WO2019075793A1 - 一种连续制备硼掺杂 SiO 2 气凝胶的方法 - Google Patents

一种连续制备硼掺杂 SiO 2 气凝胶的方法 Download PDF

Info

Publication number
WO2019075793A1
WO2019075793A1 PCT/CN2017/109350 CN2017109350W WO2019075793A1 WO 2019075793 A1 WO2019075793 A1 WO 2019075793A1 CN 2017109350 W CN2017109350 W CN 2017109350W WO 2019075793 A1 WO2019075793 A1 WO 2019075793A1
Authority
WO
WIPO (PCT)
Prior art keywords
gel
aerogel
boron
layer
drying
Prior art date
Application number
PCT/CN2017/109350
Other languages
English (en)
French (fr)
Inventor
李蒙蒙
陈晓星
余永禄
刘晓明
Original Assignee
加新科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 加新科技(深圳)有限公司 filed Critical 加新科技(深圳)有限公司
Publication of WO2019075793A1 publication Critical patent/WO2019075793A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/157After-treatment of gels
    • C01B33/158Purification; Drying; Dehydrating
    • C01B33/1585Dehydration into aerogels
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/10Solid density

Definitions

  • the invention belongs to the field of preparation of novel inorganic porous materials, and particularly relates to a method for continuously preparing a high mechanical strength, a low thermal expansion coefficient, a high light transmission property, and a high thermal stability boron miscellaneous 810 2 aerogel.
  • SiO 2 aerogel is a typical three-dimensional network of nanomaterials, which has large specific surface area, high porosity, low density, low thermal conductivity and good dielectric properties. Its unique nanostructures make it a promising application in thermal insulation, energy reduction, catalytic carrier, oil adsorption and aerospace applications.
  • the single component SiO 2 aerogel has poor thermal stability under high temperature conditions, especially when the aerogel has a temperature exceeding 500 for a long time.
  • C uses ⁇ , SiO 2 aerogel internal infrared radiation heat transfer is increased, the heat transfer rate inside the aerogel is accelerated, the aerogel thermal conductivity is increased, resulting in the destruction of aerogel structure, limiting SiO 2 gas condensation The application of glue under high temperature conditions.
  • Borate is generally widely used in boron-silicon glass. Due to its unique properties of physical and chemical properties, the presence of boron can improve the mechanical properties of the glass and the high temperature undetermined performance. The amount of boron is different, and the boron-oxygen connection state is different. When the boron element is added in an amount less than 15%, the boron atom is present in the form of a boron-oxygen tetrahedron, and the boron-oxygen bond is strong, when The silicon-oxygen bond combination will increase the overall silicon-oxygen network. The strength of the skeleton leads to an increase in the mechanical properties of the aerogel, especially at high temperatures, and the silicon-oxygen network structure is more stable.
  • the boron element When the boron element is more than 15% ⁇ , the boron element is present in the network skeleton of the gel in the form of a boron-oxygen plane triangle, which lowers the viscosity of the sol and promotes the gel light transmission performance.
  • the patents CN103785369 B and CN104326729B disclose the use of titanium oxide and silicon carbide as a cumbersome substance to prepare a silicon-based miscellaneous aerogel.
  • these substances exist between the aerogels in the state of larger particles, which seriously affects the physical properties of the silica aerogel itself. It has a higher density and a lower porosity, which has a greater influence on its thermal conductivity.
  • the form of boron entering the aerogel is in the form of a boron-oxygen skeleton, which has little effect on the physical properties of the aerogel itself.
  • its presence in aerogel can significantly improve the thermal and optical properties of aerogels at elevated temperatures.
  • the object of the present invention is to provide a method for preparing a boron-rich SiO 2 aerogel which is under normal pressure drying, low in cost, process controllable, and continuous in production. Obtaining boron miscellaneous Si0 2 aerogel with excellent mechanical properties and high thermal stability
  • the coefficient of thermal expansion is small, and the light transmission is good.
  • the apparatus of the present invention is distributed in a layer as a whole, and includes a compound for supplying water glass, a silicone source, and boron.
  • the raw material supply layer is obtained by mixing industrial water glass, deionized water and ion exchange resin, stirring uniformly, and filtering to obtain a silicic acid sol.
  • the boron compound, deionized water and inorganic acid are thoroughly mixed, and the boron compound is completely dissolved and uniformly mixed with the silicic acid sol, and anhydrous ethanol and a hydrophobic modifier are added, and the mixture is sufficiently stirred to obtain a uniform mixed solution; wherein the industrial water glass
  • the molar ratio of deionized water, inorganic acid, boron compound, absolute ethanol, and hydrophobic modifier is 1: (10-30) : (0.001-1) : (0.001-1) : ( 1-15) : (0.01-15).
  • the ratio of water glass to water is different.
  • the content of monomer and polymer in silicon in the sol is different, and there is a big change in the subsequent gel.
  • Hydrolysis rate The amount of inorganic acid directly determines the pH value of the sol.
  • the hydrolysis rate of the silica sol is closely related to the pH value. When the pH value is 2 ⁇ , the hydrolysis rate of the silica sol reaches the maximum, which can shorten the time of the aerogel production. 3, the amount of boron is uncomfortable.
  • the addition of boron has a great influence on the aerogel density and light transmission. Boron can enter the silicon-oxygen skeleton, and the thermal stability of the aerogel can be improved under high temperature.
  • composition and ratio obtained by the preferred embodiment compared to other compositions and ratios more excellent properties available range of the ratio of the present aerogels, not suffer mechanical strength than Si0 2 aerogels Boron Large, high temperature stability is improved, and light transmission is increased.
  • the boron element can enter the silicon-oxygen skeleton, and the coordination state of the boron element is adjusted by the content change.
  • the gel container in the gel preparation layer is an extrusion device with a piston, and the inner liner is made of polytetrafluoroethylene, and the gel is controlled by adding a gel regulator in the gel extrusion device to control the gel.
  • the gel extrusion rate which adjusts the gel during the movement of the conveyor.
  • the gel formation is adjustable between 30 minutes and 4 hours; the extrusion rate is 2 cm/min, and the extrusion time is adjustable from 1 to 10 minutes per turn; the conveyor speed should be satisfied when the first gel mold reaches the dry state.
  • the gel inside the gel container is just used up.
  • the transfer device has several gel molds. When the last gel mold reaches the drying device, the extrusion device starts to work again.
  • the gel thickness, gel aging, and solvent exchange time can be precisely controlled by the preferred parameter conditions.
  • the solvent is placed in an exchange layer, and the container used is a rectangular parallelepiped container with good sealing properties, and is respectively filled with liquid and liquid.
  • the solvent exchange gradient is 3 ⁇ 5
  • the gel is replaced by liquid circulation
  • the inert gas is charged after the solvent replacement is completed. Perform liquid draining.
  • the drying layer adopts an atmospheric pressure drying process, and the drying medium is one or more of an inert gas hot gas stream, a hot liquid stream, and a heater.
  • the heating method is divided into one type of contact heating and non-contact heating. Two, reduce the shrinkage and fragmentation of the gel during the drying process by setting different temperature gradients.
  • the boron compound is one or more of boric acid, sodium metaborate, boron oxide, borax, and boron organic substituents
  • the hydrophobic modifier is methyltriethoxysilane or trimethyl chloride.
  • silane hexamethyldisilazane
  • polystyrene polypropylene
  • polymethyl methacrylate polymethyl methacrylate.
  • the gel regulator is ammonia water, sodium hydroxide, potassium hydroxide, calcium hydroxide, magnesium hydroxide, sodium carbonate
  • One or more of potassium carbonate, sodium hydrogencarbonate, and potassium hydrogencarbonate is selected from one or more of potassium carbonate, sodium hydrogencarbonate, and potassium hydrogencarbonate.
  • the atmospheric pressure drying temperature gradient is divided into three stages, namely, 40 to 60 ° C, 105 to 120 ° C, and 150 to 200 ° C, and each of the temperature gradients is dried for 1 to 24 hours.
  • the gel drying stage can be generally divided into constant-speed drying, first deceleration stage, and second deceleration stage.
  • the drying driving force of different drying stages is different, and the solvent evaporation rate inside the gel is different, resulting in aerogel performance change. .
  • the advantage of the preferred gradient drying obtained is that the shrinkage and cleaving of the aerogel is minimized, the porosity of the aerogel is obtained, and the aerogel dried is lower than other temperature gradients. Thermal conductivity, shorter production time.
  • the inert gas is one or more of nitrogen, carbon dioxide, and helium, and can be recycled and recycled.
  • the contact heating is to pass the hot gas flow from bottom to top through the gel, directly contacting the gel, and controlling the temperature of the fluid by a heating device;
  • the non-contact heating is to lay a heating pipe outside the gel mold. Changing the gel drying temperature by thermal diffusion;
  • the present invention has the following advantages:
  • the raw material of the invention has wide source and low price, and the boron element is used for the aerogel.
  • the boron compound is dissolved in the acidic solution and evenly distributed inside the generated gel to promote the entry of boron into the Si0 2 gas.
  • the invention adopts an atmospheric pressure drying process to make the aerogel production process continuous and the equipment simple.
  • the entire production process is carried out inside a closed container to avoid high temperature and pressure under supercritical drying conditions, making the gas gel production process safer and more environmentally friendly.
  • Boron miscellaneous 810 2 aerogel prepared by the invention has high mechanical strength, good light transmittance, low thermal expansion coefficient and high thermal stability energy, and the density is measured at 0.09 ⁇ 0.30g/ Controllable between cm 3 , the specific surface area is between 300-700 m 2 /g, and the volume shrinkage after calcination at 800 ° C is 41.3%, which is smaller than the volume shrinkage of the single component SiO 2 aerogel.
  • FIG. 1 is a schematic view of a continuous aerogel production process.
  • FIG. 2 is a schematic view of a continuous aerogel production process 2 .
  • FIG. 3 is a schematic diagram of a gel solvent exchange and drying mold.
  • FIG. 4 is a schematic diagram of a gas gel solvent exchange liquid storage mode.
  • FIG. 5 is a schematic diagram of a solvent exchange and drying mold used in Process 2.
  • FIG. 6 is a sample 1 preparation to obtain a transmission electron micrograph of a boron-doped SiO 2 aerogel.
  • FIG. 7 is an example of the preparation of a boron-doped SiO 2 aerogel XRD analysis.
  • FIG. 8 is a BET nitrogen adsorption-desorption curve of Boron miscellaneous SiO 2 aerogel obtained in Example 2.
  • inlet hole 202 air inlet hole 203: liquid outlet hole
  • waste liquid inlet hole 222 liquid outlet hole 223: waste liquid inlet hole
  • liquid outlet hole 225 waste liquid inlet hole 226: liquid outlet hole 227: air outlet 228: pump 291: with flow meter valve
  • the water glass 2842 ⁇ with a modulus of 3.2 and a Si0 2 content of 72.14% was uniformly mixed with water glass and deionized water at a molar ratio of 1:15, and ion removal was performed by a cation exchange resin device. , obtaining silicic acid sol, and then adding anhydrous ethanol, methyltriethoxysilane, boric acid and hydrochloric acid solution for mixing, whole industrial water glass, deionized water, hydrochloric acid, boric acid, absolute ethanol, methyl triethoxy
  • the silane molar ratio is 1:15: 0.001: 0.001: 10: 0.1.
  • the pH of the mash mixed solution was measured to be 3.4, and allowed to stand for 1 h.
  • the amount of ammonia water added is 5% of the molar amount of water glass. After it is diluted, it is slowly added to the mixed sol, stirred while being added, and the amount of ammonia added is controlled by a flow rate meter.
  • the gel was subsequently treated according to the procedure of Process 1. After the gel reaction occurred, the gel was extruded through a piston into the mold, and the belt rotation speed was adjusted to 0.1 cm/ s . When the gel is transported to the solvent exchange device, the replacement liquid inside the mold is changed by changing the hose on the mold.
  • the internal liquid of the gel is replaced by three solutions of 50% ethanol solution, absolute ethanol and n-hexane.
  • nitrogen gas was introduced into the mold to discharge the liquid remaining inside.
  • the replaced gel is placed in a drying zone, and the drying temperature is set to four gradients of 30 ° C, 60 ° C, 105 ° C, and 120 ° C, respectively, and the venting holes put the volatilized steam into the exhaust gas recovery device, and each A dry gradient was dried for 2 h in the crucible, and finally a SiO 2 aerogel with a boron element was obtained.
  • Figure 4 shows the transmission electron microscopy of boron-doped SiO 2 aerogel.
  • the boron-rich SiO 2 aerogel exhibits a three-dimensional network structure, and the aerogel contains a large amount of mesoporous structure. A small amount of micropores and large pores are filled therein.
  • Figure 5 shows the XRD analysis of the boron miscellaneous 810 2 aerogel. It can be seen that the aerogel is in an amorphous state. The measured aerogel density was 0.0933 g/cm 3 , and the thermal conductivity at room temperature was 0.0169 W/(nvK). The gel specific surface area was 636.35 g/m 2 .
  • the water glass 2842 ⁇ with a modulus of 3.2 and a Si0 2 content of 72.14% was uniformly mixed with water glass and deionized water in a molar ratio of 1:10, and ion removal was performed by a cation exchange resin device. , obtaining silicic acid sol, and then adding anhydrous ethanol, methyltriethoxysilane, boric acid and hydrochloric acid solution for mixing, whole industrial water glass, deionized water, hydrochloric acid, boric acid, absolute ethanol, methyl triethoxy
  • the silane molar ratio is 1:10: 0.1: 0.1: 10:1.
  • the pH of the hydrazine mixed solution was measured to be 1.8 and allowed to stand for 1 h.
  • the amount of ammonia water added is 25% of the molar amount of water glass. After it is diluted, it is slowly added to the mixed sol, stirred while being added, and the amount of ammonia added is controlled by a flow rate meter. After the gel reaction occurs, subsequent processing is carried out in accordance with the process of Process 2.
  • the gel is placed in a mold and the gel mold is transferred vertically to the solvent exchange layer. When the gel is transported to the solvent exchange equipment, the replacement liquid inside the mold is changed by changing the hose on the mold.
  • the gel is replaced with three liquids of absolute ethanol, n-hexane and diethyl ether, and each solution is cyclically replaced. Lh.
  • nitrogen gas was introduced into the mold to discharge the ether remaining inside.
  • the displaced gel is further transported vertically to the drying zone, and the gel is dried by hot nitrogen gas, and the gas heating device is adjusted to control the temperature of 40 ° C, 80 ° C, 120 ° C, 150 ° C, respectively.
  • Each dry gradient is dried for 2 hours, and the volatilized steam is passed through a cooling device to recover the cooling liquid to obtain a SiO 2 aerogel having a boron element.
  • FIG. 6 is a nitrogen adsorption desorption curve of the boron-doped SiO 2 aerogel obtained in the present embodiment. It can be clearly seen from the figure that the curve shows a hysteresis loop, which is a typical mesoporous structure.
  • the boron miscellaneous aerogel was calcined at 800 ° C for 1.5 h, and the volume shrinkage of the aerogel was measured to be 41.3% of its volume. Thus, the boron miscellaneous aerogel has good high temperature stability.
  • the measured aerogel density was 0.11 86g/cm 3 °
  • the water glass 2842 ⁇ with a modulus of 3.2 and a Si0 2 content of 72.14% was uniformly mixed with water glass and deionized water at a molar ratio of 1:30, and ion removal was performed by a cation exchange resin device. , obtaining silicic acid sol, and then adding anhydrous ethanol, methyltriethoxysilane, boric acid and hydrochloric acid solution for mixing, whole industrial water glass, deionized water, hydrochloric acid, boric acid, absolute ethanol, methyl triethoxy
  • the silane molar ratio is 1: 30: 0.01: 0.5: 30: 0.5.
  • the pH of the ruthenium mixed solution was measured to be 3.6, and allowed to stand for 1 h.
  • the amount of ammonia added is 16.8% of the molar amount of water glass, which is diluted and slowly added to the mixed sol. In the middle, while stirring, the amount of ammonia added is controlled by a flow rate meter.
  • the gel reaction occurs, the gel is subjected to subsequent treatment in Process 1. The gel was extruded through a piston into the mold and the belt speed was adjusted to 0.3 cm/ s . When the gel is transported to the solvent exchange equipment, the replacement liquid inside the mold is changed by changing the hose on the mold.
  • the gel is replaced with three liquids of absolute ethanol, acetone and diethyl ether, and each solution is cyclically replaced for 1 hour. .
  • nitrogen gas was introduced into the mold to discharge the ether remaining inside.
  • the replaced gel is placed in a drying zone, and the drying temperature is set to 30 ° C, 80 ° C, 105 ° C, and 120 ° C, respectively, and the venting holes put the volatilized steam into the exhaust gas recovery device.
  • a dry gradient was dried for 2 h in the crucible, and finally a SiO 2 aerogel with a boron element was obtained.
  • Fig. 7 is a macroscopic morphology of the boron-doped SiO 2 aerogel obtained in the present embodiment. It can be seen from the figure that the boron-doped SiO 2 aerogel is obtained as a white powder, and the density is measured to be 0.1024 g/cm. 3. Mechanical properties are high relative to single component SiO 2 aerogels.
  • the water glass 2842 ⁇ with a modulus of 3.2 and a Si0 2 content of 72.14% was uniformly mixed with water glass and deionized water in a molar ratio of 1:10, and ion removal was performed by a cation exchange resin device. , obtaining silicic acid sol, and then adding anhydrous ethanol, methyltriethoxysilane, boric acid and hydrochloric acid solution for mixing, whole industrial water glass, deionized water, hydrochloric acid, absolute ethanol, methyltriethoxysilane molar The ratio is 1: 10: 0.1: 10: 1. After uniformly mixing, the pH of the hydrazine mixed solution was measured to be 1.8 and allowed to stand for 1 h.
  • the amount of ammonia water added is 25% of the molar amount of water glass. After it is diluted, it is slowly added to the mixed sol, stirred while being added, and the amount of ammonia added is controlled by a flow rate meter. After the gel reaction occurs, subsequent processing is carried out in accordance with the process of Process 2.
  • the gel is placed in a mold and the gel mold is transferred vertically to the solvent exchange layer. When the gel is transported to the solvent exchange equipment, the replacement liquid inside the mold is changed by changing the hose on the mold. In this experiment, the gel is replaced with three liquids of absolute ethanol, n-hexane and diethyl ether, and each solution is cyclically replaced. Lh. After the replacement, nitrogen gas was introduced into the mold to discharge the ether remaining inside.
  • the displaced gel is further transported vertically to the drying zone, and the gel is dried by hot nitrogen gas, and the gas heating device is adjusted to control the temperature of 40 ° C, 80 ° C, 120 ° C, 150 ° C, respectively.
  • Each dry gradient is dried for 2 hours, and the volatilized steam is passed through a cooling device to recover the cooling liquid to obtain an SiO 2 aerogel.
  • the measured SiO 2 aerogel density is 0.0892 g/cm ⁇ , which is less mechanically weak than the borax SiO 2 aerogel, and the aerogel volume shrinks up after 800 ° C calcination.
  • the original volume of aerogel is 80%, and the thermal stability is good.

Abstract

提供一种连续制备硼掺杂SiO 2气凝胶的方法,设备整体呈层状分布,包括供给水玻璃、有机硅源、硼的化合物、去离子水、无机酸、表面改性剂、凝胶调节剂、有机溶剂的原料供给层;进行原料混合、溶胶形成、凝胶产生的凝胶制备层;对凝胶进行溶剂置换的交换层;通过常压干燥工艺获得气凝胶的干燥层;以及回收废弃有机溶剂和废弃蒸汽的回收层。采用常压干燥使气凝胶生产工艺连续化。制得的硼掺杂二氧化硅气凝胶机械强度较大、透光性良好,具有较低的热膨胀系数,较高的热稳定性。

Description

一种连续制备硼掺杂 SiO 2气凝胶的方法 技术领域
[0001] 本发明属于新型无机多孔材料制备领域, 特别涉及一种连续制备高机械强度、 低热膨胀系数、 高透光性能、 高热稳定性硼惨杂 810 2气凝胶的方法。
背景技术
[0002] SiO 2气凝胶是一种典型三维网状结构的纳米材料, 具有比表面积大、 孔隙率高 、 密度低、 导热系数低、 介电性能良好的性能。 其独特的纳米结构使其在保温 隔热、 降低能耗、 催化载体、 油污吸附以及航空航天领域具有广阔的应用前景
[0003] 现有 SiO 2气凝胶生产多采用有机硅 (正硅酸乙酯、 正硅酸甲酯) 作为原料, 在 超临界条件下进行干燥生产。 如专利 CN103130231
B、 CN1557778、 EP-A-0396376中已公幵气凝胶的生产工艺。 但这些生产工艺原 材料价格昂贵、 工艺过程复杂, 需要人工将凝胶放入超临界反应釜体中, 严重 影响了气凝胶生产环境的安全性以及工艺的连续性。 水玻璃作为一种价格低廉 的工业产品, 通过阳离子交换树脂置换即可除去内部大量的碱金属离子, 获得 硅酸溶胶, 经过碱性溶液调节 pH值, 即可获得性能不同的湿凝胶。 采用常压干 燥工艺一方面降低了气凝胶生产过程中的能耗, 另一方面降低了工人的操作步 骤。 使气凝胶的生产成本降低, 工艺过程连续, 制备吋间缩短。
[0004] 然而, 单一组分的 SiO 2气凝胶在高温条件下热学稳定性能较差, 尤其当气凝胶 长期在温度超过 500。C使用吋, SiO 2气凝胶内部红外辐射传热加剧, 热量在气凝 胶内部的传输速率加快, 使气凝胶导热系数增大, 导致气凝胶结构的破坏, 限 制了 SiO 2气凝胶在高温条件下的应用。
[0005] 硼酸盐通常在硼-硅玻璃中的应用较为广泛, 由于其独特性能理化性能, 硼元 素的存在可提升玻璃的机械性能以及高温未定性能。 硼元素的用量不同, 硼-氧 连接状态不同, 当硼元素加入量低于 15%吋, 此吋硼元素以硼-氧四面体的形式 存在, 由于硼-氧键强较大, 当其与硅-氧键组合吋, 相应会增加整体硅-氧网络 骨架的强度, 导致气凝胶的力学性能增加, 尤其在高温状态下, 硅 -氧网络结构 更加稳定。 当硼元素惨量大于 15%吋, 硼元素部分以硼-氧平面三角形的形式存 在于凝胶的网络骨架之中, 会降低溶胶的粘度, 促使凝胶透光性能变好。
[0006] 专利 CN103785369 B、 CN104326729B公幵了采用氧化钛和碳化硅作为惨杂物 质, 制备硅基惨杂气凝胶。 但这些物质以较大粒子的状态存在于气凝胶之间, 严重影响氧化硅气凝胶本身的物理性能。 使其密度变大、 孔隙率较低, 对其导 热系数影响较大。 而硼元素进入气凝胶的形式则以硼-氧骨架形式, 对气凝胶本 身的物理性能影响较小。 但其在气凝胶中的存在可以明显改善气凝胶高温状态 下的热学与光学性能。
技术问题
[0007] 在此处键入技术问题描述段落。
问题的解决方案
技术解决方案
[0008] 本发明目的在于提供一种常压干燥、 价格低廉、 过程可控、 生产连续的硼惨杂 Si0 2气凝胶制备方法。 获得硼惨杂 Si0 2气凝胶具有机械性能优良, 热稳定性高
, 热膨胀系数小, 透光性良好的特点。
[0009] 为了实现上述目的, 本发明的一种连续制备硼惨杂 SiO 2气凝胶的方法的技术方 案是:
[0010] 本发明的设备整体呈层状分布, 其中包括供给水玻璃、 有机硅源、 硼的化合物
、 去离子水、 无机酸、 表面改性剂、 凝胶调节剂、 有机溶剂的原料供应层; 原 材料混合、 溶胶形成、 凝胶产生的凝胶制备层; 对凝胶进行溶剂置换的交换层 ; 通过常压干燥工艺获得气凝胶的干燥层; 废弃有机溶剂和废弃蒸汽的回收层
[0011] 所述的原材料供应层是将工业水玻璃、 去离子水、 离子交换树脂混合后搅拌均 匀, 过滤获得硅酸溶胶。 将硼的化合物、 去离子水、 无机酸充分混合, 待硼的 化合物完全溶解后与硅酸溶胶混合均匀, 加入无水乙醇、 疏水改性剂, 充分搅 拌获得均匀的混合溶液; 其中工业水玻璃、 去离子水、 无机酸、 硼的化合物、 无水乙醇、 疏水改性剂摩尔比为 1 : (10-30) : (0.001-1) : (0.001-1) : ( 1-15) : (0.01-15) 。
[0012] 通常情况下, 凝胶形成受以下因素的制约和影响: 1、 单位体积硅元素含量。
水玻璃与水的比例不同, 溶胶内部硅的单聚体、 多聚体含量不同, 后续凝胶吋 间有较大变化。 2、 水解速率。 无机酸的用量直接决定溶胶内部 pH值大小, 硅溶 胶水解速率与 pH值关系密切, 当 pH值为 2吋, 硅溶胶的水解速率达到最大, 可缩 短气凝胶生产的吋间。 3、 硼元素惨量。 硼元素的加入量对气凝胶密度与透光性 有较大影响, 硼元素可进入硅-氧骨架, 高温状态下可提高气凝胶的热学稳定性
[0013] 通过优选得到的组成及配比方案相比于其他组成和配比, 本配比范围可获性能 更为优良的气凝胶产品, 机械强度较未惨硼元素的 Si0 2气凝胶大, 高温稳定性 提升明显, 透光性增加。 硼元素可进入硅-氧骨架, 通过含量改变调节硼元素的 配位状态。
[0014] 凝胶制备层中的凝胶容器为带有活塞的挤出装置, 内衬为聚四氟乙烯材质, 通 过在凝胶挤出装置加入凝胶调节剂控制凝胶形成吋间, 控制凝胶挤出速率, 调 节凝胶在传送设备运动吋间。
[0015] 优选凝胶形成吋间 30min~4h可调; 挤出速率为 2cm/min, 每次挤出吋间 l-10min 可调; 传送带传送速率应满足, 当第一个凝胶模具到达干燥装置吋, 凝胶容器 内部凝胶刚好用完, 传送装置有若干凝胶模具, 当最后一个凝胶模具达到干燥 装置后, 挤出装置幵始重新工作。
[0016] 通过优选得到的参数条件可精确控制凝胶厚度、 凝胶老化吋间、 溶剂交换吋间
, 使整个生产工艺连续性较高, 减少不必要的人工。
[0017] 所述溶剂置交换层, 所用容器为密封性良好的长方体容器, 分别装有进、 出液
/气口, 并且在进出口附近安装有过滤网筛, 阻止凝胶进入外部管道, 溶剂交换 梯度为 3~5个, 采用液体循环流动的方式对凝胶进行置换, 溶剂置换完成后充入 惰性气体进行排液处理。
[0018] 所述干燥层采用常压干燥工艺, 干燥介质为惰性气体热气流、 热液流、 加热器 的一种或多种, 加热方式分为接触式加热、 非接触式加热的一种或两种, 通过 设置不同的温度梯度降低干燥过程凝胶的收缩与碎裂。 [0019] 所述硼的化合物为硼酸、 偏硼酸钠、 氧化硼、 硼砂、 硼有机取代物的一种或多 种, 所述疏水改性剂为甲基三乙氧基硅烷、 三甲基氯硅烷、 六甲基二硅氮烷、 聚苯乙烯、 聚丙烯、 聚甲基丙烯酸甲酯的一种或多种。
[0020] 所述凝胶调节剂为氨水、 氢氧化钠、 氢氧化钾、 氢氧化钙、 氢氧化镁、 碳酸钠
、 碳酸钾、 碳酸氢钠、 碳酸氢钾的一种或多种。
[0021] 所述常压干燥温度梯度分 3个阶段, 即 40~60°C、 105~120°C、 150~200°C, 每个 温度梯度干燥吋间为 l~24h。
[0022] 凝胶干燥阶段通常可分为等速干燥、 第一降速阶段、 第二降速阶段, 不同干燥 阶段的干燥驱动力不同, 凝胶内部溶剂挥发速率不同, 造成气凝胶性能变化。
[0023] 通过优选得到的本梯度干燥的好处在于, 最大程度降低气凝胶的收缩幵裂, 获 得气凝胶的孔隙率较高, 相比于其他温度梯度干燥的气凝胶具有较低的导热系 数, 较短的生产吋间。
[0024] 所述惰性气体为氮气、 二氧化碳、 氦气的一种或多种, 可回收循环利用。
[0025] 所述接触式加热是将热气流由下而上通过凝胶, 直接与凝胶进行接触, 通过加 热装置控制流体温度; 所述非接触式加热是在凝胶模具外部铺设加热管道, 通 过热扩散改变凝胶干燥温度;
[0026] 本发明与现有技术相比, 具有以下优点:
[0027] 1本发明的原材料来源广泛, 价格低廉, 采用硼元素对气凝胶进行惨杂, 硼的 化合物溶解于酸性溶液后, 均匀分布在生成的凝胶内部, 促进硼元素进入 Si0 2 气凝胶的网络骨架。
[0028] 2本发明采用常压干燥工艺使气凝胶生产工艺具有连续化, 设备简单化。 整个 生产过程均在密闭容器内部进行, 避免超临界干燥条件下的高温高压, 使气凝 胶生产工艺更加安全化, 环保化。
[0029] 3本发明制备的硼惨杂 810 2气凝胶机械强度较大, 透光性良好, 具有较低的热 膨胀系数, 较高的热稳定性能, 经测量其密度在 0.09~0.30g/cm 3之间可控, 比表 面积在 300-700m 2/g之间, 800°C煅烧后体积收缩为 41.3%, 小于单一组分 SiO 2气 凝胶的体积收缩率。
发明的有益效果 有益效果
[0030] 在此处键入有益效果描述段落。
对附图的简要说明
附图说明
[0031] 图 1为气凝胶连续生产工艺过程 1示意图。
[0032] 图 2为气凝胶连续生产工艺过程 2示意图。
[0033] 图 3为凝胶溶剂交换与干燥模具示意图。
[0034] 图 4为气凝胶溶剂交换液体存储方式示意图。
[0035] 图 5为工艺过程 2所用溶剂交换与干燥模具示意图。
[0036] 图 6实例 1制备获得硼惨杂 SiO 2气凝胶透射电镜图谱。
[0037] 图 7实例 1制备获得硼惨杂 SiO 2气凝胶 XRD分析图。
[0038] 图 8为实例 2获得硼惨杂 SiO 2气凝胶 BET氮气吸附 -脱附曲线。
[0039] 图 9为实例 3获得块状硼惨杂 SiO 2气凝胶宏观形貌。
[0040] 附图标记说明
[0041] 11: 水玻璃存储罐 12: 溶胶存储罐 13: 凝胶调节剂存储罐 [0042] 14: 阳离子交换树脂 15: 电动阀门 16: 液体流量流速控制器 [0043] 17: 搅拌器 18: 活塞式推动器 19: 凝胶切割机
[0044] 20: 凝胶存储模具 21: 传送带 22: 溶剂交换器
[0045] 23: 干燥带 (梯度 1) 24: 干燥带 (梯度 2) 25: 干燥带 (梯度 3)
[0046] 26: 干燥带 (梯度 4) 27: 废气冷却回收装置 28: 原料层 (同工艺 1) [0047] 29: 溶液置换装置 30: 带滤网出液口 31 : 带滤网进液口 [0048] 32: 液体流量控制阀门 33: 气体温度调节装置 34: 气体流量控制 [0049] 35: 带滤网进气口 36: 带滤网废气入口 37: 带滤网排液 \气口 [0050] 38: 冷却装置 39: 凝胶容器
[0051] 201: 进液孔 202: 进气孔 203: 出液孔
[0052] 204: 出液孔 205: 出气孔 220: 液体隔离装置
[0053] 221: 废液进液孔 222: 出液孔 223: 废液进液孔
[0054] 224: 出液孔 225: 废液进液孔 226: 出液孔 [0055] 227: 出气孔 228: 抽液泵 291 : 带有流量计阀门
[0056] 292: 交换溶液存储罐
实施该发明的最佳实施例
本发明的最佳实施方式
[0057] 在此处键入本发明的最佳实施方式描述段落。
本发明的实施方式
[0058] 为了更好地理解本发明, 下面结合实施例和附图进一步阐明本发明的内容, 但 本发明的内容不仅仅局限于下面的实施例。
[0059] 实施例 1
[0060] 取模数为 3.2, Si0 2含量为 72.14%的水玻璃2842§, 并以水玻璃、 去离子水按照 摩尔比为 1:15的比例混合均匀, 通过阳离子交换树脂装置进行离子除杂, 获得硅 酸溶胶, 然后加入无水乙醇、 甲基三乙氧基硅烷、 硼酸和盐酸溶液进行混合, 整体工业水玻璃、 去离子水、 盐酸、 硼酸、 无水乙醇、 甲基三乙氧基硅烷摩尔 比为 1 : 15: 0.001: 0.001: 10: 0.1。 均匀混合后测量此吋混合溶液的 pH值为 3.4 , 静置 lh。 氨水的加入量为水玻璃摩尔量的 5%, 将其稀释后缓慢加入混合溶胶 中, 边加边搅拌, 通过流量流速计控制氨水的加入量。 按照工艺 1的过程进行凝 胶后续处理。 待凝胶反应发生后, 通过活塞挤出凝胶至模具中, 调节传送带转 速为 0.1cm/S。 当凝胶运输到溶剂交换设备吋, 通过更换模具上的软管改变模具 内部的置换液体, 本实验依次采用 50%乙醇溶液, 无水乙醇, 正己烷三种溶液对 凝胶内部液体进行置换。 置换后, 在模具中通入氮气, 排出残留在内部的液体 。 进一步将置换后的凝胶放在干燥区域, 干燥温度分别设置为 30°C, 60°C, 105 °C, 120°C四个梯度, 排气孔将挥发的蒸汽放入废气回收装置, 每个干燥梯度干 燥吋间 2h, 最终获得惨有硼元素的 SiO 2气凝胶。 图 4即为硼惨杂 SiO 2气凝胶的透 射电镜图谱, 从图中可以明显看出硼惨杂 SiO 2气凝胶呈现三维网络结构, 气凝 胶内部含有大量的介孔结构, 还有少量的微孔与大孔填充在其中。 图 5即为硼惨 杂 810 2气凝胶的 XRD分析图谱, 可以看出气凝胶为无定型状态。 经测量获得气 凝胶的密度为 0.0933g/cm 3, 常温下导热系数为 0.0169W/(nvK), 通过 BET测得气 凝胶比表面积为 636.35g/m 2
[0061] 实施例 2
[0062] 取模数为 3.2, Si0 2含量为 72.14%的水玻璃2842§, 并以水玻璃、 去离子水按照 摩尔比为 1: 10的比例混合均匀, 通过阳离子交换树脂装置进行离子除杂, 获得硅 酸溶胶, 然后加入无水乙醇、 甲基三乙氧基硅烷、 硼酸和盐酸溶液进行混合, 整体工业水玻璃、 去离子水、 盐酸、 硼酸、 无水乙醇、 甲基三乙氧基硅烷摩尔 比为 1 : 10: 0.1: 0.1: 10: 1。 均匀混合后测量此吋混合溶液的 pH值为 1.8, 静 置 lh。 氨水的加入量为水玻璃摩尔量的 25%, 将其稀释后缓慢加入混合溶胶中, 边加边搅拌, 通过流量流速计控制氨水的加入量。 待凝胶反应发生后, 按照工 艺 2的过程进行后续处理。 将凝胶放入模具中, 将凝胶模具垂直传送至溶剂交换 层。 当凝胶运输到溶剂交换设备吋, 通过更换模具上的软管改变模具内部的置 换液体, 本实验依次采用无水乙醇, 正己烷, 乙醚三种液体对凝胶进行置换, 每种溶液循环置换 lh。 置换后, 在模具中通入氮气, 排出残留在内部的乙醚。 进一步将置换后的凝胶垂直运输至干燥区域, 采用热氮气对凝胶进行干燥, 调 节气体加热装置, 控制温度分别为为 40°C, 80°C, 120°C, 150°C四个梯度, 每个 干燥梯度干燥吋间 2h, 将挥发的蒸汽通过冷却装置, 回收冷却液体, 获得惨有 硼元素的 SiO 2气凝胶。 图 6即为本实施例获得的硼惨杂 SiO 2气凝胶氮气吸附脱附 曲线, 从图中可以明显看出曲线显示有磁滞回线, 是典型的介孔结构。 将获得 硼惨杂气凝胶在 800°C下煅烧 1.5h, 测得气凝胶体积收缩率为其体积的 41.3%, 由 此可见硼惨杂气凝胶具有较好的高温稳定性能。 经测量获得气凝胶的密度为 0.11 86g/cm 3°
[0063] 实施例 3
[0064] 取模数为 3.2, Si0 2含量为 72.14%的水玻璃2842§, 并以水玻璃、 去离子水按照 摩尔比为 1:30的比例混合均匀, 通过阳离子交换树脂装置进行离子除杂, 获得硅 酸溶胶, 然后加入无水乙醇、 甲基三乙氧基硅烷、 硼酸和盐酸溶液进行混合, 整体工业水玻璃、 去离子水、 盐酸、 硼酸、 无水乙醇、 甲基三乙氧基硅烷摩尔 比为 1 : 30: 0.01: 0.5: 30: 0.5。 均匀混合后测量此吋混合溶液的 pH值为 3.6, 静置 lh。 氨水的加入量为水玻璃摩尔量的 16.8%, 将其稀释后缓慢加入混合溶胶 中, 边加边搅拌, 通过流量流速计控制氨水的加入量。 待凝胶反应发生后, 采 用工艺过程 1对凝胶进行后续处理。 通过活塞挤出凝胶至模具中, 调节传送带转 速为 0.3cm/S。 当凝胶运输到溶剂交换设备吋, 通过更换模具上的软管改变模具 内部的置换液体, 本实验依次采用无水乙醇, 丙酮, 乙醚三种液体对凝胶进行 置换, 每种溶液循环置换 lh。 置换后, 在模具中通入氮气, 排出残留在内部的 乙醚。 进一步将置换后的凝胶放在干燥区域, 干燥温度分别设置为 30°C, 80°C, 105°C, 120°C四个梯度, 排气孔将挥发的蒸汽放入废气回收装置, 每个干燥梯度 干燥吋间 2h, 最终获得惨有硼元素的 SiO 2气凝胶。 图 7即为本实施例获得的硼惨 杂 SiO 2气凝胶宏观形貌, 从图中可以看出获得硼惨杂 SiO 2气凝胶为白色粉末状 , 经测量其密度为 0.1024g/cm 3, 机械性能相对单一组分 SiO 2气凝胶强度高。
[0065] 对比实施例
[0066] 取模数为 3.2, Si0 2含量为 72.14%的水玻璃2842§, 并以水玻璃、 去离子水按照 摩尔比为 1:10的比例混合均匀, 通过阳离子交换树脂装置进行离子除杂, 获得硅 酸溶胶, 然后加入无水乙醇、 甲基三乙氧基硅烷、 硼酸和盐酸溶液进行混合, 整体工业水玻璃、 去离子水、 盐酸、 无水乙醇、 甲基三乙氧基硅烷摩尔比为 1 : 10: 0.1: 10: 1。 均匀混合后测量此吋混合溶液的 pH值为 1.8, 静置 lh。 氨水的 加入量为水玻璃摩尔量的 25%, 将其稀释后缓慢加入混合溶胶中, 边加边搅拌, 通过流量流速计控制氨水的加入量。 待凝胶反应发生后, 按照工艺 2的过程进行 后续处理。 将凝胶放入模具中, 将凝胶模具垂直传送至溶剂交换层。 当凝胶运 输到溶剂交换设备吋, 通过更换模具上的软管改变模具内部的置换液体, 本实 验依次采用无水乙醇, 正己烷, 乙醚三种液体对凝胶进行置换, 每种溶液循环 置换 lh。 置换后, 在模具中通入氮气, 排出残留在内部的乙醚。 进一步将置换 后的凝胶垂直运输至干燥区域, 采用热氮气对凝胶进行干燥, 调节气体加热装 置, 控制温度分别为为 40°C, 80°C, 120°C, 150°C四个梯度, 每个干燥梯度干燥 吋间 2h, 将挥发的蒸汽通过冷却装置, 回收冷却液体, 获得 SiO 2气凝胶。 经测 量获得 SiO 2气凝胶密度为 0.0892g/cm ^, 相比惨硼 SiO 2气凝胶机械强度较低, 很 容易碎裂, 并且经过 800°C煅烧处理后, 气凝胶体积收缩高达气凝胶原来体积的 8 0% , 热稳定性良好。 [0067] 上述实施例为本发明较佳的实施方式, 但本发明的实施方式并不受上述实施例 的限制, 其他的任何未背离本发明的精神实质与原理下所作的改变、 修饰、 替 代、 组合、 简化, 均应为等效的置换方式, 都包含在本发明的保护范围之内。 工业实用性
[0068] 在此处键入工业实用性描述段落。
序列表自由内容
[0069] 在此处键入序列表自由内容描述段落。

Claims

权利要求书
[权利要求 1] 一种连续制备硼惨杂 810 2气凝胶的方法, 其特征在于: 设备整体呈 层状分布, 其中包括供给水玻璃、 有机硅源、 硼的化合物、 去离子水
、 无机酸、 表面改性剂、 凝胶调节剂、 有机溶剂的原料供应层; 原材 料混合、 溶胶形成、 凝胶产生的凝胶制备层; 对凝胶进行溶剂置换的 交换层; 通过常压干燥工艺获得气凝胶的干燥层; 废弃有机溶剂和废 弃蒸汽的回收层。
[权利要求 2] 根据权利要求 1所述的方法, 其特征在于: 原材料供应层是将工业水 玻璃、 去离子水、 离子交换树脂混合后搅拌均匀, 过滤获得硅酸溶胶 ; 将硼的化合物、 去离子水、 无机酸充分混合, 待硼的化合物完全溶 解后与硅酸溶胶混合均匀, 加入无水乙醇、 疏水改性剂, 充分搅拌获 得均匀的混合溶液; 其中工业水玻璃、 去离子水、 无机酸、 硼的化合 物、 无水乙醇、 疏水改性剂摩尔比为 1 : ( 10-30) : (0.001-1) :
(0.001-1) : ( 1-15) : (0.01-15) 。
[权利要求 3] 根据权利要求 1所述的方法, 其特征在于: 凝胶制备层中的凝胶容器 为带有活塞的挤出装置, 内衬为聚四氟乙烯材质, 通过在凝胶挤出装 置加入凝胶调节剂控制凝胶形成吋间, 控制凝胶挤出速率, 调节凝胶 在传送设备运动吋间, 优选凝胶形成吋间 30min~4h可调; 挤出速率 为 2cm/min, 每次挤出吋间 l-10min可调。
[权利要求 4] 根据权利要求 1所述的制备方法, 其特征在于: 溶剂置交换层, 所用 容器为密封性良好的长方体容器, 分别装有进、 出液 /气口, 并且在 进出口附近安装有过滤网筛, 阻止凝胶进入外部管道, 溶剂交换梯度 为 3~5个, 采用液体循环流动的方式对凝胶进行置换, 溶剂置换完成 后充入惰性气体进行排液处理。
[权利要求 5] 根据权利要求 1所述的方法, 其特征在于: 所述干燥层采用常压干燥 工艺, 干燥介质为惰性气体热气流、 热液流、 加热器的一种或多种, 加热方式分为接触式加热、 非接触式加热的一种或两种, 通过设置不 同的温度梯度降低干燥过程凝胶的收缩与碎裂。
[权利要求 6] 根据权利要求 1或 2所述的方法, 其特征在于: 硼的化合物为硼酸、 偏 硼酸钠、 氧化硼、 硼砂、 硼有机取代物的一种或多种, 所述疏水改性 剂为甲基三乙氧基硅烷、 三甲基氯硅烷、 六甲基二硅氮烷、 聚苯乙烯 、 聚丙烯、 聚甲基丙烯酸甲酯的一种或多种。
[权利要求 7] 根据权利要求 1或 3所述的方法, 其特征在于: 所述凝胶调节剂为氨水 、 氢氧化钠、 氢氧化钾、 氢氧化钙、 氢氧化镁、 碳酸钠、 碳酸钾、 碳 酸氢钠、 碳酸氢钾的一种或多种。
[权利要求 8] 根据权利要求 1或 5所述的方法, 其特征在于: 常压干燥温度梯度分 3 个阶段, 即 40~60°C、 105~120°C、 150~200°C, 每个温度梯度干燥吋 间为 l~24h。
[权利要求 9] 根据权利要求 4和权利要求 5所述的制备方法, 其特征在于: 所述惰性 气体为氮气、 二氧化碳、 氦气的一种或多种, 可回收循环利用。
[权利要求 10] 根据权利要求 5所述的方法, 其特征在于: 所述接触式加热是将热气 流由下而上通过凝胶, 直接与凝胶进行接触, 通过加热装置控制流体 温度; 所述非接触式加热是在凝胶模具外部铺设加热管道, 通过热扩 散改变凝胶干燥温度。
PCT/CN2017/109350 2017-10-19 2017-11-03 一种连续制备硼掺杂 SiO 2 气凝胶的方法 WO2019075793A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710979694.1 2017-10-19
CN201710979694.1A CN107662923B (zh) 2017-10-19 2017-10-19 一种连续制备硼掺杂SiO2气凝胶的方法

Publications (1)

Publication Number Publication Date
WO2019075793A1 true WO2019075793A1 (zh) 2019-04-25

Family

ID=61097127

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/109350 WO2019075793A1 (zh) 2017-10-19 2017-11-03 一种连续制备硼掺杂 SiO 2 气凝胶的方法

Country Status (2)

Country Link
CN (1) CN107662923B (zh)
WO (1) WO2019075793A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109794207A (zh) * 2019-03-13 2019-05-24 深圳中凝科技有限公司 无内胆凝胶改性装置及方法
CN109775713A (zh) * 2019-03-13 2019-05-21 深圳中凝科技有限公司 一种具有输送装置的气凝胶制备系统
CN109794206A (zh) * 2019-03-13 2019-05-24 深圳中凝科技有限公司 无内胆凝胶干燥装置及方法
CN109772238A (zh) * 2019-03-13 2019-05-21 深圳中凝科技有限公司 一种气凝胶制备系统及方法
CN109772239A (zh) * 2019-03-13 2019-05-21 深圳中凝科技有限公司 无内胆凝胶固化老化装置及方法
CN109806817A (zh) * 2019-03-13 2019-05-28 深圳中凝科技有限公司 一体化的凝胶改性和干燥系统及方法
CN109794208A (zh) * 2019-03-13 2019-05-24 深圳中凝科技有限公司 一种凝胶活化装置及方法
CN110561578B (zh) * 2019-08-30 2020-10-30 贵州大学 一种基于纳米硅溶胶的多功能木材保护剂及其制备方法
CN110586012A (zh) * 2019-09-18 2019-12-20 中国科学院上海硅酸盐研究所 航天气凝胶制取装置
CN113402902A (zh) * 2021-06-21 2021-09-17 江苏脒诺甫纳米材料有限公司 一种硅基防晒隔热粉体的生产工艺
CN113955761B (zh) * 2021-11-17 2022-05-24 金三江(肇庆)硅材料股份有限公司 一种防团聚增稠型二氧化硅及其制备方法
CN116120793A (zh) * 2023-03-09 2023-05-16 南通市乐佳涂料有限公司 一种节能气凝胶保温发光涂料的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1557778A (zh) * 2004-02-03 2004-12-29 同济大学 纳米多孔二氧化硅气凝胶块体的制备方法
CN103130231A (zh) * 2011-11-25 2013-06-05 航天特种材料及工艺技术研究所 一种二氧化硅气凝胶材料及其制备方法
CN103785369A (zh) * 2014-01-21 2014-05-14 江苏大学 一种钛掺杂硅基复合气凝胶的制备方法
CN104556964A (zh) * 2014-12-30 2015-04-29 纳诺科技有限公司 一种疏水型二氧化硅气凝胶绝热复合材料及其制备方法
CN104556969A (zh) * 2014-12-30 2015-04-29 纳诺科技有限公司 一种疏水型二氧化硅气凝胶绝热复合材料的制备方法
CN104556965A (zh) * 2014-12-30 2015-04-29 纳诺科技有限公司 一种疏水型二氧化硅气凝胶绝热复合材料

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2866650A1 (en) * 2012-03-09 2013-09-12 Basf Se Aerogel based on doped graphene
CN102659120A (zh) * 2012-04-18 2012-09-12 同济大学 一种疏水型大尺寸块体纳米多孔SiO2气凝胶的制备方法
CN104478394B (zh) * 2014-11-24 2016-09-21 天津大学 一种纤维毡增强二氧化硅气凝胶复合板的制备方法
CN105236912B (zh) * 2015-08-31 2017-11-17 武汉理工大学 一种复合纤维增强疏水SiO2气凝胶及其制备方法
CN106829929B (zh) * 2017-02-20 2019-04-02 上海大学 一种三维氮硼共掺杂石墨烯气凝胶的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1557778A (zh) * 2004-02-03 2004-12-29 同济大学 纳米多孔二氧化硅气凝胶块体的制备方法
CN103130231A (zh) * 2011-11-25 2013-06-05 航天特种材料及工艺技术研究所 一种二氧化硅气凝胶材料及其制备方法
CN103785369A (zh) * 2014-01-21 2014-05-14 江苏大学 一种钛掺杂硅基复合气凝胶的制备方法
CN104556964A (zh) * 2014-12-30 2015-04-29 纳诺科技有限公司 一种疏水型二氧化硅气凝胶绝热复合材料及其制备方法
CN104556969A (zh) * 2014-12-30 2015-04-29 纳诺科技有限公司 一种疏水型二氧化硅气凝胶绝热复合材料的制备方法
CN104556965A (zh) * 2014-12-30 2015-04-29 纳诺科技有限公司 一种疏水型二氧化硅气凝胶绝热复合材料

Also Published As

Publication number Publication date
CN107662923A (zh) 2018-02-06
CN107662923B (zh) 2020-12-18

Similar Documents

Publication Publication Date Title
WO2019075793A1 (zh) 一种连续制备硼掺杂 SiO 2 气凝胶的方法
CN106629750B (zh) 一种透明二氧化硅块体气凝胶的常压制备方法
CN101372337B (zh) 共前驱体法常压干燥制备透明二氧化硅气凝胶的方法
CN101691227B (zh) 二氧化硅气凝胶材料的制备方法
WO2018133260A1 (zh) 一种超疏水性硅铝锆复合材料及其制备方法
CN102897779B (zh) 一种透明二氧化硅气凝胶的制备方法
CN103599709B (zh) 一种高成膜率合成NaA沸石膜的方法
CN106867019A (zh) 一锅法制备SiO2‑纤维素复合气凝胶材料的方法
Cui et al. Preparation of SiO 2 aerogel from rice husk ash
CN101456569A (zh) 一种水热合成低成本快速制备气凝胶的方法
WO2005110919A1 (ja) シリカエアロゲルの製造方法
CN106865558A (zh) 常压制备二氧化硅气凝胶的方法及制得的二氧化硅气凝胶
KR20090030131A (ko) 영구적인 소수성을 갖는 고투광성 입상형 에어로겔제조방법 및 이로부터 제조된 입상형 에어로겔
CN105837252B (zh) 多孔氧化铝陶瓷及其制备方法
CN101638237B (zh) 二氧化硅气凝胶快速制备方法
CN107151020A (zh) 一种以冷冻干燥方法制备二氧化硅气凝胶复合材料的方法
CN106430219A (zh) 一种低成本制备氧化硅气凝胶的方法
CN108793173A (zh) 一种采用外循环方式常压干燥制备改性二氧化硅气凝胶材料的方法
CN108358212A (zh) 二氧化硅气凝胶颗粒的制备方法及二氧化硅气凝胶颗粒
CN109824339A (zh) 一种具有隔热性能的岩棉/气凝胶复合材料及其制备工艺
CN105271263B (zh) 一种低密度透明二氧化硅气凝胶及其制备方法
CN108147415A (zh) 一种二氧化硅气凝胶材料的制备方法
CN109020470A (zh) 一种常压干燥制备气凝胶复合保温毡的方法
CN112390571A (zh) 一种相变复合气凝胶及其制备方法
CN104876226A (zh) 一种用甲醇亚临界干燥快速制备疏水氧化硅气凝胶的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17929115

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM1205A DATED 10.09.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17929115

Country of ref document: EP

Kind code of ref document: A1