WO2019076161A1 - 光学模组组装方法及装置 - Google Patents
光学模组组装方法及装置 Download PDFInfo
- Publication number
- WO2019076161A1 WO2019076161A1 PCT/CN2018/104389 CN2018104389W WO2019076161A1 WO 2019076161 A1 WO2019076161 A1 WO 2019076161A1 CN 2018104389 W CN2018104389 W CN 2018104389W WO 2019076161 A1 WO2019076161 A1 WO 2019076161A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- spot
- optical module
- alignment mechanism
- aligned
- assembled
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B7/00—Mountings, adjusting means, or light-tight connections, for optical elements
- G02B7/02—Mountings, adjusting means, or light-tight connections, for optical elements for lenses
- G02B7/023—Mountings, adjusting means, or light-tight connections, for optical elements for lenses permitting adjustment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23P—METAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
- B23P19/00—Machines for simply fitting together or separating metal parts or objects, or metal and non-metal parts, whether or not involving some deformation; Tools or devices therefor so far as not provided for in other classes
- B23P19/10—Aligning parts to be fitted together
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23P—METAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
- B23P15/00—Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/62—Optical apparatus specially adapted for adjusting optical elements during the assembly of optical systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23P—METAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
- B23P19/00—Machines for simply fitting together or separating metal parts or objects, or metal and non-metal parts, whether or not involving some deformation; Tools or devices therefor so far as not provided for in other classes
- B23P19/04—Machines for simply fitting together or separating metal parts or objects, or metal and non-metal parts, whether or not involving some deformation; Tools or devices therefor so far as not provided for in other classes for assembling or disassembling parts
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/26—Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
- G01B11/27—Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/10—Beam splitting or combining systems
- G02B27/1073—Beam splitting or combining systems characterized by manufacturing or alignment methods
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/10—Beam splitting or combining systems
- G02B27/12—Beam splitting or combining systems operating by refraction only
- G02B27/123—The splitting element being a lens or a system of lenses, including arrays and surfaces with refractive power
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B7/00—Mountings, adjusting means, or light-tight connections, for optical elements
- G02B7/003—Alignment of optical elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B7/00—Mountings, adjusting means, or light-tight connections, for optical elements
- G02B7/003—Alignment of optical elements
- G02B7/004—Manual alignment, e.g. micromanipulators
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B7/00—Mountings, adjusting means, or light-tight connections, for optical elements
- G02B7/003—Alignment of optical elements
- G02B7/005—Motorised alignment
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B7/00—Mountings, adjusting means, or light-tight connections, for optical elements
- G02B7/02—Mountings, adjusting means, or light-tight connections, for optical elements for lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B7/00—Mountings, adjusting means, or light-tight connections, for optical elements
- G02B7/02—Mountings, adjusting means, or light-tight connections, for optical elements for lenses
- G02B7/04—Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
Definitions
- the present invention relates to the field of assembly technology, and in particular, to an optical module assembly method and apparatus.
- optical modules with independent functions in the market to meet the diverse market demand.
- These optical modules can be embedded in other devices to perform their functions, such as camera modules, micro projection modules, LED (Light Emitting Diode) optical modules, and VR (Virtual Reality)/AR (Augmented Reality) , augmented reality) optical modules, etc.
- an optical module is assembled from a plurality of optical components and other components.
- the camera module can be assembled from components such as an image sensor, a lens holder, a plurality of lenses, and a circuit board.
- the assembly accuracy of the lens plays a decisive role in the optical performance of the optical module.
- the optical module in the assembly process is imaged, and according to the size of the imaging spot, whether the lenses to be assembled are aligned, and the lens to be assembled is continuously adjusted without alignment. position.
- aspects of the present invention provide an optical module assembly method and apparatus for adjusting the position of the lens to be assembled to the most reasonable position according to the size of the imaging spot of the optical module in the assembly process, thereby improving the assembly precision of the optical module.
- the invention provides an optical module assembly method, comprising:
- the spot imaged by the optical module to be aligned is sequentially collected by the image acquisition device;
- the alignment mechanism is controlled to move to the optimal position to align the lens to be assembled.
- selecting a minimum size spot from the collected spots includes: if a size of the first number of spots before the first spot is larger than a size of the first spot, and after the first spot The second number of spots is smaller than the size of the first spot, and the first spot is determined to be the smallest size spot.
- controlling the alignment mechanism for holding the lens to be assembled to set the motion step to move in the set direction further comprises: controlling the alignment mechanism from a head end of the assembly area corresponding to the lens to be assembled or The end begins to move in the set direction with the set motion step.
- determining, when the minimum size spot is collected, the moving position of the alignment mechanism, as the optimal position further comprising: using the moving position of the alignment mechanism when the minimum size spot is collected a suspicious position; controlling the alignment mechanism to move to the suspicious position and a set number of motion positions before and after the suspicious position, and sequentially acquiring the to-be-aligned optical module for each movement by the image acquisition device An imaged spot; if the size of the spot collected when the alignment mechanism moves to the suspicious position is the smallest in the spot imaged by the optical module to be aligned during each movement, the suspicious position is As the best location.
- the method further comprises: controlling the alignment mechanism to place the lens to be assembled at a specified position of the optical component to be assembled, to obtain an optical module to be aligned; and controlling the power component And supplying power to the internal light source device of the optical module to be aligned or the external light source device located on the object side of the optical module to be aligned to image the optical module to be aligned.
- the invention also provides an optical module assembly device, comprising:
- a motion module configured to control an alignment mechanism that clamps the lens to be assembled to set a motion step to move in a set direction when imaging the optical module to be aligned;
- the image acquisition module is configured to sequentially collect the spot imaged by the optical module to be aligned by the image acquisition device during each movement of the alignment mechanism;
- An optimal position selection module configured to select a minimum size spot from the collected spots, and determine a moving position of the alignment mechanism when the minimum size spot is collected, as an optimal position
- An alignment module for controlling movement of the alignment mechanism to the optimal position to align the lens to be assembled.
- the optimal location selection module is specifically configured to: if the size of the first number of spots before the first spot is greater than the size of the first spot, and the second quantity after the first spot The size of the spot is smaller than the size of the first spot, and the first spot is determined to be the smallest size spot.
- the motion module is further configured to: control the alignment mechanism to move in a set direction by setting a motion step from a head end or a end of the assembly area corresponding to the lens to be assembled.
- the device further includes an optimal position calibration module, the optimal position calibration module is configured to: when the minimum size spot is collected, the movement position of the alignment mechanism is regarded as a suspicious position; The alignment mechanism moves to the suspicious position and a set number of motion positions before and after the suspicious position, and sequentially collects, by the image acquisition device, a spot imaged by the optical module to be aligned for each movement; In the spot imaged by the optical module to be aligned during each movement, the size of the spot collected when the alignment mechanism moves to the suspicious position is the smallest, and the suspicious position is taken as the optimal position.
- the optimal position calibration module is configured to: when the minimum size spot is collected, the movement position of the alignment mechanism is regarded as a suspicious position; The alignment mechanism moves to the suspicious position and a set number of motion positions before and after the suspicious position, and sequentially collects, by the image acquisition device, a spot imaged by the optical module to be aligned for each movement; In the spot imaged by the optical module to be aligned during each movement, the size of
- the apparatus further includes a pre-processing module, the pre-processing module is configured to: control an alignment mechanism to place the lens to be assembled at a specified position of the optical component to be assembled, to obtain an optical mode to be aligned And controlling the power component to supply power to the internal light source device of the optical module to be aligned or the external light source device located on the object side of the optical module to be aligned to image the optical module to be aligned.
- a pre-processing module is configured to: control an alignment mechanism to place the lens to be assembled at a specified position of the optical component to be assembled, to obtain an optical mode to be aligned
- controlling the power component to supply power to the internal light source device of the optical module to be aligned or the external light source device located on the object side of the optical module to be aligned to image the optical module to be aligned.
- the alignment mechanism for holding the lens to be assembled is continuously moved to find the smallest size spot for imaging, and based on the minimum size collected.
- the spot is aligned with the moving position of the component to adjust the lens to be assembled to the optimal position.
- the search for the optimal position of the lens to be assembled is converted into the search for the smallest size spot of the optical module to be assembled, which reduces the alignment difficulty of the lens to be assembled and improves the assembly precision of the optical module.
- FIG. 1 is a flow chart of a method for assembling an optical module according to an embodiment of the present invention
- FIG. 2a is a flowchart of a method for assembling an optical module according to another embodiment of the present invention.
- 2b is a schematic view of the minimum size spot selection provided by the present invention.
- FIG. 3 is a schematic structural diagram of an optical module assembling apparatus according to an embodiment of the present invention.
- FIG. 3b is a schematic structural diagram of an optical module assembly apparatus according to another embodiment of the present invention.
- FIG. 3c is a schematic structural diagram of an optical module assembling apparatus according to another embodiment of the present invention.
- the optical module refers to a complete product after alignment and fixing;
- the optical module to be aligned refers to an optical module during assembly, and It may be in a misaligned state or in an aligned state;
- the optical component to be assembled refers to the semi-finished product of the optical module, and the optical alignment of the assembly to be assembled needs to be assembled at its designated position and fixed before the optical mode can be obtained. group.
- the optical module in the assembly process can be imaged, and according to the size of the imaging spot, whether the lens to be assembled is aligned, and the lens to be assembled is continuously adjusted without alignment. s position.
- the core of the embodiment of the present invention is to propose a method for adjusting the position of the lens to be assembled to an optimum optical module with high assembly precision.
- FIG. 1 is a flowchart of a method for assembling an optical module according to an embodiment of the present invention. Referring to FIG. 1, the method includes:
- Step 101 When imaging the optical module to be aligned, control an alignment mechanism that clamps the lens to be assembled to set the motion step to move in the set direction.
- Step 102 When the alignment mechanism moves each time, the spot imaged by the optical module to be aligned is sequentially collected by the image acquisition device.
- Step 103 Select a minimum size spot from the collected spots, and determine a moving position of the alignment mechanism when the minimum size spot is collected as the optimal position.
- Step 104 controlling the alignment mechanism to move to an optimal position to align the lens to be assembled.
- the alignment mechanism typically includes a robotic arm and an alignment head on the robotic arm.
- the robot arm is used for moving according to a set movement trajectory, and the aligning head may be a vacuum holding member or a mechanical clamp for holding the lens to be assembled.
- the optical module to be aligned includes an optical component to be assembled and a lens to be assembled, and the alignment mechanism can place the lens to be assembled at a specified position of the optical component to be assembled, but the designated position may not be the optimal optical for the optical module.
- the location of the performance can carry the lens to be assembled continuously moving around the designated location to adjust the lens to be assembled to the optimal position. It should be understood that this optimal position enables optimal optical performance of the optical module.
- the alignment mechanism When the alignment mechanism carries the moving movement of the lens to be assembled, the alignment mechanism can be set to move in the set movement direction by setting the step size, so as to find the possible law of the result of the movement.
- the set step size may be a motion distance corresponding to each motion, for example, 2 mm; the motion direction may be a forward direction or a backward direction.
- step 102 each time the alignment mechanism moves, the position of the lens to be assembled that is held by the alignment mechanism changes, and the spot imaged by the optical module to be assembled also changes.
- the alignment mechanism moves to a moving position, the spot imaged by the optical module to be assembled at this time is recorded, and the corresponding relationship between the spot and the moving position is recorded.
- step 103 after multiple movements of the alignment mechanism, the image acquisition device will acquire a plurality of spots of different sizes.
- the spot size is the smallest, the light energy is most concentrated, the imaging is the clearest, and the assembled optical module has the best performance. Therefore, the smallest size spot can be searched from the image acquisition device for collecting a plurality of different size spots, and the movement position of the alignment mechanism when the minimum size spot is collected is taken as the optimal position.
- step 104 after determining the optimal position, the alignment mechanism can be controlled to move to the optimal position to achieve alignment of the lens to be assembled.
- the alignment mechanism that controls the lens to be assembled is continuously moved to find the minimum size spot for imaging, and based on the minimum acquisition.
- align the moving position of the component to adjust the lens to be assembled to the optimal position align the search for the optimal position of the lens to be assembled is converted into the search for the smallest size spot of the optical module to be assembled, which reduces the alignment difficulty of the lens to be assembled and improves the assembly precision of the optical module.
- FIG. 2a is a flowchart of a method for assembling an optical module according to another embodiment of the present invention. Referring to FIG. 2a, the method includes:
- Step 201 Control the alignment mechanism to place the lens to be assembled at a specified position of the optical component to be assembled to obtain an optical module to be aligned.
- Step 202 The control power component supplies power to the internal light source device of the optical module to be aligned or the external light source device located on the object side of the optical module to be aligned, so as to image the optical module to be aligned.
- Step 203 When imaging the optical module to be aligned, control the alignment mechanism that holds the lens to be assembled to set the motion step to move in the set direction.
- Step 204 Each time the alignment mechanism moves, the image spotting device sequentially collects the spot to be imaged by the optical module.
- Step 205 Select a minimum size spot from the collected spots.
- Step 206 Perform a repeated verification on the minimum size spot.
- Step 207 If the minimum size spot passes the verification, determine the moving position of the alignment mechanism when the minimum size spot is collected, as the optimal position.
- Step 208 controlling the alignment mechanism to move to an optimal position to align the lens to be assembled.
- Step 209 Fixing the aligned lens to be assembled and the optical component to be assembled to obtain an optical module.
- the optical component to be assembled is usually fixed to the fixture, and its positional accuracy can be determined by the fixture.
- the specified location may be a calculated location based on the hardware parameters of the optics to be assembled and the lens to be assembled and the optical performance requirements of the optical module, but the designated location may not be the location at which the optical module achieves optimal optical performance.
- step 202 in the embodiment, the alignment of the lens to be assembled can be realized according to the actual imaging effect of the optical module to be aligned. Therefore, in the process of alignment, the optical module to be aligned needs to be imaged.
- the internal light source device is provided, and the power component can supply power to the light source device to image the optical module to be aligned.
- the power component can supply power to the light source device to be aligned.
- the movement of the alignment mechanism may start from the first end or the end of the assembly area corresponding to the lens to be assembled to set the motion step along the set direction.
- the assembly area corresponding to the lens to be assembled may be an area near the designated position described in step 201, for example, an area of ⁇ 5 mm near the specified position, and the movement of the alignment mechanism may be 5 mm before the designated position. Start or move from the set direction by 5mm from the specified position.
- step 204 for each movement of the alignment mechanism, the image acquisition device can be controlled to sequentially collect the spots imaged by the optical module to be aligned.
- step 205 when the alignment mechanism moves a plurality of times, the image capturing device collects a plurality of spots, and optionally, finds a first spot that meets the set condition among the plurality of spots as the minimum size spot.
- the setting conditions are:
- the size of the first number of spots before the first spot is greater than the size of the first spot, and the size of the second number of spots after the first spot is smaller than the size of the first spot.
- the first spot refers to a spot that satisfies the set condition, and the “first” is merely for facilitating the representation of the spot, and the order of collecting the spot is not limited.
- the first quantity and the second quantity may be equal or different. Generally, the first quantity is determined by the actual motion situation, and the second quantity may be between 1-5, which is not limited in the embodiment of the present invention. As shown in Fig. 2b, the five spots before the spot P are larger than the size of the spot P, and the three spots after the spot P are larger than the size of the spot P. Therefore, the spot P can be made the smallest size. Spot.
- the alignment mechanism can no longer continue to move in the set direction, thereby improving the minimum spot size. Looking for efficiency.
- the minimum size spot can be repeatedly verified.
- the movement position of the alignment mechanism when the minimum size spot is collected may be used as a suspicious position, and the alignment mechanism is controlled to move to the suspicious position and the set number of movement positions before and after the suspicious position, and pass the image.
- the collecting device sequentially collects the spot to be imaged by the optical module for each movement.
- the number of the settings may be selected according to the actual situation, and is not limited in the embodiment of the present invention.
- step 207 if the size of the spot collected when the alignment mechanism moves to the suspicious position is still the smallest in each of the collected spots, it can be determined that the minimum size spot has been accurately collected and the suspicious position is obtained. As the best location.
- step 208 after determining the optimal position, the alignment mechanism is controlled to move to the optimal position to align the lens to be assembled.
- step 209 after the lenses to be assembled are aligned, the aligned lenses to be assembled and the optical components to be assembled can be fixed to obtain an optical module.
- the glue can be pre-dispensed in a specific position of the optical component to be assembled, and then the pre-point glue can be directly cured after the alignment to achieve the purpose of fixing the lens to be assembled and the optical component to be assembled.
- the specific position of the optical component to be assembled and/or the lens to be assembled may be dispensed and cured to achieve the purpose of fixing the lens to be assembled and the optical component to be assembled.
- the UV (Ultraviolet Rays) glue that is, the shadowless glue, also known as the photosensitive glue or the ultraviolet light curing glue, has high adhesion and rapid curing, and can indirectly enhance the assembly of the optical module. effectiveness.
- a UV lamp can be used to illuminate the dispensing site to further accelerate the curing speed.
- the alignment mechanism that controls the lens to be assembled is continuously moved to find the smallest size spot for imaging, and based on the minimum size spot. Align the moving position of the component to adjust the lens to be assembled to the optimal position. Furthermore, the search for the optimal position of the lens to be assembled is converted into the search for the smallest size spot of the optical module to be assembled, which reduces the alignment difficulty of the lens to be assembled and improves the assembly precision of the optical module. In addition, when searching for the smallest size spot, the minimum size spot is repeatedly verified, which further improves the assembly accuracy of the optical module.
- FIG. 3 is a schematic structural diagram of an optical module assembly apparatus according to an embodiment of the present invention.
- the apparatus includes:
- the motion module 301 is configured to control an alignment mechanism that clamps the lens to be assembled to set the motion step to move in the set direction when the optical module to be aligned is imaged.
- the image capturing module 302 is configured to sequentially collect the spot imaged by the optical module to be aligned by the image capturing device for each movement of the alignment mechanism.
- the optimal position selection module 303 is configured to select a minimum size spot from the collected spots and determine a moving position of the alignment mechanism when the minimum size spot is collected as an optimal position.
- the alignment module 304 is configured to control the alignment mechanism to move to the optimal position to align the lens to be assembled.
- the optimal position selection module 303 is specifically configured to: if the size of the first number of spots before the first spot is greater than the size of the first spot, and the second quantity after the first spot The size of the spot is smaller than the size of the first spot, and then the first spot is determined to be the smallest size spot.
- the motion module 301 is further configured to: control the alignment mechanism to move in a set direction by setting a motion step from a head end or an end of the assembly area corresponding to the lens to be assembled.
- the device further includes an optimal position calibration module 305, wherein the optimal position calibration module 305 is configured to: when the minimum size spot is collected, the movement position of the alignment mechanism is a suspicious position; controlling the alignment mechanism to move to the suspicious position and a set number of motion positions before and after the suspicious position, and sequentially acquiring the to-be-aligned optical module for each movement by the image acquisition device An imaged spot; if the size of the spot collected when the alignment mechanism moves to the suspicious position is the smallest in the spot imaged by the optical module to be aligned during each movement, the suspicious position is As the best location.
- the optimal position calibration module 305 is configured to: when the minimum size spot is collected, the movement position of the alignment mechanism is a suspicious position; controlling the alignment mechanism to move to the suspicious position and a set number of motion positions before and after the suspicious position, and sequentially acquiring the to-be-aligned optical module for each movement by the image acquisition device An imaged spot; if the size of the spot collected when the alignment mechanism moves to the suspicious position is the
- the device further includes a pre-processing module 306, configured to: control an alignment mechanism to place the lens to be assembled at a specified position of the optical component to be assembled, Obtaining an optical module to be aligned; and controlling the power supply component to supply power to the internal light source device of the optical module to be aligned or the external light source device located at the object side of the optical module to be aligned, so that the optical to be aligned Module imaging.
- a pre-processing module 306 configured to: control an alignment mechanism to place the lens to be assembled at a specified position of the optical component to be assembled, Obtaining an optical module to be aligned; and controlling the power supply component to supply power to the internal light source device of the optical module to be aligned or the external light source device located at the object side of the optical module to be aligned, so that the optical to be aligned Module imaging.
- the alignment mechanism that controls the lens to be assembled is continuously moved to find the minimum size spot for imaging, and based on the minimum acquisition.
- align the moving position of the component to adjust the lens to be assembled to the optimal position align the search for the optimal position of the lens to be assembled is converted into the search for the smallest size spot of the optical module to be assembled, which reduces the alignment difficulty of the lens to be assembled and improves the assembly precision of the optical module.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Lens Barrels (AREA)
- Optical Couplings Of Light Guides (AREA)
Abstract
本发明提供一种光学模组组装方法及装置,其中,方法包括:在待对准光学模组成像时,控制夹持待组装镜片的对准机构以设定运动步长沿设定方向运动;所述对准机构每次运动时,通过图像采集设备依次采集所述待对准光学模组成像的光斑;从所述采集到的光斑中选取最小尺寸光斑,并确定采集到所述最小尺寸光斑时所述对准机构的运动位置,作为最佳位置;控制所述对准机构运动至所述最佳位置以对准所述待组装镜片。本发明提供的技术方案,能够根据组装过程中的光学模组的成像光斑的大小调整待组装镜片至最合理的位置,提升了光学模组的组装精度。
Description
交叉引用
本申请引用于2017年10月17日递交的名称为“光学模组组装方法及装置”的第2017109656471号中国专利申请,其通过引用被全部并入本申请。
本发明涉及装配技术领域,尤其涉及一种光学模组组装方法及装置。
现如今,市场上存在越来越多的具备独立功能的光学模组,以满足多样化的市场需求。这些光学模组可以嵌入到其他设备中发挥其功能,例如摄像头模组、微型投影模组、LED(Light Emitting Diode,发光二极管)光学模组以及VR(Virtual Reality,虚拟现实)/AR(Augmented Reality,增强现实)光学模组等。
通常,光学模组由多个光学元件以及其他零件组装得到。例如,摄像头模组可由图像传感器、镜座、多个镜片、线路板等零配件组装得到。其中,镜片的组装精度对光学模组的光学性能起到决定性的作用。在一种光学模组的组装方式中,使组装过程中的光学模组成像,并根据成像光斑的大小分析待组装镜片是否均已对准,在没有对准的情况下不断调整待组装镜片的位置。
但是,如何根据组装过程中的光学模组的成像光斑的大小调整待组装镜片至最合理的位置是个亟待解决的技术问题。
发明内容
本发明的多个方面提供一种光学模组组装方法及装置,用以根据组装过程中的光学模组的成像光斑的大小调整待组装镜片至最合理的位置,进而提升光学模组的组装精度。
本发明提供一种光学模组组装方法,包括:
在待对准光学模组成像时,控制夹持待组装镜片的对准机构以设定运动步长沿设定方向运动;
所述对准机构每次运动时,通过图像采集设备依次采集所述待对准光学模组成像的光斑;
从所述采集到的光斑中选取最小尺寸光斑,并确定采集到所述最小尺寸光斑时所述对准机构的运动位置,作为最佳位置;
控制所述对准机构运动至所述最佳位置以对准所述待组装镜片。
进一步可选地,从所述采集到的光斑中选取最小尺寸光斑,包括:若第一光斑之前的第一数量的光斑的尺寸均大于所述第一光斑的尺寸,且所述第一光斑之后的第二数量的光斑的尺寸均小于所述第一光斑的尺寸,则确定所述第一光斑为最小尺寸光斑。
进一步可选地,控制夹持待组装镜片的对准机构以设定运动步长沿设定方向运动,还包括:控制所述对准机构从所述待组装镜片对应的组装区域的首端或末端开始以设定运动步长沿设定方向运动。
进一步可选地,确定采集到所述最小尺寸光斑时所述对准机构的运动位置,作为最佳位置之前,还包括:将采集到所述最小尺寸光斑时所述对准机构的运动位置作为可疑位置;控制所述对准机构运动至所述可疑位置以及所述可疑位置前后的设定数量的运动位置,并通过所述图像采集设备依次采集每次运动时所述待对准光学模组成像的光斑;若所述每次运动时所述待对准光学模组成像的光斑中,所述对准机构运动至所述可疑位置时采集到的光斑的尺寸最小,则将所述可疑位置作为最佳位置。
进一步可选地,待对准光学模组成像之前,还包括:控制对准机构将所述待组装镜片放置到待组装光学件的指定位置处,以得到待对准光学模组;控制电源组件给所述待对准光学模组的内部光源设备或位于所述待对准光学模组物方的外部光源设备供电,以使所述待对准光学模组成像。
本发明还提供一种光学模组组装装置,包括:
运动模块,用于在待对准光学模组成像时,控制夹持待组装镜片的对准机构以设定运动步长沿设定方向运动;
图像采集模块,用于所述对准机构每次运动时,通过图像采集设备依次采集所述待对准光学模组成像的光斑;
最佳位置选取模块,用于从所述采集到的光斑中选取最小尺寸光斑,并确定采集到所述最小尺寸光斑时所述对准机构的运动位置,作为最佳位置;
对准模块,用于控制所述对准机构运动至所述最佳位置以对准所述待组装镜片。
进一步可选地,所述最佳位置选取模块具体用于:若第一光斑之前的第一数量的光斑的尺寸均大于所述第一光斑的尺寸,且所述第一光斑之后的第二数量的光斑的尺寸均小于所述第一光斑的尺寸,则确定所述第一光斑为最小尺寸光斑。
进一步可选地,所述运动模块,还用于:控制所述对准机构从所述待组装镜片对应的组装区域的首端或末端开始以设定运动步长沿设定方向运动。
进一步可选地,所述装置还包括最佳位置校准模块,所述最佳位置校准模块用于:将采集到所述最小尺寸光斑时所述对准机构的运动位置作为可疑位置;控制所述对准机构运动至所述可疑位置以及所述可疑位置前后的设定数量的运动位置,并通过所述图像采集设备依次采集每次运动时所述待对准光学模组成像的光斑;若所述每次运动时所述待对准光学模组成像的光斑中,所述对准机构运动至所述可疑位置时采集到的光斑的尺寸最小,则将所述可疑位置作为最佳位置。
进一步可选地,所述装置还包括预处理模块,所述预处理模块用于:控制对准机构将所述待组装镜片放置到待组装光学件的指定位置处,以得到待对准光学模组;控制电源组件给所述待对准光学模组的内部光源设备或位于所述待对准光学模组物方的外部光源设备供电,以使所述待对准光学模组成像。
在本发明中,在组装光学模组的过程中,使待对准光学模组成像时,控 制夹持待组装镜片的对准机构不断运动以寻找成像的最小尺寸光斑,并基于采集到最小尺寸光斑时对准组件的运动位置来调整待组装镜片至最佳位置。进而,将待组装镜片的最佳位置寻找转化为针对待组装光学模组的成像最小尺寸光斑的寻找,降低了待组装镜片的对准难度,提升了光学模组的组装精度。
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明一实施例提供的光学模组组装方法的方法流程图;
图2a是本发明另一实施例提供的光学模组组装方法的方法流程图;
图2b是本发明提供的最小尺寸光斑选取的示意图;
图3a是本发明一实施例提供的光学模组组装装置的结构示意图;
图3b是本发明另一实施例提供的光学模组组装装置的结构示意图;
图3c是本发明又一实施例提供的光学模组组装装置的结构示意图。
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明具体实施例及相应的附图对本发明技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,在本发明的下述实施例中,光学模组指的是对准完成并固定后的完整产品;待对准光学模组,指的是组装过程中的光学模组,其可能处于未对准状态,也可能处于已对准状态;待组装光学件,指的是光学模 组的半成品,需要将待组装光学对准组装在其指定的位置并固定后才能够得到光学模组。以下所提到的上述概念,可参照上述解释进行理解,不再赘述。
在一种光学模组的组装方式中,可使组装过程中的光学模组成像,并根据成像光斑的大小分析待组装镜片是否均已对准,在没有对准的情况下不断调整待组装镜片的位置。本发明实施例的核心在于,提出一种如何将待组装镜片的位置调节至最佳以得到高组装精度的光学模组的方法。以下将结合附图对本发明提出的技术方案进行具体阐述。
图1是本发明一实施例提供的光学模组组装方法的方法流程图,结合图1,该方法包括:
步骤101、在待对准光学模组成像时,控制夹持待组装镜片的对准机构以设定运动步长沿设定方向运动。
步骤102、对准机构每次运动时,通过图像采集设备依次采集待对准光学模组成像的光斑。
步骤103、从采集到的光斑中选取最小尺寸光斑,并确定采集到最小尺寸光斑时对准机构的运动位置,作为最佳位置。
步骤104、控制对准机构运动至最佳位置以对准待组装镜片。
在步骤101中,对准机构通常包括机械臂和位于机械臂上的对准头。机械臂用于按照设定的运动轨迹进行运动,对准头可以是真空吸持件或机械夹具,用于吸持待组装镜片。
待对准光学模组中包括待组装光学件以及待组装镜片,对准机构可将待组装镜片放置在待组装光学件的指定位置,但是该指定位置可能并非是使得光学模组达到最佳光学性能的位置。因此,对准机构可携带待组装镜片在指定位置附近不断运动以调整待组装镜片至最佳位置。应当理解,该最佳位置能够使得光学模组的光学性能达到最佳。
在对准机构携带待组装镜片不断运动时,可设定对准机构以设定步长沿设定运动方向进行运动,以便于寻找其运动带来的结果可能存在的规律。可选的,设定步长可以是每一次运动对应的运动距离,例如2mm;运动方向可以 是前进方向或后退方向等。
在步骤102中,对准机构每次运动时,其所夹持的待组装镜片的位置会发生变化,因而待组装光学模组成像的光斑也会随之变化。在本实施例中,对准机构每运动至一个运动位置时,均记录此时待组装光学模组成像的光斑,并记录光斑与运动位置的对应关系。
在步骤103中,对准机构的多次运动之后,图像采集设备将采集到多个尺寸不同的光斑。根据光学成像原理,光斑尺寸最小时,光线能量最集中,成像最清晰,组装的得到的光学模组的性能最佳。因而,可从图像采集设备将采集到多个尺寸不同的光斑中寻找最小尺寸光斑,并将采集到最小尺寸光斑时对准机构的运动位置,作为最佳位置。
在步骤104中,在确定最佳位置之后,可控制对准机构运动至最佳位置,进而实现待组装镜片的对准。
在本实施例中,在组装光学模组的过程中,使待对准光学模组成像时,控制夹持待组装镜片的对准机构不断运动以寻找成像的最小尺寸光斑,并基于采集到最小尺寸光斑时对准组件的运动位置来调整待组装镜片至最佳位置。进而,将待组装镜片的最佳位置寻找转化为针对待组装光学模组的成像最小尺寸光斑的寻找,降低了待组装镜片的对准难度,提升了光学模组的组装精度。
图2a是本发明另一实施例提供的光学模组组装方法的方法流程图,结合图2a,该方法包括:
步骤201、控制对准机构将待组装镜片放置到待组装光学件的指定位置处,以得到待对准光学模组。
步骤202、控制电源组件给待对准光学模组的内部光源设备或位于待对准光学模组物方的外部光源设备供电,以使待对准光学模组成像。
步骤203、在待对准光学模组成像时,控制夹持待组装镜片的对准机构以设定运动步长沿设定方向运动。
步骤204、对准机构每次运动时,通过图像采集设备依次采集,待对准光学模组成像的光斑。
步骤205、从采集到的光斑中选取最小尺寸光斑。
步骤206、对最小尺寸光斑进行重复校验。
步骤207、若最小尺寸光斑通过校验,确定采集到所述最小尺寸光斑时所述对准机构的运动位置,作为最佳位置。
步骤208、控制对准机构运动至最佳位置以对准待组装镜片。
步骤209、固定对准后的待组装镜片以及待组装光学件得到光学模组。
在步骤201中,待组装光学件通常固定在固定件上,其位置精度可由固定件确定。指定位置,可以是根据待组装光学件和待组装镜片的硬件参数以及对光学模组的光学性能需求计算得到的位置,但是该指定位置可能并非是使得光学模组达到最佳光学性能的位置。
在步骤202中,在本实施例中,可根据待对准光学模组的实际成像效果实现待组装镜片的对准,因此,在对准的过程中,需要使得待对准光学模组成像。
可选的,在一些光学模组中,例如微投影模组,其内部自带光源设备,电源组件可给这些光源设备供电以使待对准的光学模组成像。在另一些光学模组中,例如摄像头模组,其内部并没有光源设备,可在待对准光学模组的物方设置一外部光源设备,电源组件可给这些光源设备供电以使待对准的光学模组成像。
在步骤203中,可选的,为了不漏掉可能的最佳位置,对准机构的运动可从待组装镜片对应的组装区域的首端或末端开始以设定运动步长沿设定方向运动。其中,所述待组装镜片对应的组装区域,可以是步骤201中所述的指定位置附近的区域,例如指定位置附近±5mm的区域,则,对准机构的运动可从指定位置前的5mm处开始或从指定位置后的5mm处开始以设定运动步长沿设定方向运动。
在步骤204中,针对对准机构的每次运动,可控制图像采集设备依次采 集待对准光学模组成像的光斑。
在步骤205中,对准机构多次运动时,图像采集设备将采集到多个光斑,可选的,在这多个光斑中寻找符合设定条件的第一光斑作为最小尺寸光斑。其中,该设定条件为:
第一光斑之前的第一数量的光斑的尺寸均大于所述第一光斑的尺寸,且所述第一光斑之后的第二数量的光斑的尺寸均小于所述第一光斑的尺寸。其中,第一光斑指的是满足设定条件的光斑,“第一”仅仅是为了便于光斑的表述,对光斑的采集顺序并不构成限制。第一数量与第二数量可以相等也可以不等,通常第一数量由实际运动情况确定,第二数量可以取1-5之间,本发明实施例不做限制。如图2b所示的光斑P,在光斑P之前的5个光斑均比光斑P的尺寸大,在光斑P之后的3个光斑均比光斑P的尺寸大,因此,可将光斑P作为最小尺寸光斑。
需要说明的是,在一种可选的实施方式中,当第二数量的光斑可以确定第一光斑为最小尺寸光斑时,对准机构可不再继续沿设定的方向运动,进而可以提升最小光斑寻找效率。
在步骤206中,在确定最小尺寸光斑之后,为保证准确性,可对最小尺寸光斑进行重复校验。可选的,重复校验时,可将采集到最小尺寸光斑时对准机构的运动位置作为可疑位置,控制对准机构运动至可疑位置以及可疑位置前后的设定数量的运动位置,并通过图像采集设备依次采集每次运动时待对准光学模组成像的光斑。其中,设定数量可以根据实际情况进行选择,本发明实施例不做限制。
在步骤207中,若每次运动采集到的光斑中,对准机构运动至可疑位置时采集到的光斑的尺寸仍旧是最小的,则可确定已准确地采集到了最小尺寸光斑,并将可疑位置作为最佳位置。
在步骤208中,在确定最佳位置之后,控制对准机构运动至最佳位置以对准所述待组装镜片。
在步骤209中、在待组装镜片对准后,可固定对准后的待组装镜片以及 待组装光学件得到光学模组。
可选的,待组装镜片对准之前,可预先在待组装光学件的特定位置点胶,进而在对准之后可直接使预先点的胶固化以达到固定待组装镜片以及待组装光学件的目的。可选的,也可以在待组装镜片对准之后,在待组装光学件和/或待组装镜片的特定位置点胶并固化以达到固定待组装镜片以及待组装光学件的目的。
可选的,本实施例中,可选择UV(Ultraviolet Rays)胶,即无影胶,又称光敏胶或紫外光固化胶,其粘结度高,固化迅速,可间接提升光学模组的组装效率。在固化阶段,可采用UV灯对点胶处进行照射,以进一步加快固化速度。
在本实施例中,在组装光学模组的过程中,使待对准光学模组成像时,控制夹持待组装镜片的对准机构不断运动以寻找成像的最小尺寸光斑,并基于最小尺寸光斑时对准组件的运动位置来调整待组装镜片至最佳位置。进而,将待组装镜片的最佳位置寻找转化为针对待组装光学模组的成像最小尺寸光斑的寻找,降低了待组装镜片的对准难度,提升了光学模组的组装精度。除此之外,在寻找最小尺寸光斑时,对最小尺寸光斑进行重复校验,进一步提升了光学模组的组装精度。
图3a是本发明一实施例提供的光学模组组装装置的结构示意图,结合图3a,该装置包括:
运动模块301,用于在待对准光学模组成像时,控制夹持待组装镜片的对准机构以设定运动步长沿设定方向运动。
图像采集模块302,用于所述对准机构每次运动时,通过图像采集设备依次采集所述待对准光学模组成像的光斑。
最佳位置选取模块303,用于从所述采集到的光斑中选取最小尺寸光斑,并确定采集到所述最小尺寸光斑时所述对准机构的运动位置,作为最佳位置。
对准模块304,用于控制所述对准机构运动至所述最佳位置以对准所述待 组装镜片。
进一步可选地,最佳位置选取模块303具体用于:若第一光斑之前的第一数量的光斑的尺寸均大于所述第一光斑的尺寸,且所述第一光斑之后的第二数量的光斑的尺寸均小于所述第一光斑的尺寸,则确定所述第一光斑为最小尺寸光斑。
进一步可选地,运动模块301,还用于:控制所述对准机构从所述待组装镜片对应的组装区域的首端或末端开始以设定运动步长沿设定方向运动。
进一步可选地,如图3b所示,所述装置还包括最佳位置校准模块305,最佳位置校准模块305用于:将采集到所述最小尺寸光斑时所述对准机构的运动位置作为可疑位置;控制所述对准机构运动至所述可疑位置以及所述可疑位置前后的设定数量的运动位置,并通过所述图像采集设备依次采集每次运动时所述待对准光学模组成像的光斑;若所述每次运动时所述待对准光学模组成像的光斑中,所述对准机构运动至所述可疑位置时采集到的光斑的尺寸最小,则将所述可疑位置作为最佳位置。
进一步可选地,如图3c所示,所述装置还包括预处理模块306,预处理模块306用于:控制对准机构将所述待组装镜片放置到待组装光学件的指定位置处,以得到待对准光学模组;控制电源组件给所述待对准光学模组的内部光源设备或位于所述待对准光学模组物方的外部光源设备供电,以使所述待对准光学模组成像。
在本实施例中,在组装光学模组的过程中,使待对准光学模组成像时,控制夹持待组装镜片的对准机构不断运动以寻找成像的最小尺寸光斑,并基于采集到最小尺寸光斑时对准组件的运动位置来调整待组装镜片至最佳位置。进而,将待组装镜片的最佳位置寻找转化为针对待组装光学模组的成像最小尺寸光斑的寻找,降低了待组装镜片的对准难度,提升了光学模组的组装精度。
需要说明的是,本文中的“第一”、“第二”等描述,是用于区分不同的消息、设备、模块等,不代表先后顺序,也不限定“第一”和“第二”是不 同的类型。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、商品或者设备中还存在另外的相同要素。
以上所述仅为本发明的实施例而已,并不用于限制本发明。对于本领域技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本发明的权利要求范围之内。
Claims (10)
- 一种光学模组组装方法,其特征在于,包括:在待对准光学模组成像时,控制夹持待组装镜片的对准机构以设定运动步长沿设定方向运动;所述对准机构每次运动时,通过图像采集设备依次采集所述待对准光学模组成像的光斑;从所述采集到的光斑中选取最小尺寸光斑,并确定采集到所述最小尺寸光斑时所述对准机构的运动位置,作为最佳位置;控制所述对准机构运动至所述最佳位置以对准所述待组装镜片。
- 根据权利要求1所述的方法,其特征在于,从所述采集到的光斑中选取最小尺寸光斑,包括:若第一光斑之前的第一数量的光斑的尺寸均大于所述第一光斑的尺寸,且所述第一光斑之后的第二数量的光斑的尺寸均小于所述第一光斑的尺寸,则确定所述第一光斑为最小尺寸光斑。
- 根据权利要求1所述的方法,其特征在于,控制夹持待组装镜片的对准机构以设定运动步长沿设定方向运动,还包括:控制所述对准机构从所述待组装镜片对应的组装区域的首端或末端开始以设定运动步长沿设定方向运动。
- 根据权利要求1所述的方法,其特征在于,确定采集到所述最小尺寸光斑时所述对准机构的运动位置,作为最佳位置之前,还包括:将采集到所述最小尺寸光斑时所述对准机构的运动位置作为可疑位置;控制所述对准机构运动至所述可疑位置以及所述可疑位置前后的设定数量的运动位置,并通过所述图像采集设备依次采集每次运动时所述待对准光学模组成像的光斑;若所述每次运动时所述待对准光学模组成像的光斑中,所述对准机构运动至所述可疑位置时采集到的光斑的尺寸最小,则将所述可疑位置作为最佳位置。
- 根据权利要求1-4中任一项所述的方法,其特征在于,待对准光学模组成像之前,还包括:控制对准机构将所述待组装镜片放置到待组装光学件的指定位置处,以得到待对准光学模组;控制电源组件给所述待对准光学模组的内部光源设备或位于所述待对准光学模组物方的外部光源设备供电,以使所述待对准光学模组成像。
- 一种光学模组组装装置,其特征在于,包括:运动模块,用于在待对准光学模组成像时,控制夹持待组装镜片的对准机构以设定运动步长沿设定方向运动;图像采集模块,用于所述对准机构每次运动时,通过图像采集设备依次采集所述待对准光学模组成像的光斑;最佳位置选取模块,用于从所述采集到的光斑中选取最小尺寸光斑,并确定采集到所述最小尺寸光斑时所述对准机构的运动位置,作为最佳位置;对准模块,用于控制所述对准机构运动至所述最佳位置以对准所述待组装镜片。
- 根据权利要求6所述的装置,其特征在于,所述最佳位置选取模块具体用于:若第一光斑之前的第一数量的光斑的尺寸均大于所述第一光斑的尺寸,且所述第一光斑之后的第二数量的光斑的尺寸均小于所述第一光斑的尺寸,则确定所述第一光斑为最小尺寸光斑。
- 根据权利要求6所述的装置,其特征在于,所述运动模块,还用于:控制所述对准机构从所述待组装镜片对应的组装区域的首端或末端开始以设定运动步长沿设定方向运动。
- 根据权利要求6所述的装置,其特征在于,所述装置还包括最佳位置校准模块,所述最佳位置校准模块用于:将采集到所述最小尺寸光斑时所述对准机构的运动位置作为可疑位置;控制所述对准机构运动至所述可疑位置以及所述可疑位置前后的设定数 量的运动位置,并通过所述图像采集设备依次采集每次运动时所述待对准光学模组成像的光斑;若所述每次运动时所述待对准光学模组成像的光斑中,所述对准机构运动至所述可疑位置时采集到的光斑的尺寸最小,则将所述可疑位置作为最佳位置。
- 根据权利要求6-9中任一项所述的装置,其特征在于,所述装置还包括预处理模块,所述预处理模块用于:控制对准机构将所述待组装镜片放置到待组装光学件的指定位置处,以得到待对准光学模组;控制电源组件给所述待对准光学模组的内部光源设备或位于所述待对准光学模组物方的外部光源设备供电,以使所述待对准光学模组成像。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/753,310 US11612971B2 (en) | 2017-10-17 | 2018-09-06 | Apparatus and method for assembling optical module |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710965647.1A CN107589513A (zh) | 2017-10-17 | 2017-10-17 | 光学模组组装方法及装置 |
CN201710965647.1 | 2017-10-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019076161A1 true WO2019076161A1 (zh) | 2019-04-25 |
Family
ID=61053116
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/104389 WO2019076161A1 (zh) | 2017-10-17 | 2018-09-06 | 光学模组组装方法及装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11612971B2 (zh) |
CN (1) | CN107589513A (zh) |
WO (1) | WO2019076161A1 (zh) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107589513A (zh) * | 2017-10-17 | 2018-01-16 | 歌尔股份有限公司 | 光学模组组装方法及装置 |
CN107589512A (zh) * | 2017-10-17 | 2018-01-16 | 歌尔股份有限公司 | 光学模组组装方法及装置 |
CN107589514A (zh) * | 2017-10-17 | 2018-01-16 | 歌尔股份有限公司 | 光学模组组装方法及装置 |
CN108632593B (zh) * | 2018-05-31 | 2020-05-19 | 歌尔股份有限公司 | 彩色汇聚误差的修正方法、装置及设备 |
CN115494652B (zh) * | 2022-09-22 | 2024-04-16 | 广纳四维(广东)光电科技有限公司 | 一种对头显设备进行装配的方法、装置、设备及存储介质 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20090065854A (ko) * | 2007-12-18 | 2009-06-23 | 삼성전기주식회사 | 카메라 모듈의 자동초점조정장치 및 자동초점조정방법 |
CN102780847A (zh) * | 2012-08-14 | 2012-11-14 | 北京汉邦高科数字技术股份有限公司 | 一种针对运动目标的摄像机自动对焦控制方法 |
CN103674839A (zh) * | 2013-11-12 | 2014-03-26 | 清华大学 | 一种基于光斑检测的可视化样品定位操作系统及方法 |
CN105721753A (zh) * | 2016-03-29 | 2016-06-29 | 联想(北京)有限公司 | 镜头组装方法和镜头组装装置 |
CN107589513A (zh) * | 2017-10-17 | 2018-01-16 | 歌尔股份有限公司 | 光学模组组装方法及装置 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2003263519A1 (en) * | 2002-09-30 | 2004-04-19 | Koninklijke Philips Electronics N.V. | Method for assembling a camera module |
JP2005274925A (ja) * | 2004-03-24 | 2005-10-06 | Pioneer Electronic Corp | ピント調整方法、ピント調整装置 |
CN101493562A (zh) * | 2008-01-21 | 2009-07-29 | 鸿富锦精密工业(深圳)有限公司 | 镜筒旋入装置及镜筒定位方法 |
CN101592787B (zh) * | 2008-05-28 | 2011-11-23 | 北京中视中科光电技术有限公司 | 一种用于光路调节的装置和方法 |
CN201974587U (zh) * | 2011-04-01 | 2011-09-14 | 北京时代卓易科技发展有限公司 | 一种激光准直成像装配定位系统 |
CN107589512A (zh) * | 2017-10-17 | 2018-01-16 | 歌尔股份有限公司 | 光学模组组装方法及装置 |
CN107589514A (zh) * | 2017-10-17 | 2018-01-16 | 歌尔股份有限公司 | 光学模组组装方法及装置 |
-
2017
- 2017-10-17 CN CN201710965647.1A patent/CN107589513A/zh active Pending
-
2018
- 2018-09-06 WO PCT/CN2018/104389 patent/WO2019076161A1/zh active Application Filing
- 2018-09-06 US US16/753,310 patent/US11612971B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20090065854A (ko) * | 2007-12-18 | 2009-06-23 | 삼성전기주식회사 | 카메라 모듈의 자동초점조정장치 및 자동초점조정방법 |
CN102780847A (zh) * | 2012-08-14 | 2012-11-14 | 北京汉邦高科数字技术股份有限公司 | 一种针对运动目标的摄像机自动对焦控制方法 |
CN103674839A (zh) * | 2013-11-12 | 2014-03-26 | 清华大学 | 一种基于光斑检测的可视化样品定位操作系统及方法 |
CN105721753A (zh) * | 2016-03-29 | 2016-06-29 | 联想(北京)有限公司 | 镜头组装方法和镜头组装装置 |
CN107589513A (zh) * | 2017-10-17 | 2018-01-16 | 歌尔股份有限公司 | 光学模组组装方法及装置 |
Also Published As
Publication number | Publication date |
---|---|
US11612971B2 (en) | 2023-03-28 |
CN107589513A (zh) | 2018-01-16 |
US20200238455A1 (en) | 2020-07-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019076161A1 (zh) | 光学模组组装方法及装置 | |
WO2019076162A1 (zh) | 光学模组组装方法及装置 | |
WO2019076163A9 (zh) | 光学模组组装方法及装置 | |
US11077530B2 (en) | Apparatus and method for assembling optical module | |
CN107649875B (zh) | 光学模组组装设备及方法 | |
CN107855767B (zh) | 光学模组组装设备及方法 | |
US7581313B2 (en) | Component mounting method and mounter | |
US11614633B2 (en) | Optical module assembly device | |
CN207833129U (zh) | 光学模组组装设备 | |
JP5299379B2 (ja) | 部品実装装置および部品検出方法 | |
CN207663158U (zh) | 光学模组组装设备 | |
CN207663157U (zh) | 光学模组组装设备 | |
JP2016092093A (ja) | 部品実装装置 | |
KR101002992B1 (ko) | 배치 디바이스에 의해 기판 홀더 상에서 원하는 위치에 구성부품을 배치하는 방법 및 상기 방법을 실행하는데 적합한 디바이스 | |
JP4046627B2 (ja) | 光モジュールの組立方法及び組立装置 | |
TW201908852A (zh) | 裝配裝置及其方法 | |
TW201603892A (zh) | 點膠裝置及點膠方法 | |
JP2006032812A (ja) | 光源装置 | |
TW201908851A (zh) | 裝配裝置及其方法 | |
JPH08304014A (ja) | 測距ユニットの発光素子及び受光素子の位置調整装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18869234 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18869234 Country of ref document: EP Kind code of ref document: A1 |