aligned, and adjusts the position of the lens to be assembled according to an alignment instruction of the controller; Providing power to the optical component to be assembled moving to the working position of the alignment mechanism to image the optical module to be aligned; the first image capturing device for collecting the to-be-aligned The spot imaged by the optical module is fed back to the controller; the controller is configured to generate an alignment command according to the quality of the spot and output to the alignment mechanism.
  • the workbench is provided with a power component assembly mechanism for transmitting the output end of the power component to the optical to be assembled moving to the working position of the alignment mechanism The power input of the piece.
  • the alignment mechanism includes: a first robot arm electrically connected to the controller, and an alignment head disposed on the first robot arm; the alignment head includes: a vacuum nozzle or Adjusted mechanical clamping head.
  • the alignment mechanism further includes: an integration mechanism; the integration mechanism is coupled to the first robot arm and configured to integrate a plurality of alignment heads on the first robot arm.
  • the dispensing mechanism includes a second robot arm electrically connected to the controller, and a UV dispensing syringe fixed to the second robot arm.
  • the dispensing mechanism further includes: a second image capturing device fixed on the second robot arm.
  • the alignment mechanism is provided with a UV lamp electrically connected to the controller.
  • each of the plurality of fixing members is provided with a sensor for detecting whether the optical member to be assembled is placed on the fixing member.
  • the transfer device comprises a turntable or a conveyor.
  • the invention also provides an assembly method suitable for the optical module assembly device provided by the invention, comprising:
  • the conveyor is controlled to move when the plurality of mechanical components complete their respective operations.
  • controlling the plurality of mechanical components to perform corresponding operations on the fixtures moved to the respective working positions including: controlling the robot to place the optical components to be assembled to the fixtures at the working position of the robot; and, controlling a dispensing mechanism performs a dispensing operation on the optical component to be assembled that moves to a working position of the dispensing mechanism; and controls the power supply assembly to supply power to the optical component to be assembled moving to the working position of the alignment mechanism, and the control station Aligning mechanism places the lens to be assembled with the optical component to be assembled to obtain an optical module to be aligned, and controls the alignment mechanism to adjust the position of the lens to be assembled according to the alignment instruction; and controls the first image
  • the collecting device collects the spot imaged by the optical module to be aligned and generates the alignment command according to the quality of the spot and outputs the alignment command to the alignment mechanism.
  • the method further includes: setting, by using the fixing members, any one of the plurality of fixing members The sensor detects whether the optical component to be assembled is placed on the fixture.
  • controlling the dispensing mechanism to perform a dispensing operation on the optical component to be assembled that is moved to the working position of the dispensing mechanism comprises: acquiring motion through the second image capturing device in the dispensing mechanism a real-time image of the optical component to be assembled at a working position of the dispensing mechanism; determining a dispensing position according to the real-time image; controlling the second mechanical arm to drive the UV syringe according to the dispensing position Dispensing operation.
  • the method further includes: when the quality of the spot meets a set quality requirement, lighting is located in the alignment
  • the UV lamp on the mechanism illuminates the dispensing portion of the optical component to be assembled to fix the lens to be assembled to obtain an optical module.
  • the fixing member on the conveying device follows the movement of the conveying device, and the plurality of mechanical components for active alignment of the optical module can be multi-station when the movement of the fixing member is stopped. At the same time, corresponding operations are performed on the fixing members that are moved to the respective working positions. Furthermore, with the movement of the conveying device, the fixing member can sequentially enter each assembly operation step, and the plurality of mechanical components can also perform corresponding operations on the fixing members that are moved to the working position thereof in turn, thereby ensuring the assembly precision of the optical module. At the same time, improve assembly efficiency.
  • FIG. 1a is a schematic structural diagram of an optical module assembly apparatus according to an embodiment of the present invention.
  • 1b is a schematic diagram of a corresponding relationship between a working position of a plurality of mechanical components and a plurality of fixing members according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of an optical module assembly apparatus according to another embodiment of the present invention.
  • FIG. 3a is a schematic structural diagram of an alignment mechanism 122 according to an embodiment of the present invention.
  • FIG. 3b is another schematic structural diagram of an alignment mechanism 122 according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural view of a dispensing mechanism 125 according to an embodiment of the invention.
  • FIG. 5 is a flowchart of a method for assembling an optical module according to an embodiment of the present invention.
  • FIG. 6 is a flowchart of a method for assembling an optical module according to another embodiment of the present invention.
  • the optical module refers to a complete product after alignment and fixing;
  • the optical module to be aligned refers to an optical module during assembly, and It may be in a misaligned state or in an aligned state.
  • the optical component to be assembled refers to the semi-finished product of the optical module.
  • the lens to be assembled needs to be assembled at its designated position and fixed before the optical mode can be obtained. group.
  • FIG. 1 is a schematic structural diagram of an optical module assembly apparatus according to an embodiment of the present invention. Referring to FIG. 1a, the apparatus includes:
  • the table 10 is provided with a conveying device 13 which is provided with a plurality of fixing members 130 which are movable in accordance with the movement of the conveying device 13.
  • the fixing member may be a vacuum holding member or a size adjustable jig.
  • the fixture can secure the optics to be assembled placed thereon, ensuring that the optical assembly to be assembled is accurately placed at a designated location on the conveyor and that the smoothness of the optics to be assembled during movement of the conveyor 13 is ensured.
  • the conveying device 13 in the form of a turntable is illustrated in Fig. 1, and the conveying device in the form of a turntable is relatively compact.
  • the conveyor 13 can also be a conveyor, such as a linearly moving conveyor belt or the like.
  • the delivery devices provided by the examples of the present invention include, but are not limited to, a turntable and a conveyor, and may include other movable transport mechanisms.
  • each of the plurality of mechanical components 120 has its own working position, and the positional relationship between the working positions of the adjacent two mechanical components may be between two adjacent fixing members of the plurality of fixing members 130.
  • the positional relationship is determined.
  • the positional relationship may be represented by a distance or an angle.
  • the distance between the working positions of two adjacent mechanical components is an integral multiple of the distance between two adjacent fixtures.
  • the distance between the adjacent two fixing members is 10 cm
  • the distance between the working positions of the adjacent two mechanical components may be 20 cm, 30 cm. Or a multiple of 10cm such as 40cm.
  • the angle between the working positions of the two adjacent mechanical components is an integral multiple of the angle between two adjacent ones of the plurality of fixing members 130.
  • the angle between the adjacent two fixing members is 15°
  • the angle between the working positions of the adjacent two mechanical components may be 15°, A multiple of 15° such as 30° or 45°.
  • the angle between two adjacent fixing members is 45°
  • the angle between the working positions of the first mechanical component and the second mechanical component is 45°
  • the working position of the mechanical assembly is at an angle of 90°
  • the angle between the third mechanical component and the working position of the fourth mechanical component is 90°.
  • the controller 11 can control the movement of the conveying device 13, and can control the conveying device 13 to stop each time the conveying device 13 moves the set angle and/or distance.
  • the set angle may be equal to the angle between two adjacent fixing members
  • the set distance may be equal to the distance between two adjacent fixing members.
  • the setting condition is: any one of the fixing member and the plurality of mechanical components 120.
  • the component position corresponds.
  • the plurality of mechanical components 120 may include: a robot 121 , an alignment mechanism 122 , a power component 123 , a first image capture device 124 , and a dispensing mechanism 125 .
  • the robot 121 can place the optics to be assembled onto the fixture that is moved to the working position of the robot 121.
  • the optical component to be assembled may be a semi-finished product of the optical module, and the optical module can be obtained by assembling the optical component to be assembled and the lens to be assembled.
  • the robot 121 may include a mechanical arm and a vacuum holder or clamp provided at one end of the robot arm. Wherein, the mechanical arm can perform three-axis or six-axis movement under the motion instruction of the controller 11, and the vacuum holding member or the clamp can grasp the optical component to be assembled from the loading frame of the optical component to be assembled.
  • the alignment mechanism 122 can place the lens to be assembled at a specified position of the optical component to be assembled at the working position of the alignment mechanism 122 to obtain the optical module to be aligned, and according to The alignment command of the controller 11 is moved to adjust the position of the lens to be assembled.
  • the alignment mechanism 122 includes: a first robot arm electrically connected to the controller 11, and an alignment head disposed on the first robot arm.
  • the alignment head may be a vacuum nozzle or an adjustable mechanical clamping head, which is not limited in the present invention.
  • two or more optical lenses need to be assembled into the optical component to be assembled.
  • One possible way is to assemble the chips one by one.
  • One possible way is to assemble multiple pieces at the same time. When multiple pieces are assembled at the same time, a plurality of alignment heads are required to respectively hold the lenses to be assembled.
  • the alignment mechanism 122 further includes an integrated mechanism.
  • the integrated mechanism is coupled to the first robot arm and is configured to integrate a plurality of alignment heads on the first robot arm.
  • the first robot arm can perform three-axis motion in the X, Y, and Z directions according to the control command of the controller 11, and the plurality of alignment heads on the integrated mechanism can also independently perform the X, Y, and Z directions.
  • the first robot arm can move the lens to be assembled from the loading rack to the working position of the alignment mechanism 122, and the plurality of alignment heads on the integrated mechanism can respectively place the captured lens to be assembled to its theoretical position.
  • the first robot arm and the plurality of alignment heads on the integrated mechanism can also perform six-axis motion (X, Y, Z, ⁇ X, ⁇ Y, and ⁇ Z) under the control command of the controller 11 or even other multi-axis required.
  • the embodiment of the present invention does not limit this.
  • the dispensing mechanism 125 can perform a dispensing operation to the optics to be assembled that are moved to the working position of the dispensing mechanism 125.
  • the dispensing mechanism 125 can drop a specific glue onto the optical component to be assembled by applying, potting or dripping, so that the dispensing has a certain viscosity, and then the lens is aligned after being assembled. The lens to be assembled finally obtains the finished optical module.
  • the dispensing mechanism 125 can perform a dispensing operation before or after alignment of the lens to be assembled, and the embodiment does not limit its order.
  • the dispensing mechanism 125 includes a second robot arm electrically connected to the controller, and a UV dispensing syringe fixed to the second robot arm.
  • the second robot arm can drive the UV dispensing syringe to the designated dispensing position under the control of the controller 11, and perform the dispensing operation by the UV dispensing syringe.
  • UV (Ultraviolet Rays) glue is stored in the UV dispensing syringe, that is, the shadowless glue, also known as photosensitive glue or ultraviolet curing glue, which has high adhesion and rapid curing, and can indirectly improve the assembly efficiency of the optical module.
  • a second image capturing device is also fixed on the second robot arm.
  • the second image capture device may take an actual image of the optical component to be assembled before dispensing and send the captured image to the controller 11.
  • the controller 11 performs identification based on the received image, determines the dispensing location, and sends a specific dispensing command to the dispensing mechanism 125.
  • a UV lamp may be disposed on the alignment mechanism 122, and the UV lamp is electrically connected to the controller 11 and can receive a curing instruction of the controller 11 to illuminate after the lens to be assembled is aligned. To accelerate the curing of UV glue and improve the assembly efficiency of the optical module.
  • the power supply assembly 123 can supply power to the optics to be assembled that are moved to the working position of the alignment mechanism 122 to image the optical module to be aligned.
  • a light source device such as a semi-finished product of the micro-projection module, is disposed in some of the optical components to be assembled. After the light source device is lit, it can be imaged on the image side of the optical module to be aligned.
  • a power component transfer mechanism can be provided on the workbench. The power module transfer mechanism can transfer the output of the power pack to a power input of the optics to be assembled that is moved to the working position of the alignment mechanism.
  • the optical module assembling device provided in this embodiment further includes a light source device.
  • the light source device is located on the object side of the optical module to be aligned, and the parallel light can be generated to make the optical mode to be aligned. Group imaging.
  • the light source device can be connected to the power supply component, and the switch state can be controlled by the controller.
  • the first image capturing device 124 can collect the spot imaged by the optical module to be aligned and feed back to the controller 11. It should be noted that the first image capturing device 124 can be disposed in the standard light-emitting direction of the optical module that the target wants to assemble, and the first image capturing device is in the process of continuously adjusting the position of the lens to be assembled to achieve the alignment. The spotted light is only worthy of reference.
  • the controller 11 may generate an alignment instruction according to the quality of the spot returned by the first image acquisition device 124 and output the alignment instruction to the alignment mechanism 122.
  • the imaging quality of the spot can include the position of the spot and the size of the spot. By analyzing the spot quality and the spot size, it can be judged whether the lens to be assembled is aligned.
  • each of the fixing members may be provided with a sensor for detecting whether the optical member to be assembled is placed on the fixing member.
  • a pressure sensor can be provided at the bottom of the fixture, and if the optics to be assembled are placed on the fixture, the pressure sensor can detect a pressure change and send the pressure change to the controller 11.
  • an infrared or ultrasonic sensor may be provided on the fixture, and if the optical component to be assembled is placed on the fixture, the infrared or ultrasonic sensor may detect a change in the time difference of the transmitted and received signals and send the change to the controller 11.
  • the control 11 can determine whether there is an optical component to be assembled on the fixing member according to the signal sent by the above sensor, thereby generating a corresponding working instruction to avoid the empty operation of the mechanical component.
  • the optical member to be assembled has been placed on the fixing member moved to the working position of the robot 121, and the controller 11 can send a stop operation instruction to the robot 121 to avoid repeated work.
  • the controller 11 can send a stop operation instruction to the dispensing mechanism 125 to prevent the dispensing mechanism 125 from being in the empty fixing member. Dispensing.
  • the plurality of mechanical components 120 include the manipulator 121, the alignment mechanism 122, the power source assembly 123, the first image capturing device 124, and the dispensing mechanism 125 described above, but are not limited to the mechanical components described above. That is to say, the optical module assembly apparatus provided by the present invention may further include other required mechanical components, for example, a blanking robot, and the blanking robot can transfer the optical module from the fixing member to the optical module after obtaining the optical module. Cutting area.
  • the product labeling component can be attached to the assembled optical module.
  • the fixing member on the conveying device follows the movement of the conveying device, and the plurality of mechanical components for active alignment of the optical module can simultaneously move to the respective working positions when the movement of the fixing member is stopped.
  • the fixtures perform the corresponding operations.
  • the fixing member can sequentially enter each assembly operation step, and the plurality of mechanical components can also perform corresponding operations on the fixing members that are moved to the working position thereof in turn, thereby ensuring the assembly precision of the optical module. At the same time, improve assembly efficiency.
  • the first image acquisition device captures the imaging spot in real time during the alignment process, and adjusts the position of the lens to be assembled according to the quality of the imaging spot, thereby effectively reducing the assembly tolerance of the entire optical module and improving the optical The assembly accuracy of the module effectively ensures the optical performance of the optical module.
  • FIG. 5 is a flowchart of a method for assembling an optical module according to an embodiment of the present invention. Referring to FIG. 5, the method includes:
  • Step 501 Control the conveyor to stop moving when the conveyor moves the set angle and/or distance.
  • Step 502 Control a plurality of mechanical components to perform corresponding operations on the fixtures that are moved to the respective working positions.
  • Step 503 Control the transmitting device to perform motion when the plurality of mechanical components complete respective operations.
  • the set angle can be determined by the angle between the plurality of fixtures on the conveyor. For example, if the angle between the plurality of fixing members on the conveyor is 45°, then the movement angle of the conveyor can be set to 45° each time.
  • the set distance can be determined by the distance between the plurality of fixtures on the conveyor. For example, if the distance between the plurality of fixing members on the conveying device is 10 cm, then the movement angle of the conveying device can be set to be 10 cm each time.
  • the plurality of mechanical components can include a robot, an alignment mechanism, a power supply assembly, a first image capture device, and a dispensing mechanism.
  • Controlling a plurality of mechanical components to perform corresponding operations on the fixtures moved to the respective working positions may include the following operations: controlling the robot to place the optical components to be assembled to the fixtures at the working position of the robot to the robot; and controlling the dispensing mechanism to Moving to the optical component to be assembled at the working position of the dispensing mechanism to perform a dispensing operation; and controlling the power supply assembly to supply power to the optical component to be assembled moving to the working position of the alignment mechanism, and controlling the alignment mechanism to the standby Assembling the optics to place the lens to be assembled to obtain the optical module to be aligned, and adjusting the position of the lens to be assembled according to the alignment instruction; and controlling the first image acquisition device to collect the image spot of the optical module to be aligned and The alignment command is generated based on the quality of the spot and output to the alignment mechanism.
  • whether the optical components to be assembled are placed on the fixing component may be detected by a sensor disposed on each fixing component. According to the detection result, a corresponding work instruction is issued to the mechanical component corresponding to the working position of the fixing member, for example, a start operation instruction or a stop operation instruction.
  • the transport device can be controlled to move again to send the fixing member at the current working position to the next working position, and fix the previous working position.
  • the piece is connected to the current job location.
  • the fixing member on the conveying device follows the movement of the conveying device, and the plurality of mechanical components for active alignment of the optical module can simultaneously move to the respective working positions when the movement of the fixing member is stopped.
  • the fixtures perform the corresponding operations.
  • the fixing member can sequentially enter each assembly operation step, and the plurality of mechanical components can also perform corresponding operations on the fixing members that are moved to the working position thereof in turn, thereby ensuring the assembly precision of the optical module. At the same time, improve assembly efficiency.
  • FIG. 6 is a flow chart of a method for assembling an optical module according to another embodiment of the present invention. The following is a detailed description of the optical module assembly method provided by the embodiment of the present invention with reference to FIG. 6 , taking any one of the plurality of fixing members as an example. For ease of description, any of the fasteners is labeled as a first fastener. As shown in FIG. 6, the method includes:
  • Step 601 When the first fixing member moves to the working position of the robot, the control conveying device stops moving, and controls the robot to place the optical component to be assembled to the first fixing member.
  • Step 602 Control the conveying device to move after the placement is completed, and control the conveying device to stop moving when the first fixing member moves to the working position of the dispensing mechanism.
  • Step 603 Control the dispensing mechanism to point the UV glue at a specific position on the optical component to be assembled on the first fixing member.
  • Step 604 Control the conveying device to move after finishing the UV glue, and control the conveying device to stop moving when the first fixing member moves to the working position of the alignment mechanism.
  • Step 605 Control the power component to supply power to the optical component to be assembled on the first fixture.
  • Step 606 Control the alignment mechanism to place the lens to be assembled on the optical component to be assembled on the first fixing member to obtain an optical module to be aligned.
  • Step 607 Control the first image capturing device to collect the spot imaged by the optical module to be aligned on the first fixing component.
  • Step 608 Determine whether the quality of the spot meets the preset quality requirement; if not, perform step 609, and if yes, perform step 610.
  • Step 609 Generate an alignment instruction according to the quality of the spot, and control the alignment mechanism to adjust the position of the lens to be assembled according to the alignment instruction, and execute step 607.
  • Step 610 Control the UV lamp located on the alignment mechanism to illuminate to accelerate the curing of the UV glue to obtain an assembled optical module.
  • step 603 the dispensing operation is performed first, and after the dispensing is completed, the process proceeds to step 604 to start the alignment operation.
  • the present invention does not limit the order of dispensing and alignment.
  • the alignment process can be performed first, after the end of the alignment (the spot meets the set quality requirements), and then dispensed.
  • the optical component to be assembled may be obtained through the second image capturing device in the dispensing mechanism.
  • Real-time image according to the real-time image, determine the dispensing position, and according to the dispensing position, control the second mechanical arm in the dispensing mechanism to drive the UV syringe to perform the dispensing operation.
  • the first image acquisition device feeds back the quality of the imaging spot in real time
  • the controller generates an alignment instruction in real time according to the quality of the spot
  • the alignment mechanism adjusts the lens to be assembled according to the alignment instruction.
  • the position, and when the quality of the spot meets the set quality requirements, the lens to be assembled is fixed to obtain the optical module.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Robotics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lens Barrels (AREA)
  • Eyeglasses (AREA)

Abstract

一种光学模组组装设备及方法,设备包括工作台(10),控制器(11)和用于光学模组的主动对准的多个机械组件(120);工作台(10)上设有传送装置(13),传送装置(13)上均匀设置多个固定件(130),多个机械组件(120)在控制器(11)的控制下对运动到各自作业位置处的固定件(130)执行相应操作。

Description

光学模组组装设备及方法
交叉引用
本申请引用于2017年10月17日递交的名称为“光学模组组装设备及方法”的第2017109656490号中国专利申请,其通过引用被全部并入本申请。
技术领域
本发明涉及装配技术领域,尤其涉及一种光学模组组装设备及方法。
背景技术
现如今,市场上存在越来越多的具备独立功能的光学模组,以满足多样化的市场需求。这些光学模组可以嵌入到其他设备中发挥其功能,例如摄像头模组、微型投影模组、LED(Light Emitting Diode,发光二极管)光学模组以及VR(Virtual Reality,虚拟现实)/AR(Augmented Reality,增强现实)光学模组等。
通常,光学模组由多个光学元件以及其他零件组装得到。例如,摄像头模组可由图像传感器、镜座、多个镜片、线路板等零配件组装得到。其中,镜片的组装精度对光学模组的光学性能起到决定性的作用。
但是,现有技术中光学模组的组装方式无法兼顾组装精度以及组装效率。
发明内容
本发明的多个方面提供一种光学模组组装设备及方法,用以在保证光学模组的组装精度的同时,提升组装效率。
本发明提供一种光学模组组装设备,包括:
工作台,控制器以及用于光学模组的主动对准的多个机械组件;
所述工作台上设有传送装置,所述传送装置上匀设有可跟随所述传送装置运动的多个固定件;其中,所述多个机械组件中相邻两个机械组件的作业 位置之间的位置关系,由所述多个固定件中相邻两个固定件之间的位置关系确定;
所述控制器,用于控制所述传送装置运动,每当所述传送装置运动设定距离后控制所述传送装置停止,以及在所述传送装置停止时控制所述多个机械组件对运动到各自作业位置处的固定件执行相应操作;
所述多个机械组件用于在所述控制器的控制下对运动到各自作业位置处的固定件执行相应操作。
进一步可选地,所述多个机械组件包括:机械手、对准机构、电源组件、第一图像采集设备、以及点胶机构;所述机械手,用于向运动到所述机械手的作业位置处的固定件上放置待组装光学件;所述点胶机构,用于向运动到所述点胶机构的作业位置处的待组装光学件执行点胶操作;所述对准机构,用于向运动到所述对准机构的作业位置处的待组装光学件放置待组装镜片以得到待对准光学模组,并根据所述控制器的对准指令调整所述待组装镜片的位置;所述电源组件,用于向运动到所述对准机构的作业位置处的待组装光学件供电,以使所述待对准光学模组成像;所述第一图像采集设备,用于采集所述待对准光学模组成像的光斑并反馈给所述控制器;所述控制器,用于根据所述光斑的质量生成对准指令并输出给所述对准机构。
进一步可选地,所述工作台上设有电源组件传送机构;所述电源组件传送机构用于将所述电源组件的输出端传送至运动到所述对准机构的作业位置处的待组装光学件的电源输入端。
进一步可选地,所述对准机构包括:与所述控制器电连接的第一机械臂,以及设于所述第一机械臂上的对准头;所述对准头包括:真空吸头或可调节的机械夹持头。
进一步可选地,所述对准机构还包括:集成机构;所述集成机构与所述第一机械臂连接,且用于在所述第一机械臂上集成多个对准头。
进一步可选地,所述点胶机构包括:与所述控制器电连接的第二机械臂,以及固定在所述第二机械臂上的UV点胶针筒。
进一步可选地,所述点胶机构还包括:固定在所述第二机械臂上的第二图像采集设备。
进一步可选地,所述对准机构上设有与所述控制器电连接的UV灯。
进一步可选地,所述多个固定件中的每一固定件上均设有用于检测所述固定件上是否放置待组装光学件的传感器。
进一步可选地,所述传送装置包括:转盘或输送机。
本发明还提供一种适用于本发明提供的光学模组组装设备的组装方法,包括:
在传送装置运动设定的距离时,控制所述传送装置停止运动;
控制多个机械组件对运动到各自作业位置处固定件执行相应操作;
在所述多个机械组件完成各自对应的操作时,控制所述传送装置进行运动。
进一步可选地,控制多个机械组件对运动到各自作业位置处的固定件执行相应操作,包括:控制机械手向运动到所述机械手的作业位置处的固定件放置待组装光学件;以及,控制点胶机构向运动到所述点胶机构的作业位置处的待组装光学件进行点胶操作;以及,控制电源组件向运动到对准机构的作业位置处的待组装光学件供电,以及控制所述对准机构向所述待组装光学件放置待组装镜片以得到待对准光学模组,并控制所述对准机构根据对准指令调整所述待组装镜片的位置;以及,控制第一图像采集设备采集所述待对准光学模组成像的光斑并根据所述光斑的质量生成所述对准指令并输出给所述对准机构。
进一步可选地,控制多个机械组件对运动到各自作业位置处的固定件执行相应操作之前,还包括:针对所述多个固定件中的任一固定件,通过所述固定件上设置的传感器检测所述固定件上是否放置待组装光学件。
进一步可选地,控制点胶机构向运动到所述点胶机构的作业位置处的待组装光学件进行点胶操作,包括:通过所述点胶机构中的第二图像采集设备,获取运动到所述点胶机构的作业位置处的所述待组装光学件的实时图像;根 据所述实时图像,确定点胶位置;根据所述点胶位置,控制所述第二机械臂带动UV针筒进行点胶操作。
进一步可选地,根据所述光斑的质量生成所述对准指令并输出给所述对准机构之后还包括:在所述光斑的质量满足设定的质量要求时,点亮位于所述对准机构上的UV灯对所述待组装光学件的点胶处进行照射,以固定所述待组装镜片得到光学模组。
在本发明提供的光学模组组装设备及方法中,传送装置上的固定件跟随传送装置运动,用于光学模组的主动对准的多个机械组件可在固定件运动停止时,多工位同时对运动到各自作业位置处的固定件执行相应操作。进而,随着传送装置的运动,固定件可依次进入每一个组装操作环节,多个机械组件也可依次对运动到其作业位置的固定件执行相应操作,进而在保证光学模组的组装精度的同时,提升组装效率。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1a为本发明一实施例提供的光学模组组装设备的结构示意图;
图1b为本发明一实施例提供的多个机械组件的作业位置与多个固定件的对应关系示意图;
图2为本发明另一实施例提供的光学模组组装设备的结构示意图;
图3a为本发明实施例提供的对准机构122的一结构示意图;
图3b为本发明实施例提供的对准机构122的另一结构示意图;
图4为发明实施例提供的点胶机构125的一结构示意图;
图5为本发明一实施例提供的光学模组组装方法的方法流程图;
图6为本发明另一实施例提供的光学模组组装方法的方法流程图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明具体实施例及相应的附图对本发明技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,在本发明的下述实施例中,光学模组指的是对准完成并固定后的完整产品;待对准光学模组,指的是组装过程中的光学模组,其可能处于未对准状态,也可能处于已对准状态;待组装光学件,指的是光学模组的半成品,需要将待组装镜片对准组装在其指定的位置并固定后才能够得到光学模组。以下所提到的上述概念,可参照上述解释进行理解,不再赘述。
图1a为本发明一实施例提供的光学模组组装设备的结构示意图,结合图1a,该设备包括:
工作台10,控制器11以及用于光学模组的主动对准的多个机械组件120。
工作台10上设有传送装置13,传送装置13上匀设有可跟随传送装置13运动的多个固定件130。其中,固定件可以是真空吸持件或可尺寸调节的夹具。固定件可固定放置于其上的待组装光学件,确保待组装光学组件精确地放置在传送装置上的指定的位置处,并确保传送装置13运动过程中待组装光学件的平稳性。
图1中示意了以转盘形式存在的传送装置13,转盘形式的传送装置结构较为紧凑。可选的,传送装置13还可以是输送机,例如直线运动的传送带等。应当理解,本发明实例提供的传送装置包含但不仅限于转盘和输送机,还可包括其他可运动的输送机构。
其中,多个机械组件120中,每个机械组件都有各自的作业位置,相邻两个机械组件的作业位置之间的位置关系,可由多个固定件130中相邻两个固定件之间的位置关系确定。在本实施例中,可选的,可以用距离或夹角来 表示位置关系。
在一可行的实施方式中,相邻两个机械组件的作业位置之间的距离,是相邻两个固定件之间的距离的整数倍。例如,当多个固定件130设于直线运动的传送带上时,若相邻的两个固定件的距离为10cm,则相邻的两个机械组件的作业位置之间的距离可以为20cm、30cm或40cm等10cm的倍数。
在另一可行的实施方式中,相邻两个机械组件的作业位置之间的夹角,是多个固定件130中相邻两个固定件之间的夹角的整数倍。例如,当多个固定件130设于转盘上时,若相邻的两个固定件的夹角为15°,则相邻的两个机械组件的作业位置之间的夹角可以为15°、30°或45°等15°的倍数。如图1b所示,在图1b中,相邻两个固定件的夹角为45°,第一机械组件与第二机械组件的作业位置的夹角为45°;第二机械组件与第三机械组件的作业位置的夹角为90°;第三机械组件与第四机械组件的作业位置的夹角为90°。上述实施方式可以确保多工位能够同时工作,奠定了高效率光学模组组装的基础。
在本实施例提供的设备中,控制器11,可控制传送装置13运动,每当传送装置13运动设定角度和/或距离后,可控制传送装置13停止。其中,所述设定的角度可以与相邻两个固定件的夹角相等,所述设定的距离可以与相邻两个固定件的之间的距离相等。进而,传送装置13以设定的角度和/或距离进行一次运动后,传送装置13停止时,多个机械组件120的作业位置处可对应一固定件,控制器11可控制多个机械组件120对运动到各自作业位置处的固定件执行相应操作。
需要说明的是,在本实施例中,开始运动时,传送装置13上存在至少一个满足如下设定条件的固定件,该设定条件为:固定件与多个机械组件120中的任意一个机械组件位置对应。采用上述实施方式,能够确保传送装置13每一次运动设定角度和/或距离之后停止时,多个机械组件120中的每一机械组件的作业位置处都对应一固定件。进而,机械组件可在控制器11的控制下对运动到各自作业位置处的固定件执行相应操作。
可选的,如图2所示,多个机械组件120可包括:机械手121、对准机构122、电源组件123、第一图像采集设备124、以及点胶机构125。
在一可选实施方式中,机械手121,可向运动到机械手121的作业位置处的固定件上放置待组装光学件。其中,待组装光学件可以是光学模组的半成品,通过组装待组装光学件和待组装镜片可得到光学模组。机械手121可包括机械臂以及设于机械臂一端的真空吸持件或夹具。其中,该机械臂可在控制器11的运动指令下进行三轴或六轴的运动,真空吸持件或夹具可以从待组装光学件的上料架中抓取待组装光学件。
在一可选实施方式中,对准机构122,可向运动到对准机构122的作业位置处的待组装光学件的指定位置处放置待组装镜片,以得到待对准光学模组,并根据控制器11的对准指令进行运动以调整该待组装镜片的位置。其中,对准机构122包括:与控制器11电连接的第一机械臂,以及设于第一机械臂上的对准头。对准头可以是真空吸头或可调节的机械夹持头,本发明不做限制。
可选的,在一可能的情形下,需要向待组装光学件中组装两片甚至两片以上的光学镜片,一种可行的方式是逐片组装,一种可行的方式是多片同时组装。多片同时组装时,需要多个对准头分别夹持待组装镜片。
为满足同时组装多个待组装镜片的需求,如图3a以及图3b所示,对准机构122还包括:集成机构。集成机构与第一机械臂连接,且用于在第一机械臂上集成多个对准头。在上述实施方式中,第一机械臂可根据控制器11的控制指令进行X、Y、Z方向上的三轴运动,集成机构上的多个对准头也可独立进行X、Y、Z方向上的三轴运动。第一机械臂可将待组装镜片从上料架搬移至对准机构122的作业位置,集成机构上的多个对准头可分别将所抓取的待组装镜片放置到其理论位置。当然,第一机械臂以及集成机构上的多个对准头也可以在控制器11的控制指令下进行六轴运动(X,Y,Z,θX,θY,及θZ)甚至所需的其他多轴运动,本发明实施例对此不作限制。
在一可选实施方式中,点胶机构125,可向运动到点胶机构125的作业位置处的待组装光学件执行点胶操作。在点胶操作中,点胶机构125可将特定 的胶水通过涂抹、灌封或点滴的方式滴到待组装光学件上,使得点胶处具有一定粘性,进而在待组装镜片对准后,固定该待组装镜片,最终得到光学模组成品。点胶机构125可以在待组装镜片对准之前或对准之后执行点胶操作,本实施例对其顺序不做限制。
在本实施例中,如图4所示,点胶机构125包括:与控制器电连接的第二机械臂,以及固定在第二机械臂上的UV点胶针筒。第二机械臂可在控制器11的控制下,带动UV点胶针筒至指定的点胶位置,并由UV点胶针筒执行点胶操作。其中,UV点胶针筒中存放有UV(Ultraviolet Rays)胶,即无影胶,又称光敏胶或紫外光固化胶,其粘结度高,固化迅速,可间接提升光学模组的组装效率。
可选的,如图4所示,为确保点胶机构125能够在正确的位置点胶,第二机械臂上还固设有第二图像采集设备。第二图像采集设备可在点胶之前拍摄待组装光学件的实际图像,并将拍摄到的图像发送至控制器11。控制器11根据接收到的图像进行识别,确定点胶处并发送具体的点胶指令至点胶机构125。
可选的,本实施例中还可在对准机构122上设一UV灯,该UV灯与控制器11电连接,并且可接收控制器11的固化指令,在待组装镜片对准后点亮,以加速UV胶的固化,提升光学模组的组装效率。
在一可选实施方式中,电源组件123,可向运动到对准机构122的作业位置处的待组装光学件供电,以使待对准光学模组成像。可选的,根据光学模组的性能不同,在一些待组装光学件中设有光源设备,例如微投影模组的半成品。光源设备点亮后,可在待对准光学模组的像方成像。为点亮待组装光学件的光源设备,可在工作台上设电源组件传送机构。该电源组件传送机构可将电源组件的输出端传送至运动到对准机构的作业位置处的待组装光学件的电源输入端。
应当理解的是,针对不设有光源设备的待组装光学件,例如摄像头模组的半成品,为使这类待组装光学件成像,本实施例提供的光学模组组装设备 还包括一光源设备。可选的,针对运动到对准机构的作业位置处的固定件上的待对准光学模组,光源设备位于该待对准光学模组的物方,可产生平行光使得待对准光学模组成像。该光源设备可与电源组件连接,其开关状态可由控制器进行控制。
在一可选实施方式中,第一图像采集设备124,可采集待对准光学模组成像的光斑并反馈给控制器11。需要说明的是,第一图像采集设备124可设于目标想要组装得到的光学模组的标准出光方向,进而在不断调整待组装镜片的位置以实现对准的过程中,第一图像采集设备124拍摄到的光斑才具有可参考的价值。
在一可选实施方式中,控制器11,可根据第一图像采集设备124反馈的光斑的质量生成对准指令并输出给对准机构122。光斑的成像质量,可包括光斑的位置以及光斑的大小,通过分析光斑质量以及光斑大小可判断待组装镜片是否已对准。
需要说明的是,可选的,在多个固定件130中,每一固定件均可设用于检测该固定件上是否放置待组装光学件的传感器。例如,可在固定件的底部设压力传感器,若固定件上已放置待组装光学件,则压力传感器可检测到压力变化并将该压力变化发送至控制器11。例如,可在固定件上设红外或超声波传感器,若固定件上已放置待组装光学件,则红外或超声波传感器可检测到收发信号的时间差的改变,并将该改变发送至控制器11。控制11可根据上述传感器发送的信号判断固定件上是否有待组装光学件,进而可生成相应的作业指令,避免机械组件产生空操作。
例如,运动到机械手121的作业位置处的固定件上已经放置了待组装光学件,此时控制器11可向机械手121发送停止作业指令,以避免重复作业。再例如,运动到点胶机构125的作业位置处的固定件上没有待组装光学件,此时控制器11可向点胶机构125发送停止作业指令,以避免点胶机构125在空的固定件上点胶。
需要说明的是,多个机械组件120包含上述记载的机械手121、对准机构 122、电源组件123、第一图像采集设备124、以及点胶机构125,但并不仅限于上述记载的机械组件。也就是说,本发明提供的光学模组组装设备还可包括其他所需要的机械组件,例如,下料机械手,下料机械手可在得到光学模组之后,将光学模组从固定件上转移至下料区。再例如,产品贴标组件,可在装配得到的光学模组上粘贴产品标签。
在本实施例中,传送装置上的固定件跟随传送装置运动,用于光学模组的主动对准的多个机械组件可在固定件运动停止时,多工位同时对运动到各自作业位置处的固定件执行相应操作。进而,随着传送装置的运动,固定件可依次进入每一个组装操作环节,多个机械组件也可依次对运动到其作业位置的固定件执行相应操作,进而在保证光学模组的组装精度的同时,提升组装效率。
除此之外,采用第一图像采集设备在对准的过程中实时拍摄成像光斑,并根据成像光斑的质量调整待组装镜片的位置,可有效减小整个光学模组的装配公差,提升了光学模组的组装精度,有效确保了光学模组的光学性能。
图5是本发明一实施例提供的光学模组组装方法的方法流程图,结合图5,该方法包括:
步骤501、在传送装置运动设定的角度和/或距离时,控制所述传送装置停止运动。
步骤502、控制多个机械组件对运动到各自作业位置处固定件执行相应操作。
步骤503、在所述多个机械组件完成各自对应的操作时,控制所述传送装置进行运动。
在步骤501中,该设定的角度,可以由传送装置上的多个固定件之间的夹角确定。例如,传送装置上的多个固定件之间的夹角为45°,那么可设定传送装置每一次的运动角度为45°。该设定的距离,可以由传送装置上的多个固定件之间的距离确定。例如,传送装置上的多个固定件之间的距离为 10cm,那么可设定传送装置每一次的运动角度为10cm。
在步骤502中,多个机械组件可包括机械手、对准机构、电源组件、第一图像采集设备、以及点胶机构。
控制多个机械组件对运动到各自作业位置处的固定件执行相应操作,可包括如下操作:控制机械手向运动到机械手的作业位置处的固定件放置待组装光学件;以及,控制点胶机构向运动到点胶机构的作业位置处的待组装光学件进行点胶操作;以及,控制电源组件向运动到对准机构的作业位置处的待组装光学件供电,以及控制该对准机构向该待组装光学件放置待组装镜片以得到待对准光学模组,并根据对准指令调整该待组装镜片的位置;以及,控制第一图像采集设备采集该待对准光学模组的成像的光斑并根据光斑的质量生成所述对准指令并输出给所述对准机构。
可选的,在控制多个机械组件对运动到各自作业位置处的固定件执行相应操作之前,本实施例中,可通过每一固定件上设置的传感器检测该固定件上是否放置待组装光学件,根据检测结果向该固定件所在作业位置对应的机械组件下发相应的作业指令,例如启动作业指令或停止作业指令。
应当理解,在存在操作对象的情况下,上述在机械手的作业位置处、点胶机构的作业位置处以及对准机构的作业位置处的操作是同时进行的,以达到较高的组装效率。
在步骤503中,所述多个机械组件完成各自对应的操作时,可控制传送装置再一次运动,以将当前作业位置上的固定件送入下一作业位置,并将上一作业位置的固定件接入当前作业位置。
在本实施例中,传送装置上的固定件跟随传送装置运动,用于光学模组的主动对准的多个机械组件可在固定件运动停止时,多工位同时对运动到各自作业位置处的固定件执行相应操作。进而,随着传送装置的运动,固定件可依次进入每一个组装操作环节,多个机械组件也可依次对运动到其作业位置的固定件执行相应操作,进而在保证光学模组的组装精度的同时,提升组装效率。
图6是本发明另一实施例提供的光学模组组装方法的方法流程图。以下部分将结合图6,以多个固定件中的任一固定件为例,对本发明实施例提供的光学模组组装方法进行具体阐述。为描述方便,将该任一固定件标记为第一固定件。如图6所示,该方法包括:
步骤601、在第一固定件运动到机械手的作业位置处时,控制传送装置停止运动,并控制机械手向第一固定件放置待组装光学件。
步骤602、在放置完成后控制传送装置进行运动,并在第一固定件运动到点胶机构的作业位置处时,控制传送装置停止运动。
步骤603、控制点胶机构在第一固定件上的待组装光学件上的特定位置处点UV胶。
步骤604、在点完UV胶后控制传送装置进行运动,并在第一固定件运动到对准机构的作业位置处时,控制传送装置停止运动。
步骤605、控制电源组件向第一固定件上的待组装光学件供电。
步骤606、控制对准机构向第一固定件上的待组装光学件放置待组装镜片,得到待对准光学模组。
步骤607、控制第一图像采集设备采集第一固定件上的待对准光学模组成像的光斑。
步骤608、判断该光斑的质量是否符合预设的质量要求;若不符合,执行步骤609,若符合,执行步骤610。
步骤609、根据该光斑的质量生成对准指令,并根据对准指令控制对准机构调整待组装镜片的位置,并执行步骤607。
步骤610、控制位于对准机构上的UV灯点亮以加速固化UV胶,得到组装完成的光学模组。
需要说明的是,本实施例仅仅记载了本发明提供的光学模组组装方法的一可选实施方式,并非本发明的全部实施内容。在本实施例中,步骤603中先执行了点胶操作,在点胶完成之后进入步骤604开始执行对准操作,然而 实际执行时,本发明对点胶和对准的顺序并不做限制,可以先执行对准过程,在对准结束(光斑符合设定质量要求)之后,再进行点胶。
可选的,在控制点胶机构向运动到所述点胶机构的作业位置处的待组装光学件进行点胶操作时,可先通过点胶机构中的第二图像采集设备获取待组装光学件的实时图像;根据该实时图像,确定点胶位置,并根据该点胶位置,控制点胶机构中的第二机械臂带动UV针筒进行点胶操作。通过执行上述过程,能够避免点胶位置出现错误,提高了光学模组组装的成品质量。本实施例中,在组装待组装镜片的过程中,第一图像采集设备实时反馈成像光斑的质量,控制器根据光斑的质量实时生成对准指令,对准机构根据对准指令适时调整待组装镜片的位置,并在光斑的质量符合设定的质量要求时,固定待组装镜片得到光学模组。通过这样的组装方式,有效减少了光学模组的装配公差,兼顾了光学模组的组装效率以及组装精度。
另外,在上述实施例及附图中的描述的一些流程中,包含了按照特定顺序出现的多个操作,但是应该清楚了解,这些操作可以不按照其在本文中出现的顺序来执行或并行执行,操作的序号如101、102等,仅仅是用于区分开各个不同的操作,序号本身不代表任何的执行顺序。另外,这些流程可以包括更多或更少的操作,并且这些操作可以按顺序执行或并行执行。需要说明的是,本文中的“第一”、“第二”等描述,是用于区分不同的消息、设备、模块等,不代表先后顺序,也不限定“第一”和“第二”是不同的类型。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、商品或者设备中还存在另外的相同要素。
以上所述仅为本发明的实施例而已,并不用于限制本发明。对于本领域技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原理之 内所作的任何修改、等同替换、改进等,均应包含在本发明的权利要求范围之内。

Claims (15)

  1. 一种光学模组组装设备,其特征在于,包括:
    工作台,控制器以及用于光学模组的主动对准的多个机械组件;
    所述工作台上设有传送装置,所述传送装置上匀设有可跟随所述传送装置运动的多个固定件;其中,所述多个机械组件中相邻两个机械组件的作业位置之间的位置关系,由所述多个固定件中相邻两个固定件之间的位置关系确定;
    所述控制器,用于控制所述传送装置运动,每当所述传送装置运动设定角度和/或距离后控制所述传送装置停止,以及在所述传送装置停止时控制所述多个机械组件对运动到各自作业位置处的固定件执行相应操作;
    所述多个机械组件用于在所述控制器的控制下对运动到各自作业位置处的固定件执行相应操作。
  2. 根据权利要求1所述的设备,其特征在于,所述多个机械组件包括:机械手、对准机构、电源组件、第一图像采集设备、以及点胶机构;
    所述机械手,用于向运动到所述机械手的作业位置处的固定件上放置待组装光学件;
    所述点胶机构,用于向运动到所述点胶机构的作业位置处的待组装光学件执行点胶操作;
    所述对准机构,用于向运动到所述对准机构的作业位置处的待组装光学件放置待组装镜片以得到待对准光学模组,并根据所述控制器的对准指令调整所述待组装镜片的位置;
    所述电源组件,用于向运动到所述对准机构的作业位置处的待组装光学件供电,以使所述待对准光学模组成像;
    所述第一图像采集设备,用于采集所述待对准光学模组成像的光斑并反馈给所述控制器;所述控制器,用于根据所述光斑的质量生成对准指令并输出给所述对准机构。
  3. 根据权利要求2所述的设备,其特征在于,所述工作台上设有电源组 件传送机构;
    所述电源组件传送机构用于将所述电源组件的输出端传送至运动到所述对准机构的作业位置处的待组装光学件的电源输入端。
  4. 根据权利要求2所述的设备,其特征在于,所述对准机构包括:
    与所述控制器电连接的第一机械臂,以及设于所述第一机械臂上的对准头;所述对准头包括:真空吸头或可调节的机械夹持头。
  5. 根据权利要求4所述的设备,其特征在于,所述对准机构还包括:集成机构;
    所述集成机构与所述第一机械臂连接,且用于在所述第一机械臂上集成多个对准头。
  6. 根据权利要求2所述的设备,其特征在于,所述点胶机构包括:
    与所述控制器电连接的第二机械臂,以及固定在所述第二机械臂上的UV点胶针筒。
  7. 根据权利要求6所述的设备,其特征在于,所述点胶机构还包括:固定在所述第二机械臂上的第二图像采集设备。
  8. 根据权利要求6所述的设备,其特征在于,所述对准机构上设有与所述控制器电连接的UV灯。
  9. 根据权利要求1~8中任一项所述的设备,其特征在于,所述多个固定件中的每一固定件上均设有用于检测所述固定件上是否放置待组装光学件的传感器。
  10. 根据权利要求1~8中任一项所述的设备,其特征在于,所述传送装置包括:转盘或输送机。
  11. 一种适用于权利要求1~10中任一项所述的光学模组组装设备的组装方法,其特征在于,包括:
    在传送装置运动设定的角度和/或距离时,控制所述传送装置停止运动;
    控制多个机械组件对运动到各自作业位置处固定件执行相应操作;
    在所述多个机械组件完成各自对应的操作时,控制所述传送装置进行运 动。
  12. 根据权利要求11所述的方法,其特征在于,控制多个机械组件对运动到各自作业位置处的固定件执行相应操作,包括:
    控制机械手向运动到所述机械手的作业位置处的固定件放置待组装光学件;以及,
    控制点胶机构向运动到所述点胶机构的作业位置处的待组装光学件进行点胶操作;以及,
    控制电源组件向运动到对准机构的作业位置处的待组装光学件供电,以及控制所述对准机构向所述待组装光学件放置待组装镜片以得到待对准光学模组,并控制所述对准机构根据对准指令调整所述待组装镜片的位置;以及,
    控制第一图像采集设备采集所述待对准光学模组成像的光斑并根据所述光斑的质量生成所述对准指令并输出给所述对准机构。
  13. 根据权利要求11所述的方法,其特征在于,控制多个机械组件对运动到各自作业位置处的固定件执行相应操作之前,还包括:
    针对所述多个固定件中的任一固定件,通过所述固定件上设置的传感器检测所述固定件上是否放置待组装光学件。
  14. 根据权利要求11所述的方法,其特征在于,控制点胶机构向运动到所述点胶机构的作业位置处的待组装光学件进行点胶操作,包括:
    通过所述点胶机构中的第二图像采集设备,获取运动到所述点胶机构的作业位置处的所述待组装光学件的实时图像;
    根据所述实时图像,确定点胶位置;
    根据所述点胶位置,控制所述第二机械臂带动UV针筒进行点胶操作。
  15. 根据权利要求11或14所述的方法,其特征在于,根据所述光斑的质量生成所述对准指令并输出给所述对准机构之后还包括:
    在所述光斑的质量满足设定的质量要求时,点亮位于所述对准机构上的UV灯对所述待组装光学件的点胶处进行照射,以固定所述待组装镜片得到光学模组。
PCT/CN2018/104384 2017-10-17 2018-09-06 光学模组组装设备及方法 WO2019076157A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/652,353 US11077530B2 (en) 2017-10-17 2018-09-06 Apparatus and method for assembling optical module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710965649.0 2017-10-17
CN201710965649.0A CN107838672A (zh) 2017-10-17 2017-10-17 光学模组组装设备及方法

Publications (1)

Publication Number Publication Date
WO2019076157A1 true WO2019076157A1 (zh) 2019-04-25

Family

ID=61661380

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/104384 WO2019076157A1 (zh) 2017-10-17 2018-09-06 光学模组组装设备及方法

Country Status (3)

Country Link
US (1) US11077530B2 (zh)
CN (1) CN107838672A (zh)
WO (1) WO2019076157A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107589514A (zh) * 2017-10-17 2018-01-16 歌尔股份有限公司 光学模组组装方法及装置
CN107838672A (zh) * 2017-10-17 2018-03-27 歌尔股份有限公司 光学模组组装设备及方法
CN108637622B (zh) * 2018-04-10 2020-05-15 Oppo广东移动通信有限公司 输入输出组件的组装方法及输入输出组件的组装设备
CN108468692A (zh) * 2018-04-23 2018-08-31 歌尔股份有限公司 产品预固定装置
CN108543674B (zh) * 2018-06-26 2024-02-27 东莞市欧特自动化技术有限公司 一种点胶与组装系统及其点胶方法
CN108526886B (zh) * 2018-07-03 2024-01-23 深圳眼千里科技有限公司 一种摄像头自动装配机
US11110520B2 (en) * 2018-08-10 2021-09-07 The Boeing Company Fastener alignment systems, fastener alignment kits, and associated methods
CN112703723B (zh) * 2018-11-05 2022-10-21 宁波舜宇光电信息有限公司 摄像模组组装方法和组装设备
CN111659588B (zh) * 2020-06-12 2022-07-19 台州盛林光电科技有限公司 一种微型模组的组装方法、微型模组、fpc模组
TWI734535B (zh) * 2020-06-19 2021-07-21 新加坡商巴奇尼資本私人有限公司 主動式對準系統以及主動式對準方法
CN112576586B (zh) * 2020-12-03 2022-02-15 苏州天准科技股份有限公司 摄像头快速aa装置
CN112543270B (zh) * 2020-12-03 2022-03-15 苏州天准科技股份有限公司 摄像头快速aa组装方法及装置
CN113954088B (zh) * 2021-09-26 2023-06-16 深圳市益鸿智能科技有限公司 打胶加工设备、生产线以及打胶定位方法
CN114029731B (zh) * 2021-11-17 2023-03-28 富翔精密工业(昆山)有限公司 组装设备
CN116275962B (zh) * 2023-05-19 2023-08-18 湖南健坤精密科技有限公司 一种镜片装配自动上料机构

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6606784B1 (en) * 2001-03-13 2003-08-19 Ford Global Technologies, Llc Pallet system
CN101105564A (zh) * 2006-07-14 2008-01-16 鸿富锦精密工业(深圳)有限公司 镜头组装机
CN201594862U (zh) * 2009-12-04 2010-09-29 富港电子(东莞)有限公司 用于影像感测模组制程的多功能工作平台
CN105721859A (zh) * 2014-12-03 2016-06-29 宁波舜宇光电信息有限公司 一种影像模组的调芯设备及其应用方法
CN107838672A (zh) * 2017-10-17 2018-03-27 歌尔股份有限公司 光学模组组装设备及方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8215004B2 (en) * 2007-07-30 2012-07-10 Sintokogio, Ltd. Fabrication line
WO2017066776A1 (en) * 2015-10-16 2017-04-20 Gallery Blocks LLC d/b/a Artsy Couture Apparatus and method for manufacturing an image display
CN207289417U (zh) * 2017-10-17 2018-05-01 歌尔股份有限公司 光学模组组装设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6606784B1 (en) * 2001-03-13 2003-08-19 Ford Global Technologies, Llc Pallet system
CN101105564A (zh) * 2006-07-14 2008-01-16 鸿富锦精密工业(深圳)有限公司 镜头组装机
CN201594862U (zh) * 2009-12-04 2010-09-29 富港电子(东莞)有限公司 用于影像感测模组制程的多功能工作平台
CN105721859A (zh) * 2014-12-03 2016-06-29 宁波舜宇光电信息有限公司 一种影像模组的调芯设备及其应用方法
CN107838672A (zh) * 2017-10-17 2018-03-27 歌尔股份有限公司 光学模组组装设备及方法

Also Published As

Publication number Publication date
US20200269367A1 (en) 2020-08-27
CN107838672A (zh) 2018-03-27
US11077530B2 (en) 2021-08-03

Similar Documents

Publication Publication Date Title
WO2019076157A1 (zh) 光学模组组装设备及方法
CN110061415B (zh) 透镜耦合定位装置及其耦合定位方法
WO2019076160A1 (zh) 光学模组组装设备及方法
US7089656B2 (en) Electric parts mounting apparatus
JP4616514B2 (ja) 電気部品装着システムおよびそれにおける位置誤差検出方法
WO2019076159A1 (zh) 光学模组组装设备及方法
CN107932012B (zh) 微型光学产品的组装设备和组装方法
JPWO2003088730A1 (ja) 対基板作業システム
WO2019076162A1 (zh) 光学模组组装方法及装置
WO2019076161A1 (zh) 光学模组组装方法及装置
WO2019076158A1 (zh) 光学模组组装设备
JP2008003179A (ja) レンズモジュール組立装置及びその方法
WO2019076163A9 (zh) 光学模组组装方法及装置
WO2013187321A1 (ja) 塗布装置
JP2004521514A (ja) 基板に構成部品を実装するための装置
CN207663158U (zh) 光学模组组装设备
JP2014179560A (ja) 斜め認識カメラ及びダイボンダ
JP2002118398A (ja) プリント配線板の位置検出方法
CN109849352B (zh) 一种双卡手机卡托的弹片组装装置
CN112655080A (zh) 将电子元件从第一基板转移到第二基板时的检查
CN107748445B (zh) 一种小型有源光学模组的装配装置及装配方法
CN207289417U (zh) 光学模组组装设备
JPH056912A (ja) 電子部品装着装置
CN211917756U (zh) 一种镜头组装线
JP7105954B1 (ja) コレット検出装置、コレット位置補正装置、ボンディング装置、コレット検出方法、コレット位置補正方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18869232

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18869232

Country of ref document: EP

Kind code of ref document: A1