WO2014069742A1 - 소수성 치환기를 갖는 글리콜 키토산 유도체, 이의 제조방법 및 용도 - Google Patents

소수성 치환기를 갖는 글리콜 키토산 유도체, 이의 제조방법 및 용도 Download PDF

Info

Publication number
WO2014069742A1
WO2014069742A1 PCT/KR2013/005586 KR2013005586W WO2014069742A1 WO 2014069742 A1 WO2014069742 A1 WO 2014069742A1 KR 2013005586 W KR2013005586 W KR 2013005586W WO 2014069742 A1 WO2014069742 A1 WO 2014069742A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
glycol chitosan
formula
hydrophobic
hydrophobic substituent
Prior art date
Application number
PCT/KR2013/005586
Other languages
English (en)
French (fr)
Inventor
허강무
이정정
Original Assignee
주식회사 위노바
충남대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 위노바, 충남대학교산학협력단 filed Critical 주식회사 위노바
Priority to JP2015539491A priority Critical patent/JP6325558B2/ja
Priority to US14/438,951 priority patent/US20150291705A1/en
Publication of WO2014069742A1 publication Critical patent/WO2014069742A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0024Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid beta-D-Glucans; (beta-1,3)-D-Glucans, e.g. paramylon, coriolan, sclerotan, pachyman, callose, scleroglucan, schizophyllan, laminaran, lentinan or curdlan; (beta-1,6)-D-Glucans, e.g. pustulan; (beta-1,4)-D-Glucans; (beta-1,3)(beta-1,4)-D-Glucans, e.g. lichenan; Derivatives thereof
    • C08B37/00272-Acetamido-2-deoxy-beta-glucans; Derivatives thereof
    • C08B37/003Chitin, i.e. 2-acetamido-2-deoxy-(beta-1,4)-D-glucan or N-acetyl-beta-1,4-D-glucosamine; Chitosan, i.e. deacetylated product of chitin or (beta-1,4)-D-glucosamine; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • C08L5/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof

Definitions

  • the present invention relates to glycol chitosan derivatives having hydrophobic substituents having reversible sol-gel transition properties with temperature, methods for their preparation and use.
  • Phase-transfer polymers are polymers that are sensitive to an external stimulus and continuously or discontinuously change their physical properties such as hydration.
  • the external stimulus includes chemical or biochemical stimuli such as pH, ions and metabolites.
  • There are physical stimuli such as light electric fields and solvents.
  • temperature-sensitive polymers are very important polymers in drug delivery systems because they are sensitive to changes in temperature.
  • the first researchers to present these temperature-sensitive polymers were Heskin and Geillet [M. Heskins and J. E Guillet, J. Macromol. Sci. Chem ., A2, 1441 (1968)], an example of which is poly (N-isopropylacrylamide) (poly (NIPAAm), and many researchers are actively researching temperature-sensitive polymers because of its diverse application range.
  • a temperature-sensitive polymer has a useful value as an intelligent drug delivery system and sensor in that it reacts sensitively when a phase change is induced by temperature change, and drug release is controlled according to temperature change. Since it is unnecessary to form a gel in the surgical procedure after use, it has been applied to the pharmaceutical and bio fields, such as sustained-release drug delivery system, tissue growth implants.
  • Korean Patent Publication No. 2011-0021570 discloses a method for measuring the temperature of a microchannel in a microfluidic chip using a temperature-sensitive fluorescent conjugated polymer as a temperature sensor, and uses polydiacetylene as the temperature-sensitive polymer.
  • Korean Patent Registration No. 10-0474528 is a temperature sensitive material selected from the group consisting of acrylamide polymer, copolymer of acrylamide monomer-vinyl monomer or copolymer of acrylamide monomer-acrylic monomer for the purpose of medical use. It refers to polymers grafted with polymers and polysaccharides.
  • Korean Patent Registration No. 10-0668046 contains a hydrophilic portion composed of polyethylene glycol, caprolactone (CL) segment as an essential component, paradioxanone (PDO) segment, trimethylene carbonate (TMC) segment, or these
  • a biocompatible and temperature sensitive polyethylene glycol / biodegradable polyester block copolymer comprising a biodegradable polyester-based hydrophobic portion containing segments at the same time, having a molecular weight of 2,000 to 7,000 g / mole, have.
  • Korean Patent Registration No. 10-1109147 is a temperature-sensitive type equipped with a photocatalyst which can effectively decompose and remove trace amounts of hazardous chemicals contained in sewage water, as well as recover and recycle them.
  • a three-dimensional copolymer is proposed, and P (NIPAm) (Poly (N-isopropyl acrylamide)) is proposed as the temperature sensitive copolymer.
  • Patent Document 1 Republic of Korea Patent Publication No. 2011-0021570
  • Patent Document 2 Korean Patent Registration No. 10-0474528
  • Patent Document 3 Korean Patent Registration No. 10-0668046
  • Patent Document 4 Korean Patent Registration No. 10-1109147
  • Non-Patent Document 1 M. Heskins and J. E Guillet, J. Macromol. Sci. Chem., A2, 1441 (1968)
  • an object of the present invention is to provide a glycol chitosan derivative having a hydrophobic substituent whose type and degree of substitution are controlled so as to have a reversible sol-gel transition property according to temperature, and a method of preparing the same.
  • Another object of the present invention is to provide a use of a glycol chitosan derivative having a hydrophobic substituent having the above temperature-sensitive properties.
  • the present invention is a part of the amine group in position 2 as shown in the following formula (1) is substituted with an acetyl group and a hydrophobic group (R),
  • glycol chitosan derivatives having hydrophobic substituents that have properties capable of reversible sol-gel transition with temperature:
  • R is a cyano group, a nitro group, a C1-C18 alkyl group, a C1-C18 haloalkyl group, a C3-C8 cycloalkyl group, a C1-C20 acyl group, a C1-C8 alkoxy group, a C1-C8 alkyl It includes one kind selected from the group consisting of a carbonyl group, a C1-C8 alkoxycarbonyl group, a C6-C14 aryl group, a C6-C10 arylalkyl group, and a C6-C10 arylcarbonyl group.
  • x, y, z are integers from 10 to 10000, and their mole% is 0.1 ⁇ x ⁇ 0.6, 0.1 ⁇ y ⁇ 0.2, and 0.2 ⁇ z ⁇ 0.8.
  • the present invention also provides a method for preparing a glycol chitosan derivative having a hydrophobic substituent of Formula 1 by reacting an N-acetylated glycol chitosan derivative of Formula 6 with an RX derivative of Formula 7:
  • n and m are integers from 10 to 10000, and their mole% is 0.8 ⁇ n ⁇ 0.975 and 0.025 ⁇ m ⁇ 0.2,
  • X is a leaving group.
  • the present invention provides a use as a drug delivery agent, including a glycol chitosan derivative having a hydrophobic substituent of Formula 1 or a pharmaceutically acceptable salt thereof, after the drug is included.
  • the present invention also provides a use as a cell carrier for supporting or delivering a cell, including a glycol chitosan derivative having a hydrophobic substituent of Formula 1 or a pharmaceutically acceptable salt thereof.
  • the present invention also provides a use as a temperature-sensitive sensor comprising a glycol chitosan derivative having a hydrophobic substituent of the formula (1).
  • FIG. 1 is a 1 H-NMR spectrum of propionylate glycol chitosan prepared in Examples 1 to 5.
  • FIG. 1 is a 1 H-NMR spectrum of propionylate glycol chitosan prepared in Examples 1 to 5.
  • Figure 2 is a 1 H-NMR spectrum of the butyrolate glycol chitosan prepared in Examples 6 to 10.
  • FIG. 3 is a 1 H-NMR spectrum of fentanionate glycol chitosan prepared in Examples 11 to 14.
  • FIG. 3 is a 1 H-NMR spectrum of fentanionate glycol chitosan prepared in Examples 11 to 14.
  • FIG. 4 is a 1 H-NMR spectrum of hexaniylate glycol chitosan prepared in Examples 15 to 18.
  • FIG. 4 is a 1 H-NMR spectrum of hexaniylate glycol chitosan prepared in Examples 15 to 18.
  • FIG. 5 is an FT-IR spectrum of propionylate glycol chitosan prepared in Examples 1 to 4.
  • Figure 9 (a) is a photograph showing the sol-gel behavior of propionylate glycol chitosan prepared in Example 3
  • Figure 9 (b) is a sol-gel behavior of hexaniylate glycol chitosan prepared in Example 17 Is a picture showing.
  • FIG. 10 is a graph showing the sol-gel critical temperature of -NH alkylacyl glycol chitosan prepared in Examples 3, 4, 8, 9, 13, 16 and 17.
  • FIG. 11 is a 1 H NMR spectrum of -NH alkylacyl glycol chitosan with temperature, (a) Example 4, (b) Example 9, (c) Example 13, and (d) Example 17-NH alkylacyl glycol chitosan.
  • 12 is a graph showing the critical substitution degree of -NH alkylacyl glycol chitosan according to the type of functional group.
  • the present invention proposes a derivative having a temperature-sensitive characteristic of reversible sol-gel transition at a specific temperature, and a method for preparing the same, and a use thereof that can be applied to the pharmaceutical, bio, and electronic fields.
  • R is a cyano group, a nitro group, a C1-C18 alkyl group, a C1-C18 haloalkyl group, a C3-C8 cycloalkyl group, a C1-C20 acyl group, a C1-C8 alkoxy group, a C1-C8 alkyl A carbonyl group, a C1 to C8 alkoxycarbonyl group, a C6 to C14 aryl group, a C6 to C10 arylalkyl group, and a C6 to C10 arylcarbonyl group;
  • x, y, z are integers from 10 to 10000, and their mole% is 0.1 ⁇ x ⁇ 0.6, 0.1 ⁇ y ⁇ 0.2, and 0.2 ⁇ z ⁇ 0.8.
  • the alkyl group of C1 to C18 is methyl, ethyl, propyl, isopropyl, butyl, pentyl, hexyl, heptyl, octyl, decyl, lauryl group
  • the haloalkyl group of C1 to C18 is a hydrogen atom of the alkyl group chlorine, fluorine, Or an alkyl group substituted with iodine
  • a C3-C8 cycloalkyl group is a cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, or cycloheptyl group
  • C1-C8 alkoxy groups are methoxy, ethoxy, propoxy, iso A propoxy, butoxy, hexyloxy group, or octyloxy group
  • a C1-C8 alkylcarbonyl group is a formyl group, an acetyl
  • the glycol chitosan derivative having the hydrophobic substituent of Formula 1 is R is an alkylacyl group, more preferably an alkylacyl group of C1-C18, most preferably an alkyl group of C2-C18, and 0.25 ⁇ x ⁇ 0.6, 0.025 ⁇ y ⁇ 0.2, and 0.2 ⁇ z ⁇ 0.7.
  • the glycol chitosan derivatives according to the present invention are N-propionyl glycol chitosan of the following formula (3), N-butyrolate glycol chitosan of the formula (4), N-pentanionate glycol chitosan of the formula (5), and N-hexaniylate glycol chitosan of formula (6).
  • the glycol chitosan derivative having a hydrophobic substituent according to the present invention has a glycol group, an amine group, an acetyl group and a hydrophobic group as substituents as shown in the general formula (1).
  • the glycol group and the amine group show hydrophilicity, the acetyl group and the hydrophobic group show hydrophobicity.
  • the glycol chitosan derivative according to the present invention may be referred to as an amphiphilic polymer.
  • the glycol chitosan derivative having a hydrophobic substituent according to the present invention forms a microregion in an aqueous solution by forming a self-assembly due to hydrophobic blocks by intermolecular or intramolecular hydrophobic bonds by hydrophobic groups in an aqueous solution, and the hydrophilic block is outward. While wrapping, the hydrophilic group is in direct contact with the aqueous solution and is dissolved in water. Accordingly, the glycol chitosan derivative having the hydrophobic substituent may form a micelle having a nano level size in an aqueous solution with high solubility characteristics.
  • the low critical solution temperature (LCST) of the glycol chitosan derivative having a hydrophobic substituent according to the present invention is 15 ⁇ 70 °C, has a reversible sol-gel transition characteristics within the above range.
  • 9 (a) and 9 (b) when the glycol chitosan derivative was added to a sol state or temperature at room temperature, the gel was changed to a sol state, and the temperature was lowered again to a sol state.
  • sol-gel threshold temperature at which the sol-gel transition occurs may be controlled by various parameters, and preferably, may vary depending on the degree of substitution of the substituent in the glycol chitosan, and the type and solubility of the substituent.
  • the degree of hydrophobicity of the hydrophobic group (R) increases (meaning that the type of substituent, or in the case of alkyl groups, the number of alkyl groups increases)
  • the sol-gel threshold temperature tends to change.
  • the sol-gel critical temperature tends to be high.
  • the degree of substitution of hydrophobic groups may be increased or decreased, and in order to decrease the sol-gel critical temperature, the type of substituents may be changed or the number of alkyl groups may be changed.
  • the change in the sol-gel critical temperature is linear according to the degree of substitution in the same composition, it may be most advantageous to control the degree of substitution in order to control the sol-gel critical temperature.
  • sol-gel transition occurs in a range of degree of substitution, and the critical substitution degree capable of sol-gel transition is 20 to 95% (corresponding to the z value in Chemical Formula 1), preferably 20 to 70%. Outside of this range, no reversible sol-gel transition occurs.
  • the critical degree of substitution may vary depending on the type of the substituent, and the degree of substitution of the -NH acyl glycol chitosan prepared in Examples of the present invention is within 20 to 67% of sol-gel transition.
  • the substitution degree is 20 to 67% in the case of N-propionyl glycol chitosan, the substitution degree is 20 to 55% in the case of N-butyrolate glycol chitosan, and the substitution degree in the case of N-pentanionate glycol chitosan.
  • Figure 20 shows a sol-gel transition when the substitution degree is 20 to 50% and the substitution degree is 20 to 50% for N-hexaniylate glycol chitosan.
  • sol-gel critical temperature may vary depending on the molecular weight of the glycol chitosan derivative having a hydrophobic substituent, and preferably the derivative may be used in the range of 100 to 5,000,000, preferably 200 to 100,000.
  • glycol chitosan derivatives with hydrophobic substituents as described above is prepared by reacting the N-acetylated glycol chitosan of Formula 6 with the RX compound of Formula 7, as shown in Scheme 1 below:
  • N-acetylated glycol chitosan derivatives as starting materials are N-acetylated at a part of the amine group at position 5, and are directly prepared or used commercially available by using known methods.
  • N-acetylated glycol chitosan derivatives are prepared by reacting glycol chitosan with an acetylating agent, and commercially available glycol chitosan can be purchased from WAKO, SIGMA, and Tokyo Kasase. Do.
  • the acetylating agent may be selected from acetic anhydride and acetate chloride, and preferably, acetic anhydride is used.
  • the RX compound is a substance that can be substituted with -NH-R through reaction with an amine (NH 2 ) of an N-acetylated glycol chitosan derivative, wherein R is a hydrophobic group as described above and X is a leaving group.
  • the reaction may vary the molar ratio of the N-acetylated glycol chitosan derivative and the RX compound according to the degree of substitution of the hydrophobic group (R) in the glycol chitosan to be obtained, for example, a molar ratio of 0.1: 10 to 10: 0.1. It can be adjusted properly within.
  • the reaction is -10 to 60 °C, preferably 15 to 25 °C
  • the reaction time is 10 to 50 hours, preferably 40 to 50 hours.
  • the solvent which can be used is not specifically limited in this invention, Lower alcohols, such as water, methanol, ethanol, a propanol, isopropanol, butanol, dichloromethane, trichloromethane, tetrachloromethane, toluene, dimethylacetamide, N-methylpi
  • One selected from the group consisting of rolidone, dimethyl sulfoxide, xylene, benzene, n-butyl acetate, methylcyclohexane, dimethylcyclohexane, and a mixed solvent thereof is possible.
  • the glycol chitosan is reacted with the RX compound to replace hydrogen at the amine group at position 5 with an N-hydrophobic group, whereby the RX compound is changed in various ways to introduce various hydrophobic groups at the amine group at position 2 can do.
  • glycol chitosan substituted with an acyl group of formula (2) it is prepared by reacting an N-acetylated glycol chitosan of formula (6) with an acylating agent of formula (8), as shown in Scheme 2:
  • the reaction of Scheme 2 may be performed at room temperature without using a separate solvent, wherein the degree of substitution of the acyl group (—C ( ⁇ O) R 1 ) is controlled according to the molar ratio of the anhydride of Formula 8.
  • N-propionyl glycol chitosan of Formula 3 wherein the hydrophobic group is a propyl acyl group
  • N-acetylated glycol chitosan of Formula 6 is prepared by reacting propionic anhydride of Formula 9 as shown in Scheme 3 below.
  • glycol chitosan derivative having a hydrophobic substituent according to the present invention can be variously applied to the pharmaceutical, bio, and electronic fields due to the temperature-sensing characteristics at a specific temperature.
  • various fields such as drug carriers for capturing and delivering drugs, cell carriers for culturing, supporting and delivering cells, support for tissue engineering, gas reservoirs, gas filters, catalyst carriers for chemical reactions, and temperature sensitive sensors Applicable to
  • glycol chitosan derivatives having hydrophobic substituents of the present invention can easily enclose the hydrophobic and poorly soluble drugs due to the hydrophobic groups in the derivatives.
  • hydrophobic groups in the derivatives For example, by forming a self aggregate in the aqueous solution by the hydrophobic block in which the hydrophobic group is present, it is possible to be included in a high content of hydrophobicity and poorly soluble.
  • sol-gel transfer property it is possible to release the drug by converting the drug into a gel state by temperature control after inclusion and then transitioning to a sol state by temperature control again, thereby enabling use as an effective drug carrier.
  • the derivative of the present invention also includes a hydrophilic group (amine group, glycol group) also can be easily enclosed hydrophilic drug.
  • hydrophilic, hydrophobic and poorly soluble drugs that can be used are not particularly limited in the present invention, and any drug known in the art may be used.
  • the water-soluble drugs include beta mesazone phosphate, dexamethasone phosphate, prednisolone phosphate, prednisolone succinate, hydrocortisone succinic acid, vancomycin, vincristine, vinblastine, chloramphenicol succinate, latamoxef, cepipyrom , Caromone, phosphamyline, and abacavir
  • hydrophobic and poorly soluble drugs include testosterone enanthate, testosterone propionate, testosterone, estradiol, valeric acid estradiol, benzoic acid estradiol, dexamethasone, beta metazone, Dipropionate beta metazone, valeric acid beta metazone, prednisolone acetate, cyclosporine, tacrolimus, paclitaxel, irino
  • glycol chitosan derivatives having a hydrophobic substituent according to the present invention can control reversible sol-gel transition according to temperature as well as biocompatibility and amphiphilic properties, and can be applied to biotechnology fields such as cell carriers.
  • cells having hydrophilicity or hydrophobicity are supported due to the amphiphilicity of the derivatives according to the present invention, and when the temperature is adjusted to be outside the sol-gel threshold temperature, the supported cells may be detached due to the sol-gel transition of the derivatives.
  • the hydrogel properties of the derivative can be used for the culture of various cells.
  • Cells that can be used are not particularly limited in the present invention, any cell known in the art, growth factors, peptides and the like can be used, for example epithelial cells, fibroblasts, osteoblasts, chondrocytes, hepatocytes, human Derived umbilical cord blood cells and human bone marrow-derived mesenchymal stem cells and the like are possible, and preferably human bone marrow-derived mesenchymal stem cells can be used.
  • growth factors include transforming growth factor ( ⁇ , TGF), insulin-like growth factor (IGF), epidermal growth factor (EGF), and neuronal growth factor (EGF).
  • nerve growth factor NGF
  • VEGF vascular endothelial growth factor
  • FGF fibroblast growth factor
  • HGF hepatocyte growth factor
  • platelet-derived growth factor platelet-derived growth factor
  • PDGF platelet-derived growth factor
  • BMP bone morphogenetic protein
  • Glycol chitosan derivatives having such hydrophobic substituents can be used in the semiconductor field such as sensors due to the temperature sensitive property in addition to the above field.
  • a reversible sol-gel transition occurs with temperature, it can be used as a temperature sensitive sensor or a sensitized sensor for detecting a substance.
  • glycol chitosan derivatives having a hydrophobic substituent according to the present invention can be used in fields where a temperature sensitive polymer or a hydrogel is applied.
  • reaction was terminated, precipitated with cold acetone to obtain a reaction product, and a solid was obtained by centrifugation.
  • the separated solid was dialyzed with distilled water for 3 days using a dialysis membrane of a molecular weight cut-off of 2 kDa and then lyophilized.
  • Acetylated glycol chitosan and propionic anhydride were prepared in the same manner as in Example 1, except that the content was adjusted to a molar ratio of 1: 0.7 to prepare the title glycol chitosan.
  • Acetylated glycol chitosan and propionic anhydride were prepared in the same manner as in Example 1, except that the content was adjusted so that the molar ratio was 1: 0.8, thereby preparing the title glycol chitosan.
  • Acetylated glycol chitosan and propionic anhydride were prepared in the same manner as in Example 1, except that the content was adjusted so that the molar ratio was 1: 0.9, and the title glycol chitosan was prepared.
  • Aceticylated glycol chitosan and propionic anhydride were prepared in the same manner as in Example 1, except that the content was adjusted so that the molar ratio was 1: 1.
  • the title polymer was prepared in the same manner as in Example 1, except that 1.58 g of butyric anhydride was used instead of propionic anhydride. At this time, the acetylated glycol chitosan and butyric anhydride were reacted with a molar ratio of 1: 0.4.
  • Acetylated glycol chitosan and butyric anhydride were prepared in the same manner as in Example 7, except that the content was adjusted so that the molar ratio was 1: 0.5, thereby preparing the title glycol chitosan.
  • Acetylated glycol chitosan and butyric anhydride were prepared in the same manner as in Example 8, except that the content was adjusted so that the molar ratio was 1: 0.6, thereby preparing the title glycol chitosan.
  • Acetylated glycol chitosan and butyric anhydride were prepared in the same manner as in Example 9, except that the content was adjusted to a molar ratio of 1: 0.7 to prepare the title glycol chitosan.
  • Aceticylated glycol chitosan and butyric anhydride were prepared in the same manner as in Example 6 above except that the content was adjusted so that the molar ratio was 1: 0.8, to prepare the title glycol chitosan.
  • the title glycol chitosan was prepared in the same manner as in Example 2, except that 0.12 g of valeric anhydride was used instead of propionic anhydride. At this time, the acetylated glycol chitosan and valeric anhydride were reacted with a molar ratio of 1: 0.3.
  • the title glycol glycol chitosan was prepared in the same manner as in Example 11 except that the acetylated glycol chitosan and valeric anhydride were adjusted to a molar ratio of 1: 0.4.
  • Aceticylated glycol chitosan and valeric anhydride were prepared in the same manner as in Example 11, except that the content was adjusted so that the molar ratio was 1: 0.5, thereby preparing the title glycol chitosan.
  • the title glycol glycol chitosan was prepared in the same manner as in Example 11 except that the acetylated glycol chitosan and valeric anhydride were adjusted to a molar ratio of 1: 0.6.
  • the title glycol chitosan was prepared in the same manner as in Example 2 except that 1.07 g of hexanoic anhydride was used instead of propionic anhydride. At this time, the acetylated glycol chitosan and hexanoic anhydride were reacted with a molar ratio of 1: 0.2.
  • Acetylated glycol chitosan and hexanoic anhydride were prepared in the same manner as in Example 16, except that the content was adjusted so that the molar ratio was 1: 0.3, thereby preparing the title glycol chitosan.
  • the title glycol glycol chitosan was prepared in the same manner as in Example 16 except that the acetylated glycol chitosan and hexanoic anhydride were adjusted in a molar ratio of 1: 0.4.
  • Aceticylated glycol chitosan and hexanoic anhydride were prepared in the same manner as in Example 16, except that the content was adjusted so that the molar ratio was 1: 0.5, thereby preparing the title glycol chitosan.
  • Example 1 Table 1 division Degree of substitution (%) yield(%) division Degree of substitution (%) yield(%) Control 9.3 ⁇ 2.5 - - - - Example 1 48.3 ⁇ 1.6 80.2
  • Example 10 75.9 ⁇ 2.8 82.9 2 to implementation 57.4 ⁇ 2.1 78.7
  • Example 11 26.7 ⁇ 1.9 77.6
  • Example 3 66.6 ⁇ 2.2 76.8
  • Example 12 36.7 ⁇ 2.1 75.5
  • Example 4 74.5 ⁇ 1.9 82.2
  • Example 13 50.0 ⁇ 1.8 79.3
  • Example 14 68.1 ⁇ 1.2 80.5
  • Example 6 36.3 ⁇ 1.1 80.7
  • Example 15 19.0 ⁇ 1.6 76.4
  • Example 7 47.5 ⁇ 1.8 79.5
  • Example 16 28.2 ⁇ 2.0 78.8
  • Example 8 55.2 ⁇ 2.1 77.3
  • Example 17 36.5 ⁇ 2.0 82.3
  • Example 9 61.4 ⁇ 1.8 81.6
  • Example 18
  • Example 1 is Example 1 to a 1 H-NMR spectrum of 5-propionyl-rate glycol chitosan
  • Figure 2 in Example 6 is a 1 H-NMR spectrum of an acrylate glycol chitosan butyronitrile to 10
  • Figure 3 Example 1 H-NMR spectra of fentanionate glycol chitosan of 11 to 15, and
  • FIG. 4 is 1 H-NMR spectrum of hexaniylate glycol chitosan of Examples 16 to 20.
  • FIG. 1 to 4 it can be seen that each reaction was preferably made.
  • FIG. 5 is an FT-IR spectrum of propionylate glycol chitosan of Examples 1 to 4, wherein (a) is Example 4, (b) is Example 3, (c) is Example 2, and (d) is The glycol chitosan of Example 1, (d) is the glycol chitosan of a control example.
  • a peak appears at -NH 2 : 1596 cm -1 and -NH-: 1555 cm -1 , indicating that propionylate reaction was performed.
  • FIG. 6 is an FT-IR spectrum of the butyrolate glycol chitosan of Examples 6 to 9, wherein (a) is Example 9, (b) is Example 8, and (c) is Example 7, (d) Is the glycol chitosan of Example 6, and (d) is the glycol chitosan of the control example.
  • a peak appears at -NH 2 : 1596 cm -1 and -NH-: 1555 cm -1 , indicating that the butyroylate reaction was performed.
  • sol-gel behavior was confirmed.
  • Figure 9 (a) is a photograph showing the sol-gel behavior of -NH alkylacyl glycol chitosan prepared in Example 3
  • Figure 9 (b) is a sol-gel of -NH alkylacyl glycol chitosan prepared in Example 17
  • This picture shows the behavior.
  • Figs. 9 (a) and 9 (b) when the temperature is raised, -NH alkylacyl glycol chitosan is converted from the sol state to the gel state (Example 3: 55 ° C, Example 17: 29 ° C), When the temperature was lowered again, it was confirmed that the phase changed to the sol state. This phase transition is reversible to further increase the applicability of the -NH alkylacyl glycol chitosan derivative having a hydrophobic substituent according to the present invention.
  • the sol-gel critical temperature was measured according to the concentration of -NH alkylacyl glycol chitosan prepared in the examples.
  • the sol-gel critical temperature was measured by dissolving -NH alkylacyl glycol chitosan in water at a concentration of 3, 4, 5, 6, 7 wt% and then changing the temperature to a gel state while adding the temperature.
  • FIG. 10 is a graph showing the gelation temperature according to the concentration of -NH alkylacyl glycol chitosan prepared in Examples 3, 4, 8, 9, 13, 16 and 17.
  • the sol-gel critical temperature was changed according to the number of alkyl groups in the acyl group at the same concentration (3 wt%).
  • the propionylate glycol chitosan of Example 4 and the butyrolate glycol chitosan of Example 8 appeared to increase the sol-gel critical temperature by increasing the number of alkyl groups, but with the butyrolate glycol chitosan of Example 4.
  • the sol-gel critical temperature was rather decreased when the number of alkyl groups in the acyl group was increased. This means that the sol-gel critical temperature of the glycol chitosan derivative can be changed by controlling the number of alkyl groups in the acyl group.
  • the sol-gel threshold temperature tended to decrease as the concentration was increased, which also showed the same trend in other -NH alkylacyl glycol chitosan.
  • the butyrolate glycol chitosans of Examples 8 and 9 with different degrees of substitution showed a higher tendency for the sol-gel critical temperature of the butyrolate glycol chitosan of Example 8 at a concentration of 7 wt%. This means that when the degree of substitution of -NH alkylacyl is high, the sol-gel threshold temperature can be lowered, and the sol-gel threshold temperature can be controlled according to the degree of substitution of the alkylacyl group.
  • FIG. 11 is a 1 H NMR spectrum of -NH alkylacyl glycol chitosan with temperature, (a) Example 4, (b) Example 9, (c) Example 13, and (d) Example 17-NH alkylacyl glycol chitosan.
  • FIG. 11 it can be seen that there is no change in the composition of -NH alkylacyl glycol chitosan even if the temperature is increased. This means that sol-gel transitions occur without other compositional changes such as crosslinking.
  • the degree of critical substitution at which sol-gel transition of -NH alkylacyl glycol chitosan according to the present invention may occur is shown in FIG. 12.
  • FIG. 12 is a graph showing the critical substitution degree of -NH alkylacyl glycol chitosan according to the type of functional group.
  • Figure 12 shows about 84% of the control (acetyl) glycol chitosan, 67% of the acyl group propionyl, 55% of the butyl group, 50% of the pentanoyl, and 30% of the hexanoyl Critical substitution is shown.
  • Glycol chitosan derivatives having a hydrophobic substituent in accordance with the present invention are suitable for various applications in medicine, biotechnology, electronics, etc. due to amphipathy and biocompatibility with temperature-sensitive properties that cause reversible sol-gel transitions at specific temperatures Can be.
  • sol-gel transition temperature according to the type and degree of substitution of the hydrophobic substituent can further expand the application possibilities.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Medicinal Preparation (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

본 발명은 소수성 치환기를 갖는 글리콜 키토산 유도체, 이의 제조방법 및 이의 용도에 관한 것으로, 더욱 상세하게는 2번 위치의 아민기의 일부가 아세틸기 및 소수성기로 치환된 구조를 갖는 글리콜 키토산 유도체로서, 상기 글리콜 키토산 유도체는 특정 온도에서 가역적인 졸-겔 전이를 일으키는 온도감응 특성으로 인해 의약 분야, 바이오 분야, 및 전자 분야 등에 다양하게 적용할 수 있다.

Description

소수성 치환기를 갖는 글리콜 키토산 유도체, 이의 제조방법 및 용도
본 발명은 온도에 따라 가역적인 졸-겔 전이 특성을 갖는 소수성 치환기를 갖는 글리콜 키토산 유도체, 이의 제조방법 및 용도에 관한 것이다.
상전이 고분자란 외부자극에 의해 민감하게 감응하여 연속적으로 또는 불연속적으로 수화도 등의 물성 변화를 보이는 고분자로서, 이때 외부 자극으로는 pH, 이온 및 대사물 등의 화학적 또는 생화학적 자극이 있으며 온도, 빛 전기장 그리고 용매 등의 물리적 자극이 있다.
그 중 온도감응성 고분자는 온도의 변화에 민감하게 반응하는 성질을 가지고 있기 때문에 약물 전달 시스템에 있어서 매우 중요한 고분자이다. 이러한 온도감응성 고분자를 처음으로 발표한 연구자는 Heskin과 Geillet으로[M. Heskins and J. E Guillet, J. Macromol. Sci. Chem., A2, 1441 (1968)], 그 예로는 poly(N-isopropylacrylamide)(poly(NIPAAm)이 있으며 그 응용 범위가 다양하기 때문에 많은 연구자들이 온도감응성 고분자에 대한 연구를 활발하게 진행중이다.
일례로, 온도감응성 고분자는 온도변화에 의하여 상전이가 유도되면 민감하게 반응하여 온도변화에 따라 약물방출이 조절된다는 점에서 지능형 약물전달 시스템 및 센서로 효용가치가 있으며, 수용액 상태로 체내 주입 후 원하는 부위에서 겔을 형성하여 사용 후 수술적 절차 불필요하기 때문에, 서방성 의약 전달 시스템, 조직 성장 임플란트 등의 의약 및 바이오 분야에 적용하고 있다.
대한민국 특허공개 제2011-0021570호는 온도감응 형광 공액고분자를 온도 센서로서 사용한 미세유동칩 내 마이크로 채널의 온도를 측정하는 방법을 개시하고 있으며, 상기 온도감응 고분자로서 폴리다이아세틸렌을 사용하고 있다.
대한민국 특허등록 제10-0474528호는 의료용에 사용할 목적으로 아크릴아미드계 중합체, 아크릴아미드계 단량체-비닐계 단량체의 공중합체 또는 아크릴아미드계 단량체-아크릴계 단량체의 공중합체로 구성되는 군중에서 선택되는 온도감응성 고분자와 다당류를 그라프팅한 고분자를 언급하고 있다.
또한, 대한민국 특허등록 제10-0668046호는 폴리에틸렌글리콜로 구성된 친수성부와, 카프로락톤(CL) 세그먼트가 필수성분으로 함유되고, 파라다이옥사논(PDO) 세그먼트, 트리메틸렌카보네이트(TMC) 세그먼트, 또는 이들 세그먼트가 동시에 함유된 생분해성 폴리에스터계 소수성부로 구성되었으며, 공중합체의 분자량이 2,000∼7,000 g/mole인 것을 특징으로 하는 생체적합성 및 온도감응성의 폴리에틸렌글리콜/생분해성 폴리에스터 블록 공중합체를 제시하고 있다.
이외에도 환경 분야에 대한 응용 또한 검토되고 있으며, 대한민국 특허등록 제10-1109147호는 하폐수 내에 포함되어 있는 미량의 유해 화학물질을 효과적으로 분해, 제거함과 함께 회수, 재활용할 수 있는 광촉매를 구비한 온도감응형 삼차원 공중합체를 제시하고 있으며, 상기 온도감응 공중합체로서 P(NIPAm)(Poly(N-isopropyl acrylamide)를 제시하고 있다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) 대한민국 특허공개 제2011-0021570호
(특허문헌 2) 대한민국 특허등록 제10-0474528호
(특허문헌 3) 대한민국 특허등록 제10-0668046호
(특허문헌 4) 대한민국 특허등록 제10-1109147호
[비특허문헌]
(비특허문헌 1)M. Heskins and J. E Guillet, J. Macromol. Sci. Chem., A2, 1441 (1968)
이에 본 발명에서는 온도에 따라 가역적인 졸-겔 전이 특성을 갖도록 치환기의 종류 및 치환도가 제어된 소수성 치환기를 갖는 글리콜 키토산 유도체 및 이의 제조방법을 제공하는 것을 목적으로 한다.
또한, 본 발명은 상기 온도감응 특성을 갖는 소수성 치환기를 갖는 글리콜 키토산 유도체의 용도를 제공하는 것을 다른 목적으로 한다.
상기 목적을 달성하기 위해, 본 발명은 하기 화학식 1에 나타낸 바와 같이 2번 위치의 아민기의 일부가 아세틸기와 소수성기(R)로 치환되어,
온도에 따라 가역적인 졸-겔 전이가 가능한 특성을 갖는 소수성 치환기를 갖는 글리콜 키토산 유도체를 제공한다:
[화학식 1]
Figure PCTKR2013005586-appb-I000001
(상기 화학식 1에서,
R(소수성기)은 시아노기, 니트로기, C1∼C18의 알킬기, C1∼C18의 할로알킬기, C3∼C8의 사이클로알킬기, C1∼C20의 아실기, C1∼C8의 알콕시기, C1∼C8의 알킬카르보닐기, C1∼C8의 알콕시카르보닐기, C6∼C14의 아릴기, C6∼C10의 아릴알킬기, 및 C6∼C10의 아릴카르보닐기로 이루어진 군에서 선택된 1종을 포함한다.
바람직하기로, 상기 아실기는 -C(=O)-R1로 표시되고, 이때 R1은 C1∼C18의 알킬기, C1∼C18의 할로알킬기, C3∼C8의 사이클로알킬기, C1∼C8의 알콕시기, C1∼C8의 알킬카르보닐기, C1∼C8의 알콕시카르보닐기, C6∼C14의 아릴기, C6∼C10의 아릴알킬기, 및 C6∼C10의 아릴카르보닐기로 이루어진 군에서 선택된 1종을 포함하고,
x, y, z는 10 내지 10000의 정수이고, 이들의 몰%는 0.1≤x≤0.6, 0.1≤y≤0.2, 및 0.2≤z≤0.8이다.)
또한, 본 발명은 화학식 6의 N-아세틸화된 글리콜 키토산 유도체와 화학식 7의 RX 유도체를 반응시켜 화학식 1의 소수성 치환기를 갖는 글리콜 키토산 유도체를 제조하는 방법을 제공한다:
[반응식 1]
Figure PCTKR2013005586-appb-I000002
(상기 반응식 1에서, R, x, y, z는 화학식 1에서 전술한 바와 같고,
n과 m은 10 내지 10000의 정수이고, 이들의 몰%는 0.8≤n≤0.975 및 0.025≤m≤0.2 이고,
X는 이탈기이다.)
또한, 본 발명은 상기 화학식 1의 소수성 치환기를 갖는 글리콜 키토산 유도체 또는 이의 약학적으로 허용 가능한 염을 포함하여 약물을 포접 후 방출하는 약물 전달체로서의 용도를 제공한다.
또한, 본 발명은 상기 화학식 1의 소수성 치환기를 갖는 글리콜 키토산 유도체 또는 이의 약학적으로 허용 가능한 염을 포함하여 세포를 지지 또는 전달하는 세포 캐리어로서의 용도를 제공한다.
또한, 본 발명은 상기 화학식 1의 소수성 치환기를 갖는 글리콜 키토산 유도체를 포함하는 온도감응 센서로서의 용도를 제공한다.
도 1은 실시예 1 내지 5에서 제조한 프로피오닐레이트 글리콜 키토산의 1H-NMR 스펙트럼이다.
도 2는 실시예 6 내지 10에서 제조한 부티로일레이트 글리콜 키토산의 1H-NMR 스펙트럼이다.
도 3은 실시예 11 내지 14에서 제조한 펜타니오닐레이트 글리콜 키토산의 1H-NMR 스펙트럼이다.
도 4는 실시예 15 내지 18에서 제조한 헥사니오닐레이트 글리콜 키토산의 1H-NMR 스펙트럼이다.
도 5는 실시예 1 내지 4에서 제조한 프로피오닐레이트 글리콜 키토산의 FT-IR 스펙트럼이다.
도 6은 실시예 6 내지 9에서 제조한 부티로일레이트 글리콜 키토산의 FT-IR 스펙트럼이다.
도 7은 실시예 11 내지 14에서 제조한 펜타니오닐레이트 글리콜 키토산의 FT-IR 스펙트럼이다.
도 8은 실시예 15 내지 18에서 제조한 헥사니오닐레이트 글리콜 키토산의 FT-IR 스펙트럼이다.
도 9(a)는 실시예 3에서 제조한 프로피오닐레이트 글리콜 키토산의 졸-겔 거동을 보여주는 사진이고, 도 9(b)는 실시예 17에서 제조한 헥사니오닐레이트 글리콜 키토산의 졸-겔 거동을 보여주는 사진이다.
도 10은 실시예 3, 4, 8, 9, 13, 16 및 17에서 제조한 -NH 알킬아실 글리콜 키토산의 졸-겔 임계 온도를 보여주는 그래프이다.
도 11은 온도에 따른 -NH 알킬아실 글리콜 키토산의 1H NMR 스펙트럼으로, (a)는 실시예 4, (b)는 실시예 9, (c)는 실시예 13, 및 (d)는 실시예 17의 -NH 알킬아실 글리콜 키토산이다.
도 12는 관능기의 종류에 따른 -NH 알킬아실 글리콜 키토산의 임계 치환도를 보여주는 그래프이다.
이하 본 발명을 더욱 상세히 설명한다.
본 발명에서는 특정 온도에서 가역적인 졸-겔 전이를 하는 온도감응 특성을 갖는 유도체 및 이의 제조방법을 제시하고, 이를 의약 분야, 바이오 분야, 및 전자 분야에 응용할 수 있는 용도를 제시한다.
구체적으로, 본 발명에서 제시하는 글리콜 키토산 유도체는 5번 위치에 글리콜기가 치환된 글리콜 키토산 유도체에 있어서, 하기 화학식 1에 나타낸 바와 같이 2번 위치의 아민기의 일부가 아세틸기와 소수성(R)기로 치환된 구조를 갖는다:
[화학식 1]
Figure PCTKR2013005586-appb-I000003
(상기 화학식 1에서,
R(소수성기)은 시아노기, 니트로기, C1∼C18의 알킬기, C1∼C18의 할로알킬기, C3∼C8의 사이클로알킬기, C1∼C20의 아실기, C1∼C8의 알콕시기, C1∼C8의 알킬카르보닐기, C1∼C8의 알콕시카르보닐기, C6∼C14의 아릴기, C6∼C10의 아릴알킬기, 및 C6∼C10의 아릴카르보닐기로 이루어진 군에서 선택된 1종을 포함하고,
이때 상기 아실기는 -C(=O)-R1로 표시되고, R1은 C1∼C18의 알킬기, C1∼C18의 할로알킬기, C3∼C8의 사이클로알킬기, C1∼C8의 알콕시기, C1∼C8의 알킬카르보닐기, C1∼C8의 알콕시카르보닐기, C6∼C14의 아릴기, C6∼C10의 아릴알킬기, 및 C6∼C10의 아릴카르보닐기로 이루어진 군에서 선택된 1종을 포함하고,
x, y, z는 10 내지 10000의 정수이고, 이들의 몰%는 0.1≤x≤0.6, 0.1≤y≤0.2, 및 0.2≤z≤0.8 이다.)
이때, C1∼C18의 알킬기는 메틸, 에틸, 프로필, 이소프로필, 부틸, 펜틸, 헥실, 헵틸, 옥틸, 데실, 라우릴기이고, C1∼C18의 할로알킬기는 알킬기의 수소원자가 클로린, 플루오린, 또는 이오딘으로 치환된 알킬기이고, C3∼C8의 사이클로알킬기는 시클로프로필, 시클로부틸, 시클로펜틸, 시클로헥실, 또는 시클로헵틸기이고, C1∼C8의 알콕시기는 메톡시, 에톡시, 프로폭시, 이소프로폭시, 부톡시, 헥실옥시기, 또는 옥틸옥시기이고, C1∼C8의 알킬카르보닐기는 포르밀기, 아세틸기, 프로피오닐기, 또는 부티릴기이고, C1∼C8의 알콕시카르보닐기는 메톡시카르보닐, 에톡시카르보닐, 프로폭시카르보닐, 부톡시카르보닐, 헥실옥시카르보닐, 또는 옥틸옥시카르보닐이고, C6∼C14의 아릴기는 페닐 또는 나프틸기이고, C6∼C10의 아릴알킬기는 벤질 또는 페네틸기이고, C6∼C10의 아릴카르보닐기는 벤조일 또는 톨루일기이고, C2∼C20의 아실기는 -C(=O)-R1로 표시되고, 이때 R1은 C1∼C18의 알킬기이다.
바람직하기로, 상기 화학식 1의 소수성 치환기를 갖는 글리콜 키토산 유도체는 R이 알킬아실기이고, 더욱 바람직하기로는 C1∼C18의 알킬아실기, 가장 바람직하기로는 C2∼C18의 알킬기이고, 0.25≤x≤0.6, 0.025≤y≤0.2, 및 0.2≤z≤0.7이다.
더욱 바람직한 구현예에 따르면, 상기 화학식 1의 소수성 치환기를 갖는 글리콜 키토산 유도체는 하기 화학식 2로 표시되는 R1이 C1∼C18의 알킬기인 알킬아실기(-C(=O)R1)로 치환된 화합물이다.
[화학식 2]
Figure PCTKR2013005586-appb-I000004
[상기 화학식 2에서, x, y, z, R1은 전술한 바와 같다]
더욱 바람직하기로, 본 발명에 따른 글리콜 키토산 유도체는 하기 화학식 3의 N-프로피오닐레이트 글리콜 키토산, 화학식 4의 N-부티로일레이트 글리콜 키토산, 화학식 5의 N-펜타니오닐레이트 글리콜 키토산, 및 화학식 6의 N-헥사니오닐레이트 글리콜 키토산이다.
[화학식 3]
Figure PCTKR2013005586-appb-I000005
[화학식 4]
Figure PCTKR2013005586-appb-I000006
[화학식 5]
Figure PCTKR2013005586-appb-I000007
[화학식 6]
Figure PCTKR2013005586-appb-I000008
본 발명에 따른 소수성 치환기를 갖는 글리콜 키토산 유도체는 화학식 1에서 보이는 바와 같이 치환기로서 글리콜기, 아민기, 아세틸기 및 소수성기가 존재한다. 상기 글리콜기와 아민기는 친수성을, 아세틸기와 소수성기는 소수성을 나타내 본 발명에 따른 글리콜 키토산 유도체는 양친성 고분자라 할 수 있다.
이에 본 발명에 따른 소수성 치환기를 갖는 글리콜 키토산 유도체는 수용액 내에서 소수성기에 의해 분자간 또는 분자내 소수성 결합에 의해 소수성 블록으로 인해 자기 집합체를 이루어 수용액 내에서 미세 영역을 형성하고, 상기 친수성 블록이 바깥쪽으로 감싸면서 친수성기가 수용액과 직접 접촉하여 물에 용해되는 특성을 갖는다. 이에 상기 소수성 치환기를 갖는 글리콜 키토산 유도체는 높은 용해도 특성과 함께 수용액 내 나노 수준의 크기를 갖는 마이셀을 형성할 수 있다.
한편, 본 발명에 따른 소수성 치환기를 갖는 글리콜 키토산 유도체의 임계하한온도(LCST : low critical solution temperature)는 15∼70℃이며, 상기 범위 내에서 가역적인 졸-겔 전이 특성을 갖는다. 도 9(a) 및 (b)를 보면, 상온에서 글리콜 키토산 유도체가 졸 상태이나 온도를 가하자 겔로 변하고, 다시 온도를 낮추어 졸 상태로 변함을 확인하였다.
이러한 가역적인 졸-겔 전이 특성은 온도에 의해 졸 상태에서 겔 상태로, 다시 겔 상태에서 졸 상태로 상이 변화할 수 있어 상기 유도체의 응용 가능성을 더욱 높일 수 있다. 이때 졸-겔 전이가 일어나는 졸-겔 임계 온도는 다양한 파라미터에 의해 제어가 가능하며, 바람직하기로 글리콜 키토산 내 치환기의 치환도, 및 치환기의 종류 및 용해도에 따라 달라질 수 있다.
구체적으로, 소수성기(아세틸기, R)의 치환도가 높을수록 용해도는 감소하며 졸-겔 임계 온도는 낮아지는 경향을 갖는다. 또한, 소수성기(R)의 소수화도가 증가할수록(치환기의 종류, 또는 알킬기의 경우 알킬기의 개수가 증가함을 의미) 졸-겔 임계 온도가 변화하는 경향을 나타낸다. 그리고, 용매 내 낮은 농도로 용해될 경우 졸-겔 임계 온도는 높아지는 경향을 나타낸다. 정리하면, 졸-겔 임계 온도를 높이려면 소수성기의 치환도를 높이거나 농도를 낮추고, 졸-겔 임계 온도를 낮추려면 치환기의 종류를 변경하거나 알킬기의 개수를 변화하는 방향으로 진행할 수 있다. 그 중, 동일 조성의 경우 치환도에 따라 졸-겔 임계 온도의 변화가 선형으로 나타나므로, 졸-겔 임계 온도를 제어하기 위해선 치환도를 조절하는 게 가장 유리하다 할 수 있다.
이러한 졸-겔 전이의 발생은 일정 수준의 치환도의 범위에서 일어나며, 졸-겔 전이가 가능한 임계 치환도는 20∼95% (화학식 1에서의 z 값 대응), 바람직하기로 20∼70%로, 상기 범위를 벗어나면 가역적인 졸-겔 전이가 발생하지 않는다. 상기 임계 치환도는 치환기의 종류에 따라 달라질 수 있으며, 본 발명의 실시예에서 제조한 -NH 아실 글리콜 키토산의 치환도는 20∼67%의 범위 내에서 졸-겔 전이가 발생한다.
보다 구체적으로, N-프로피오닐레이트 글리콜 키토산인 경우 치환도는 20∼67%, N-부티로일레이트 글리콜 키토산인 경우 치환도는 20∼55%, N-펜타니오닐레이트 글리콜 키토산의 경우 치환도는 20∼50%, N-헥사니오닐레이트 글리콜 키토산인 경우 치환도는 20∼30%인 경우 졸-겔 전이가 발생한다.
또한, 졸-겔 임계 온도는 소수성 치환기를 갖는 글리콜 키토산 유도체의 분자량에 따라 달라질 수 있으며, 바람직하기로 상기 유도체는 중량평균분자량이 100∼5,000,000, 바람직하기로 200∼100,000의 범위에서 사용할 수 있다.
전술한 바의 소수성 치환기를 갖는 글리콜 키토산 유도체의 제조는 하기 반응식 1에 나타낸 바와 같이, 화학식 6의 N-아세틸화된 글리콜 키토산과 화학식 7의 RX 화합물을 반응시켜 제조한다:
[반응식 1]
Figure PCTKR2013005586-appb-I000009
(상기 반응식 1에서, R, x, y, 및 z는 상기 화학식 1에서 언급한 바를 따르며, n과 m은 10 내지 10000의 정수이고, 이들의 몰%는 0.8≤n≤0.975 및 0.025≤m≤0.2 이고, X는 이탈기이다.)
출발물질로 N-아세틸화된 글리콜 키토산 유도체는 5번 위치의 아민기의 일부가 N-아세틸화가 된 것으로, 공지된 방법을 이용하여 직접 제조하거나 시판되는 것을 구입하여 사용한다. 직접 제조할 경우, 글리콜 키토산을 아세틸화제와 반응시켜 N-아세틸화된 글리콜 키토산 유도체를 제조하고, 이때 시판의 글리콜 키토산으로서는 WAKO사, SIGMA사, 도쿄카세사로부터 판매되고 있는 것을 구입하여 사용이 가능하다. 상기 아세틸화제로는 아세트산 무수물 및 아세트산 클로라이드 중에서 선택 사용할 수 있으며, 바람직하기로, 아세트산 무수물을 사용한다.
R-X 화합물은 N-아세틸화된 글리콜 키토산 유도체의 아민(NH2)과 반응을 통해 -NH-R로 치환될 수 있는 물질로서, 이때 R은 전술한 바의 소수성기이고, X는 이탈기이다.
바람직하기로 X는 하이드록시; Cl, F, 및 I를 포함하는 할로겐 원소; C1∼C4의 알콕시기; -C(=O)-OH; 또는 -C(=O)-O-C(=O)- 이다.
상기한 반응은 최종 얻고자 하는 글리콜 키토산 내 소수성기(R)의 치환도에 따라 N-아세틸화된 글리콜 키토산 유도체와 RX 화합물의 몰비를 달리할 수 있으며, 일례로 0.1:10∼10:0.1의 몰비 내에서 적절히 조절할 수 있다.
이때 반응은 -10 내지 60 ℃이며, 바람직하기로는 15 내지 25 ℃이고, 반응시간은 10 내지 50 시간이며, 바람직하기로는 40 내지 50 시간 동안 수행한다. 또한, 필요한 경우 반응 용매, 촉매, 반응 종결제 등의 사용이 가능하다. 사용 가능한 용매는 본 발명에서 특별히 한정하지 않으며, 물, 메탄올, 에탄올, 프로판올, 이소프로판올, 부탄올 등의 저급 알코올과, 디클로로메탄, 트리클로로메탄, 테트라클로로메탄, 톨루엔, 디메틸아세트아마이드, N-메틸피롤리돈, 디메틸술폭사이드, 자이렌, 벤젠, n-부틸아세테이트, 메틸시클로헥산, 디메틸시클로헥산 및 이들의 혼합 용매로 이루어진 군에서 선택된 1종이 가능하다.
상기 반응식 1에 나타낸 바와 같이, 글리콜 키토산을 R-X 화합물과 반응시켜 5번 위치의 아민기의 수소가 N-소수성기로 치환되고, 이때 R-X 화합물을 다양하게 변화시켜 2번 위치의 아민기에 다양한 소수성기를 도입할 수 있다.
일례로, 화학식 2의 아실기로 치환된 글리콜 키토산을 제조할 경우, 하기 반응식 2에 나타낸 바와 같이, 화학식 6의 N-아세틸화된 글리콜 키토산과 화학식 8의 아실화제를 반응시켜 제조한다:
[반응식 2]
Figure PCTKR2013005586-appb-I000010
상기 반응식 2의 반응은 별도의 용매 사용 없이 상온에서 수행 가능하며, 이때 화학식 8의 무수화물의 몰비에 따라 아실기(-C(=O)R1)의 치환도를 조절한다.
구체적으로, 상기 소수성기가 프로필 아실기인 화학식 3의 N-프로피오닐레이트 글리콜 키토산의 경우 하기 반응식 3에 나타낸 바와 같이 화학식 6의 N-아세틸화된 글리콜 키토산과 화학식 9의 프로피오닉 무수물을 반응시켜 제조한다:
[반응식 3]
Figure PCTKR2013005586-appb-I000011
본 발명에 따른 소수성 치환기를 갖는 글리콜 키토산 유도체는 특정 온도에서의 온도감응 특성으로 인해 의약 분야, 바이오 분야, 및 전자 분야 등에 다양하게 적용할 수 있다.
일예로, 약물을 포접하고 전달하는 약물 전달체, 세포를 배양, 지지 및 전달하기 위한 세포 전달체, 조직 공학용 지지체, 가스 저장체, 가스 여과체, 화학반응용 촉매 담지체, 온도감응 센서 등의 다양한 분야에 적용이 가능하다.
구체적으로, 대부분의 약물이 소수성 및 난용성인 것을 고려할 때 본 발명의 소수성 치환기를 갖는 글리콜 키토산 유도체는 유도체 내 소수성기로 인해 상기 소수성 및 난용성의 약물을 용이하게 포접할 수 있다. 특히, 소수성기가 존재하는 소수성 블록에 의해 자기 집합체를 이루어 수용액 내에서 마이셀을 형성하여 소수성 및 난용성의 높은 함량으로 포접이 가능하다. 또한, 졸-겔 전이 특성을 가짐으로써, 약물을 포접 후 온도 조절에 의해 겔 상태로 전환 후 다시 온도 조절에 의해 졸 상태로 전이함으로써 약물을 방출할 수 있어, 효과적인 약물 전달체로서 사용이 가능하다.
이때 본 발명의 유도체는 친수성기(아민기, 글리콜기)를 또한 포함하여 친수성 약물 또한 용이하게 포접이 가능하다.
사용 가능한 친수성, 소수성 및 난용성 약물은 본 발명에서 특별히 한정하지 않으며, 이 분야에서 공지된 약물이면 어느 것이든 가능하다. 대표적으로, 수용성 약물로는 인산베타메사존, 인산덱사메타존, 인산프레드니졸론, 숙신산프레드니졸론, 숙신산히드로코르티존, 반코마이신, 빈크리스틴, 빈블라스틴, 숙신산클로람페니콜, 라타목세프, 세프피롬, 카루모남, 인산클린다마이신 및 아바카비르 등이 있고, 소수성 및 난용성 약물로는 에난트산 테스토스테론, 프로피온산테스토스테론, 테스토스테론, 에스트라디올, 발레르산에스트라디올, 벤조산에스트라디올, 아세트산덱사메타존, 베타메타존, 디프로피온산베타메타존, 발레르산베타메타존, 아세트산프레드니졸론, 시클로스포린, 타크롤리무스, 파클리탁셀, 염산이리노테칸, 시스플라틴, 메소트렉세이트, 카르모푸르, 테가푸르, 독소루비신, 클라리스로마이신, 아즈트레오남, 세프니딜, 날리딕스산, 오플록사신, 노르플록사신, 케토프로펜, 플루르비프로펜, 플루르비프로펜악세틸, 클로로프로마진, 다이아제팜, 니페디핀, 염산니카르디핀, 베실산아무로디핀, 칸데사르탄실렉세틸, 아시클로비르, 비다라빈, 에파비렌즈, 알프로스타딜, 디노프로스톤, 유비데카레논, 비타민 A (레티놀), 비타민 D, 비타민 E 및 비타민 K 등이 있다.
또한, 본 발명에 따른 소수성 치환기를 갖는 글리콜 키토산 유도체는 생체적합성 및 양친성 특성 뿐만 아니라 온도에 따라 가역적인 졸-겔 전이를 조절할 수 있어, 세포 전달체와 같은 바이오 분야에도 적용할 수 있다.
즉, 본 발명에 따른 유도체의 양친성으로 인해 친수성 또는 소수성을 갖는 세포가 지지되며, 이때 졸-겔 임계 온도를 벗어나도록 온도를 조절할 경우 상기 유도체의 졸-겔 전이로 인해 지지된 세포가 탈착될 수 있어 세포 전달체로서 사용될 수 있다. 또한, 상기 유도체의 하이드로겔 특성으로 인해 다양한 세포의 배양에도 사용이 가능하다.
사용 가능한 세포는 본 발명에서 특별히 한정하지 않으며, 이 분야에서 공지된 바의 어떤 세포, 성장인자, 펩타이드 등이 사용이 가능하고, 일례로 상피세포, 섬유아세포, 골아세포, 연골세포, 간세포, 인간 유래 제대혈 세포 및 인간 골수유래 중간엽 줄기세포등이 가능하며, 바람직하기로 인간 골수 유래 중간엽 줄기세포가 사용될 수 있다. 또한, 성장인자로는 변환성장인자(transforming growth factor-β, TGF), 인슐린-유사 성장인자(insulin-like growth factor, IGF), 표피 성장인자(epidermal growth factor, EGF), 신경세포 성장인자(nerve growth factor, NGF), 혈관 내피세포 성장인자(vascular endothelial growth factor, VEGF), 섬유아세포 성장인자 (fibroblast growth factor, FGF), 간세포 성장인자(hepatocyte growth factor, HGF), 혈소판유래 성장인자(platelet-derived growth factor, PDGF) 및 골형성단백질(bone morphogenetic protein, BMP)이 가능하다.
이러한 소수성 치환기를 갖는 글리콜 키토산 유도체는 상기 분야 이외에 온도감응 특성으로 인해 센서와 같은 반도체 분야에 사용할 수 있다. 일례로, 온도에 따라 가역적인 졸-겔 전이가 발생하므로, 온도감응 센서나 물질을 감지하는 감작 센서로 사용할 수 있다.
상기 언급한 분야 이외에 본 발명에 따른 소수성 치환기를 갖는 글리콜 키토산 유도체는 온도감응 고분자나 하이드로겔이 응용되는 분야에 모두 사용이 가능하다.
실시예
이하 본 발명의 바람직한 실시예를 기재한다. 하기 실시예는 본 발명을 보다 명확히 표현하기 위한 목적으로 기재될 뿐 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.
실시예 1: N-프로피오닐레이트 글리콜 키토산의 제조
하기 반응식 3에 나타낸 바에 의해 표제 고분자를 제조하였다.
[반응식 3]
Figure PCTKR2013005586-appb-I000012
반응기에 아세틸화된 글리콜 키토산 10g(중량평균분자량 400 kDa, 아세틸화도 9.34±2.50 %(1H NMR 측정시), Sigma-Aldrich, Inc., USA)을 증류수 1000ml에 용해한 다음, 프로피오닉 무수물 1.95g을 첨가한 후, 상온에서 48 시간 동안 교반하였다. 이때 글리콜 키토산과 프로피오닉 무수물의 몰비는 1:0.6 이었다.
이어 반응을 종료 한 후, 차가운 아세톤으로 침전시켜 반응물을 얻고, 원심분리를 통해 고형물을 얻었다. 분리한 고형물을 분획 분자량 (Molecular Weight Cut-off) 2 kDa의 투석막을 사용하여 3일 동안 증류수로 투석한 뒤 이어서 동결건조하였다.
실시예 2: N-프로피오닐레이트 글리콜 키토산의 제조
아세틸화된 글리콜 키토산과 프로피오닉 무수물을 몰비가 1:0.7 이 되도록 함량을 조절한 것을 제외하고, 상기 실시예 1과 동일하게 수행하여 표제의 글리콜 키토산을 제조하였다.
실시예 3: N-프로피오닐레이트 글리콜 키토산의 제조
아세틸화된 글리콜 키토산과 프로피오닉 무수물을 몰비가 1:0.8 이 되도록 함량을 조절한 것을 제외하고, 상기 실시예 1과 동일하게 수행하여 표제의 글리콜 키토산을 제조하였다.
실시예 4: N-프로피오닐레이트 글리콜 키토산의 제조
아세틸화된 글리콜 키토산과 프로피오닉 무수물을 몰비가 1:0.9 가 되도록 함량을 조절한 것을 제외하고, 상기 실시예 1과 동일하게 수행하여 표제의 글리콜 키토산을 제조하였다.
실시예 5: N-프로피오닐레이트 글리콜 키토산의 제조
아세틸화된 글리콜 키토산과 프로피오닉 무수물을 몰비가 1:1 이 되도록 함량을 조절한 것을 제외하고, 상기 실시예 1과 동일하게 수행하여 표제의 글리콜 키토산을 제조하였다.
실시예 6: N-부티로일레이트 글리콜 키토산의 제조
하기 반응식 4에 나타낸 바와 같이, 프로피오닉 무수물 대신 부티릭 무수물을 1.58g 사용한 것을 제외하고 상기 실시예 1과 동일하게 수행하여 표제 고분자를 제조하였다. 이때 아세틸화된 글리콜 키토산과 부티릭 무수물은 몰비가 1:0.4 로 반응을 진행하였다.
[반응식 4]
Figure PCTKR2013005586-appb-I000013
실시예 7: N-부티로일레이트 글리콜 키토산의 제조
아세틸화된 글리콜 키토산과 부티릭 무수물을 몰비가 1:0.5 가 되도록 함량을 조절한 것을 제외하고, 상기 실시예 7과 동일하게 수행하여 표제의 글리콜 키토산을 제조하였다.
실시예 8: N-부티로일레이트 글리콜 키토산의 제조
아세틸화된 글리콜 키토산과 부티릭 무수물을 몰비가 1:0.6 이 되도록 함량을 조절한 것을 제외하고, 상기 실시예 8과 동일하게 수행하여 표제의 글리콜 키토산을 제조하였다.
실시예 9: N-부티로일레이트 글리콜 키토산의 제조
아세틸화된 글리콜 키토산과 부티릭 무수물을 몰비가 1:0.7 이 되도록 함량을 조절한 것을 제외하고, 상기 실시예 9과 동일하게 수행하여 표제의 글리콜 키토산을 제조하였다.
실시예 10: N-부티로일레이트 글리콜 키토산의 제조
아세틸화된 글리콜 키토산과 부티릭 무수물을 몰비가 1:0.8 이 되도록 함량을 조절한 것을 제외하고, 상기 실시예 6과 동일하게 수행하여 표제의 글리콜 키토산을 제조하였다.
실시예 11: N-펜타니오닐레이트 글리콜 키토산의 제조
하기 반응식 5에 나타낸 바와 같이, 프로피오닉 무수물 대신 발레릭 무수물을 0.12g 사용한 것을 제외하고 상기 실시예 2와 동일하게 수행하여 표제의 글리콜 키토산을 제조하였다. 이때 아세틸화된 글리콜 키토산과 발레릭 무수물은 몰비가 1:0.3 으로 반응을 진행하였다.
[반응식 5]
Figure PCTKR2013005586-appb-I000014
실시예 12: N-펜타니오닐레이트 글리콜 키토산의 제조
아세틸화된 글리콜 키토산과 발레릭 무수물을 몰비가 1:0.4 가 되도록 함량을 조절한 것을 제외하고, 상기 실시예 11과 동일하게 수행하여 표제의 글리콜 키토산을 제조하였다.
실시예 13: N-펜타니오닐레이트 글리콜 키토산의 제조
아세틸화된 글리콜 키토산과 발레릭 무수물을 몰비가 1:0.5 가 되도록 함량을 조절한 것을 제외하고, 상기 실시예 11과 동일하게 수행하여 표제의 글리콜 키토산을 제조하였다.
실시예 14: N-펜타니오닐레이트 글리콜 키토산의 제조
아세틸화된 글리콜 키토산과 발레릭 무수물을 몰비가 1:0.6 이 되도록 함량을 조절한 것을 제외하고, 상기 실시예 11과 동일하게 수행하여 표제의 글리콜 키토산을 제조하였다.
실시예 15: N-헥사니오닐레이트 글리콜 키토산의 제조
하기 반응식 6에 나타낸 바와 같이, 프로피오닉 무수물 대신 헥사노익 무수물을 1.07g 사용한 것을 제외하고 상기 실시예 2와 동일하게 수행하여 표제의 글리콜 키토산을 제조하였다. 이때 아세틸화된 글리콜 키토산과 헥사노익 무수물은 몰비가 1:0.2 로 반응을 진행하였다.
[반응식 6]
Figure PCTKR2013005586-appb-I000015
실시예 16: N-헥사니오닐레이트 글리콜 키토산의 제조
아세틸화된 글리콜 키토산과 헥사노익 무수물을 몰비가 1:0.3 이 되도록 함량을 조절한 것을 제외하고, 상기 실시예 16과 동일하게 수행하여 표제의 글리콜 키토산을 제조하였다.
실시예 17: N-헥사니오닐레이트 글리콜 키토산의 제조
아세틸화된 글리콜 키토산과 헥사노익 무수물을 몰비가 1:0.4 가 되도록 함량을 조절한 것을 제외하고, 상기 실시예 16과 동일하게 수행하여 표제의 글리콜 키토산을 제조하였다.
실시예 18: N-헥사니오닐레이트 글리콜 키토산의 제조
아세틸화된 글리콜 키토산과 헥사노익 무수물을 몰비가 1:0.5 가 되도록 함량을 조절한 것을 제외하고, 상기 실시예 16과 동일하게 수행하여 표제의 글리콜 키토산을 제조하였다.
실험예 1: 치환도 및 수율 분석
상기 실시예 1 내지 20에서 제조한 글리콜 키토산의 치환도 및 수율을 측정하여 하기 표 1에 나타내었다. 이때 대조예로는 출발물질인 글리콜 키토산을 사용하였다.
표 1
구분 치환도(%) 수율(%) 구분 치환도(%) 수율(%)
대조예 9.3±2.5 - - - -
실시예 1 48.3±1.6 80.2 실시예 10 75.9±2.8 82.9
실시에 2 57.4±2.1 78.7 실시예 11 26.7±1.9 77.6
실시예 3 66.6±2.2 76.8 실시예 12 36.7±2.1 75.5
실시예 4 74.5±1.9 82.2 실시예 13 50.0±1.8 79.3
실시예 5 87.4±1.5 81.7 실시예 14 68.1±1.2 80.5
실시예 6 36.3±1.1 80.7 실시예 15 19.0±1.6 76.4
실시예 7 47.5±1.8 79.5 실시예 16 28.2±2.0 78.8
실시예 8 55.2±2.1 77.3 실시예 17 36.5±2.0 82.3
실시예 9 61.4±1.8 81.6 실시예 18 54.2±1.9 75.8
실험예 2: 1 H-NMR 분석
상기 실시예 1 내지 20에서 제조한 -NH 알킬아실 글리콜 키토산의 합성 여부를 확인하기 위해 1H-NMR 분석을 수행하였으며, 얻어진 결과를 도 1 내지 도 4에 나타내었다.
도 1은 실시예 1 내지 5의 프로피오닐레이트 글리콜 키토산의 1H-NMR 스펙트럼이고, 도 2는 실시예 6 내지 10의 부티로일레이트 글리콜 키토산의 1H-NMR 스펙트럼이며, 도 3은 실시예 11 내지 15의 펜타니오닐레이트 글리콜 키토산의 1H-NMR 스펙트럼이고, 도 4는 실시예 16 내지 20의 헥사니오닐레이트 글리콜 키토산의 1H-NMR 스펙트럼이다. 상기 도 1 내지 4를 통해 각 반응이 바람직하게 이루어졌음을 알 수 있다.
실험예 3: FT-IR 분석
상기 실시예 1 내지 20에서 제조한 -NH 알킬아실 글리콜 키토산의 합성 여부를 확인하기 위해 FT-IR 분석을 수행하였으며, 얻어진 결과를 도 5 내지 도 8에 나타내었다.
도 5는 실시예 1 내지 4의 프로피오닐레이트 글리콜 키토산의 FT-IR 스펙트럼으로, 이때 (a)는 실시예 4, (b)는 실시예 3, (c)는 실시예 2, (d)는 실시예 1의 글리콜 키토산을, (d)는 대조예의 글리콜 키토산이다. 도 5를 참조하면, (a) 내지 (d)의 스펙트럼은 출발물질인 대조예 (d)의 피크에 나타나지 않던 -CH2-: 2860~2930 cm-1, C=O: 1655 cm-1, -NH2: 1596 cm-1, -NH-: 1555 cm-1에서 피크가 나타나 프로피오닐레이트 반응이 이루어졌음을 알 수 있다.
도 6은 실시예 6 내지 9의 부티로일레이트 글리콜 키토산의 FT-IR 스펙트럼이고, 이때 (a)는 실시예 9, (b)는 실시예 8, (c)는 실시예 7, (d)는 실시예 6의 글리콜 키토산을, (d)는 대조예의 글리콜 키토산이다. 도 6을 참조하면, (a) 내지 (d)의 스펙트럼은 출발물질인 대조예 (d)의 피크에 나타나지 않던 -CH2-: 2860~2930 cm-1, C=O: 1655 cm-1, -NH2: 1596 cm-1, -NH-: 1555 cm-1에서 피크가 나타나 부티로일레이트 반응이 이루어졌음을 알 수 있다.
도 7은 실시예 11 내지 14의 펜타니오닐레이트 글리콜 키토산의 FT-IR 스펙트럼으로, 이때 (a)는 실시예 14, (b)는 실시예 13, (c)는 실시예 12, (d)는 실시예 11의 글리콜 키토산을, (d)는 대조예의 글리콜 키토산이다. 도 7을 참조하면, (a) 내지 (d)의 스펙트럼은 출발물질인 대조예 (d)의 피크에 나타나지 않던 -CH2-: 2860~2930 cm-1, C=O: 1655 cm-1, -NH2: 1596 cm-1, -NH-: 1555 cm-1에서 피크가 나타나 펜타노일레이트 반응이 이루어졌음을 알 수 있다.
도 8은 실시예 16 내지 19의 헥사니오닐레이트 글리콜 키토산의 FT-IR 스펙트럼으로, 이때 (a)는 실시예 19, (b)는 실시예 18, (c)는 실시예 17, (d)는 실시예 16의 글리콜 키토산을, (d)는 대조예의 글리콜 키토산이다. 도 8을 참조하면, (a) 내지 (d)의 스펙트럼은 출발물질인 대조예 (d)의 피크에 나타나지 않던 -CH2-: 2860~2930 cm-1, C=O: 1655 cm-1, -NH2: 1596 cm-1, -NH-: 1555 cm-1에서 피크가 나타나 헥사노일레이트 반응이 이루어졌음을 알 수 있다.
실험예 4: 졸-겔 전이 특성 분석
상기 실시예 3 및 실시예 17에서 제조한 -NH 알킬아실 글리콜 키토산을 각각 5wt% 농도로 희석한 후 졸-겔 거동을 확인하였다.
도 9(a)는 실시예 3에서 제조한 -NH 알킬아실 글리콜 키토산의 졸-겔 거동을 보여주는 사진이고, 도 9(b)는 실시예 17에서 제조한 -NH 알킬아실 글리콜 키토산의 졸-겔 거동을 보여주는 사진이다. 도 9(a) 및 도 9(b)에 나타낸 바와 같이, 온도를 올리면 -NH 알킬아실 글리콜 키토산이 졸 상태에서 겔 상태로 변환되고(실시예 3: 55℃, 실시예 17: 29℃), 다시 이 온도를 낮추자 졸 상태로 상전이됨을 확인하였다. 이러한 상전이는 가역적으로 진행되어 본 발명에 따른 소수성 치환기를 갖는 -NH 알킬아실 글리콜 키토산 유도체의 응용 가능성을 더욱 높일 수 있다.
실험예 5: 농도에 따른 졸-겔 임계 온도 분석
상기 졸-겔 전이 특성의 확인으로 인해, 실시예에서 제조한 -NH 알킬아실 글리콜 키토산의 농도에 따른 졸-겔 임계 온도를 측정하였다. 이때 졸-겔 임계 온도는 -NH 알킬아실 글리콜 키토산을 물에 3, 4, 5, 6, 7wt% 농도로 용해시킨 후 온도를 가하면서 겔 상태로 변화하는 시점의 온도를 측정하였다.
도 10은 실시예 3, 4, 8, 9, 13, 16 및 17에서 제조한 -NH 알킬아실 글리콜 키토산의 농도에 따른 겔화 온도를 보여주는 그래프이다. 도 10에 따르면, 동일 농도(3 wt%)에서 아실기 내 알킬기의 개수에 따라 졸-겔 임계 온도가 변하였다. 실시예 4의 프로피오닐레이트 글리콜 키토산과 실시예 8의 부티로일레이트 글리콜 키토산을 보면 알킬기의 수가 증가하여 졸-겔 임계 온도가 증가하는 것처럼 보였으나, 실시예 4의 부티로일레이트 글리콜 키토산과 실시예 17의 헥실레이트 글리콜 키토산을 비교하면 아실기 내 알킬기의 수가 증가한 경우 오히려 졸-겔 임계 온도가 감소하였다. 이는 아실기 내 알킬기의 수를 조절함으로써 글리콜 키토산 유도체의 졸-겔 임계 온도를 변화시킬 수 있음을 의미한다.
또한, 실시예 4의 프로피오닐레이트 글리콜 키토산을 보면 농도가 증가할수록 졸-겔 임계 온도는 낮아지는 경향을 보였으며, 이는 다른 -NH 알킬아실 글리콜 키토산에서도 동일한 경향을 나타냈다.
그리고, 치환도가 서로 다른 실시예 8 및 9의 부티로일레이트 글리콜 키토산을 보면, 7 wt% 농도에서 실시예 8의 부티로일레이트 글리콜 키토산의 졸-겔 임계 온도가 높은 경향을 보였다. 이는 -NH 알킬아실의 치환도가 높을 경우 졸-겔 임계 온도를 낮출 수 있어, 알킬아실기의 치환도에 따라 졸-겔 임계 온도를 제어할 수 있음을 의미한다.
실험예 6: 온도 변화에 따른 조성 변화 분석
상기 실험예 5의 결과로부터 본 발명에 따른 -NH 알킬아실 글리콜 키토산이 온도에 따라 화학 변화가 일어나는지 확인하기 위해, 각각을 3wt% 농도로 제조한 후 온도를 20℃, 30℃, 40℃, 50℃, 60℃ 및 70℃로 변화시켜 1H NMR 분석을 수행하였다.
도 11은 온도에 따른 -NH 알킬아실 글리콜 키토산의 1H NMR 스펙트럼으로, (a)는 실시예 4, (b)는 실시예 9, (c)는 실시예 13, 및 (d)는 실시예 17의 -NH 알킬아실 글리콜 키토산이다. 도 11을 참조하면, 온도가 증가하더라도 -NH 알킬아실 글리콜 키토산의 조성에는 변화가 없음을 알 수 있다. 이는 졸-겔 전이가 가교 등의 다른 조성 변화없이 이루어짐을 의미한다.
실험예 7: 졸-겔 전이가 가능한 임계 치환도 분석
본 발명에 따른 -NH 알킬아실 글리콜 키토산의 졸-겔 전이가 일어날 수 있는 임계 치환도를 측정하여 도 12에 나타내었다.
도 12는 관능기의 종류에 따른 -NH 알킬아실 글리콜 키토산의 임계 치환도를 보여주는 그래프이다. 도 12를 보면, 대조예(아세틸)인 글리콜 키토산의 경우 약 84%, 아실기인 프로피오닐의 경우 67%, 부투일기의 경우 55%, 펜타노일의 경우 50%, 및 헥사노일의 경우 30%의 임계 치환도를 나타내었다.
본 발명에서 제시하는 소수성 치환기를 갖는 글리콜 키토산 유도체는 특정 온도에서 가역적인 졸-겔 전이를 일으키는 온도감응 특성과 함께 양친성 및 생체 적합성으로 인해 의약 분야, 바이오 분야, 및 전자 분야 등에 다양하게 적용할 수 있다.
특히, 소수성 치환기의 종류 및 치환도에 따라 졸-겔 전이 온도의 조절이 가능하여 그 응용 가능성을 더욱 확대할 수 있다.

Claims (14)

  1. 하기 화학식 1에 나타낸 바와 같이 2번 위치의 아민기의 일부가 아세틸기와 소수성기(R)로 치환되어,
    온도에 따라 가역적인 졸-겔 전이가 가능한 특성을 갖는 소수성 치환기를 갖는 글리콜 키토산 유도체:
    [화학식 1]
    Figure PCTKR2013005586-appb-I000016
    (상기 화학식 1에서,
    R(소수성기)은 시아노기, 니트로기, C1∼C18의 알킬기, C1∼C18의 할로알킬기, C3∼C8의 사이클로알킬기, C1∼C20의 아실기, C1∼C8의 알콕시기, C1∼C8의 알킬카르보닐기, C1∼C8의 알콕시카르보닐기, C6∼C14의 아릴기, C6∼C10의 아릴알킬기, 및 C6∼C10의 아릴카르보닐기로 이루어진 군에서 선택된 1종을 포함하고,
    이때 상기 아실기는 -C(=O)-R1로 표시되고, R1은 C1∼C18의 알킬기, C1∼C18의 할로알킬기, C3∼C8의 사이클로알킬기, C1∼C8의 알콕시기, C1∼C8의 알킬카르보닐기, C1∼C8의 알콕시카르보닐기, C6∼C14의 아릴기, C6∼C10의 아릴알킬기, 및 C6∼C10의 아릴카르보닐기로 이루어진 군에서 선택된 1종을 포함하고,
    x, y, z는 10 내지 10000의 정수이고, 이들의 몰%는 0.1≤x≤0.6, 0.1≤y≤0.2, 및 0.2≤z≤0.8이다.)
  2. 제1항에 있어서, 상기 소수성 치환기를 갖는 글리콜 키토산 유도체의 소수성 치환기의 치환도는 20∼95%인 것을 특징으로 하는 소수성 치환기를 갖는 글리콜 키토산 유도체.
  3. 제1항에 있어서, 상기 소수성 치환기를 갖는 글리콜 키토산 유도체는 하기 화학식 2로 표시되는 것을 특징으로 하는 소수성 치환기를 갖는 글리콜 키토산 유도체:
    [화학식 2]
    Figure PCTKR2013005586-appb-I000017
    (상기 화학식 2에서, x, y, 및 z는 화학식 1에서 언급한 바와 같고, R1은 C1∼C18의 알킬기인 것을 특징으로 하는 소수성 치환기를 갖는 글리콜 키토산 유도체.
  4. 제3항에 있어서, 상기 화학식 2의 글리콜 키토산 유도체는 치환도가 20∼70%인 것을 특징으로 하는 소수성 치환기를 갖는 글리콜 키토산 유도체.
  5. 제1항에 있어서, 상기 소수성 치환기를 갖는 글리콜 키토산 유도체는 하기 화합물 중에서 선택된 1종을 포함하는 것을 특징으로 하는 소수성 치환기를 갖는 글리콜 키토산 유도체:
    (i) N-프로피오닐레이트 글리콜 키토산;
    (ii) N-부티로일레이트 글리콜 키토산;
    (iii) N-펜타니오닐레이트 글리콜 키토산;
    (iv) N-헥사니오닐레이트 글리콜 키토산.
  6. 제5항에 있어서, 상기 소수성 치환기를 갖는 글리콜 키토산 유도체가 N-프로피오닐레이트 글리콜 키토산인 경우 치환도는 20∼67%, N-부티로일레이트 글리콜 키토산인 경우 치환도는 20∼55%, N-펜타니오닐레이트 글리콜 키토산의 경우 치환도는 20∼50%, N-헥사니오닐레이트 글리콜 키토산인 경우 치환도는 20∼30%인 것을 특징으로 하는 소수성 치환기를 갖는 글리콜 키토산 유도체.
  7. 제1항에 있어서, 상기 소수성 치환기를 갖는 글리콜 키토산 유도체는 중량평균분자량이 200∼5,000,000인 것을 특징으로 하는 소수성 치환기를 갖는 글리콜 키토산 유도체.
  8. 제1항에 있어서, 상기 소수성 치환기를 갖는 글리콜 키토산 유도체의 임계하한온도(LCST : low critical solution temperature )는 15∼70℃인 것을 특징으로 하는 소수성 치환기를 갖는 글리콜 키토산 유도체.
  9. 하기 반응식 1로 표시되며,
    화학식 6의 N-아세틸화된 글리콜 키토산 유도체와 화학식 7의 RX 유도체를 반응시켜 화학식 1의 소수성 치환기를 갖는 글리콜 키토산 유도체를 제조하는 방법:
    [반응식 1]
    Figure PCTKR2013005586-appb-I000018
    (상기 반응식 1에서,
    R(소수성기)은 시아노기, 니트로기, C1∼C18의 알킬기, C1∼C18의 할로알킬기, C3∼C8의 사이클로알킬기, C1∼C20의 아실기, C1∼C8의 알콕시기, C1∼C8의 알킬카르보닐기, C1∼C8의 알콕시카르보닐기, C6∼C14의 아릴기, C6∼C10의 아릴알킬기, 및 C6∼C10의 아릴카르보닐기로 이루어진 군에서 선택된 1종을 포함하고,
    이때 상기 아실기는 -C(=O)-R1로 표시되고, R1은 C1∼C18의 알킬기, C1∼C18의 할로알킬기, C3∼C8의 사이클로알킬기, C1∼C8의 알콕시기, C1∼C8의 알킬카르보닐기, C1∼C8의 알콕시카르보닐기, C6∼C14의 아릴기, C6∼C10의 아릴알킬기, 및 C6∼C10의 아릴카르보닐기로 이루어진 군에서 선택된 1종을 포함하고,
    x, y, z는 10 내지 10000의 정수이고, 이들의 몰%는 0.1≤x≤0.6, 0.1≤y≤0.2, 및 0.2≤z≤0.8 이고,
    n과 m은 10 내지 10000의 정수이고, 이들의 몰%는 0.8≤n≤0.975 및 0.025≤m≤0.2 이고,
    X는 이탈기이다.)
  10. 제9항에 있어서, 상기 X는 하이드록시; Cl, F, 및 I를 포함하는 할로겐 원소; C1∼C4의 알콕시기; -C(=O)-OH; 또는 -C(=O)-O-C(=O)- 인 것을 특징으로 하는 소수성 치환기를 갖는 글리콜 키토산 유도체의 제조방법.
  11. 하기 반응식 2로 표시되며,
    화학식 6의 N-아세틸화된 글리콜 키토산과 화학식 8의 아실화제를 반응시켜 화학식 2의 소수성 치환기를 갖는 글리콜 키토산 유도체를 제조하는 방법:
    [반응식 2]
    Figure PCTKR2013005586-appb-I000019
    (상기 반응식 2에서, x, y, 및 z는 화학식 1에서 언급한 바와 같고, R1은 C1∼C18의 알킬기이다.)
  12. 하기 화학식 1의 소수성 치환기를 갖는 글리콜 키토산 유도체 또는 이의 약학적으로 허용 가능한 염을 포함하여 약물을 포접 후 방출하는 약물 전달체:
    [화학식 1]
    Figure PCTKR2013005586-appb-I000020
    (상기 화학식 1에서,
    R(소수성기)은 시아노기, 니트로기, C1∼C18의 알킬기, C1∼C18의 할로알킬기, C3∼C8의 사이클로알킬기, C1∼C20의 아실기, C1∼C8의 알콕시기, C1∼C8의 알킬카르보닐기, C1∼C8의 알콕시카르보닐기, C6∼C14의 아릴기, C6∼C10의 아릴알킬기, 및 C6∼C10의 아릴카르보닐기로 이루어진 군에서 선택된 1종을 포함하고,
    이때 상기 아실기는 -C(=O)-R1로 표시되고, R1은 C1∼C18의 알킬기, C1∼C18의 할로알킬기, C3∼C8의 사이클로알킬기, C1∼C8의 알콕시기, C1∼C8의 알킬카르보닐기, C1∼C8의 알콕시카르보닐기, C6∼C14의 아릴기, C6∼C10의 아릴알킬기, 및 C6∼C10의 아릴카르보닐기로 이루어진 군에서 선택된 1종을 포함하고,
    x, y, z는 10 내지 10000의 정수이고, 이들의 몰%는 0.1≤x≤0.6, 0.1≤y≤0.2, 및 0.2≤z≤0.8 이다.)
  13. 하기 화학식 1의 소수성 치환기를 갖는 글리콜 키토산 유도체 또는 이의 약학적으로 허용 가능한 염을 포함하여 세포를 지지 또는 전달하는 세포 캐리어:
    [화학식 1]
    Figure PCTKR2013005586-appb-I000021
    (상기 화학식 1에서,
    R(소수성기)은 시아노기, 니트로기, C1∼C18의 알킬기, C1∼C18의 할로알킬기, C3∼C8의 사이클로알킬기, C1∼C20의 아실기, C1∼C8의 알콕시기, C1∼C8의 알킬카르보닐기, C1∼C8의 알콕시카르보닐기, C6∼C14의 아릴기, C6∼C10의 아릴알킬기, 및 C6∼C10의 아릴카르보닐기로 이루어진 군에서 선택된 1종을 포함하고,
    이때 상기 아실기는 -C(=O)-R1로 표시되고, R1은 C1∼C18의 알킬기, C1∼C18의 할로알킬기, C3∼C8의 사이클로알킬기, C1∼C8의 알콕시기, C1∼C8의 알킬카르보닐기, C1∼C8의 알콕시카르보닐기, C6∼C14의 아릴기, C6∼C10의 아릴알킬기, 및 C6∼C10의 아릴카르보닐기로 이루어진 군에서 선택된 1종을 포함하고,
    x, y, z는 10 내지 10000의 정수이고, 이들의 몰%는 0.1≤x≤0.6, 0.1≤y≤0.2, 및 0.2≤z≤0.8 이다.)
  14. 하기 화학식 1의 소수성 치환기를 갖는 글리콜 키토산 유도체를 포함하는 온도감응 센서:
    [화학식 1]
    Figure PCTKR2013005586-appb-I000022
    (상기 화학식 1에서,
    R(소수성기)은 시아노기, 니트로기, C1∼C18의 알킬기, C1∼C18의 할로알킬기, C3∼C8의 사이클로알킬기, C1∼C20의 아실기, C1∼C8의 알콕시기, C1∼C8의 알킬카르보닐기, C1∼C8의 알콕시카르보닐기, C6∼C14의 아릴기, C6∼C10의 아릴알킬기, 및 C6∼C10의 아릴카르보닐기로 이루어진 군에서 선택된 1종을 포함하고,
    이때 상기 아실기는 -C(=O)-R1로 표시되고, R1은 C1∼C18의 알킬기, C1∼C18의 할로알킬기, C3∼C8의 사이클로알킬기, C1∼C8의 알콕시기, C1∼C8의 알킬카르보닐기, C1∼C8의 알콕시카르보닐기, C6∼C14의 아릴기, C6∼C10의 아릴알킬기, 및 C6∼C10의 아릴카르보닐기로 이루어진 군에서 선택된 1종을 포함하고,
    x, y, z는 10 내지 10000의 정수이고, 이들의 몰%는 0.1≤x≤0.6, 0.1≤y≤0.2, 및 0.2≤z≤0.8 이다.)
PCT/KR2013/005586 2012-10-31 2013-06-25 소수성 치환기를 갖는 글리콜 키토산 유도체, 이의 제조방법 및 용도 WO2014069742A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015539491A JP6325558B2 (ja) 2012-10-31 2013-06-25 疎水性置換基を有するグリコールキトサン誘導体、その製造方法及び用途
US14/438,951 US20150291705A1 (en) 2012-10-31 2013-06-25 Glycol chitosan derivative having hydrophobic substituent, method for preparing same and use of same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0121812 2012-10-31
KR1020120121812A KR101502579B1 (ko) 2012-10-31 2012-10-31 소수성 치환기를 갖는 글리콜 키토산 유도체, 이의 제조방법 및 용도

Publications (1)

Publication Number Publication Date
WO2014069742A1 true WO2014069742A1 (ko) 2014-05-08

Family

ID=50627615

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/005586 WO2014069742A1 (ko) 2012-10-31 2013-06-25 소수성 치환기를 갖는 글리콜 키토산 유도체, 이의 제조방법 및 용도

Country Status (4)

Country Link
US (1) US20150291705A1 (ko)
JP (1) JP6325558B2 (ko)
KR (1) KR101502579B1 (ko)
WO (1) WO2014069742A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101647793B1 (ko) * 2014-09-02 2016-08-12 충남대학교산학협력단 온도 감응성 글리콜 키토산 유도체를 이용한 스페로이드 형성용 배양 용기 및 이를 이용한 스페로이드 형성 방법
KR101815390B1 (ko) * 2016-09-08 2018-01-04 충남대학교산학협력단 세포 배양용 배지 조성물
KR102122084B1 (ko) 2018-09-28 2020-06-12 주식회사 랩투랩 중간엽 줄기세포 노화 억제용 조성물 및 이를 이용한 중간엽 줄기세포 배양 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008072230A1 (en) * 2006-12-11 2008-06-19 Chit2Gel Ltd. Novel injectable chitosan mixtures forming hydrogels
KR20120020386A (ko) * 2010-08-30 2012-03-08 충남대학교산학협력단 글리콜 키토산 유도체, 이의 제조방법 및 이를 포함하는 약물 전달체
KR20120090746A (ko) * 2011-02-08 2012-08-17 이화여자대학교 산학협력단 졸-겔 전이 키토산-폴리머 복합체 및 그의 용도

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9706195D0 (en) * 1997-03-25 1997-05-14 Univ London Pharmacy Particulate drug carriers
JP2003026702A (ja) * 2001-07-16 2003-01-29 Nippon Kankeru Kk 水溶性n−飽和脂肪酸アシルキトサン誘導体、及びその製造方法
GB0221941D0 (en) 2002-09-20 2002-10-30 Univ Strathclyde Polysoaps
KR101035269B1 (ko) * 2007-04-23 2011-05-26 한국과학기술연구원 고분자 유도체-광감작제 복합체를 이용한 새로운 광역학치료제
TW201016223A (en) * 2008-10-16 2010-05-01 Univ Nat Chiao Tung Hollow sphere of amphiphilic chitosan derivatives and amphiphilic chitosan derivative complex for medical use
TWI418364B (zh) * 2010-05-28 2013-12-11 Univ Nat Cheng Kung 皮膚及/或黏膜輸送載體
KR101250150B1 (ko) * 2010-10-29 2013-04-04 가톨릭대학교 산학협력단 광역학치료를 위한 고분자-광응답제 접합체 및 이의 제조방법
KR101300101B1 (ko) * 2011-08-19 2013-08-30 주식회사 케이티 전력량 데이터 검증 장치,전력량 데이터 검증 장치를 포함하는 전력량 데이터 검증 시스템,및 전력량 데이터 검증 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008072230A1 (en) * 2006-12-11 2008-06-19 Chit2Gel Ltd. Novel injectable chitosan mixtures forming hydrogels
KR20120020386A (ko) * 2010-08-30 2012-03-08 충남대학교산학협력단 글리콜 키토산 유도체, 이의 제조방법 및 이를 포함하는 약물 전달체
KR20120090746A (ko) * 2011-02-08 2012-08-17 이화여자대학교 산학협력단 졸-겔 전이 키토산-폴리머 복합체 및 그의 용도

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUH, GANG MU ET AL.: "Supramolecular hydrogel formation based on inclusion complexation between poly(ethylene glycol)-modified chitosan and alpha -cyclodextrin", MACROMOLECULAR BIOSCIENCE, vol. 4, no. 2, 20 February 2004 (2004-02-20), pages 92 - 99 *
KIM, JONG-HO ET AL.: "Hydrophobically modified glycol chitosan nanoparticles as carriers for paclitaxel", JOURNAL OF CONTROLLED RELEASE, vol. 111, no. 1-2, 10 March 2006 (2006-03-10), pages 228 - 234 *
RIVA, RAPHAEL ET AL.: "Chitosan and Chitosan Derivatives in Drug Delivery and Tissue Engineering", ADVANCES IN POLYMER SCIENCE, vol. 244, 3 August 2011 (2011-08-03), pages 19 - 44 *

Also Published As

Publication number Publication date
US20150291705A1 (en) 2015-10-15
KR101502579B1 (ko) 2015-03-16
JP6325558B2 (ja) 2018-05-16
KR20140055257A (ko) 2014-05-09
JP2016505643A (ja) 2016-02-25

Similar Documents

Publication Publication Date Title
WO2011021804A2 (ko) 감응성 고분자 캡슐 및 그 제조방법
WO2014069742A1 (ko) 소수성 치환기를 갖는 글리콜 키토산 유도체, 이의 제조방법 및 용도
WO2017078385A1 (en) Formulation of modified interleukin-7 fusion protein
WO2016209062A1 (en) Two-component bioink, 3d biomaterial comprising the same and method for preparing the same
Jun Reactive blending of biodegradable polymers: PLA and starch
WO2018186575A1 (ko) 광가교가 가능한 형상기억고분자 및 이의 제조방법
WO2016159734A1 (ko) 카테콜 기 및 산화된 카테콜 기가 도입되어 가교된 키토산으로 코팅된 무출혈 주사바늘
WO2010131916A2 (ko) siRNA 접합체 및 그 제조방법
WO2016043547A1 (ko) 조직 수복용 조성물 및 이의 제조방법
WO2010117248A2 (ko) 피에이치 민감성 그라프트 공중합체, 이의 제조방법 및 이를 이용한 고분자 마이셀
WO2018147618A1 (ko) 폴리아마이드-이미드 필름의 제조방법
WO2020159085A1 (ko) 폴리아미드 수지 필름 및 이를 이용한 수지 적층체
WO2018147611A1 (ko) 폴리아마이드-이미드 필름의 제조방법
WO2019074314A1 (ko) 그라프트 공중합체의 가교물을 포함하는 하이드로젤 및 이의 제조방법
WO2009107987A2 (en) Ph-sensitive polyethylene oxide co-polymer and synthetic method thereof
WO2020046056A1 (ko) 라벨용 점착 조성물, 이의 제조 방법, 이를 포함하는 점착 시트 및 물품
WO2019216744A2 (ko) 클릭화학 반응을 통해 필러 또는 약물전달체로 사용하기 위한 주사제형 조성물
WO2019235742A1 (ko) 금속-유기프레임워크 화합물을 포함하는 항균제, 이를 포함하는 항균 실리콘 및 항균 하이드로겔
WO2009134042A2 (ko) 가지형 올리고펩타이드-함유 고리형 포스파젠 삼량체, 그 제조방법, 및 그것 을 포함하는 약물 전달체
WO2022010288A1 (ko) 관능화된 열가소성 폴리우레탄, 이의 제조방법 및 이를 이용한 의료용 고기능성 복합재료의 제조 방법 및 이를 포함하는 의료장치
WO2017142164A1 (ko) 항암제 약물전달체 및 이의 제조방법
KR102132494B1 (ko) 졸-겔 전이 온도 감응성을 갖는 글리콜 키틴 유도체, 이의 제조방법 및 이를 가교화하여 제조된 하이드로겔
WO2024147395A1 (ko) 형상기억특성을 갖는 실리콘 고무 및 이의 제조 방법
WO2018088775A1 (ko) 세포막-모방 브러쉬 고분자 및 그 제조방법
WO2020027571A1 (ko) 상처 치료용 의약 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13851035

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015539491

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14438951

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13851035

Country of ref document: EP

Kind code of ref document: A1