WO2019074314A1 - 그라프트 공중합체의 가교물을 포함하는 하이드로젤 및 이의 제조방법 - Google Patents

그라프트 공중합체의 가교물을 포함하는 하이드로젤 및 이의 제조방법 Download PDF

Info

Publication number
WO2019074314A1
WO2019074314A1 PCT/KR2018/012018 KR2018012018W WO2019074314A1 WO 2019074314 A1 WO2019074314 A1 WO 2019074314A1 KR 2018012018 W KR2018012018 W KR 2018012018W WO 2019074314 A1 WO2019074314 A1 WO 2019074314A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogel
acrylate
graft
polymerization initiator
hyaluronic acid
Prior art date
Application number
PCT/KR2018/012018
Other languages
English (en)
French (fr)
Inventor
노인섭
디판카르다스
Original Assignee
서울과학기술대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170132568A external-priority patent/KR101974744B1/ko
Priority claimed from KR1020170135346A external-priority patent/KR101974745B1/ko
Priority claimed from KR1020180051939A external-priority patent/KR102076909B1/ko
Application filed by 서울과학기술대학교 산학협력단 filed Critical 서울과학기술대학교 산학협력단
Publication of WO2019074314A1 publication Critical patent/WO2019074314A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/06Ointments; Bases therefor; Other semi-solid forms, e.g. creams, sticks, gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F251/00Macromolecular compounds obtained by polymerising monomers on to polysaccharides or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/02Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to polysaccharides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L89/00Compositions of proteins; Compositions of derivatives thereof

Definitions

  • the present invention relates to a hydrogel comprising a crosslinked product of a hyaluronic acid graft copolymer, a process for producing the same, a hyaluronic acid hydrogel comprising a graft copolymer and a crosslinked gelatin, a process for producing the same, an alginate graft copolymer ≪ / RTI > and a process for preparing the same.
  • Hydrogel is a molecule that interacts by chemical bonding or electrostatic attraction to form a hydrophilic crosslinked polymer and absorbs water several hundreds times its dry weight. Because such hydrogels exhibit excellent biocompatibility and hydrophilic properties, it is known that various applications can be made in pharmaceutical, tissue regeneration engineering, and medical fields.
  • hydrogels are known to be useful candidates for the production of tissue engineering substrates for the healing of damaged tissue.
  • the three-dimensional structure formed by the hydrogel is also called a scaffold, and such supports are used as various tissue engineering materials.
  • Hyaluronic acid is a naturally occurring component in living organisms, distributed in various parts of the body.
  • Hyaluronic acid has excellent biocompatibility, which can be used for tissue engineering and drug delivery system, because it does not cause immunological problems, has excellent interaction with specific cells, and can exhibit excellent effects as a component of hydrogel.
  • alginate is excellent in biocompatibility, low in cytotoxicity, and has a hemostatic effect. Therefore, when alginic acid is ingested, it inhibits the deposition of neutral lipids and cholesterol, thereby improving blood flow, lowering cholesterol, preventing hypertension, and activating enzymes.
  • Hydrogels formed with alginate can be used to introduce various substances such as bioactive substances, growth factors, cells, proteins, nutrients and enzymes, and then stably transport the entrapped substances into desired organs of the body. Can be used to make immobilized enzymes. Since alginate hydrogel is derived from a natural substance, it is optimized for drug expression by improving the safety and absorption rate of the body, and it is possible to control the delivery rate of pharmacological substance according to pH, so that it can be used as a drug delivery vehicle having sensitivity from external stimuli . However, in spite of the advantages of such alginate, when alginate is used for drug delivery, there is a limitation in its use, such as leaching of hydrophobic drug or rapid dissolution in high pH environment.
  • alginate Since the inclusion rate of drug is low, Which may lead to a problem of rapid emission.
  • alginate when applied to a hydrogel and used as a support, it is difficult to maintain viscosity, and it may be difficult to maintain the gel state suitable for cell proliferation and differentiation after production. For this reason, a variety of prior studies have been conducted in order to find a suitable concentration for cell growth in order to make a three-dimensional structure using alginate as a bio-printing material.
  • alginate does not exist in the human body, It is disadvantageous in that the biocompatibility is relatively low as compared with other materials.
  • a hydrogel is produced by inducing ionic bonding with bivalent ions such as calcium ions, and a gel is decomposed in the process of releasing ions from the gel
  • the hydrogel prepared by this method has a disadvantage of low mechanical strength.
  • many studies have been carried out to date.
  • hydrogels employing alginate have not been satisfactorily satisfied with the application properties and physical properties.
  • the present invention provides a hydrogel containing hyaluronic acid graft polymer capable of realizing excellent viscoelastic properties, cell suitability and mechanical properties, and a process for producing the same, will be.
  • Another object of the present invention is to provide a hydrogel containing a gelatin crosslinked product in a hyaluronic acid graft polymer capable of realizing excellent viscoelastic properties, cell suitability, tissue regeneration and mechanical properties, and a process for producing the hydrogel.
  • Another object of the present invention is to provide a ternary copolymerization unit comprising an alginate, an acrylate monomer, and a poly (ethylene glycol) diacrylate (PEGDA) crosslinking agent, wherein the alginate is a main polymer of the ternary copolymerization unit , And the ternary copolymerization unit is composed of a gel polymer network, and a method for producing the hydrogel.
  • PEGDA poly (ethylene glycol) diacrylate
  • the acrylate-based monomer may be hydroxyethyl acrylate or hydroxyethyl methacrylate.
  • the diacrylate cross-linking agent may be poly (ethylene glycol) diacrylate.
  • the hydrogel may have a porous structure.
  • the hydrogel may exhibit pH-dependent drug release.
  • a method of manufacturing a liquid crystal display comprising the steps of: (a) preparing a mixture of a hyaluronic acid and an acrylate monomer; (b) adding a polymerization initiator to the mixture to prepare a graft-polymerized copolymer; And (c) adding a diacrylate cross-linker to the graft copolymer.
  • the acrylate-based monomer may be hydroxyethyl acrylate (HEA) or hydroxyethyl methacrylate.
  • the polymerization initiator may be a radical polymerization initiator.
  • the radical polymerization initiator may be potassium persulfate (KPS).
  • the diacrylate cross-linking agent may be poly (ethylene glycol) diacrylate (PEGDA).
  • the acrylate-based monomer may be hydroxyethyl acrylate or hydroxyethyl methacrylate.
  • the modified gelatin crosslinking agent may be gelatin methacrylate.
  • the hydrogel may have a porous structure.
  • the hydrogel may exhibit pH-dependent drug release.
  • a method of manufacturing a liquid crystal display comprising the steps of: (a) preparing a mixture of a hyaluronic acid and an acrylate monomer; (b) adding a polymerization initiator to the mixture to prepare a graft-polymerized copolymer in which the acrylate monomer is graft-polymerized to the hyaluronic acid; And (c) adding a modified gelatin to the graft copolymer to prepare a hyaluronic acid-graft copolymer-gelatin compound.
  • the acrylate-based monomer may be hydroxyethyl acrylate or hydroxyethyl methacrylate.
  • the polymerization initiator may be a radical polymerization initiator.
  • the radical polymerization initiator may be potassium persulfate (KPS).
  • the modified gelatin may be gelatin methacrylate.
  • a ternary copolymerization unit comprising alginate, an acrylate monomer, and a poly (ethylene glycol) diacrylate (PEGDA) crosslinking agent, wherein the alginate is a main polymer of the ternary copolymerization unit , And the terpolymer unit is composed of a gel polymer network.
  • PEGDA poly (ethylene glycol) diacrylate
  • the terpolymer can be a biocompatible hydrogel, which is Alg-g-pHEA-x-PEGDA.
  • the acrylate monomer may be hydroxyethyl acrylate (HEA) or hydroxyethyl methacrylate (HEMA).
  • the gel polymer network may be formed by cross-linking.
  • the ternary copolymerization unit may be by radical polymerization.
  • the size of the pores may be controlled according to the content of the crosslinking agent in the gel polymer network.
  • a method of preparing a polymer electrolyte membrane comprising: (a) mixing an acrylate monomer with an alginate; (b) adding a radical polymerization initiator; And (c) adding poly (ethylene glycol) diacrylate (PEGDA) as a crosslinking agent to synthesize a ternary copolymerization unit.
  • PEGDA poly (ethylene glycol) diacrylate
  • the radical polymerization initiator in step (b) may be potassium persulphate (KPS).
  • the graft-polymerized copolymer may be formed by the steps (a) and (b).
  • mixing the acrylate-based monomer with the alginate may comprise from 0.25 g to 0.75 g of alginate and from 2.5 ml to 4.0 ml of HEA per 50 ml of water.
  • the hydrogel of the present invention can realize excellent viscoelastic properties and mechanical properties by using a crosslinked product of a graft copolymer in which hyaluronic acid and an acrylate monomer are graft-polymerized as a component of a hydrogel.
  • the hydrogel of the present invention can be used as a component of a hydrogel by using a crosslinked product of a graft copolymer of hyaluronic acid and an acrylate monomer as a cross-linking agent and a modified gelatin as a crosslinking agent, Properties and mechanical properties can be realized.
  • the hydrogel of the present invention can be produced by using alginate as a main polymer and using a ternary copolymerizing unit composed of an acrylate monomer and poly (ethylene glycol) diacrylate (PEGDA) and a gel polymer network as a component of a hydrogel , It is possible to improve the cell adhesion inside and outside the hydrogel, thereby enhancing the viability of the cells. Further, by using the production method of the present invention, it is possible to obtain a biocompatible hydrogel having improved sustained drug release in vivo or a biocompatible hydrogel having enhanced cell viability.
  • PEGDA poly (ethylene glycol) diacrylate
  • the present invention can be applied to various fields such as a tissue-engineered support, a main-use gel, a material for 3D printing, and a drug delivery system by controlling the composition of the tertiary copolymerizing unit to improve mechanical properties and controlling the physicochemical properties of the hydrogel.
  • the hydrogel has a uniform porous structure, and can exert excellent effects in controlling drug release and mechanical properties.
  • FIG. 1 illustrates a process for preparing a biocompatible hydrogel according to an embodiment of the present invention in accordance with a reaction step.
  • FIG. 2 shows IR analysis results of a biocompatible hydrogel according to an embodiment of the present invention.
  • FIG. 3 shows the results of H 1 NMR analysis of a biocompatible hydrogel according to an embodiment of the present invention.
  • FIG. 4 is a SEM image of a biocompatible hydrogel according to an embodiment of the present invention.
  • FIG. 5 shows a TGA analysis result of a biocompatible hydrogel according to an embodiment of the present invention.
  • Figure 6 shows DMOG and TCN drug release behavior of a biocompatible hydrogel according to an embodiment of the present invention.
  • FIG. 7 is a graph showing the degree of swelling of a biocompatible hydrogel according to pH conditions according to an embodiment of the present invention.
  • FIG. 8 shows a rheology analysis result of a biocompatible hydrogel according to an embodiment of the present invention.
  • 9 to 12 show results of measuring the cytotoxicity of a biocompatible hydrogel according to an embodiment of the present invention.
  • FIG. 13 is a view showing a step-by-step process for producing a hydrogel according to an embodiment of the present invention.
  • FIG. 15 shows an infrared (IR) spectroscopic analysis result of a hydrogel according to an embodiment of the present invention.
  • 17 is a TGA analysis result of a hydrogel according to an embodiment of the present invention.
  • 19 is a graph showing the degree of swelling of a hydrogel according to pH conditions according to an embodiment of the present invention.
  • 21 is a graph showing the cell growth rate of a hydrogel according to an embodiment of the present invention.
  • 22 is an image showing cell viability of a biocompatible hydrogel according to an embodiment of the present invention.
  • FIG. 23 shows a process for preparing a biocompatible hydrogel according to an embodiment of the present invention, according to a reaction step.
  • FIG. 24 shows IR analysis results of a biocompatible hydrogel according to an embodiment of the present invention.
  • FIG. 25 shows a TGA analysis result of a biocompatible hydrogel according to an embodiment of the present invention.
  • FIG. 26 is a SEM image of a biocompatible hydrogel obtained through an electron microscope according to an embodiment of the present invention.
  • FIGS. 27 and 28 show the degree of swelling of the biocompatible hydrogel according to pH conditions according to an embodiment of the present invention.
  • 29 and 30 show cytotoxicity test results of the biocompatible hydrogel according to one embodiment of the present invention.
  • FIGS. 31 to 33 illustrate the biocompatibility of a biocompatible hydrogel according to an embodiment of the present invention.
  • 36 is a schematic diagram illustrating the characteristics and use of a biocompatible hydrogel according to one embodiment of the present invention.
  • hyaluronic acid itself exhibits excellent biocompatibility, it has poor viscoelastic properties and mechanical properties, so that such properties can be compensated by using an acrylate-based monomer and a diacrylate-based cross-linking agent.
  • the acrylate-based monomer may be hydroxyethyl acrylate or hydroxyethyl methacrylate, preferably 2-hydroxyethyl acrylate (2-HEA)
  • 2-HEA 2-hydroxyethyl acrylate
  • the present invention is not limited thereto.
  • the hyaluronic acid and the acrylate-based monomer may form a graft-polymerized copolymer.
  • the graft copolymer can form a dense molecular structure as compared with the linear copolymer, thereby effectively improving viscoelastic properties and mechanical properties of hyaluronic acid.
  • the graft copolymer may be crosslinked by a diacrylate crosslinking agent containing two or more unsaturated functional groups.
  • the diacrylate crosslinking agent is selected from the group consisting of poly (ethylene glycol) diacrylate, poly (ethylene glycol) tetraacrylate, poly (ethylene glycol) Poly (ethylene glycol) multiacrylate), but the present invention is not limited thereto.
  • the cross-linking agent is connected to form a more dense structure between the graft copolymers.
  • the hydrogel including the crosslinked product of the graft copolymer as a final product can have a porous structure, and the porous structure has a cross- It can have various shapes depending on it.
  • the hydrogel may be applied to a drug delivery system, a tissue-engineered support, or the like capable of supporting a drug therein.
  • the hydrogel may carry a drug delivery function in vivo by supporting a drug therein. At this time, the hydrogel may exhibit pH-dependent drug release.
  • the hydrogel may exhibit slow drug release under acidic conditions with low pH, while it may exhibit rapid drug release under basic conditions with high pH. That is, since the drug releasability can be controlled according to the pH environment to which the hydrogel is applied, the hydrogel can be selectively applied according to the pH of the application site.
  • FIG. 1 illustrates a process for preparing a biocompatible hydrogel according to an embodiment of the present invention in accordance with a reaction step.
  • a method of manufacturing a semiconductor device comprising: (a) preparing a mixture of a hyaluronic acid and an acrylate monomer; (b) adding a polymerization initiator to the mixture to prepare a graft-polymerized copolymer; And (c) adding a diacrylate cross-linker to the graft copolymer.
  • step (a) hyaluronic acid and an acrylate monomer, which are monomers necessary for graft polymerization, may be prepared and then mixed.
  • the hyaluronic acid can be used as it is, but it can be used in salt form, for example, in the form of sodium hyaluronate, but is not limited thereto.
  • the acrylate-based monomer may be hydroxyethyl acrylate or hydroxyethyl methacrylate, preferably 2-hydroxyethyl acrylate (2-HEA) But is not limited thereto.
  • a polymerization initiator may be added to initiate a graft polymerization reaction between the mixed monomers.
  • the polymerization initiator may be a radical polymerization initiator so that the polymerization reaction can proceed to a radical reaction.
  • the radical polymerization initiator may be potassium persulfate (KPS), but not limited thereto, and any compound capable of initiating a radical polymerization reaction such as benzoyl peroxide can be used.
  • the polymerization initiator exhibits radical activity to generate a hyaluronic acid radical by separating a proton of hyaluronic acid or hyaluronate.
  • the generated hyaluronic acid radical may react with an acrylate monomer and graft polymerization may proceed between the hyaluronic acid and the acrylate monomer.
  • a biocompatible hydrogel may be prepared by adding a diacrylate cross-linker to a graft copolymer between hyaluronic acid and an acrylate monomer produced by a graft polymerization reaction .
  • the diacrylate cross-linking agent may be poly (ethylene glycol) diacrylate having two unsaturated functional groups for promoting proper cross-linking reaction, but is not limited thereto.
  • the biocompatible hydrogel which is the final product, can be prepared by cross-linking a graft copolymer of hyaluronic acid-acrylate monomer with a diacrylate cross-linking agent.
  • the biocompatible hydrogel may have a porous structure, and thus may function as a drug delivery device for supporting a drug therein.
  • the hydrogel since the hydrogel has appropriate viscoelastic properties and mechanical properties, it can be applied to a 3D printing material, a scanning gel, a tissue engineering support, and the like, but is not limited thereto.
  • hyaluronic acid itself exhibits excellent biocompatibility, it has weakness in regeneration of tissue, viscoelastic property, mechanical properties, etc., so that such properties can be compensated by using acrylate monomer and modified gelatin crosslinking agent.
  • the acrylate-based monomer may be hydroxyethyl acrylate or hydroxyethyl methacrylate, preferably 2-hydroxyethyl acrylate (2-HEA)
  • 2-HEA 2-hydroxyethyl acrylate
  • the present invention is not limited thereto.
  • the acrylate-based monomer may induce graft polymerization on the side chain of hyaluronic acid to form a graft-polymerized copolymer.
  • the graft copolymer can form a dense molecular structure as compared with the linear copolymer, thereby effectively improving viscoelastic properties and mechanical properties of hyaluronic acid.
  • the graft copolymer may be crosslinked by a modified gelatin crosslinker comprising two or more unsaturated functional groups, such as acrylate functional groups.
  • the modified gelatin crosslinking agent may be gelatin-methacrylate, but is not limited thereto.
  • the cross-linking agent is linked to form a more dense structure between the graft copolymers.
  • the hydrogel including the graft copolymer and the gelatin crosslinked product as a final product can have a porous structure, and the porous structure has a cross- And the content of acrylate, gelatin crosslinked product, and the like.
  • the hydrogel can be applied as a drug delivery system or a tissue-engineered support capable of supporting a drug therein, 15D printing material, a main-use gel, and the like.
  • the hydrogel may carry a drug delivery function in vivo by supporting a drug therein.
  • the hydrogel may exhibit pH-dependent drug release and applicability.
  • the hydrogel may exhibit slow drug release under acidic conditions with low pH, while it may exhibit rapid drug release under basic conditions with high pH. That is, since the drug releasability can be controlled according to the pH environment to which the hydrogel is applied, the hydrogel can be selectively applied according to the pH of the application site. It is also applicable to tissue engineering by applying a hydrogel which meets the corresponding conditions for different tissues with different pH. That is, for tissues having an acidic and basic environment, the hydrogel can be applied by controlling the swelling property and the drug releasing property.
  • FIG. 13 illustrates a process for preparing a biocompatible hydrogel according to an embodiment of the present invention in accordance with a reaction step.
  • a method of manufacturing a semiconductor device comprising: (a) preparing a mixture of hyaluronic acid and an acrylate monomer; (b) adding a polymerization initiator to the mixture to prepare a graft-polymerized copolymer in which the acrylic monomer is graft-polymerized in the hyaluronic acid; And (c) adding modified gelatin to the graft copolymer.
  • the present invention also provides a method for producing a biocompatible hydrogel.
  • an acrylate monomer which is a monomer necessary for graft polymerization, may be prepared and mixed with hyaluronic acid.
  • the hyaluronic acid can be used as it is, but it can be used in salt form, for example, in the form of sodium hyaluronate, but is not limited thereto.
  • the acrylate-based monomer may be hydroxyethyl acrylate or hydroxyethyl methacrylate, preferably 2-hydroxyethyl acrylate (2-HEA) But is not limited thereto.
  • the mixed monomers can initiate a graft polymerization reaction on the side chain of hyaluronic acid.
  • the polymerization initiator may be a radical polymerization initiator so that the polymerization reaction can proceed to a radical reaction.
  • the radical polymerization initiator may be potassium persulfate (KPS), but not limited thereto, and any compound capable of initiating a radical polymerization reaction such as benzoyl peroxide can be used.
  • the polymerization initiator exhibits radical activity and can generate hyaluronic acid radicals by separating proton of hyaluronic acid or hyaluronan side chain.
  • the generated hyaluronic acid radical may react with an acrylate monomer and graft polymerization may proceed between the hyaluronic acid and the acrylate monomer.
  • a modified gelatin cross-linker may be added to the graft copolymer between the hyaluronic acid and the acrylate monomer produced by the graft polymerization to produce the hydrogel property.
  • the multi-acrylate cross-linking agent may be a modified gelatin containing two or more unsaturated functional groups such as an acrylate functional group for promoting proper cross-linking reaction, specifically gelatin-methacrylate, But is not limited thereto.
  • the hydrogel as the final product may be prepared by cross-linking a graft copolymer formed by a hyaluronic acid-acrylate monomer with a modified gelatin-methacrylate crosslinking agent.
  • the biocompatible and tissue regenerated hydrogel may have a porous structure, and thus may function as a drug delivery material for carrying a drug therein and as a biomaterial for tissue engineering.
  • the hydrogel since the hydrogel has appropriate viscoelastic properties, mechanical properties and tissue regeneration properties, it can be applied to 3D printing materials, scanning gels, and tissue engineering supports, but is not limited thereto.
  • a ternary copolymerization unit comprising alginate, an acrylate monomer, and a poly (ethylene glycol) diacrylate (PEGDA) crosslinking agent, wherein the alginate is an alginate, wherein the terpolymer is a polymer and the terpolymer is composed of a gel polymer network.
  • PEGDA poly (ethylene glycol) diacrylate
  • alginate is a natural polymer, it has excellent biocompatibility, low toxicity, and is easily obtainable. However, it is disadvantageous in that physical properties are not suitable for application as a biomaterial. Therefore, a hydrogel in which mechanical properties are complemented can be provided by constituting a ternary copolymerization unit using an acrylate monomer and poly (ethylene glycol) diacrylate (PEGDA).
  • PEGDA poly (ethylene glycol) diacrylate
  • the acrylate monomer may be any one of hydroxyethyl acrylate (HEA) and hydroxyethyl methacrylate (HEMA), preferably 2-hydroxyethyl acrylate (2-HEA) But is not limited thereto.
  • the tertiary copolymerizing unit may be Alg-g-pHEA-x-PEGDA. Firstly, alginate and acrylate monomer are subjected to radical polymerization to produce Alg-g-pHEA. According to one side, a gel polymer network can be formed by crosslinking by the crosslinking agent.
  • a radical polymer is formed by a radical polymerization reaction, and then a network is formed between the radical polymers by a crosslinking agent. At this time, the radical polymerization reaction is caused by the radical polymerization initiator.
  • the kind of the initiator is not limited to any one, but it is preferable to use water-soluble potassium persulphate (KPS).
  • the Alg-g-pHEA which is a copolymer produced by the above-described contents, can be represented by the following structural formula 1.
  • the Alg-g-pHEA synthesized as in Scheme 1 is crosslinked by the subsequently added poly (ethylene glycol) diacrylate (PEGDA), which allows bonding between the polymers.
  • PEGDA poly (ethylene glycol) diacrylate
  • the cross-linking agent forms a more dense structure between the copolymerized units to finally form a hydrogel network having an effective crosslinking density, and the resulting hydrogel can control the porous structure.
  • the size of the pores is also changed, so that the distance between the density of the generated network and the cross-linking can be controlled.
  • the size of the pores to be formed is reduced.
  • a larger amount of network is formed inside the hydrogel having a predetermined volume, and a hydrogel having a high thermal stability can be produced. Further, by adjusting the number of voids, the amount of moisture that can be accommodated in the hydrogel can be controlled, so that hydrogels having various physical properties can be produced by adjusting the number of voids.
  • the hydrogel prepared as described above can be applied to a drug delivery system and a scaffold which can carry a drug in accordance with a cross-linked gel polymer network structure.
  • a scaffold which can carry a drug in accordance with a cross-linked gel polymer network structure.
  • injection gels Can be applied.
  • the manufacturing method of the hydrogel manufactured by applying the above-described principle will be described later in more detail in the embodiment.
  • poly (ethylene glycol) diacrylate (PEGDA) reacts not only with the crosslinking agent but also with alginate and 2-hydroxyethyl acrylate (2-HEA) Unit chain Alg-g-pHEA-x-PEGDA.
  • PEGDA poly (ethylene glycol) diacrylate
  • 2-HEA 2-hydroxyethyl acrylate
  • the formed Alg-g-pHEA-x-PEGDA can be represented by the following structural formula 2.
  • a biocompatible hydrogel comprises (a) mixing an alginate with an acrylate-based monomer; (b) adding a radical polymerization initiator; And (c) adding poly (ethylene glycol) diacrylate (PEGDA) as a crosslinking agent to form a ternary copolymerization unit.
  • PEGDA poly (ethylene glycol) diacrylate
  • the radical polymerization initiator of step (b) in the process for preparing a biocompatible hydrogel is preferably potassium persulphate (KPS), but is not limited thereto.
  • KPS potassium persulphate
  • a method for producing a biocompatible hydrogel may include forming a graft-polymerized copolymer by the steps (a) and (b).
  • the formation of such a graft copolymer forms a dense molecular structure as compared with the linear copolymer, so that the mechanical properties of the alginate can be improved and the surface shape can be controlled.
  • mixing the acrylate-based monomer with the alginate may be such that 0.25 g to 0.75 g of alginate and 2.5 ml to 4.0 ml of HEA are dissolved per 50 ml of water.
  • 0.25 g of 6.31 x 10 -4 moles of alginate and 3 ml of 2.84 x 10 -2 moles of HEA can be used.
  • FIG. 23 shows a process for preparing a biocompatible hydrogel according to an embodiment of the present invention, according to a reaction step.
  • step (a) mixing an acrylate monomer with an alginate; (b) adding a radical polymerization initiator; And (c) adding poly (ethylene glycol) diacrylate (PEGDA) as a crosslinking agent to synthesize a ternary copolymerization unit.
  • the alginate and the acrylate monomer may be mixed.
  • the step (a) may be performed after the initiator of the step (b) is added first, it is not always necessary to follow the order.
  • the acrylate-based monomer may be hydroxyethyl acrylate (HEA) or hydroxyethyl methacrylate (HEMA), preferably 2-hydroxyethyl acrylate (2-HEA) It is not.
  • a radical polymerization initiator may be added to initiate a graft polymerization reaction between the alginate and the acrylate monomer.
  • the radical polymerization initiator may be potassium persulphate (KPS), but not limited thereto, and any of water-soluble initiators capable of initiating a radical polymerization reaction such as benzoyl peroxide Can be used.
  • KPS potassium persulphate
  • any of water-soluble initiators capable of initiating a radical polymerization reaction such as benzoyl peroxide Can be used.
  • the radical polymerization initiator can form an alginate radical by separating proton of alginate.
  • the alginate radicals formed by the steps (a) and (b) may react with an acrylate monomer to proceed a graft polymerization reaction to form a graft copolymer.
  • a poly (ethylene glycol) diacrylate (PEGDA) is added as a crosslinking agent to the graft copolymer produced by the graft polymerization reaction between the alginate and the acrylate monomer to synthesize a ternary copolymerization unit .
  • PEGDA poly (ethylene glycol) diacrylate
  • the resulting ternary copolymerization unit may be Alg-g-pHEA-x-PEGDA, and the ternary copolymerization unit contains 6.31 x 10 -4 moles of alginate 0.25 g and 2.84 x 10 -2 moles of HEA 3 ml .
  • the biocompatible hydrogel which is the final product, may be prepared by crosslinking the resulting graft copolymer with a crosslinking agent, and the gel polymer network may be formed by crosslinking.
  • the biocompatible hydrogel may have a porous structure, and accordingly, the biocompatible hydrogel may function as a drug delivery device for carrying a drug therein.
  • the biocompatible hydrogel has appropriate viscoelastic properties and mechanical properties, and can be applied to a tissue-engineered support such as a 3D printing material, a scanning gel, a scaffold, etc., But is not limited thereto.
  • a hydrogel was synthesized at a high temperature by using 0.25 g of sodium hyaluronate as a biopolymer and 2 mL of 2-hydroxyethyl acrylate (2-HEA) as a monomer and 0.0025 g of potassium persulfate (KPS) as a polymerization initiator .
  • polymerization reaction was carried out while adjusting the poly (ethylene glycol) diacrylate (PEGDA) cross-linking agent to 0.25 ml, 0.50 ml and 0.75 ml in order to control the porous structure of the hydrogel, and HA-p (2-HEA) PEG hydrogel was synthesized.
  • PEGDA poly (ethylene glycol) diacrylate
  • Spectra were analyzed using an ATR-FTIR spectrometer (Travel IR, Smiths Detection, USA) to confirm the chemical structure of the hydrogel prepared according to Sample 1-2, and the results were analyzed using hyaluronic acid (HA), 2- 2 with ATR-FTIR spectra of hydroxyethyl acrylate (2-HEA) and poly (ethylene glycol) diacrylate (PEGDA).
  • HA hyaluronic acid
  • 2-HEA 2- 2 with ATR-FTIR spectra of hydroxyethyl acrylate
  • PEGDA poly (ethylene glycol) diacrylate
  • the sample 1-2 of the hydrogel (d) is 3425cm -1 (HA and 2-HEA), 2398cm -1 ( 2-HEA), 2878cm -1 (PEGDA) and 1723cm - 1 (PEGDA) were all confirmed, indicating that they are compounds containing both HA, 2-HEA and PEGDA.
  • HA hyaluronic acid
  • 2-HEA 2-hydroxyethyl acrylate
  • PEGDA poly (ethylene glycol) diacrylate
  • FIG. 3 shows the H 1 NMR spectrum of a hydrogel prepared according to HA, 2-HEA, PEGDA and Sample 1-2.
  • the hydrogel according to Sample 1-2 is composed of a compound having both HA, 2-HEA and PEGDA.
  • Figs. 4 (a) and 4 (b) show surface and cross-sectional images of the hydrogel according to Sample 1-1, (E) and (f) respectively show surface and cross-sectional images of the hydrogel according to Samples 1-3.
  • each hydrogel has a porous structure, and its structure can be controlled according to the content of the crosslinking agent.
  • concentration of the crosslinking agent was low, the porous structure was not uniform.
  • concentration of the crosslinking agent was too high, an uneven porous structure was formed. It is suggested that the hydrogel of such a porous structure can be applied to a drug carrier or the like, and the release of the drug can be controlled by controlling the structure thereof.
  • TGA analysis was carried out at a scan rate of 5 ° C / min under a nitrogen atmosphere using a thermogravimetric analyzer (DTG-60, Shimadzu, Japan) to confirm the pyrolysis characteristics of the hydrogel prepared according to the sample 1-2 , And the result is shown in FIG. 5 together with the results of TGA analysis of hyaluronic acid (HA).
  • HA hyaluronic acid
  • the swelling characteristics of the hydrogel may be used as an indirect indicator for the release characteristics of the substance, for example, drug, depending on the swelling property of the hydrogel.
  • the shear storage modulus (G ') was measured at 37 ° C. using a rotary rheometer (TA Instrument Ltd., DHR-1) to confirm the rheological properties of the hydrogel prepared according to the sample 1-2. And shear loss modulus (G ") were analyzed.
  • the measurement gap and specimen dimensions were determined by adding a HA-p (2-HEA) -PEG hydrogel sample synthesized on 1.0 mm and 25 mm plates, respectively, to provide gel oscillation on the gel sample, Respectively.
  • the minimum torque oscillation was set to 10 nM-m, and the shear rate was set in the range of 0.1 to 1,300 / sec.
  • the frequency and oscillation stress were set at 1 Hz and 1 to 1,000 Pa, respectively.
  • the minimum and maximum torques used were 10 nN-m and 150 mN-m.
  • the torque resolution and strain were set to 0.1 nN-m and 1%, respectively, and the frequency was set to 0.1 to 10 Hz.
  • the results of the analysis are shown in Fig.
  • M3T3 Mouse-derived osteoblastic cells (MC3T3) were cultured in 10% Fetal Bovine Serum (FBS) and 100unit / ml penicillin-streptomycin alpha- MEM medium put in a polystyrene culture dish 100mm ⁇ 20mm containing, 5% CO 2, 37 in °C incubator it was carried out the in vitro cell culture.
  • FBS Fetal Bovine Serum
  • penicillin-streptomycin alpha- MEM medium put in a polystyrene culture dish 100mm ⁇ 20mm containing, 5% CO 2, 37 in °C incubator it was carried out the in vitro cell culture.
  • the live & dead assay was performed as follows. 6 ⁇ (600 ⁇ ⁇ PBS, 1.2 ⁇ EthD-1, 0.3 ⁇ ⁇ Calcein AM) was added to a 10 ml conical tube and mixed. After removing the medium from 6 samples, one at 10: 1, 2: 1, and 1:10 at pH 7.0 and pH 7.4, add 600 ⁇ l of pre-prepared live & dead solution to each well, 5% CO 2 and 37 ⁇ incubator for 30 minutes. After 30 minutes, the live & dead solution was removed, washed once with PBS, and observed with a fluorescence microscope. All light was blocked during the live & dead assay.
  • CCK-8 Cell viability and cell proliferation were evaluated by cell counting kit-8 (CCK-8). 2 ml of the CCK-8 solution was mixed with 18 ml of alpha-MEM medium containing 10% FBS to prepare 20 ml. 1 ml of cck mixed solution was added to each of the three samples for each sample type, followed by incubation in a 5% CO 2 incubator at 37 ° C for 2 hours. After 2 hours, 100 ⁇ l samples were collected from each well and transferred to a 96-well plate 3 times per sample. For each sample, the absorbance of the solution was measured at a wavelength of 450 nm using a microplate reader (Tecan).
  • gelatin-methacrylate 1 g gelatin (from bovine skin, Sigma Aldrich, USA) and 50 ml PBS (pH 7.6) (2% w / v) were added to a 2-necked round bottom flask A gelatin solution was prepared at pH 7.6 using a magnetic stir bar at 60 rpm in an oil bath at 400 rpm.
  • Methanolic anhydride (MA, methacrylic anhydride, Sigma Aldrich, USA) was added to the prepared gelatin solution in an amount of 1 ml, 2 ml, 3 ml or 4 ml according to the volume, and the reaction was continued for 3 hours to obtain gelatin-methacrylate GelMA) were synthesized.
  • gelatin-methacrylate composite was put into 3 molecular-porous membrane tubing (molecular weight cut off 6-8 kD; Spectrum Laboratories, USA) and dialyzed in 5 L distilled water for 4 days to obtain a dialyzed sample ≪ / RTI >
  • the dialyzed samples obtained were placed in a polystyrene tube (50 ml), dried in a freeze dryer for 4 days, and the mass of the dried material was measured to confirm the preparation of each sample.
  • the experimental conditions of the reactants used in each production example are shown in Table 2 below.
  • HA-p (2-HEA) -GelMA hydrogel was synthesized by adding gelatin-methacrylate (GelMA) synthesized in Preparation Examples 1 to 4, respectively.
  • the resulting composite was placed in three molecular weight cut off 6-8 KD membrane tubes and dialyzed in 5 L distilled water to obtain a hydrogel.
  • Each example was prepared by selecting GelMA of one of Preparation Examples 1 to 3, and the specific production conditions are shown in Table 3 below.
  • FIG. 14 shows a surface image of the hydrogel according to each embodiment.
  • each hydrogel has a porous structure and its structure can be controlled according to the content of gelatin-methacrylate used in the modification of the acrylate monomer and the crosslinking agent.
  • the porous structure was not uniform (Sample 2-1), and the higher the concentration of gelatin-methacrylate, the more uniform the porous structure (Sample 2-3).
  • the hydrogel of such a porous structure can be applied to a drug carrier or the like and that the mechanical properties of the gel and the release of the drug can be controlled by controlling the structure thereof.
  • the spectrum of the hydrogel prepared according to Sample 2-3 was analyzed using an ATR-FTIR spectrometer (Travel IR, Smiths Detection, USA), and the results were analyzed using hyaluronic acid (HA), 2- (ATR-FTIR spectrum of ethyl acrylate (2-HEA) and gelatin-methacrylate (GelMA).
  • HA hyaluronic acid
  • 2- ATR-FTIR spectrum of ethyl acrylate
  • GelMA gelatin-methacrylate
  • the hydrogel of Sample 2-3 has stronger cross-linking in the molecule due to chemical bonding, and thermal behavior and decomposition occurs at a relatively higher temperature than hyaluronic acid or gelatin have.
  • a DMOG (dimethyloxalyglycine) drug and a TCN (tetracycline) drug were mixed with 2 ml HA-p (2-HEA) After 4 days of lyophilization, the drug was released in 100 ml buffer solution (pH 7.0 and 7.4) for 14 days at 37 ° C.
  • the amount of drug in the obtained sample solution was measured with a UV-Vis spectrometer (BioMATE 3, Thermo Scientific , USA), and the results are shown in FIG. The results were expressed as mean values after 3 repeated experiments for each drug.
  • the swelling characteristics of the hydrogel may be used as an indirect indicator for the release characteristics of the substance, for example, drug, depending on the swelling property of the hydrogel.
  • the shear storage modulus (G ') was measured at 37 ° C. using a rotary rheometer (TA Instrument Ltd., DHR-1) to confirm the rheological characteristics of the hydrogel prepared according to the sample 2-2. And shear loss modulus (G ") were analyzed.
  • the measurement gap and specimen dimensions were determined by adding a HA-p (2-HEA) -PEG hydrogel sample synthesized on 1.0 mm and 25 mm plates, respectively, to provide gel oscillation on the gel sample, Respectively.
  • the minimum torque oscillation was set to 10 nM-m, and the shear rate was set in the range of 0.1 to 1,300 / sec.
  • the frequency and oscillation stress were set at 1 Hz and 1 to 1,000 Pa, respectively.
  • the minimum and maximum torques used were 10 nN-m and 150 mN-m.
  • the torque resolution and strain were set to 0.1 nN-m and 1%, respectively, and the frequency was set to 0.1 to 10 Hz.
  • the results of the analysis are shown in Fig.
  • the bone marrow cells were loaded onto the hydrogel prepared according to Samples 2-1 and 2-2 to perform in vitro cell culture for 7 days.
  • Cell viability was evaluated using CCK assay kit and live and dead assay kit for 1 day , 3 days and 7 days after transplantation. As a result, the cell proliferation rate increased more than three times with time (Fig. 21).
  • Fig. 22 On the seventh day, cells loaded in Example 1 (a) and Example 2 (b) all survive and spread, The possibility of tissue regeneration was confirmed by fluorescence microscopy (Fig. 22).
  • the sample obtained after purification was named Alg-g-pHEA-x-PEGDA, which is a ternary copolymer unit, and dried in a freeze dryer at -56 ° C for 7 days.
  • the content of the specific compound used in the process for preparing the terpolymer unit Alg-g-pHEA-x-PEGDA is shown in Table 1 below.
  • Samples 3-1 to 3-3 in Table 4 were prepared from three kinds of hydrogels using PEGDA different in volume having the same molar concentration only under the same conditions. Samples 3-1 to 3-3 were prepared in the same manner as in Experimental Examples Experiments were conducted to verify the present invention.
  • Samples 3-1, 3-2 and 3-3 referred to in Experimental Examples 1 to 7 mean the hydrogel prepared by the production method of the present invention according to the contents of Table 4.
  • Samples 3-1 to 3-3 were analyzed using an ATR-FTIR spectrometer (Travel IR, Smiths Detection, USA) to confirm the chemical structure of the hydrogel prepared by the above-mentioned production method. As a result, 24.
  • (A) is the spectrum of alginate
  • (b) is HEA
  • (c) is the spectrum of PEGDA
  • (d) -PEGDA hydrogel wherein (d) is a sample 3-1, (e) is a sample 3-2, and (d) is a spectrum of a sample 3-3.
  • the spectrum of the alginate shows peaks at 3254, 1597, 1405, 1082 and 1026 cm -1 .
  • the spectrum of HEA shows peaks at 3428, 2953, 2885, 1715, 1633, 1274, 1188 and 1057 cm -1 .
  • PEGDA shows peaks at 2870, 1723, 1633, 1271, 1192, and 1100 cm -1 , respectively.
  • 24 (d) to 24 (f) all of the peaks in FIGS. 24 (a) to 24 (c) were confirmed, and samples 3-1 to 3-3 contained all of alginate, HEA and PEGDA As a result.
  • the weight loss of the plot in the temperature range of about 180 ° C to 344 ° C means alginate network failure, and in the temperature range of about 344 ° C to 450 ° C the weight loss of the plots implies the destruction of the crosslinked network .
  • the weight loss of each sample was found to be small in the order of Sample 3-1, Sample 3-2, and Sample 3-3.
  • the gel polymer network of the terpolymerization unit exhibited a higher weight loss It was confirmed that the stability was improved. This means that the higher the content of PEGDA, the greater the number of moles of PEGDA in the polymer network through covalent bonds, thereby allowing the formation of a stronger gel polymer network.
  • FIGS. 26 (a) and 26 (b) are images of Sample 3-1
  • FIGS. 26 (c) and 26 (d) are images of Sample 3-2
  • (d) and (e) of FIG. 26 are images obtained by observing the left side of each sample
  • (f) shows an image obtained by observing the right side of each sample.
  • SEM images show that each sample has a porous form due to cross-linking and that the smallest pore size is formed in Sample 3-3 where the content of PEGDA is relatively high. That is, since the size of the pores and the number of gel polymer networks depend on the amount of PEGDA, it means that the structure of the gel polymer network can be controlled by controlling the content of PEGDA.
  • FIG. 27 shows the swelling rates of samples 3-1 to 3-3 measured at pH 2.5
  • Fig. 28 shows the swelling rates of samples 3-1 to 3-3 under the condition of pH 7.4.
  • the samples 3-1 to 3-3 were put in 1-ml each of 24-well plates and dried in a freeze dryer for 96 hours. Then, the dried samples were immersed in each of 100 ml of buffer solution (pH 2.5 and pH 7.4) at 37 ⁇ for 15 hours. After a predetermined period of time, the wetted samples that had been soaked were taken out and the surface water was removed with a tissue. At each time interval, the weight of each sample was measured, and the measurement was repeated until the equilibrium was reached and there was no further change in weight.
  • the swelling rate was calculated by the following equation (3).
  • Results data show that the samples of FIGS. 27 and 28 with different pH conditions all reached swell equilibrium after 14 hours. Also, it was confirmed from FIG. 27 that the swelling rate was much higher in FIG. 28, and the swelling rate of the hydrogel was dependent on the pH of the medium. In the case of FIG. 27, there was almost no difference in swelling rate between samples. In the case of FIG. 28, in the case of Sample 3-1 and Sample 3-2, the swelling rate was higher than that of Sample 3-3 Respectively. This is because the smaller the pore size is, the lower the swelling rate becomes. That is, the swelling rate of alginate hydrogel was higher at pH 7.4 than at pH 2.4, and the swelling rate was higher as the content of PEGDA was lower.
  • Cytotoxicity studies were carried out by culturing MC3T3 in the extracts of Samples 3-1 to 3-3.
  • sterile Teflon sheet (1 cm in diameter), latex (1 cm in diameter), and 1.5 ml of hydrogel film (diameter 1 cm) of sample 3-1 to sample 3-3 were respectively extracted and cultured for 3 days in culture medium.
  • Teflon and latex were used as positive control and negative control, respectively, and the cultured results for each medium were shown in FIG. 29 and FIG.
  • FIG. 29 shows the results of MTT, BrdU and neutral staining for confirming cell viability of MC3T3.
  • MTT and BrdU analysis it was observed that the survival rate of the cells cultured in the samples 3-1 to 3-3 extract was higher than that in Teflon and latex.
  • the survival rate of the cells cultured in the extracts of Samples 3-1 to 3-3 was higher than that of the latex as the negative control, and the overall survival rate was found to be 90% or more.
  • the cell survival rate of the extract of Sample 3-3 was relatively higher.
  • 30 shows the results of culturing the cells in different extracts for a predetermined period of time and confirming cell viability using a fluorescence microscope.
  • 30 (a) shows a Teflon extract, (c) shows a latex extract, (d) shows an extract of Sample 3-1, and FIG. 30 (F) was obtained by adding the extract of Sample 3-3 for one day, and then observed with the fluorescence image, except for the case of negative control (c), in which all the cells survived Respectively.
  • the cell densities of (b), (d), (e) and (f) were found to be higher than before (a).
  • MC3T3 osteoblast precursor cells, Sigma Aldrich
  • fluorescence microscope Leica D mlB, Watzlar, Germany
  • FIG. 31 and 32 are graphs showing the degree of cell proliferation of MC3T3 by period and sample.
  • FIG. 31 compares the results of day 1, day 3, and day 7 of culture of MC3T3 cells in the hydrogel films of samples 3-1 to 3-3, respectively, showing an increase in optical density in the control and all samples , And it was confirmed that the cells proliferated in all the samples.
  • 32 shows that the cell proliferation rate on the 7th day of culture relative to the first day of culture is faster than the proliferation rate on the 3rd day of culture relative to the first day of culture, and the samples 3-1 to 3-3 show cell growth and proliferation It can be verified that the environment is suitable for.
  • FIG. 33 shows an image obtained by fluorescently staining dead and living cells and observing them with a fluorescence microscope to confirm the viability of the cultured cells.
  • C C
  • (g) and (k) show the cultivation in the sample 3-1
  • (b) (f) and (j)
  • (D) D
  • (h) and (l) are fluorescence images of cells cultured in the sample 3-3
  • (a) to (c) (E) to (h) show cell growth on day 3, and (i) to (l) on day 7 of culture. 33
  • the cells proliferate as the incubation time becomes longer, and when compared with the cultures in Samples 3-1 and 3-2 in which the content of PEGDA is relatively small, And the cell proliferation was more active in 3-3.
  • samples 3-1 to 3-3 loaded with BSA / 5-ASA were put in a 100 ml buffer solution (pH 2.5 and pH 7.4) at 37 ° C, and a portion of the aliquot was taken out at regular intervals And the absorbance was measured with a UV-Vis spectrophotometer. The measurement results are shown in Figs. 34 and 35.
  • the pore size of the gel polymer network decreased with increasing PEGDA content, and the swelling rate increased at pH 7.4 than at pH 2.4. Based on this, it was expected that the size of the pores of the sample was large before the drug release experiment, and the swelling rate was high, the drug release was expected to be high, and the experimental results proved the expected results.
  • Figure 34 shows the release of 5-ASA and Figure 35 shows the release of BSA.
  • the release rates of 5-ASA and BSA in both graphs were faster at pH 7.4, and the amount of PEGDA , The release rate of 5-ASA and BSA was slower.
  • the 5-ASA release rate was found to be generally faster than the BSA release rate. That is, the smaller the molecular weight of the drug, the faster the release rate, and the 5-ASA for 30 hours or more and the BSA for 5 days or more.
  • the hydrogel prepared according to the above-described embodiment is an alginate-2-hydroxyethyl acrylate-poly (ethylene glycol) diacrylate terpolymeric gel composed of a ternary copolymerized unit, Can be utilized. As verified in the previous examples, it can be utilized as a material for non-toxic and non-invasive tissue regeneration, and can be used as a stable carrier such as protein, bioactive substance and drug.

Abstract

본 발명의 일 실시예에 따르면, 히알루론산(Hyaluronic acid) 및 아크릴레이트계 단량체(acrylate monomer)가 그라프트 중합된 그라프트 공중합체(graft-polymerized copolymer)를 포함하는, 생체적합성 하이드로젤이 제공된다. 또, 본 발명의 다른 일 실시예에 따르면, 아크릴레이트계 단량체, 및 폴리(에틸렌 글라이콜) 다이아크릴레이트(PEGDA) 가교제로 이루어지는 삼원공중합 단위체로, 상기 알지네이트(alginate)는 상기 삼원공중합 단위체의 주 고분자이고, 상기 삼원공중합 단위체는 젤 고분자 네트워크로 이루어지는, 생체적합성 하이드로젤이 제공된다.

Description

그라프트 공중합체의 가교물을 포함하는 하이드로젤 및 이의 제조방법
본 발명은 히알루론산 그라프트 공중합체의 가교물을 포함하는 하이드로젤, 및 이의 제조방법, 그라프트 공중합체와 젤라틴 가교물을 포함하는 히알루론산 하이드로젤 및 이의 제조방법, 알지네이트 그라프트 공중합체를 포함하는 생체적합성 하이드로젤 및 이의 제조방법에 관한 것이다.
하이드로젤(Hydrogel)은 화학적 결합이나 정전기적 인력에 의해 상호작용하는 분자들이 친수성 가교결합된 중합체를 형성하고, 건조중량의 수백배에 해당하는 수분을 흡수하는 물질이다. 이와 같은 하이드로젤은 우수한 생체적합성 및 친수성 특성을 나타내기 때문에 제약, 조직재생공학 및 의학 분야에서 다양한 응용이 가능한 것으로 알려져 있다.
또한, 하이드로젤은 손상된 인체 조직의 치유를 목적으로 하는 조직공학 기질의 제조에 유용한 후보물질로 알려져 있다. 하이드로젤에 의해 형성되는 3차원 구조는 지지체(scaffold)라고도 불리며, 이와 같은 지지체를 다양한 조직공학 재료로 사용하고 있다.
이와 같은 하이드로젤의 소재로 이용할 수 있는 물질 중, 히알루론산을 적용하는 연구가 다수 진행 중에 있다. 히알루론산(Hyaluronic acid)은 살아 있는 유기체 내에서 자연 상태로 존재하는 성분으로, 인체 내 다양한 부위에 분포되어 있다. 히알루론산은 면역에 관한 문제를 발생시키지 않고, 특정세포와의 상호작용이 우수하여 조직공학과 약물전달시스템 등에 이용될 수 있는 우수한 생체적합성을 지니고 있어 하이드로젤의 성분으로 우수한 효능을 나타낼 수 있다.
이와 같은 히알루론산의 다양한 장점에도 불구하고, 이를 단독으로 사용하는 경우 점탄성 특성이나 기계적 물성이 충분하지 못하여 지지체 골격의 강도가 낮고, 과도한 친수성과 세포부착 리간드 특성으로 인해 세포부착성, 세포 분화능 등이 불량한 단점이 있다. 이에 따라, 히알루론산을 화학적으로 개질하여 적용하고자 하는 연구가 다수 진행 중에 있다.
그러나, 현재까지 히알루론산을 포함하는 하이드로젤의 점탄성 특성과 기계적 물성 모두를 만족할 만한 수준까지 구현할 수 있는 결과는 전무한 실정이다.
이와 같은 하이드로젤의 소재로 이용할 수 있는 물질 중, 알지네이트(Alginate)를 하이드로젤에 적용하는 연구가 점점 증가하고 있다. 알지네이트는 자연산 다당류 고분자로 미역, 다시마와 같은 갈조류 또는 해조류의 세포벽을 구성하는 주요 성분이며, 만누로네이트(β-(1→4)-D-Mannuronate)와 글루로네이트(α-(1→4)-L-guluronate)가 연결된 화학구조를 가지고 있다. 또, 알지네이트는 생체적합성이 뛰어나고 세포독성이 낮으며, 지혈효과를 가진다. 따라서, 알긴산을 섭취할 시, 중성지질이나 콜레스테롤의 침착을 억제하여 혈류 개선, 콜레스테롤 저하, 고혈압 예방, 효소의 활성화 등 여러 생리활성을 가진다.
알지네이트를 포함하여 형성된 하이드로젤은 생체활성물질, 성장인자, 세포, 단백질, 영양성분, 효소 등 다양한 물질들을 함입한 후, 함입된 물질을 신체의 원하는 장기로 안정적으로 수송하는데 사용될 수 있으며, 효소의 경우 고정화 효소를 만드는데 이용될 수 있다. 또한, 알지네이트 하이드로젤은 천연물질에서 유래하였기 때문에, 체내의 안전성과 흡수율을 향상시켜 약물 발현에 최적화 되어 있으며, pH에 따른 약리물질 전달 속도의 조절이 가능하므로 외부 자극으로부터 민감성을 지닌 약물전달체로서 이용될 수 있다. 그러나 이와 같은 알지네이트의 장점에도 불구하고, 알지네이트를 약물 전달에 사용하는 경우, 소수성 약물의 침출 또는 높은 pH환경에서의 급속한 용해 등 그 사용에 있어 제한이 있으며, 약물의 봉입률이 낮아 봉입된 단백질 약물이 급격하게 방출되는 문제를 초래할 수 있다. 또, 알지네이트를 하이드로젤에 적용하여 지지체로 사용하는 경우, 점성을 유지하기가 어렵고, 제작 후에는 세포의 증식과 분화에 적당한 젤의 상태를 유지가 어려울 수 있다. 이와 같은 이유로, 알지네이트를 바이오 프린팅 재료로 하여 3차원 구조물을 만들기 위해, 세포 성장에 적당한 농도를 찾고자 다양한 선행 연구가 이루어져 왔으나, 알지네이트는 인체 내에서 분해하는 효소가 따로 존재하지 않으므로, 3D 프린팅에 사용되는 다른 재료에 비해 상대적으로 생체 적합성이 낮다는 단점이 있다. 따라서, 알지네이트를 포함하는 하이드로젤의 생체적합성을 높여 제조하기 위해서는 일반적으로 칼슘이온과 같은 2가의 이온들과 이온결합을 유도하여 하이드로젤을 제조하고, 이온들이 젤로부터 방출되는 과정에서 젤이 분해되도록 유도하는 방법을 사용하고 있으나, 이러한 방법으로 제조된 하이드로젤은 기계적 강도가 낮은 단점이 있다. 이처럼, 전술한 내용의 단점을 극복하기 위해 현재까지도 다수의 연구가 진행중에 있으나, 아직까지 알지네이트를 적용한 하이드로젤은 용도특성과 물성을 모두 만족하는 결과가 전무한 실정이다.
본 발명은 전술한 종래기술의 문제점을 해결하기 위한 것으로, 본 발명의 목적은 우수한 점탄성 특성, 세포적합성 및 기계적 물성을 구현할 수 있는 히알루론산 그라프트 중합체를 포함하는 하이드로젤 및 이의 제조방법을 제공하는 것이다.
본 발명의 다른 목적은, 우수한 점탄성 특성, 세포적합성, 조직재생성 및 기계적 물성을 구현할 수 있는 히알루론산 그라프트 중합체에 젤라틴 가교물을 포함하는 하이드로젤 및 이의 제조방법을 제공하는 것이다.
본 발명의 또 다른 목적은, 알지네이트, 아크릴레이트계 단량체, 폴리(에틸렌 글라이콜) 다이아크릴레이트(PEGDA) 가교제로 이루어지는 삼원공중합 단위체로, 상기 알지네이트(alginate)는 상기 삼원공중합 단위체의 주 고분자이고, 상기 삼원공중합 단위체는 젤 고분자 네트워크로 이루어지는, 생체적합하고, 물성이 강화된 하이드로젤 및 이의 제조방법을 제공하는 것이다.
그러나, 본 발명이 해결하고자 하는 과제는 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 해당 기술분야의 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 실시예에 따르면, 히알루론산(Hyaluronic acid) 및 아크릴레이트계 단량체(acrylate monomer)가 그라프트 중합된 그라프트 공중합체(graft-polymerized copolymer); 및 디아크릴레이트계 가교제(diacrylate cross-linker);를 포함하는, 생체적합성 하이드로젤이 제공된다.
일 측에 따르면, 상기 아크릴레이트계 단량체는 하이드록시에틸 아크릴레이트(hydroxyethyl acrylate) 또는 하이드록시에틸 메타크릴레이트(hydroxyethyl methacrylate)일 수 있다.
일 측에 따르면, 상기 디아크릴레이트계 가교제는 폴리(에틸렌 글리콜) 디아크릴레이트(poly(ethylene glycol) diacrylate)일 수 있다.
일 측에 따르면, 상기 하이드로젤은 다공성 구조를 가질 수 있다.
일 측에 따르면, 상기 하이드로젤은 pH 의존적 약물방출성을 나타낼 수 있다.
본 발명의 다른 일 실시예에 따르면, (a) 히알루론산(Hyaluronic acid) 및 아크릴레이트계 단량체(acrylate monomer)의 혼합물을 제조하는 단계; (b) 상기 혼합물에 중합 개시제를 첨가하여 그라프트 공중합체(graft-polymerized copolymer)를 제조하는 단계; 및 (c) 상기 그라프트 공중합체에 디아크릴레이트계 가교제(diacrylate cross-linker)를 첨가하는 단계;를 포함하는, 생체적합성 하이드로젤의 제조방법이 제공된다.
일 측에 따르면, 상기 아크릴레이트계 단량체는 하이드록시에틸 아크릴레이트(hydroxyethyl acrylate; HEA) 또는 하이드록시에틸 메타크릴레이트(hydroxyethyl methacrylate)일 수 있다.
일 측에 따르면, 상기 중합 개시제는 라디칼 중합 개시제일 수 있다.
일 측에 따르면, 상기 라디칼 중합 개시제는 과황화칼륨(KPS, Potassium persulfate)일 수 있다.
일 측에 따르면, 상기 디아크릴레이트계 가교제는 폴리(에틸렌 글리콜) 디아크릴레이트(poly(ethylene glycol) diacrylate; PEGDA)일 수 있다.
본 발명의 일 실시예에 따르면, 히알루론산(Hyaluronic acid) 및 아크릴레이트계 단량체(acrylate monomer)가 그라프트 중합된 그라프트 중합체(graft-polymerized polymer); 및 개질 젤라틴(modified gelatin);을 포함하는, 하이드로젤이 제공된다.
일 측에 따르면, 상기 아크릴레이트계 단량체는 하이드록시에틸 아크릴레이트(hydroxyethyl acrylate) 또는 하이드록시에틸 메타크릴레이트(hydroxyethyl methacrylate)일 수 있다.
일 측에 따르면, 상기 개질 젤라틴 가교제는 젤라틴-메타크릴레이트(gelatin methacrylate)일 수 있다.
일 측에 따르면, 상기 하이드로젤은 다공성 구조를 가질 수 있다.
일 측에 따르면, 상기 하이드로젤은 pH 의존적 약물방출성을 나타낼 수 있다.
본 발명의 다른 일 실시예에 따르면, (a) 히알루론산(Hyaluronic acid) 및 아크릴레이트계 단량체(acrylate monomer)의 혼합물을 제조하는 단계; (b) 상기 혼합물에 중합 개시제를 첨가하여 상기 히알루론산에 상기 아크릴레이트계 단량체가 그라프트 중합된 그라프트 공중합체(graft-polymerized copolymer)를 제조하는 단계; 및 (c) 상기 그라프트 공중합체에 개질 젤라틴(modified gelatin)을 첨가하여 히알루론산 - 그라프트 공중합체 - 젤라틴 화합물을 제조하는 단계;를 포함하는, 하이드로젤의 제조방법이 제공된다.
일 측에 따르면, 상기 아크릴레이트계 단량체는 하이드록시에틸 아크릴레이트(hydroxyethyl acrylate) 또는 하이드록시에틸 메타크릴레이트(hydroxyethyl methacrylate)일 수 있다.
일 측에 따르면, 상기 중합 개시제는 라디칼 중합 개시제일 수 있다.
일 측에 따르면, 상기 라디칼 중합 개시제는 과황화칼륨(KPS, Potassium persulfate)일 수 있다.
일 측에 따르면, 상기 개질 젤라틴은 젤라틴-메타크릴레이트(gelatin methacrylate)일 수 있다.
본 발명의 일 실시예에 따르면, 알지네이트, 아크릴레이트계 단량체, 및 폴리(에틸렌 글리콜) 다이아크릴레이트(PEGDA) 가교제로 이루어지는 삼원공중합 단위체로, 상기 알지네이트(alginate)는 상기 삼원공중합 단위체의 주 고분자이고, 상기 삼원공중합 단위체는 젤 고분자 네트워크로 이루어지는, 생체적합성 하이드로젤이 제공된다.
일 측에 따르면, 상기 삼원공중합 단위체는 Alg-g-pHEA-x-PEGDA인, 생체적합성 하이드로젤 일 수 있다.
일 측에 따르면, 상기 아크릴레이트 단량체는 하이드록시 에틸 아크릴레이트(HEA) 또는 하이드록시 에틸 메타크릴레이트(HEMA)인 것일 수 있다.
일 측에 따르면, 상기 젤 고분자 네트워크는, 가교 결합에 의해 형성되는 것일 수 있다.
일 측에 따르면, 상기 삼원공중합 단위체는 라디칼 중합에 의한 것일 수 있다.
일 측에 따르면, 상기 젤 고분자 네트워크는 가교제의 함량에 따라 공극의 크기가 조절될 수도 있다.
본 발명의 다른 일 실시예에 따르면, (a) 알지네이트에 아크릴레이트계 단량체를 혼합하는 단계; (b)라디칼 중합 개시제를 첨가하는 단계; 및 (c) 폴리(에틸렌 글라이콜) 다이아크릴레이트(PEGDA)를 가교제로 첨가하여 삼원공중합 단위체를 합성하는 단계를 포함하는 생체적합성 하이드로젤의 제조방법이 제공된다.
일 측에 따르면, 상기 (b)단계의 라디칼 중합 개시제는 과황산칼륨(potassium persulphate, KPS)일 수 있다.
일 측에 따르면, 상기 (a) 단계 및 (b) 단계에 의해 그라프트 공중합체(graft-polymerized copolymer)를 형성하는 것일 수 있다.
일 측에 따르면, 알지네이트에 아크릴레이트계 단량체를 혼합하는 단계는 물 50 ml당 0.25g 내지 0.75g 의 알지네이트 및 2.5 ml 내지 4.0 ml의 HEA를 포함하는 것일 수 있다.
본 발명의 하이드로젤은 히알루론산과 아크릴레이트계 단량체가 그라프트 중합된 그라프트 공중합체의 가교물을 하이드로젤의 성분으로 사용함으로써, 우수한 점탄성 특성과 기계적 물성을 구현할 수 있다.
또, 본 발명의 하이드로젤은 히알루론산과 아크릴레이트계 단량체의 그라프트 공중합체의 가교물 및 개질 젤라틴을 가교제로 포함하는 가교물을 하이드로젤의 성분으로 사용함으로써, 우수한 세포적합성, 조직재생성, 점탄성 특성과 기계적 물성을 구현할 수 있다.
아울러, 본 발명의 하이드로젤은 알지네이트를 주 고분자로 하고, 아크릴레이트계 단량체 및 폴리(에틸렌 글라이콜) 다이아크릴레이트(PEGDA)와 젤 고분자 네트워크로 이루어지는 삼원공중합 단위체를 하이드로젤의 성분으로 사용함으로써, 하이드로젤 내부 및 외부에서의 세포 부착을 향상시켜 세포의 생존성을 높일 수 있다. 또, 본 발명의 제조방법을 사용함으로써, 생체 내에서 약물 서방출성이 향상된 생체 적합성 하이드로젤 또는 세포 생존력을 높인 생체 적합성 하이드로젤을 얻을 수 있다. 또한, 삼원공중합 단위체의 조성을 조절하여 기계적 물성을 향상시키고, 하이드로젤의 이화학적 특성을 조절함으로써 조직공학 지지체, 주사용 젤, 3D 프린팅용 소재, 약물 전달체 등 다양한 분야에 적용할 수 있다.
특히, 상기 하이드로젤은 균일한 형상의 다공성 구조로 이루어져 약물 방출성과 기계적 물성 조절에 있어서 탁월한 효과를 나타낼 수 있다.
본 발명의 효과는 상기한 효과로 한정되는 것은 아니며, 본 발명의 상세한 설명 또는 청구범위에 기재된 발명의 구성으로부터 추론 가능한 모든 효과를 포함하는 것으로 이해되어야 한다.
도 1은 본 발명의 일 실시예에 따른 생체적합성 하이드로젤의 제조방법을 반응 단계에 따라 나타낸 것이다.
도 2는 본 발명의 일 실시예에 따른 생체적합성 하이드로젤의 IR 분석 결과를 나타낸 것이다.
도 3은 본 발명의 일 실시예에 따른 생체적합성 하이드로젤의 H 1 NMR 분석 결과를 나타낸 것이다.
도 4는 본 발명의 일 실시예에 따른 생체적합성 하이드로젤의 SEM 이미지를 나타낸 것이다.
도 5는 본 발명의 일 실시예에 따른 생체적합성 하이드로젤의 TGA 분석 결과를 나타낸 것이다.
도 6은 본 발명의 일 실시예에 따른 생체적합성 하이드로젤의 DMOG 및 TCN 약물방출 거동을 나타낸 것이다.
도 7은 본 발명의 일 실시예에 따른 생체적합성 하이드로젤의 pH 조건별 팽윤도를 나타낸 것이다.
도 8은 본 발명의 일 실시예에 따른 생체적합성 하이드로젤의 레올로지(Rheology) 분석 결과를 나타낸 것이다.
도 9 내지 도 12는 본 발명의 일 실시예에 따른 생체적합성 하이드로젤의 세포 적합성 측정 결과를 나타낸 것이다.
도 13은 본 발명의 일 실시예에 따른 하이드로젤의 제조방법을 단계적으로 나타낸 것이다.
도 14는 본 발명의 실시예에 따른 하이드로젤 표면의 SEM 이미지를 나타낸 것이다.
도 15은 본 발명의 일 실시예에 따른 하이드로젤의 적외선(IR) 분광 분석 결과를 나타낸 것이다.
도 16는 본 발명의 일 실시예에 따른 하이드로젤의 핵자기공명(H 1 NMR) 분광 분석 결과를 나타낸 것이다.
도 17는 본 발명의 일 실시예에 따른 하이드로젤의 TGA 분석 결과를 나타낸 것이다.
도 18은 본 발명의 일 실시예에 따른 하이드로젤의 DMOG 및 TCN 약물방출 거동을 나타낸 것이다.
도 19은 본 발명의 실시예에 따른 하이드로젤의 pH 조건별 팽윤도를 나타낸 것이다.
도 20은 본 발명의 일 실시예에 따른 하이드로젤의 레올로지(Rheology) 분석 결과를 나타낸 것이다.
도 21는 본 발명의 실시예에 따른 하이드로젤의 세포 증식율을 나타낸 그래프이다.
도 22은 본 발명의 일 실시예에 따른 생체적합성 하이드로젤의 세포 생존성을 나타낸 이미지이다.
도 23은 본 발명의 일 실시예에 따른 생체적합성 하이드로젤의 제조방법을 반응 단계에 따라 나타낸 것이다.
도 24는 본 발명의 일 실시예에 따른 생체적합성 하이드로젤의 IR 분석 결과를 나타낸 것이다.
도 25는 본 발명의 일 실시예에 따른 생체적합성 하이드로젤의 TGA 분석 결과를 나타낸 것이다.
도 26는 본 발명의 일 실시예에 따른 전자현미경을 통해 확인한 생체적합성 하이드로젤의 SEM 이미지를 도시한 것이다.
도 27 및 도 28은 본 발명의 일 실시예에 따른 생체적합성 하이드로젤의 pH 조건별 팽윤도를 나타낸 것이다.
도 29 및 도 30은 본 발명의 일 실시예에 따른 생체적합성 하이드로젤의 세포 독성 실험 결과를 나타낸 것이다.
도 31 내지 도 33는 본 발명의 일 실시예에 따른 생체적합성 하이드로젤의 생체적합성을 실험한 결과를 나타낸 것이다.
도 34 및 도 35은 본 발명의 일 실시예에 따른 생체적합성 하이드로젤의 약물 방출 실험 결과를 나타낸 것이다.
도 36는 본 발명의 일 실시예에 따른 생체적합성 하이드로젤의 특성 및 용도를 나타낸 개략도이다.
이하에서, 첨부된 도면을 참조하여 실시예들을 상세하게 설명한다. 각 도면에 제시된 동일한 참조 부호는 동일한 부재를 나타낸다.
아래 설명하는 실시예들에는 다양한 변경이 가해질 수 있다. 아래 설명하는 실시예들은 실시 형태에 대해 한정하려는 것이 아니며, 이들에 대한 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
실시예에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 실시예를 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성 요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성 요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 실시예가 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
또한, 첨부 도면을 참조하여 설명함에 있어, 도면 부호에 관계없이 동일한 구성 요소는 동일한 참조 부호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 실시예를 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 실시예의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.
본 발명의 일 실시예에 따르면, 히알루론산(Hyaluronic acid) 및 아크릴레이트계 단량체(acrylate monomer)가 그라프트 중합된 그라프트 공중합체(graft-polymerized copolymer); 및 디아크릴레이트계 가교제(diacrylate cross-linker);를 포함하는, 생체적합성 하이드로젤이 제공된다.
상기 히알루론산은 그 자체로 우수한 생체적합성을 나타내는 반면, 점탄성 특성이나 기계적 물성 등이 취약하기 때문에 아크릴레이트계 단량체와 디아크릴레이트계 가교제를 이용하여 이와 같은 물성을 보완할 수 있다.
구체적으로, 상기 아크릴레이트계 단량체는 하이드록시에틸 아크릴레이트(hydroxyethyl acrylate) 또는 하이드록시에틸 메타크릴레이트(hydroxyethyl methacrylate)일 수 있고, 바람직하게는 2-하이드록시에틸 아크릴레이트(2-HEA)일 수 있으나, 이에 한정되는 것은 아니다.
상기 히알루론산과 아크릴레이트계 단량체는 그라프트 공중합체(graft-polymerized copolymer)를 형성할 수 있다. 상기 그라프트 공중합체는 선형 공중합체에 비해 밀집된 분자 구조를 형성함으로써 히알루론산의 점탄성 특성과 기계적 물성을 효과적으로 향상시킬 수 있다.
또한, 상기 그라프트 공중합체는 2개 혹은 그 이상의 불포화 작용기를 포함하는 디아크릴레이트계 가교제에 의해 가교 될 수 있다. 구체적으로, 상기 디아크릴레이트게 가교제는 폴리(에틸렌 글리콜) 디아크릴레이트(poly(ethylene glycol) diacrylate), 폴리(에틸렌 글리콜) 테트라크릴레이트(poly(ethylene glycol) tetraacrylate), 성상의 폴리(에틸렌 글리콜) 멀티아크릴레이트(poly(ethylene glycol) multiacrylate)일 수 있으나, 이에 한정되는 것은 아니다.
상기 가교제는 그라프트 공중합체 간 더욱 밀집된 구조를 형성할 수 있도록 연결해주며, 이를 통해 최종 생성물인 그라프트 공중합체의 가교물을 포함하는 하이드로젤은 다공성 구조를 가질 수 있고, 다공성 구조는 가교 정도에 따라 다양한 형태를 가질 수 있다. 이와 같은 가교도(degree x-linking)와 다공성 구조에 따라 상기 하이드로젤은 내부에 약물을 담지할 수 있는 약물 전달체, 조직공학 지지체 등으로 적용될 수 있으며, 그 외에도 3D 프린팅용 소재, 주사용 젤 등으로도 적용될 수 있다.
한편, 상기 하이드로젤은 내부에 약물을 담지하여 생체 내 약물 전달 기능을 수행할 수 있다. 이 때, 상기 하이드로젤은 pH 의존적 약물방출성을 나타낼 수 있다.
구체적으로, 상기 하이드로젤은 pH가 낮은 산성 조건에서는 서방성 약물방출을 나타낼 수 있는 반면, pH가 높은 염기성 조건에서는 속방성 약물방출을 나타낼 수 있다. 즉, 상기 하이드로젤이 적용되는 pH 환경에 따라 약물방출성을 달리 조절할 수 있으므로, 적용 부위의 pH에 따라 하이드로젤을 선택하여 적용할 수 있다.
도 1은 본 발명의 일 실시예에 따른 생체적합성 하이드로젤의 제조방법을 반응 단계에 따라 나타낸 것이다.
도 1과 같이 본 발명의 다른 일 실시예에 따르면, (a) 히알루론산(Hyaluronic acid) 및 아크릴레이트계 단량체(acrylate monomer)의 혼합물을 제조하는 단계; (b) 상기 혼합물에 중합 개시제를 첨가하여 그라프트 공중합체(graft-polymerized copolymer)를 제조하는 단계; 및 (c) 상기 그라프트 공중합체에 디아크릴레이트계 가교제(diacrylate cross-linker)를 첨가하는 단계;를 포함하는, 생체적합성 하이드로젤의 제조방법이 제공된다.
상기 (a) 단계에서는 그라프트 중합에 필요한 단량체인 히알루론산과 아크릴레이트계 단량체를 준비한 뒤, 이들을 혼합할 수 있다. 이 때, 상기 히알루론산은 그 자체로 사용될 수 있을 뿐만 아니라 염의 형태, 예를 들어 히알루론산 나트륨(sodium hyaluronate)의 형태로 사용할 수도 있으나, 이에 한정되는 것은 아니다.
상기 아크릴레이트계 단량체는 하이드록시에틸 아크릴레이트(hydroxyethyl acrylate) 또는 하이드록시에틸 메타크릴레이트(hydroxyethyl methacrylate)일 수 있고, 바람직하게는 2-하이드록시에틸 아크릴레이트(2-HEA)일 수 있으나, 이에 한정되는 것은 아니다.
상기 (b) 단계에서는 중합 개시제를 첨가하여 혼합된 단량체 간 그라프트 중합 반응을 개시할 수 있다. 이 때, 상기 중합 반응이 라디칼 반응으로 진행될 수 있도록 상기 중합 개시제는 라디칼 중합 개시제일 수 있다. 구체적으로, 상기 라디칼 중합 개시제는 과황화칼륨(KPS, Potassium persulfate)일 수 있으나, 이에 한정되는 것은 아니며, 과산화벤조일 등과 같이 라디칼 중합 반응을 개시할 수 있는 화합물이면 어느 것이든 사용할 수 있다.
상기 중합 개시제는 라디칼 활성을 나타내어 히알루론산 또는 히알루로네이트의 양성자를 분리함으로써 히알루론산 라디칼을 생성할 수 있다. 생성된 히알루론산 라디칼은 아크릴레이트계 단량체와 반응하여 히알루론산과 아크릴레이트계 단량체 간의 그라프트 중합 반응(graft polymerization)이 진행될 수 있다.
상기 (c) 단계에서는 그라프트 중합 반응에 의해 생성된 히알루론산과 아크릴레이트계 단량체 간의 그라프트 공중합체에 디아크릴레이트계 가교제(diacrylate cross-linker)를 첨가하여 생체적합성 하이드로젤을 제조할 수 있다.
이 때, 상기 디아크릴레이트계 가교제는 적절한 가교 반응을 진행시키기 위해 2개의 불포화 작용기를 포함하는 폴리(에틸렌 글리콜) 디아크릴레이트(poly(ethylene glycol) diacrylate)일 수 있으나, 이에 한정되는 것은 아니다.
즉, 최종 생성물인 생체적합성 하이드로젤은 히알루론산-아크릴레이트계 단량체 간의 그라프트 공중합체를 디아크릴레이트계 가교제에 의해 가교결합시킨 형태로 제조될 수 있다.
상기 생체적합성 하이드로젤은 다공성 구조로 이루어질 수 있으며, 이에 따라 내부에 약물을 담지하는 약물 전달체로 기능할 수 있다. 또한, 상기 하이드로젤은 적절한 점탄성 특성과 기계적 물성을 보유하기 때문에 3D 프린팅용 소재, 주사형 젤, 조직공학 지지체 등으로도 적용될 수 있으나, 이에 한정되는 것은 아니다.
본 발명의 일 실시예에 따르면, 히알루론산(Hyaluronic acid) 및 아크릴레이트계 단량체(acrylate monomer)가 그라프트 중합된 그라프트 공중합체(graft-polymerized copolymer); 및 개질 젤라틴(modified gelatin);을 포함하는, 하이드로젤이 제공된다.
상기 히알루론산은 그 자체로 우수한 생체적합성을 나타내는 반면, 조직재생성, 점탄성 특성이나 기계적 물성 등이 취약하기 때문에 아크릴레이트계 단량체와 개질 젤라틴 가교제를 이용하여 이와 같은 물성을 보완할 수 있다.
구체적으로, 상기 아크릴레이트계 단량체는 하이드록시에틸 아크릴레이트(hydroxyethyl acrylate) 또는 하이드록시에틸 메타크릴레이트(hydroxyethyl methacrylate)일 수 있고, 바람직하게는 2-하이드록시에틸 아크릴레이트(2-HEA)일 수 있으나, 이에 한정되는 것은 아니다.
상기 아크릴레이트계 단량체는 히알루론산의 측쇄에 그라프트 중합을 유도하여 그라프트 공중합체(graft-polymerized copolymer)를 형성할 수 있다. 상기 그라프트 공중합체는 선형 공중합체에 비해 밀집된 분자 구조를 형성함으로써 히알루론산의 점탄성 특성과 기계적 물성을 효과적으로 향상시킬 수 있다.
또한, 상기 그라프트 공중합체는 2개 혹은 그 이상의 불포화 작용기, 예를 들어 아크릴레이트 작용기를 포함하는 개질 젤라틴 가교제에 의해 가교될 수 있다. 구체적으로, 상기 개질 젤라틴 가교제는 젤라틴-메타크릴레이트(gelatin-methacrylate)일 수 있으나, 이에 한정되는 것은 아니다.
상기 가교제는 그라프트 공중합체 간 더욱 밀집된 구조를 형성할 수 있도록 연결해주며, 이를 통해 최종 생성물인 그라프트 공중합체와 젤라틴 가교물을 포함하는 하이드로젤은 다공성 구조를 가질 수 있고, 다공성 구조는 가교 정도와 아크릴레이트, 젤라틴 가교물의 함량 등에 따라 다양한 형태를 가질 수 있다. 이와 같은 가교도(degree x-linking), 아크릴레이트, 젤라틴-메타크릴레이트 및 다공성 구조에 따라 상기 하이드로젤은 내부에 약물을 담지할 수 있는 약물 전달체, 조직공학 지지체 등으로 적용될 수 있으며, 그 외에도 15D 프린팅용 소재, 주사용 젤 등으로도 적용될 수 있다.
한편, 상기 하이드로젤은 내부에 약물을 담지하여 생체 내 약물 전달 기능을 수행할 수 있다. 이 때, 상기 하이드로젤은 pH 의존적 약물방출성 및 적용성을 나타낼 수 있다.
구체적으로, 상기 하이드로젤은 pH가 낮은 산성 조건에서는 서방성 약물방출을 나타낼 수 있는 반면, pH가 높은 염기성 조건에서는 속방성 약물방출을 나타낼 수 있다. 즉, 상기 하이드로젤이 적용되는 pH 환경에 따라 약물방출성을 달리 조절할 수 있으므로, 적용 부위의 pH에 따라 하이드로젤을 선택하여 적용할 수 있다. 또한 pH가 다른 조직에 대하여 상응한 조건에 맞는 하이드로젤을 적용하여 조직공학에 적용할 수 있다. 즉, 산성 및 염기성의 주변환경을 가진 조직에 대해서는 팽윤성, 약물방출성을 조절하여 하이드로젤의 적용이 가능하다.
도 13은 본 발명의 일 실시예에 따른 생체적합성 하이드로젤의 제조방법을 반응 단계에 따라 나타낸 것이다.
도 13과 같이 본 발명의 다른 일 실시예에 따르면, 본 발명의 다른 일 실시예에 따르면, (a) 히알루론산(Hyaluronic acid) 및 아크릴레이트계 단량체(acrylate monomer)의 혼합물을 제조하는 단계; (b) 상기 혼합물에 중합 개시제를 첨가하여 상기 히알루론산에 상기 아크릴계 단량체가 그라프트 중합된 공중합체(graft-polymerized copolymer)를 제조하는 단계; 및 (c) 상기 그라프트 공중합체에 개질 젤라틴(modified gelatin)를 첨가하는 단계;를 포함하는, 생체적합성 하이드로젤의 제조방법이 제공된다.
상기 (a) 단계에서는 그라프트 중합에 필요한 단량체인 아크릴레이트계 단량체를 준비한 뒤, 히알루론산과 혼합할 수 있다. 이 때, 상기 히알루론산은 그 자체로 사용될 수 있을 뿐만 아니라 염의 형태, 예를 들어 히알루론산 나트륨(sodium hyaluronate)의 형태로 사용할 수도 있으나, 이에 한정되는 것은 아니다.
상기 아크릴레이트계 단량체는 하이드록시에틸 아크릴레이트(hydroxyethyl acrylate) 또는 하이드록시에틸 메타크릴레이트(hydroxyethyl methacrylate)일 수 있고, 바람직하게는 2-하이드록시에틸 아크릴레이트(2-HEA)일 수 있으나, 이에 한정되는 것은 아니다.
상기 (b) 단계에서는 중합 개시제를 첨가하여 히알루론산의 측쇄(-OH)를 활성화 시킴으로써, 혼합된 단량체들이 히알루론산의 측쇄에 그라프트 중합 반응을 개시할 수 있다. 이 때, 상기 중합 반응이 라디칼 반응으로 진행될 수 있도록 상기 중합 개시제는 라디칼 중합 개시제일 수 있다. 구체적으로, 상기 라디칼 중합 개시제는 과황화칼륨(KPS, Potassium persulfate)일 수 있으나, 이에 한정되는 것은 아니며, 과산화벤조일 등과 같이 라디칼 중합 반응을 개시할 수 있는 화합물이면 어느 것이든 사용할 수 있다.
상기 중합 개시제는 라디칼 활성을 나타내어 히알루론산 또는 히알루로네이트 측쇄의 양성자를 분리함으로써 히알루론산 라디칼을 생성할 수 있다. 생성된 히알루론산 라디칼은 아크릴레이트계 단량체와 반응하여 히알루론산과 아크릴레이트계 단량체 간의 그라프트 중합 반응(graft polymerization)이 진행될 수 있다.
상기 (c) 단계에서는 그라프트 중합 반응에 의해 생성된 히알루론산과 아크릴레이트계 단량체 간의 그라프트 공중합체에 개질 젤라틴 가교제(modified gelatin cross-linker)를 첨가하여 하이드로젤의 특성을 제조할 수 있다.
이 때, 상기 멀티 아크릴레이트계 가교제는 적절한 가교 반응을 진행시키기 위해 2개 이상의 불포화 작용기, 예를 들어 아크릴레이트 작용기를 포함하는 개질 젤라틴일 수 있고, 구체적으로 젤라틴-메타크릴레이트(gelatin-methacrylate)일 수 있으나, 이에 한정되는 것은 아니다.
즉, 최종 생성물인 하이드로젤은 히알루론산-아크릴레이트계 단량체에 의하여 형성된 그라프트 공중합체에, 개질 젤라틴-메타크릴레이트 가교제를 이용하여 가교결합시킨 형태로 제조될 수 있다.
상기 생체적합성, 조직재생성의 하이드로젤은 다공성 구조로 이루어질 수 있으며, 이에 따라 내부에 약물을 담지하는 약물 전달체 및 조직공학용 생체재료로 기능할 수 있다. 또한, 상기 하이드로젤은 적절한 점탄성 특성과 기계적 물성 및 조직재생성을 보유하기 때문에 3D 프린팅용 소재, 주사형 젤, 조직공학 지지체 등으로도 적용될 수 있으나, 이에 한정되는 것은 아니다.
본 발명의 일 실시예에 따르면, 알지네이트, 아크릴레이트계 단량체, 및 폴리(에틸렌 글라이콜) 다이아크릴레이트(PEGDA) 가교제로 이루어지는 삼원공중합 단위체로, 상기 알지네이트(alginate)는 상기 삼원공중합 단위체의 주 고분자이고, 상기 삼원공중합 단위체는 젤 고분자 네트워크로 이루어지는, 생체적합성 하이드로젤이 제공된다.
상기 알지네이트는 천연 고분자로 생체적합성이 뛰어나고 독성이 낮으며, 쉽게 구할 수 있다는 장점에도 불구하고, 생체재료로 적용하기에는 물성이 적합하지 않다는 단점이 있다. 따라서, 아크릴레이트계 단량체와 폴리(에틸렌 글라이콜) 다이아크릴레이트(PEGDA)를 이용하여 삼원공중합 단위체를 구성함으로써 기계적 물성이 보완된 하이드로젤을 제공할 수 있다.
여기서, 아크릴레이트계 단량체는 하이드록시 에틸아크릴레이트(HEA) 또는 하이드록시 에틸메타크릴레이트(HEMA) 중 어느 하나일 수 있고, 바람직하게는 2-하이드록시 에틸 아크릴레이트(2-HEA)일 수 있으나 이에 한정되는 것은 아니다. 일 측에 따르면, 상기 삼원공중합 단위체는 Alg-g-pHEA-x-PEGDA 일 수 있다. 우선적으로, 알지네이트와 아크릴레이트계 단량체가 라디칼 중합되어 Alg-g-pHEA가 생성하게 되는데, 일 측에 따르면, 상기 가교제에 의한 가교 결합으로 젤 고분자 네트워크가 형성될 수 있다. 먼저, 라디칼 중합 반응으로 라디칼 중합체가 형성되고, 이후, 가교제에 의해 라디칼 중합체간의 네트워크가 생성된다. 이 때, 라디칼 중합 반응은 라디칼 중합 개시제에 의한 것으로, 개시제의 종류는 어느 하나에 한정되지는 않으나, 수용성의 과황산칼륨(Potassium persulphate, KPS)을 사용함이 바람직하다.
앞서 설명한 내용으로 생성되는 공중합체인 Alg-g-pHEA는 하기의 구조식 1과 같이 나타낼 수 있다.
Figure PCTKR2018012018-appb-img-000001
구조식 1과 같이 합성된 Alg-g-pHEA 은 이후 첨가되는 폴리(에틸렌 글라이콜) 다이아크릴레이트(PEGDA)에 의해 가교 결합되는데, 이러한 가교 결합은 중합체 간의 결합을 가능하게 한다. 가교제는 상기 공중합 단위체 간의 더욱 밀집된 구조를 형성하여 최종적으로 유효 가교밀도(effective crosslinking density)를 가진 하이드로젤의 네트워크를 형성하기 위한 것이며, 이를 통해 생성되는 하이드로젤은 다공성 구조를 조절할 수 있다. 이 때, 반응에 참여하는 가교제의 함량을 달리하면, 공극의 크기 역시 달라지므로 생성되는 네트워크의 밀도와 가교사이의 거리를 조절할 수 있다. 가교제의 함량을 높일수록 형성되는 공극의 크기는 감소하게 되는데, 이로 인해 정해진 부피의 하이드로젤의 내부에 더 많은 양의 네트워크가 형성되면서 열 안정성이 높은 하이드로젤이 생성될 수 있다. 또, 공극의 수를 조절함으로써, 하이드로젤 내부의 수용할 수 있는 수분의 양이 조절될 수 있으므로, 공극의 수를 조절하면 다양한 물성의 하이드로젤을 제조할 수도 있다.
위와 같이 제조된 하이드로젤은 가교된 젤 고분자 네트워크 구조에 따라 내부에 약물을 담지할 수 있는 약물 전달체 및 스캐폴드(Scaffold) 등에 적용될 수 있으며, 그 외에도 3D 프린팅용 소재, 주사용 젤 등의 분야에도 적용될 수 있다. 전술한 원리를 적용하여 제조되는 하이드로젤의 제조방법은 실시예에서 보다 자세히 후술하기로 한다.
또한, 폴리(에틸렌 글라이콜) 다이아크릴레이트(PEGDA)는 가교제로서의 역할 뿐 아니라, 중합 반응에 직접 참여함으로써 알지네이트(Alginate) 및 2-하이드록시 에틸 아크릴레이트(2-HEA)와 반응하여 삼원공중합 단위체인 Alg-g--pHEA-x-PEGDA를 형성하게 된다. 형성된 Alg-g--pHEA-x-PEGDA는 하기의 구조식 2와 같이 나타낼 수 있다.
Figure PCTKR2018012018-appb-img-000002
본 발명의 다른 일 실시예에 따르면, 생체적합성 하이드로젤은 (a) 알지네이트에 아크릴레이트계 단량체를 혼합하는 단계; (b) 라디칼 중합 개시제를 첨가하는 단계; 및 (c) 폴리(에틸렌 글라이콜) 다이아크릴레이트(PEGDA)를 가교제로 첨가하여 삼원공중합 단위체를 형성하는 단계를 포함하는 제조방법에 의한 것일 수 있다. 상기 제조방법은 이후 실시예에서 보다 자세히 설명하도록 한다.
일 측에 따르면, 생체적합성 하이드로젤의 제조방법에서 상기 (b)단계의 라디칼 중합 개시제는 과황산칼륨(potassium persulphate, KPS)임이 바람직하나, 이에 한정되지 않는다.
일 측에 따르면, 생체적합성 하이드로젤의 제조방법은 상기 (a) 단계 및 (b) 단계에 의해 그라프트 공중합체(graft-polymerized copolymer)가 형성될 수 있다. 이러한 그라프트 공중합체의 형성은 선형 공중합체에 비해 밀집된 분자구조를 형성함으로써, 알지네이트의 기계적 특성을 향상시키고, 표면 형상을 조절할 수 있다. 일 측에 따르면, 상기 알지네이트에 아크릴레이트계 단량체를 혼합하는 단계는, 물 50 ml당 0.25g 내지 0.75g 의 알지네이트 및 2.5 ml 내지 4.0 ml의 HEA가 용해되는 단계일 수 있다. 구체적으로는, 6.31 x 10 -4 몰의 알지네이트 0.25g 및 2.84 x 10 -2 몰의 HEA 3 ml 가 사용될 수 있다. 이 경우, 형성된 그라프트 공중합체를 가교하기 위한 가교제로 4.87 x 10 -4 몰의 PEGDA 0.25 ml, 9.74 x 10 -4 몰의 PEGDA 0.5 ml 또는 19.48 x 10 -4 몰의PEGDA 1 ml을 사용함이 바람직하다.
도 23은 본 발명의 일 실시예에 따른 생체적합성 하이드로젤의 제조방법을 반응 단계에 따라 나타낸 것이다.
도 23과 같이 본 발명의 다른 일 실시예에 따르면, (a) 알지네이트에 아크릴레이트계 단량체를 혼합하는 단계; (b) 라디칼 중합 개시제를 첨가하는 단계; 및 (c) 폴리(에틸렌 글라이콜) 다이아크릴레이트(PEGDA)를 가교제로 첨가하여 삼원공중합 단위체를 합성하는 단계를 포함하는, 생체적합성 하이드로젤의 제조방법이 제공된다. 상기 (a) 단계에서는 알지네이트와 아크릴레이트계 단량체가 혼합될 수 있다. 상기 (b) 단계의 개시제가 먼저 첨가된 후에 (a) 단계가 진행될 수도 있으나, 반드시 그 순서를 따라야 하는 것은 아니다.
상기 아크릴레이트계 단량체는 하이드록시 에틸아크릴레이트(HEA) 또는 하이드록시 에틸메타크릴레이트(HEMA)인 것일 수 있고, 바람직하게는 2-하이드록시 에틸아크릴레이트(2-HEA)일 수 있으나, 이에 한정되는 것은 아니다. 상기 (b) 단계에서는 라디칼 중합 개시제를 첨가하여 알지네이트와 아크릴레이트계 단량체 간의 그라프트 중합 반응을 개시할 수 있다. 구체적으로는, 상기 라디칼 중합 개시제는 과황산칼륨(potassium persulphate, KPS)일 수 있으나, 이에 한정되는 것은 아니며, 과산화벤조일(benzoyl peroxide) 등의 라디칼 중합 반응을 개시할 수 있는 수용성 개시제이면 어느 것이든 사용될 수 있다. 상기 라디칼 중합 반응을 통해 삼원 공중합 단위체의 젤 고분자 네트워크의 기본 단위가 형성된다.
상기 라디칼 중합 개시제는 알지네이트의 양성자를 분리함으로써 알지네이트 라디칼을 형성할 수 있다. 상기 (a) 단계 및 상기 (b) 단계에 의해, 형성된 알지네이트 라디칼은 아크릴레이트계 단량체와 반응하여 그라프트 중합 반응을 진행함으로써 그라프트 공중합체를 형성할 수 있다.
상기 (c) 단계에서는 알지네이트와 아크릴레이트계 단량체 간의 그라프트 중합 반응에 의해 생성된 그라프트 공중합체에 폴리(에틸렌 글라이콜) 다이아크릴레이트(PEGDA)를 가교제로 첨가하여 삼원공중합 단위체를 합성할 수 있다.
이 때, 생성되는 삼원공중합 단위체는 Alg-g-pHEA-x-PEGDA일 수 있으며, 상기 삼원공중합 단위체는 6.31 x 10 -4 몰의 알지네이트 0.25g 및 2.84 x 10 -2 몰의 HEA 3 ml 를 포함하는 것일 수 있다. 즉, 최종 생성물인 생체적합성 하이드로젤은 상기 생성된 그라프트 공중합체를 가교제로 가교결합시킨 형태로 제조될 수 있으며, 상기 가교결합에 의해 복수 개의 젤 고분자 네트워크가 형성될 수 있다. 이 과정을 통해, 상기 생체적합성 하이드로젤은 다공성 구조를 가질 수 있으며, 이에 따라 내부에 약물을 담지하는 약물 전달체로서의 기능을 할 수도 있다. 또한, 상기 생체적합성 하이드로젤은 적절한 점탄성의 특성과 기계적 물성을 보유하고 있어, 3D 프린팅용 소재, 주사형 젤, 스캐폴드(Scaffold)와 같은 조직공학 지지체 등으로 적용될 수 있으나, 그 용도가 반드시 이에 한정되는 것은 아니다.
이하, 실시예를 통하여 본 발명을 보다 상세히 설명하기로 한다. 하기 실시예는 본 발명을 예시하기 위한 목적으로 기술된 것으로서, 본 발명의 범위가 이에 한정되는 것은 아니다.
실시예 1.
생체 고분자인 히알루론산 나트륨 0.25g, 2-하이드록시에틸 아크릴레이트(2-HEA) 2㎖를 단량체로 사용하고, 과황화칼륨(KPS) 0.0025g을 중합 개시제로 사용하여 고온에서 하이드로젤을 합성하였다. 이 때, 하이드로젤의 다공성 구조를 조절하기 위해 폴리(에틸렌 글리콜) 디아크릴레이트(PEGDA) 가교제를 0.25㎖, 0.50㎖, 0.75㎖로 조절하면서 중합 반응을 진행하여 HA-p(2-HEA)-PEG 하이드로젤을 합성하였다. 사용한 화합물의 구체적인 함량은 아래 표 1에 나타내었다.
Figure PCTKR2018012018-appb-img-000003
실험예 1: IR 결과 분석
상기 샘플 1-2에 따라 제조된 하이드로젤의 화학적 구조를 확인하기 위해 ATR-FTIR 분광기(Travel IR, Smiths Detection, USA)를 이용하여 스펙트럼을 분석하였고, 그 결과를 히알루론산(HA), 2-하이드록시에틸 아크릴레이트(2-HEA), 폴리(에틸렌 글리콜) 디아크릴레이트(PEGDA)의 ATR-FTIR 스펙트럼과 함께 도 2에 나타내었다.
도 2를 참고하면, 샘플 1-2의 하이드로젤(d)은 3425㎝ -1 (HA 및 2-HEA), 2398㎝ -1(2-HEA), 2878㎝ -1 (PEGDA) 및 1723㎝ -1 (PEGDA)에서의 신호(peak)가 모두 확인되어 HA, 2-HEA 및 PEGDA 모두를 포함하는 화합물이라는 것을 확인할 수 있다.
Figure PCTKR2018012018-appb-img-000004
상기 샘플 1-2에 따라 제조된 하이드로젤의 화학적 구조를 확인하기 위해 H 1 NMR 분광기(DD2 700, Agilent Technologies-Korea, USA)를 이용하여 스펙트럼 분석을 수행하였고, 그 결과를 히알루론산(HA), 2-하이드록시에틸 아크릴레이트(2-HEA), 폴리(에틸렌 글리콜) 디아크릴레이트(PEGDA)의 H 1 NMR 스펙트럼과 함께 도 3에 나타내었다.
도 3은 HA, 2-HEA, PEGDA 및 상기 샘플 1-2에 따라 제조된 하이드로젤의 H 1 NMR 스펙트럼을 나타낸 것이다. 도 3을 참고하면, 상기 샘플 1-2에 따른 하이드로젤은 HA, 2-HEA 및 PEGDA를 모두 포함하는 구조의 화합물로 이루어져 있음을 알 수 있다.
실험예 3: 하이드로젤 구조 관찰
상기 샘플 1-1 내지 1-3에 따라 제조된 하이드로젤 각각의 미세 구조를 확인하기 위해, 각각의 하이드로젤의 주사전자현미경(SEM, Joel, Korea) 이미지를 관찰하였고 그 결과를 도 4에 나타내었다.
도 4의 (a), (b)는 각각 샘플 1-1에 따른 하이드로젤의 표면, 단면 이미지를 나타낸 것이고, (c), (d)는 각각 샘플 1-2에 따른 하이드로젤의 표면, 단면 이미지를 나타낸 것이며, (e), (f)는 각각 샘플 1-3에 따른 하이드로젤의 표면, 단면 이미지를 나타낸 것이다.
도 4를 참고하면, 각각의 하이드로젤이 다공성 구조로 이루어져 있으며, 가교제의 함량에 따라 그 구조를 조절할 수 있음을 알 수 있다. 가교제의 농도가 낮은 경우에는 다공구조가 균일하지 않았으며(a), 가교제의 농도가 너무 높은 경우에도 균일하지 않은 다공구조가 생성되었다(c). 이와 같은 다공성 구조의 하이드로젤은 약물 담지체 등으로 적용될 수 있으며, 그 구조 제어에 따라 약물의 방출성 또한 조절할 수 있음을 시사한다.
실험예 4: TGA(thermos-gravimetric analysis) 결과 분석
상기 샘플 1-2에 따라 제조된 하이드로젤의 열분해 특성을 확인하기 위해, 열중량분석기(DTG-60, Shimadzu, Japan)를 이용하여 질소 분위기 하에서 5℃/분의 스캔 속도로 TGA 분석을 실시하였고, 그 결과를 히알루론산(HA)의 TGA 분석 결과와 함께 도 5에 나타내었다.
도 5를 참고하면, 상기 샘플 1-2의 하이드로젤은 가교결합으로 인해 분자 내의 결합이 더욱 견고하게 형성되어, 히알루론산에 비해 상대적으로 높은 온도에서 열분해가 일어나는 것을 확인할 수 있다.
실험예 5: 약물 방출성 평가
상기 샘플 1-1 내지 1-3에 따라 제조된 하이드로젤의 약물 방출성을 평가하기 위해, 27.9μM과 13.9μM의 DMOG(dimethyloxalyglycine) 약물과 TCN(tetracycline) 약물을 각각 높이 7㎜, 직경 10㎜ HA-p(2-HEA)-PEG젤 샘플을 48웰 폴리스티렌 웰(well)에 넣은 다음, 100㎖ 버퍼 용액(pH 7.0 및 7.4)에서 4일 동안 37℃ 조건에서 약물이 방출되도록 유도하였으며, 얻어진 샘플용액 내의 약물 양을 UV-Vis 분광기(BioMATE 3, Thermo Scientific, USA)를 이용하여 분석을 수행하였고, 그 결과를 도 6에 나타내었다.
실험예 6: 팽윤도 평가
상기 샘플 1-1 내지 1-3에 따라 제조된 하이드로젤의 수분에 대한 특성을 확인하기 위해, 팽윤도(swelling)를 평가하였다. 하이드로젤의 팽윤도 특성에 따라 내부에 담지된 물질, 예를 들어 약물의 방출 특성이 달라질 수 있으므로 이에 대한 간접적 지표로 활용할 수 있다.
미리 칭량한 0.25g의 건조된 하이드로젤을 37℃에서 16시간 동안 50㎖의 희석된 완충 용액(pH 2.5, 7.0 및 7.4)에 담지하였다. 1시간 경과 후 하이드로젤을 배지에서 꺼내어 세척한 뒤, 무게가 평형에 도달할 때까지 하이드로젤의 무게를 칭량하였다. 팽윤도(%)는 하기 수학식 1에 따라 산출하였으며, 그 결과를 도 7에 나타내었다.
Figure PCTKR2018012018-appb-img-000005
실험예 7: 레올로지(Rheology) 분석
상기 샘플 1-2에 따라 제조된 하이드로젤의 유동학적 특성을 확인하기 위해, Rotational rheometer(TA Instrument Ltd., DHR-1)를 이용하여 37℃ 온도 하에서 전단 저장 모듈러스(shear storage modulus; G')와 전단 손실 모듈러스(shear loss modulus; G") 특성분석을 수행하였다.
측정 갭 및 시편의 규격은 각각 1.0㎜ 및 25㎜ 플레이트에 합성된 HA-p(2-HEA)-PEG 하이드로젤 샘플을 첨가하여 젤 샘플에 진동 토크(torque oscillation)를 제공하면서 샘플의 젤 특성을 분석하였다. 최소 진동 토크(minimum torque oscillation)은 10nM-m으로 설정하였고, 전단 속도는 0.1 내지 1,300/sec의 범위로 설정하였다. 응력 스윕(stress sweep) 측정을 위해, 주파수와 진동 응력(oscillation stress)은 각각 1 Hz와 1~1,000 Pa로 설정하였다. 사용된 최소 및 최대 토크는 10nN-m 및 150mN-m이었다. 주파수 스윕(frequency sweep) 측정의 경우, 토크 분해능(resolution)과 변형률(strain)은 각각 0.1nN-m 및 1%로 하였으며, 주파수를 0.1~10Hz로 설정하였다. 분석 결과는 도 8에 나타내었다.
도 8을 참고하면, 프리퀀시 범위에서 전단 저장 모듈러스(G')와 전단 손실 모듈러스(G") 값이 증가함을 확인할 수 있고(a), 전단 저장 모듈러스(G')와 전단 손실 모듈러스(G")가 중첩되어 젤 형성을 확인할 수 있으며(b), 전단속도에 따라 전단 점도는 감소(c)하는 것을 확인함으로써 하이드로젤의 특성을 관찰할 수 있다.
실험예 8: 세포 적합성 측정
상기 샘플 1-1 내지 1-3에 따라 제조된 하이드로젤의 세포에 대한 적합성을 측정하였다.
세포 배양은 다음과 같이 수행하였다. 마우스 유래 조골모세포(MC3T3)를 10% Fetal Bovine Serum(FBS) 및 100unit/㎖ penicillin-streptomycin을 포함하는 alpha-MEM 배지에 넣어 100㎜×20㎜ polystyrene culture dish에서 배양하였으며, 5% CO 2, 37℃ 인큐베이터에서 in vitro 세포배양을 진행하였다.
live & dead assay는 다음과 같이 수행하였다. 10㎖ conical tube 에 6×(600㎕ PBS, 1.2㎕ EthD-1, 0.3㎕ Calcein AM)을 넣어 혼합하여 준비하였다. pH 7.0, pH 7.4의 10:1, 2:1, 1:10 샘플 1개씩 총 6개의 샘플에서 배지를 제거한 뒤, 미리 제조한 live & dead 용액을 각 well 당 600㎕씩 넣고 빛을 차단한 상태로 5% CO 2, 37℃ 인큐베이터에 30 분간 방치하였다. 30분 후 live & dead 용액을 제거하고 PBS로 1회 세척한 후 형광 현미경으로 관찰하였다. live & dead assay 진행 시 모든 빛을 차단하고 진행하였다.
세포 수 및 세포 증식률을 관찰하기 위해 cell counting kit-8(CCK-8)을 사용하여 세포증식성 평가를 수행하였다. CCK-8 용액 2㎖를 10% FBS를 포함하는 alpha-MEM 18㎖ 배지용액과 혼합하여 20㎖를 준비하였다. 샘플 종류별로 3개씩 각각의 샘플에 cck 혼합 용액을 1㎖씩 넣은 후 5% CO 2, 37℃ 인큐베이터에서 2시간 배양하였다. 2시간 후 각 well에서 100㎕씩 샘플을 채취하고, 96well plate에 각 샘플 당 3회씩 옮겼다. 각각의 샘플에 대해 Microplate reader(Tecan)를 사용하여 450㎚ 파장에서 용액의 흡광도를 측정하였다.
세포 적합성 측정 결과는 도 9 내지 12에 나타내었다. 도 9 내지 12를 참고하면, 상기 샘플 1-1 내지 1-3에 따른 하이드로젤이 우수한 생체적합성을 나타내는 것을 확인할 수 있다.
실시예 2.
1. 제조예: 젤라틴-메타크릴레이트(GelMA) 제조
젤라틴-메타크릴레이트를 합성하기 위해, 2구짜리 둥근바닥 플라스크(100㎖)에 1g 젤라틴(from bovine skin, Sigma Aldrich, USA)과 50㎖ PBS(pH 7.6)(2% w/v)를 넣고 60℃의 oil bath 에서 400rpm으로 마그네틱 스터링 바(stirring bar)를 이용하여 pH 7.6에서 젤라틴 용액을 제조하였다.
준비된 젤라틴용액에 메타크릴산 무수물(MA, methacrylic anhydride, Sigma Aldrich, USA)을 부피에 따라 각각 1㎖, 2㎖, 3㎖ 또는 4㎖ 첨가하여 3시간 동안 반응을 진행시켜 젤라틴-메타크릴레이트(GelMA)를 합성하였다.
획득한 젤라틴-메타크릴레이트 합성물을 3개의 멤브레인 튜브(molecular-porous membrane tubing; molecular weight cut off 6~8KD; Spectrum Laboratories, USA)에 넣은 다음, 5L 증류수에서 4일 동안 투석(dialysis)하여 투석샘플을 수득하였다.
수득한 투석샘플을 폴리스티렌 튜브(50㎖)에 넣은 다음, 4일 동안 동결건조기에서 건조시키고, 건조물의 질량을 측정하여 각 샘플의 제조를 확인하였다. 각 제조예에 사용된 반응물의 실험조건을 하기 표 2에 나타내었다.
Figure PCTKR2018012018-appb-img-000006
2. 생체적합성 하이드로젤 제조
도 13의 방법에 따라 하이드로젤을 제조하기 위해, 75℃ oil bath (1L)에서 히알루론산(HA, 한미약품, 한국) 용액(0.42% w/v)이 포함된 3구짜리 둥근바닥 플라스크(100㎖)에 20~30분이 경과한 뒤, 플라스크에 KPS(Potassium peroxodisulfate, Sigma Aldrich, USA) 0.0025g 와 2-하이드록시에틸 아크릴레이트(2-HEA, Sigma Aldrich, USA) 3㎖를 플라스크에 첨가하여 히알루론산에 2-HEA단량체가 그라프트 중합되도록 반응을 유도하였다.
이후, 상기 제조예 1~4에서 합성한 젤라틴-메타크릴레이트(GelMA)를 각각 첨가하여 HA-p(2-HEA)-GelMA 하이드로젤을 합성하였다.
생성된 합성물을 3개의 molecular weight cut off 6~8 KD 멤브레인 튜브에 넣고, 5 L 증류수에서 투석(dialysis)을 진행하여 하이드로젤을 수득하였다. 각각의 실시예는 상기 제조예 1~3 중 하나의 GelMA를 선택하여 제조하였으며, 구체적인 제조 조건은 아래 표 3에 나타내었다.
Figure PCTKR2018012018-appb-img-000007
실험예 1: 형태학적 분석
상기 샘플 2-1 내지 2-3에 따라 제조된 하이드로젤 각각의 미세 구조를 확인하기 위해, 각 하이드로젤의 주사전자현미경(FE-SEM, Joel, Korea) 이미지를 관찰하였고 그 결과를 도 14에 나타내었다. 도 14는 각 실시예에 따른 하이드로젤의 표면 이미지를 나타낸 것이다.
도 14를 참고하면, 각각의 하이드로젤이 다공성 구조로 이루어져 있으며, 아크릴레이트 단량체와 가교제 개질에 사용되는 젤라틴-메타크릴레이트의 함량에 따라 그 구조를 조절할 수 있음을 알 수 있다. 젤라틴-메타크릴레이트의 농도가 낮은 경우에는 다공구조가 균일하지 않았으며(샘플 2-1), 젤라틴-메타크릴레이트의 농도가 높을수록 다공구조가 균일해졌다(샘플 2-3). 이와 같은 다공성 구조의 하이드로젤은 약물 담지체 등으로 적용될 수 있으며, 그 구조 제어에 따라 젤의 기계적 물성, 약물의 방출성 또한 조절할 수 있음을 시사한다.
실험예 2: 적외선(IR) 분광 분석
상기 샘플 2-3에 따라 제조된 하이드로젤의 화학적 구조를 확인하기 위해 ATR-FTIR 분광기(Travel IR, Smiths Detection, USA)를 이용하여 스펙트럼을 분석한 결과를 히알루론산(HA), 2-하이드록시에틸 아크릴레이트(2-HEA), 젤라틴-메타크릴레이트(GelMA)의 ATR-FTIR 스펙트럼과 함께 도 15에 나타내었다.
도 15을 참고하면, GelMA(e)는 3071㎝ -1 (Gelatin), 2937 ㎝ -1 (Gelatin 및 MA)에서의 신호(peak)가 모두 확인되어 Gelatin, MA모두를 포함하는 화합물이라는 것을 확인할 수 있다. 또한, 샘플 2-3의 하이드로젤(f)은 3429㎝ -1 (2-HEA), 및 2886(HA, p(2-HEA), GelMA)에서의 신호(peak)가 모두 확인되어 HA, 2-HEA 및 GelMA모두를 포함하는 화합물이라는 것을 확인할 수 있다.
실험예 3: 핵자기공명(NMR) 분광 분석
상기 샘플 2-3에 따라 제조된 하이드로젤의 화학적 구조를 확인하기 위해 H 1 NMR 분광기(DD2 700, Agilent Technologies-Korea, USA)를 이용하여 스펙트럼 분석을 수행하였고, 그 결과를 제조예 1~4에 따라 제조된 젤라틴-메타크릴레이트(GelMA)의 H 1 NMR 스펙트럼과 함께 도 16에 나타내었다.
도4는 상기 제조예 1 및 2에 따라 제조된 젤라틴-메타크릴레이트 및 상기 샘플 2-3에 따라 제조된 하이드로젤의 H 1 NMR 스펙트럼을 나타낸 것이다. 도 16를 참고하면, 제조예 1 및 2에 따른 GelMA는 추가한 MA의 양이 증가함에 따라 GelMA의 이중결합이 더 많이 생겼음을 5~6ppm의 신호(peak)가 증가하는 것으로 확인할 수 있다. 상기 샘플 2-3에 따른 하이드로젤은 제조예 3의 젤라틴-메타크릴레이트와 유사한 화학적 구조를 포함하고 있음을 알 수 있다.
실험예 4: 열중량(thermogravimetric analysis; TGA) 분석
상기 샘플 2-3에 따라 제조된 하이드로젤의 열적 거동 특성을 확인하기 위해, 열중량분석기(DTG-60, Shimadzu, Japan)를 이용하여 질소 분위기 하에서 5℃/분의 스캔 속도로 TGA 분석을 실시하였고, 그 결과를 히알루론산(HA) 및 젤라틴(Gelatin)의 TGA 분석 결과와 함께 도 17에 나타내었다.
도 17을 참고하면, 상기 샘플 2-3의 하이드로젤은 화학적 결합으로 인해 분자 내의 가교결합이 더욱 견고하게 형성되어, 히알루론산이나 젤라틴에 비해 상대적으로 높은 온도에서 열적 거동과 분해가 일어나는 것을 확인할 수 있다.
실험예 5: 약물 방출성 평가
상기 샘플 2-1에 따라 제조된 하이드로젤의 약물 방출성을 평가하기 위해, 농도별 DMOG(dimethyloxalyglycine) 약물과 TCN(tetracycline) 약물을 각각 2ml HA-p(2-HEA)-GelMA 젤 샘플에 섞은 후 4일 동안 동결건조한 다음, 100㎖ 버퍼 용액(pH 7.0 및 7.4)에서 14일 동안 37℃ 조건에서 약물이 방출되도록 유도하였으며, 얻어진 샘플용액 내의 약물 양을 UV-Vis 분광기(BioMATE 3, Thermo Scientific, USA)를 이용하여 분석을 수행하였고, 그 결과를 도 18에 나타내었다. 결과값은 각 약물마다 3회의 반복실험 후 평균값으로 나타내었다.
실험예 6: 팽윤도 평가
상기 샘플 2-1 및 2-2에 따라 제조된 하이드로젤의 수분에 대한 특성을 확인하기 위해, 팽윤도(swelling)를 평가하였다. 하이드로젤의 팽윤도 특성에 따라 내부에 담지된 물질, 예를 들어 약물의 방출 특성이 달라질 수 있으므로 이에 대한 간접적 지표로 활용할 수 있다.
미리 칭량한 0.6g의 건조된 하이드로젤을 37℃에서 16시간 동안 50㎖의 희석된 완충 용액(pH 2.5 및 7.0)에 담지하였다. 1시간마다 하이드로젤을 배지에서 꺼내어 세척한 뒤, 무게가 평형에 도달할 때까지 하이드로젤의 무게를 칭량하였다. 팽윤도(%)는 하기 수학식 2에 따라 산출하였으며, 그 결과를 도 19에 나타내었다. 결과값은 각 실시예마다 3회의 반복실험 후 평균값으로 나타내었다.
Figure PCTKR2018012018-appb-img-000008
실험예 7: 레올로지(Rheology) 분석
상기 샘플 2-2에 따라 제조된 하이드로젤의 유변학적 특성을 확인하기 위해, Rotational rheometer(TA Instrument Ltd., DHR-1)를 이용하여 37℃ 온도 하에서 전단 저장 모듈러스(shear storage modulus; G')와 전단 손실 모듈러스(shear loss modulus; G") 특성분석을 수행하였다.
측정 갭 및 시편의 규격은 각각 1.0㎜ 및 25㎜ 플레이트에 합성된 HA-p(2-HEA)-PEG 하이드로젤 샘플을 첨가하여 젤 샘플에 진동 토크(torque oscillation)를 제공하면서 샘플의 젤 특성을 분석하였다. 최소 진동 토크(minimum torque oscillation)은 10 nM-m으로 설정하였고, 전단 속도는 0.1 내지 1,300/sec의 범위로 설정하였다. 응력 스윕(stress sweep) 측정을 위해, 주파수와 진동 응력(oscillation stress)은 각각 1 Hz와 1~1,000 Pa로 설정하였다. 사용된 최소 및 최대 토크는 10 nN-m 및 150 mN-m이었다. 주파수 스윕(frequency sweep) 측정의 경우, 토크 분해능(resolution)과 변형률(strain)은 각각 0.1 nN-m 및 1%로 하였으며, 주파수를 0.1~10 Hz로 설정하였다. 분석 결과는 도 20에 나타내었다.
도 20을 참고하면, 프리퀀시 범위에서 전단 저장 모듈러스(G')와 전단 손실 모듈러스(G") 값이 증가함을 확인할 수 있고(a), 전단 저장 모듈러스(G')와 전단 손실 모듈러스(G")가 중첩되어 젤 형성을 확인할 수 있으며(b), 전단속도에 따라 전단 점도는 감소(c)하는 것을 확인함으로써 하이드로젤의 특성을 관찰할 수 있다.
실험예 8: 세포 적합성 분석
상기 샘플 2-1 및 2-2에 따라 제조된 하이드로젤에 대해 골세포를 로딩하여 in vitro 세포배양을 7일 동안 진행하였고, CCK 분석키트와 live and dead assay 키트를 사용하여 세포적합성을 1일, 3일, 7일차에서 세포증식율 및 세포생존성을 분석하였다. 그 결과, 세포증식율이 시간에 따라 3배 이상 증가하고(도 21), 7일차에 실시예1(a), 실시예2(b)에 로딩된 세포들이 모두 생존하고 뻗어가고(spreading) 있어, 조직재생 가능성이 있음을 형광현미경(도 22)으로 확인하였다.
실시예 3.
1. 알지네이트 기반의 삼원공중합 단위체의 합성
6.31 x 10 -4 몰의 알지네이트 0.25g을 녹인 수용액 50 ml을 50 ℃에서 400rpm으로 6시간 반응시켰다. 반응이 끝난 용액은 온도를 75 ℃까지 증가시킨 뒤, 질소가스를 30분 동안 용액 내로 주입하여 활성을 억제시켰다. 이후, 라디칼 중합 개시제인 KPS 수용액 5 ml (0.147 x 10 -4 몰의 KPS 0.004g)를 활성 억제된 알지네이트 수용액에 첨가했다. 20분이 지난 후, 상기 개시제가 첨가된 알지네이트 수용액에 아크릴레이트계 단량체인 2.84 x 10 -2 몰의 HEA 3 ml를 주입하여 혼합액을 만든 뒤, 혼합액의 점도가 증가함을 확인하고, PEGDA를 첨가했다. 상기 혼합액의 점도가 증가하는 것은 알지네이트와 HEA가 라디칼 중합 개시제에 의해 그라프트 공중합체를 형성했기 때문이다. 이 때, 하이드로젤의 다공성 구조를 조절하기 위해 PEGDA의 함량을 달리하여 반응에 사용했다. PEGDA를 첨가한 후, 반응을 2시간동안 지속시킨 뒤, 생성된 생성물은 25 ℃에서 2일동안 증류수로 투석하는 과정을 거치며 정제하였다. 정제 후 획득된 샘플은 삼원공중합 단위체인 Alg-g-pHEA-x-PEGDA로 명명하고, 영하 56 ℃의 동결건조기에서 7일간 건조시켰다. 삼원공중합 단위체 Alg-g-pHEA-x-PEGDA를 제조하는 과정에서 사용한 구체적인 화합물의 함량은 하기의 표1 에 나타내었다. 표 4의 샘플 3-1 내지 샘플 3-3는 동일한 몰 농도의 부피만 다른 PEGDA를 사용한 하이드로젤 3종으로, 모두 동일한 조건에서 제조 되었으며, 샘플 3-1 내지 샘플 3-3으로 후술한 실험예의 실험들을 진행하여 본 발명을 검증하였다.
Figure PCTKR2018012018-appb-img-000009
2. 삼원공중합 단위체의 특성 검증 실험
본 발명의 제조 방법에 따른 삼원공중합 단위체인 Alg-g-pHEA-x-PEGDA의 특성을 검증하기 위해 표 4의 샘플 3-1 내지 샘플 3-3을 이용한 실험을 진행했으며, 그 내용은 실험예 1 내지 실험예 7에서 자세히 설명하도록 한다. 이후 실험예 1 내지 실험예 7에서 언급하는 샘플 3-1, 샘플 3-2 및 샘플 3-3은 표 4의 함량에 따라 본 발명의 제조방법에 의해 제조된 하이드로젤을 의미한다.
실험예 1: IR 결과 분석
전술한 제조방법으로 제조된 하이드로젤의 화학적 구조를 확인하기 위해 샘플 3-1 내지 샘플 3-3를 ATR-FTIR 분광기(Travel IR, Smiths Detection, USA)를 이용하여 분석하였고, 그 결과 스펙트럼을 도 24에 도시하였다.
도 24를 참고하면, (a) 는 알지네이트, (b)는 HEA, (c)는PEGDA의 스펙트럼이고, (d) 내지 (f)는 PEGDA의 함량을 달리하여 제조된 Alg-g-pHEA-x-PEGDA 하이드로젤의 스펙트럼을 나타낸 것으로, 각각 (d)는 샘플 3-1, (e)는 샘플 3-2, (d)는 샘플 3-3의 스펙트럼이다.
도 24 의 (a)를 살펴보면, 알지네이트의 스펙트럼은 3254, 1597, 1405, 1082 및 1026 cm -1 에서 피크가 나타나고 있다. 도2의 (b)를 살펴보면, HEA의 스펙트럼은 3428, 2953, 2885, 1715, 1633, 1274, 1188 및 1057 cm -1 에서 피크를 나타낸다. 도 24의 (c) 를 살펴보면, PEGDA는 각각 2870, 1723, 1633, 1271, 1192 및 1100 cm -1 에서 피크가 나타나고 있다. 도 24의 (d) 내지 (f)를 살펴보면, 상기 도 24의 (a) 내지 (c) 의 피크가 모두 확인되고 있어, 샘플 3-1내지 샘플 3-3은 알지네이트, HEA 및 PEGDA를 모두 포함하는 화합물임을 확인할 수 있었다.
실험예 2: TGA(Thermogravimetric analysis) 결과 분석
샘플 3-1 내지 샘플 3-3의 열 특성을 확인하기 위해, 열중량분석기(DTG-60, Shimadzu, Japan)를 이용하여 질소를 처리한 상태로 5 ℃/분의 스캔속도로 TGA 분석을 실시하였고, 그 결과를 도 25에 나타내었다.
도 25을 참고하면, 약 180℃ 내지 344℃ 온도 범위에서 플롯의 중량손실은 알지네이트 네트워크 파괴를 의미하고, 약 344℃ 내지 450℃ 온도범위에서 플롯의 중량손실은 가교 결합된 네트워크의 파괴를 의미한다. 또, 온도가 증가함에 따라 각 샘플의 중량 손실은 샘플 3-1, 샘플 3-2, 샘플 3-3 순으로 적은 것으로 나타나고 있어, 이를 통해 삼원 공중합 단위체의 젤 고분자 네트워크는 PEGDA의 함량이 많을수록 열 안정성이 향상된다는 것을 확인할 수 있었다. 이는, PEGDA의 함량이 높으면 공유결합을 통해 중합체 네트워크에서 더 많은 몰 수의 PEGDA와의 결합을 증가시켜 더 강한 젤 고분자 네트워크의 형성이 가능함을 의미한다.
실험예 3: 하이드로젤 구조 관찰
샘플 3-1 내지 샘플 3-3 각각의 미세구조를 확인하기 위해, 각 샘플을 주사전자현미경(SEM, TESCAN VEGA3, Tescan Korea)을 통해 이미지를 관찰하였고, 그 결과를 도 26에 도시하였다.
도 26를 참고하면, 도 26의 (a) 및 (b)은 샘플 3-1 의 이미지, 도 26의 (c) 및 (d)는 샘플 3-2의 이미지, 도 26의 (e) 및 (f)는 샘플 3-3의 이미지를 나타낸 것으로, 도 26의 (a), (c) 및 (e)는 각 샘플의 왼쪽면을 관찰한 이미지이고, 도 26의 (b), (d) 및 (f)는 각 샘플의 오른쪽을 관찰한 이미지를 도시한 것이다. SEM 이미지를 보면, 각 샘플은 가교결합으로 인해 다공성 형태를 갖고 있으며, PEGDA의 함량이 상대적으로 높은 샘플 3-3에서 가장 작은 크기의 공극이 형성됨을 확인할 수 있었다. 즉, 공극의 크기와 젤 고분자 네트워크의 수는 PEGDA 양에 의존적으로 형성되므로, PEGDA의 함량을 조절하여 젤 고분자 네트워크의 구조를 제어할 수 있음을 의미한다.
실험예 4: pH조건별 팽윤율 확인 실험
샘플 3-1 내지 샘플 3-3 의 pH조건별 팽윤율을 확인하기 위한 실험을 진행하였고, 그 결과 데이터를 도 27 내지 도 28에 도시하였다.
도 27 및 도 28을 참고하면, 동일한 조건에서 pH만 조건을 달리하여 실험한 결과를 비교하여 나타낸 것으로, 도 27는 pH 2.5 의 조건에서 샘플 3-1 내지 샘플 3-3의 팽윤율을 측정한 것이고, 도 28는 pH 7.4의 조건에서 샘플 3-1 내지 샘플 3-3의 팽윤율을 측정한 것이다. 두 조건에서의 실험을 위해 샘플 3-1내지 샘플 3-3을 각각 1 ml씩 24-웰 플레이트에 넣어 동결 건조기에서 96시간동안 건조시켰다. 이후, 건조된 샘플들을 각각 37 ℃, 100 ml의 완충용액(pH 2.5 및 pH 7.4)에 넣어 15시간 동안 침지 시켰다. 소정의 시간이 지나고, 침지했던 습윤된 샘플들을 꺼내고, 표면의 물기를 티슈로 제거하였다. 일정 시간 간격으로, 각 샘플의 무게를 측정하고, 평형에 도달하여 더 이상 무게의 변동이 없을 때까지 측정을 반복하였다.
팽윤율은 아래의 수학식 3에 의해 계산되었다.
Figure PCTKR2018012018-appb-img-000010
결과 데이터를 보면, pH조건을 달리한 도 27 및 도 28의 샘플들은 모두 14시간이 지나면서 팽윤 평형에 도달한 것으로 나타났다. 또, 도 27 보다 도 28에서 월등히 높은 팽윤율이 나타나, 하이드로젤의 팽윤율은 매질의 pH에 의존적임이 확인되었다. 각 샘플별로 비교해보면, 도 27의 경우에는 샘플별로 팽윤율의 차이가 거의 없었으나, 도 28의 경우에는 샘플 3-3에 비해 샘플 3-1 및 샘플 3-2의 경우, 팽윤율이 더 높은 것으로 확인되었다. 이는, 공극의 크기가 작을수록 팽윤율이 낮아지게 되기 때문이다. 즉, 알지네이트 하이드로젤은 pH 2.4일 때 보다 pH 7.4 일 때 팽윤율이 높았으며, 또, PEGDA의 함량이 낮을수록 팽윤율이 높아짐이 확인되었다.
실험예 5: 하이드로젤의 세포 독성 실험
샘플 3-1 내지 샘플 3-3 의 세포 독성을 확인하기 위해, MC3T3(조골 전구 세포, Sigma Aldrich)세포, MTT(Thiazolyl blue tetrazolium bromide) 분석, BrdU(Bromodeoxyuridine) 분석 및 중성 적염색(Natural Red) 분석이 이용되었으며, 분석한 결과는 도 29 및 도 30에 도시하였다.
세포 독성 연구는 MC3T3를 샘플 3-1 내지 샘플 3-3의 추출물에 배양하는 방법으로 진행되었다. 먼저, 멸균된 테플론 시트(직경 1cm), 라텍스(직경 1cm) 및 샘플 3-1 내지 샘플 3-3의 하이드로젤 필름(직경 1cm)을 각각 1.5 ml씩 추출하여 배양 배지로 3일동안 배양하였다. 이 때, 테플론과 라텍스는 각각 양성 대조군과 음성 대조군으로 사용되었으며, 각 배지별로 배양된 결과는 도 29 및 도 30에 도시하였다.
먼저, 도 29는 MC3T3의 세포 생존여부를 확인하기 위해 MTT, BrdU 및 중성 적염색법으로 분석한 결과를 나타낸 것이다. 도 29에 도시한 바와 같이, MTT 및 BrdU 분석을 통해, 샘플 3-1 내지 샘플 3-3 추출물에서 배양된 세포의 생존률이 테플론 및 라텍스에서의 생존률보다 높은 것으로 관찰되었다. 또, 중성 적염색 분석한 결과, 샘플 3-1내지 샘플 3-3의 추출물에서 배양된 세포의 생존률은 음성 대조군인 라텍스에서의 생존률보다 높았으며, 전반적인 생존률은 90% 이상임을 확인할 수 있었다. 또, 샘플 3-1 내지 샘플 3-3의 추출물 중에서는 상대적으로 샘플 3-3의 추출물의 세포 생존률이 더 높은 것으로 나타났다.
도 30는 각기 다른 추출물에서 소정시간동안 세포를 배양하여, 형광현미경으로 세포 생존여부를 확인한 것이다. 먼저, 도 30의 (a)는 별도의 추출물을 추가하기 전, (b)는 테플론 추출물을, (c)는 라텍스 추출물을, (d)는 샘플 3-1의 추출물을, (e)는 샘플 3-2의 추출물을, (f)는 샘플 3-3의 추출물을 추가하여 하루동안 배양한 후, 관찰한 형광 이미지로, 음성 대조군인 (c)의 경우를 제외하고는, 모든 세포가 생존한 것으로 나타났다. 또, (b), (d), (e) 및 (f)의 세포 밀도는 추출물을 넣기 전인 (a) 보다 증가하는 것으로 나타났다.
도 29 및 도 30의 실험 결과를 통해, 샘플 3-1 내지 샘플 3-3의 하이드로젤이 세포 독성이 없음을 확인했으며, 특히, PEGDA의 함량이 더 많은 하이드로젤에서 세포의 생존률이 더 높음을 확인할 수 있었다.
실험예 6: 생체적합성 검증 실험
샘플 3-1 내지 샘플 3-3 의 생체적합성 검증하기 위해, MC3T3(조골 전구 세포, Sigma Aldrich) 및 형광 현미경(Leica D mlB, Watzlar, Germany)이 이용되었으며, 그 결과는 도 31 내지 도 33에 도시하였다.
생체적합성을 확인을 위한 연구는, MC3T3가 샘플 3-1 내지 샘플 3-3 하이드로젤 필름상에서 세포 증식하는 정도를 관찰하는 방법으로 진행되었다. 먼저, 0.1 ml로 투석된 샘플 3-1 내지 샘플 3-3의 하이드로젤을 커버 슬립에 넣고 72시간동안 오븐에 보관하였다. 이후, 커버슬립을 함유한 둥근 형태의 각 샘플별 필름(직경 1cm)을 121℃에서 15분동안 멸균시켰다. 이후, MC3T3를 24-웰 플레이트(well plate) 상의 샘플 3-1 내지 샘플 3-3 의 필름 표면에 씨딩(Seeding)하고, 5% 농도의 CO 2 배양기에 넣고, 37 ℃에서 20분간 배양하였다. 이 후, 10% 의 소 태아 혈청(Fetal Bovine serum) 및 1%의 페니실린-스트렙토마이신(penicillin-streptomycin)을 함유하는 1 ml 의 α-MEM 배지를 상기 배양된 플레이트의 웰(well) 각각에 추가한 뒤, 7일간 세포배양 하였다. 배양 시작 이후 24시간이 경과시, 세포 배양 배지에서 변화가 생기기 시작했으며, 각 기간별 세포 증식 수준을 제조사의 프로토콜에 따른 CCK-8 분석법으로 계산하였다. 세포의 생존여부를 확인하기 위해 죽은 세포 및 생존 세포 각각을 염색(ethidium homodimer1/calcein AM)하여 형광현미경으로 확인하였으며, 확인 결과는 도 31 내지 도 33에 도시한 바와 같다.
먼저, 도 31및 도 32는 MC3T3의 세포 증식 정도를 기간별, 샘플별로 확인한 결과를 그래프로 나타낸 것이다. 도 31 는 MC3T3세포를 각각 샘플 3-1 내지 샘플 3-3 의 하이드로젤 필름에서 배양1일차, 배양 3일차, 배양 7일차의 결과를 비교한 것으로, 대조군과 모든 샘플에서 광학 밀도가 증가하는 것으로 나타나고 있어, 모든 샘플에서 세포가 증식하는 것으로 확인되었다. 또, 도 32는, 배양 1일차 대비 배양 7일차의 세포 증식 속도는 배양 1일차 대비 배양 3일차의 증식 속도보다 더 빠른 것으로 나타나고 있어, 샘플 3-1 내지 샘플 3-3이 세포의 성장 및 증식을 위한 적합한 환경임을 검증할 수 있었다. 또한, 배양 1일차 대비 배양 7일차의 세포 증식속도를 각 샘플별로 비교해 보면, 샘플 3-1 및 샘플 3-2에서의 증식속도보다 PEGDA의 함량이 상대적으로 많은 샘플 3-3에서의 증식속도가 더 빠른 것을 알 수 있는데, 명확하게는 도 33와 같은 형광 이미지를 통해 확인할 수 있었다.
도 33는 배양된 세포의 생존여부를 확인하기 위해, 죽은 세포 및 생존 세포를 형광 염색하여 형광현미경으로 관찰한 이미지를 도시한 것이다. 도 33의 (a), (e) 및 (i)는 대조군이고, (b), (f) 및 (j)는 샘플 3-1에서의 배양을, (c), (g) 및 (k)는 샘플 3-2에서의 배양을, (d), (h) 및 (l)은 샘플 3-3에서의 배양을 한 세포의 형광 이미지이고, 배양기간에 따라서는, (a) 내지 (c)는 배양 1일차, (e) 내지 (h)는 배양 3일차, (i) 내지 (l)은 배양 7일차의 세포 증식을 나타내고 있다. 도 33를 참고하면, 배양시간이 길어질수록 세포가 모두 증식하고 있으며, PEGDA 의 함유량이 상대적으로 적은 샘플 3-1 및 샘플 3-2에서의 배양과 비교해 볼 때, PEGDA의 함유량이 상대적으로 많은 샘플 3-3에서의 세포 증식이 더 활발하게 일어났음을 알 수 있었다. 이는, PEGDA의 함량이 증가할수록 공극의 크기가 작아지고, 더 강한 젤 고분자 네트워크를 생성한다는 사실을 또 한번 입증하는 결과로, 공극의 크기가 작아질수록 젤 고분자 네트워크의 수가 증가하므로 세포가 접착할 수 있는 표면적이 증가하고, 증식을 위해 세포를 원활히 이동시킬 수 있는 적합한 환경이 조성될 수 있기 때문이다. 즉, 본 발명의 제조 방법으로 알지네이트 하이드로젤을 제조함에 있어, PEGDA의 함량을 조절함으로써 세포 증식 속도 역시 조절할 수 있음을 확인할 수 있었다.
실험예 7: 약물 방출성 실험
하이드로젤 샘플 3-1 내지 샘플 3-3 각각의 pH조건별 약물 방출성을 평가 확인하기 위해, UV-Vis 분광 광도계(BioMATE 3,Thermo Scientific, USA) 를 사용하여 측정했다.
소 알부민 혈청(BSA)과 5-아미노 살리실산(5-ASA)을 동일 몰 수(2 μmol)로 혼합하여 만든 용액을 샘플1 내지 샘플3 각각에 2 ml씩 넣고, 30분 내지 45분간 혼합 하였다. 이후, 혼합한 샘플은 영하 56 ℃의 동결 건조기에서 72시간동안 건조시키고, 건조된 혼합물 각각에서 BSA 및 5-ASA 약물 방출 실험을 진행했다.
약물 방출 실험은, BSA/5-ASA가 로딩된 샘플 3-1 내지 샘플 3-3을 37 ℃, 100 ml 완충용액(pH 2.5 및 pH 7.4)에 넣어 분취하고, 일정 시간마다 분취액 일부를 꺼내어 UV-Vis 분광 광도계로 흡광도를 측정하는 방법으로 진행되었으며, 측정 결과는 도 34 및 도 35에 도시하였다.
앞선 실험예를 통해 확인한 바에 따르면, PEGDA의 함량이 증가한 샘플일수록 젤 고분자 네트워크의 공극의 크기가 감소하고, pH 2.4의 조건일 때보다 pH 7.4의 조건에서 팽윤율이 증가하는 것으로 나타났었다. 이를 토대로, 약물 방출 실험 전에 샘플의 공극의 크기가 크고, 팽윤율이 클수록 약물 방출성이 높을 것이라는 예상을 할 수 있었으며, 실제 실험을 통해 예상한 내용을 입증하는 결과를 얻을 수 있었다.
도 34는 5-ASA의 방출을, 도 35는 BSA의 방출을 실험한 결과 데이터로, 두 그래프 모두 5-ASA 및 BSA의 방출속도가 pH 7.4의 조건에서 더 빠른 것으로 나타났으며, PEGDA 양이 증가할수록 5-ASA 및 BSA의 방출속도가 더 느려지는 것으로 나타났다.
추가적으로, 도 34 및 도 35를 보면, 5-ASA 방출속도는 BSA 방출 속도보다 전체적으로 빠른 것으로 나타났다. 즉, 약물의 분자량이 작을수록 방출속도가 더 빠르며, 5-ASA는 30시간 이상, BSA는 5일 이상 약물 방출이 가능함을 확인할 수 있었다.
전술한 실시예와 같이 제조된 하이드로젤은 삼원공중합 단위체로 구성된 생체적합성 하이드로젤 Alg-g-pHEA-x-PEGDA (Alginate-2-hydroxyethyl acrylate-poly(ethylene glycol) diacrylate terpolymeric gel)로서, 도 36와 같이 활용될 수 있다. 앞서 실시예에서 검증한 바와 같이, 무독성, 비침습적으로 생체 내 조직재생을 위한 재료로 활용될 수 있으며, 단백질, 생체활성물질 및 약물 등의 안정적인 전달체로도 활용이 가능하다.
이상과 같이 실시예들이 비록 한정된 실시예와 도면에 의해 설명되었으나, 해당 기술분야에서 통상의 지식을 가진 자라면 상기의 기재로부터 다양한 수정 및 변형이 가능하다. 예를 들어, 설명된 기술들이 설명된 방법과 다른 순서로 수행되거나, 및/또는 설명된 구성요소들이 설명된 방법과 다른 형태로 결합 또는 조합되거나, 다른 구성요소 또는 균등물에 의하여 대치되거나 치환되더라도 적절한 결과가 달성될 수 있다.
그러므로, 다른 구현들, 다른 실시예들 및 청구범위와 균등한 것들도 후술하는 청구범위의 범위에 속한다.

Claims (30)

  1. 히알루론산(Hyaluronic acid) 및 아크릴레이트계 단량체(acrylate monomer)가 그라프트 중합된 그라프트 공중합체(graft-polymerized copolymer); 및
    디아크릴레이트계 가교제(diacrylate cross-linker);를 포함하는, 생체적합성 하이드로젤.
  2. 제1항에 있어서,
    상기 아크릴레이트계 단량체는 하이드록시에틸 아크릴레이트(hydroxyethyl acrylate) 또는 하이드록시에틸 메타크릴레이트(hydroxyethyl methacrylate)인, 생체적합성 하이드로젤.
  3. 제1항에 있어서,
    상기 디아크릴레이트계 가교제는 폴리(에틸렌 글리콜) 디아크릴레이트(poly(ethylene glycol) diacrylate)인, 생체적합성 하이드로젤.
  4. 제1항에 있어서,
    상기 하이드로젤은 다공성 구조를 갖는, 생체적합성 하이드로젤.
  5. 제1항에 있어서,
    상기 하이드로젤은 pH 의존적 약물방출성을 나타내는, 생체적합성 하이드로젤.
  6. (a) 히알루론산(Hyaluronic acid) 및 아크릴레이트계 단량체(acrylate monomer)의 혼합물을 제조하는 단계;
    (b) 상기 혼합물에 중합 개시제를 첨가하여 그라프트 공중합체(graft-polymerized copolymer)를 제조하는 단계; 및
    (c) 상기 그라프트 공중합체에 디아크릴레이트계 가교제(diacrylate cross-linker)를 첨가하는 단계;를 포함하는, 생체적합성 하이드로젤의 제조방법.
  7. 제6항에 있어서,
    상기 아크릴레이트계 단량체는 하이드록시에틸 아크릴레이트(hydroxyethyl acrylate) 또는 하이드록시에틸 메타크릴레이트(hydroxyethyl methacrylate)인, 생체적합성 하이드로젤의 제조방법.
  8. 제6항에 있어서,
    상기 중합 개시제는 라디칼 중합 개시제인, 생체적합성 하이드로젤의 제조방법.
  9. 제8항에 있어서,
    상기 라디칼 중합 개시제는 과황화칼륨(KPS, Potassium persulfate)인, 생체적합성 하이드로젤의 제조방법.
  10. 제6항에 있어서,
    상기 디아크릴레이트계 가교제는 폴리(에틸렌 글리콜) 디아크릴레이트(poly(ethylene glycol) diacrylate)인, 생체적합성 하이드로젤의 제조방법.
  11. 히알루론산(Hyaluronic acid) 및 아크릴레이트계 단량체(acrylate monomer)가 그라프트 중합된 그라프트 공중합체(graft-polymerized copolymer); 및
    개질 젤라틴(modified gelatin);을 포함하는, 하이드로젤.
  12. 제11항에 있어서,
    상기 아크릴레이트계 단량체는 하이드록시에틸 아크릴레이트(hydroxyethyl acrylate) 또는 하이드록시에틸 메타크릴레이트(hydroxyethyl methacrylate)인, 하이드로젤.
  13. 제11항에 있어서,
    상기 개질 젤라틴은 젤라틴-메타크릴레이트(gelatin-methacrylate)인, 하이드로젤.
  14. 제11항에 있어서,
    상기 하이드로젤은 다공성 구조를 갖는, 하이드로젤.
  15. 제11항에 있어서,
    상기 하이드로젤은 pH 의존적 약물방출성을 나타내는, 하이드로젤.
  16. (a) 히알루론산(Hyaluronic acid) 및 아크릴레이트계 단량체(acrylate monomer)의 혼합물을 제조하는 단계;
    (b) 상기 혼합물에 중합 개시제를 첨가하여 상기 히알루론산에 상기 아크릴레이트계 단량체가 그라프트 중합된 그라프트 공중합체(graft-polymerized copolymer)를 제조하는 단계; 및
    (c) 상기 그라프트 공중합체에 개질 젤라틴(modified gelatin)을 첨가하는 단계;를 포함하는, 하이드로젤의 제조방법.
  17. 제16항에 있어서,
    상기 아크릴레이트계 단량체는 하이드록시에틸 아크릴레이트(hydroxyethyl acrylate) 또는 하이드록시에틸 메타크릴레이트(hydroxyethyl methacrylate)인, 하이드로젤의 제조방법.
  18. 제16항에 있어서,
    상기 중합 개시제는 라디칼 중합 개시제인, 하이드로젤의 제조방법.
  19. 제18항에 있어서,
    상기 라디칼 중합 개시제는 과황화칼륨(KPS, Potassium persulfate)인, 하이드로젤의 제조방법.
  20. 제16항에 있어서,
    상기 개질 젤라틴은 젤라틴-메타크릴레이트(gelatin-methacrylate)인, 하이드로젤의 제조방법.
  21. 알지네이트, 아크릴레이트계 단량체, 및 폴리(에틸렌 글라이콜) 다이아크릴레이트(PEGDA) 가교제로 이루어지는 삼원공중합 단위체로,
    상기 알지네이트(alginate)는 상기 삼원공중합 단위체의 주 고분자이고,
    상기 삼원공중합 단위체는 젤 고분자 네트워크로 이루어지는, 생체적합성 하이드로젤.
  22. 제21항에 있어서,
    상기 삼원공중합 단위체는, Alg-g-pHEA-x-PEGDA 인, 생체적합성 하이드로젤.
  23. 제21항에 있어서,
    상기 아크릴레이트계 단량체는, 하이드록시 에틸아크릴레이트(HEA) 또는 하이드록시 에틸메타크릴레이트(HEMA)인, 생체 적합성 하이드로젤.
  24. 제21항에 있어서,
    상기 젤 고분자 네트워크는, 가교 결합에 의해 형성되는, 생체적합성 하이드로젤.
  25. 제21항에 있어서,
    상기 삼원공중합 단위체는, 라디칼 중합에 의한 것인, 생체적합성 하이드로젤.
  26. 제21항에 있어서,
    상기 젤 고분자 네트워크는, 가교제의 함량에 따라 공극의 크기가 조절되는, 생체적합성 하이드로젤.
  27. (a) 알지네이트에 아크릴레이트계 단량체를 혼합하는 단계;
    (b) 라디칼 중합 개시제를 첨가하는 단계; 및
    (c) 폴리(에틸렌 글라이콜) 다이아크릴레이트(PEGDA)를 가교제로 첨가하여 삼원공중합 단위체를 합성하는 단계;
    를 포함하는, 생체적합성 하이드로젤의 제조방법.
  28. 제27항에 있어서,
    상기 (b) 단계의 라디칼 중합 개시제는, 과황산칼륨(potassium persulphate, KPS)인, 생체적합성 하이드로젤의 제조방법.
  29. 제27항에 있어서,
    상기 (a) 단계 및 상기 (b) 단계에 의해 그라프트 공중합체(graft-polymerized copolymer)를 형성하는, 생체적합성 하이드로젤의 제조방법.
  30. 제27항에 있어서,
    상기 (a) 단계의 혼합은, 물 50 ml당 0.25g 내지 0.75g 의 알지네이트 및 2.5 ml 내지 4.0 ml의 HEA를 포함하는 것인, 생체적합성 하이드로젤의 제조방법.
PCT/KR2018/012018 2017-10-12 2018-10-12 그라프트 공중합체의 가교물을 포함하는 하이드로젤 및 이의 제조방법 WO2019074314A1 (ko)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR10-2017-0132568 2017-10-12
KR1020170132568A KR101974744B1 (ko) 2017-10-12 2017-10-12 히알루론산 그라프트 공중합체의 가교물을 포함하는 하이드로젤 및 이의 제조방법
KR10-2017-0135346 2017-10-18
KR1020170135346A KR101974745B1 (ko) 2017-10-18 2017-10-18 그라프트 공중합체와 젤라틴 가교물을 포함하는 히알루론산 하이드로젤 및 이의 제조방법
KR1020180051939A KR102076909B1 (ko) 2018-05-04 2018-05-04 알지네이트 그라프트 공중합체를 포함하는 생체적합성 하이드로젤 및 이의 제조방법
KR10-2018-0051939 2018-05-04

Publications (1)

Publication Number Publication Date
WO2019074314A1 true WO2019074314A1 (ko) 2019-04-18

Family

ID=66100944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/012018 WO2019074314A1 (ko) 2017-10-12 2018-10-12 그라프트 공중합체의 가교물을 포함하는 하이드로젤 및 이의 제조방법

Country Status (1)

Country Link
WO (1) WO2019074314A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113667144A (zh) * 2021-08-20 2021-11-19 四川轻化工大学 一种可视化检测金属离子的复合水凝胶阵列及其制备方法和应用
CN115073680A (zh) * 2022-06-29 2022-09-20 西安交通大学口腔医院 温敏缓释水凝胶载体、载MicrocinC7水凝胶及其制备方法和应用
WO2023087523A1 (zh) * 2021-11-16 2023-05-25 山东大学 一种多孔气凝胶支架及其制备方法与应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006524742A (ja) * 2003-04-25 2006-11-02 ケイオウエス ライフ サイエンスイズ,インコーポレイテッド 丈夫な超多孔性ヒドロゲルの形成技術
JP2010510347A (ja) * 2006-11-17 2010-04-02 エージェンシー フォー サイエンス, テクノロジー アンド リサーチ 架橋性湿潤剤を有する多孔質ポリマー材料
KR20110062804A (ko) * 2009-12-04 2011-06-10 연세대학교 산학협력단 Ipn 하이드로젤 및 그 제조방법
KR20160017441A (ko) * 2014-08-06 2016-02-16 홍익대학교 산학협력단 다공성 지지체 및 그 제조방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006524742A (ja) * 2003-04-25 2006-11-02 ケイオウエス ライフ サイエンスイズ,インコーポレイテッド 丈夫な超多孔性ヒドロゲルの形成技術
JP2010510347A (ja) * 2006-11-17 2010-04-02 エージェンシー フォー サイエンス, テクノロジー アンド リサーチ 架橋性湿潤剤を有する多孔質ポリマー材料
KR20110062804A (ko) * 2009-12-04 2011-06-10 연세대학교 산학협력단 Ipn 하이드로젤 및 그 제조방법
KR20160017441A (ko) * 2014-08-06 2016-02-16 홍익대학교 산학협력단 다공성 지지체 및 그 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YERRISWAMY, B. ET AL.: "Synthesis and Characterization of Sodium Alginate-g-2-Hydroxyethyl Methacrylate Interpenetrating Beads for Controlled Release of Acebutolol Hydrochloride", DESIGNED MONOMERS AND POLYMERS, vol. 14, no. 1, 2011, pages 25 - 37, XP055592194 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113667144A (zh) * 2021-08-20 2021-11-19 四川轻化工大学 一种可视化检测金属离子的复合水凝胶阵列及其制备方法和应用
CN113667144B (zh) * 2021-08-20 2023-05-02 四川轻化工大学 一种可视化检测金属离子的复合水凝胶阵列及其制备方法和应用
WO2023087523A1 (zh) * 2021-11-16 2023-05-25 山东大学 一种多孔气凝胶支架及其制备方法与应用
CN115073680A (zh) * 2022-06-29 2022-09-20 西安交通大学口腔医院 温敏缓释水凝胶载体、载MicrocinC7水凝胶及其制备方法和应用

Similar Documents

Publication Publication Date Title
WO2019074314A1 (ko) 그라프트 공중합체의 가교물을 포함하는 하이드로젤 및 이의 제조방법
WO2018186575A1 (ko) 광가교가 가능한 형상기억고분자 및 이의 제조방법
WO2014042463A1 (en) Synthetically designed extracellular microenvironment
WO2016209062A1 (en) Two-component bioink, 3d biomaterial comprising the same and method for preparing the same
Zhou et al. Photopolymerized water-soluble chitosan-based hydrogel as potential use in tissue engineering
WO2013180458A1 (ko) 약물전달용 가교물 하이드로 젤 및 그 하이드로 젤의 제조방법
WO2016159734A1 (ko) 카테콜 기 및 산화된 카테콜 기가 도입되어 가교된 키토산으로 코팅된 무출혈 주사바늘
Nistor et al. Synthesis of hydrogels based on poly (NIPAM) inserted into collagen sponge
WO2021096221A1 (ko) 듀얼네트워크 구조의 하이드로겔을 이용한 인체 삽입형 확장기
Shen et al. Smart surfaces based on thermo-responsive polymer brushes prepared from L-alanine derivatives for cell capture and release
WO2020060222A2 (ko) 뇌혈관 모사용 미세유체 디바이스 및 이를 포함하는 고효율 혈액뇌관문 모사 시스템
ITMI20111009A1 (it) Idrogeli di gelatina reticolata
Koga et al. Injectable hydrogels self-assembled from oligopeptide-poly (2-methacryloyloxyethyl phosphorylcholine) hybrid graft copolymers for cell scaffolds and controlled release applications
WO2022005098A1 (ko) 폐 오가노이드 배양용 조성물의 제조 방법, 그 조성물 및 이를 이용한 오가노이드 배양 방법
WO2021194202A1 (ko) 고흡수성 수지 필름 및 이의 제조 방법
KR20190041235A (ko) 히알루론산 그라프트 공중합체의 가교물을 포함하는 하이드로젤 및 이의 제조방법
Bravi Costantino et al. Matrices based on lineal and star fumarate‐metha/acrylate copolymers for bone tissue engineering: Characterization and biocompatibility studies
KR20190127383A (ko) 알지네이트 그라프트 공중합체를 포함하는 생체적합성 하이드로젤 및 이의 제조방법
WO2014069742A1 (ko) 소수성 치환기를 갖는 글리콜 키토산 유도체, 이의 제조방법 및 용도
CN112384284A (zh) 免疫抑制性材料及相关方法
WO2021246764A1 (ko) 고분자 마이크로 입자의 제조방법, 고분자 마이크로 입자, 이를 포함하는 의료용 조성물, 미용 조성물, 의료 용품 및 미용 용품
WO2022216134A1 (ko) 페놀 유도체로 수식된 셀룰로오스를 포함하는 하이드로젤 및 이의 용도
WO2021194201A1 (ko) 고흡수성 수지 필름 및 이의 제조 방법
WO2021040141A1 (ko) 동물지방 유래 세포외기질 및 동물지방 유래 세포외기질 보존액
WO2022045751A1 (ko) 자극 반응성 및 표면 부착성을 가진 점착성 엘라스틴 및 서커린 기반 다중 블록 코폴리펩타이드, 그의 자가조립 구조체 및 주사형 하이드로겔의 생접착제 응용

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18866018

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18866018

Country of ref document: EP

Kind code of ref document: A1