WO2019235742A1 - 금속-유기프레임워크 화합물을 포함하는 항균제, 이를 포함하는 항균 실리콘 및 항균 하이드로겔 - Google Patents

금속-유기프레임워크 화합물을 포함하는 항균제, 이를 포함하는 항균 실리콘 및 항균 하이드로겔 Download PDF

Info

Publication number
WO2019235742A1
WO2019235742A1 PCT/KR2019/005403 KR2019005403W WO2019235742A1 WO 2019235742 A1 WO2019235742 A1 WO 2019235742A1 KR 2019005403 W KR2019005403 W KR 2019005403W WO 2019235742 A1 WO2019235742 A1 WO 2019235742A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
pyridyl
bis
antimicrobial
hydrogel
Prior art date
Application number
PCT/KR2019/005403
Other languages
English (en)
French (fr)
Inventor
이도남
권기학
Original Assignee
광운대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180064185A external-priority patent/KR102103876B1/ko
Priority claimed from KR1020190034804A external-priority patent/KR102264090B1/ko
Application filed by 광운대학교 산학협력단 filed Critical 광운대학교 산학협력단
Publication of WO2019235742A1 publication Critical patent/WO2019235742A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • A61K33/30Zinc; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • A61K33/34Copper; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/06Ointments; Bases therefor; Other semi-solid forms, e.g. creams, sticks, gels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/18Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing inorganic materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/42Use of materials characterised by their function or physical properties
    • A61L15/46Deodorants or malodour counteractants, e.g. to inhibit the formation of ammonia or bacteria
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/42Use of materials characterised by their function or physical properties
    • A61L15/60Liquid-swellable gel-forming materials, e.g. super-absorbents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F1/00Compounds containing elements of Groups 1 or 11 of the Periodic System
    • C07F1/08Copper compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System
    • C07F15/06Cobalt compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F3/00Compounds containing elements of Groups 2 or 12 of the Periodic System
    • C07F3/06Zinc compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the present invention relates to an antimicrobial agent comprising a metal-organic framework compound, an antimicrobial silicone resin comprising the same, and an antimicrobial hydrogel comprising the same.
  • the Metal-Organic Framework has been used in the last few decades for a wide range of applications such as energy-related gas storage (H 2 and CH 4 ), CO 2 capture / separation, hydrocarbon separation, catalytic field and proton conduction. Has attracted much attention in the field. Recently, there have been attempts to exploit the high porosity and regular structural properties of metal-organic frameworks, for example, to transport contrast agents or pharmaceutical compounds.
  • transition metal ions and metal nanoparticles including Cu, Zn, Co, and Ag are attracting attention as new antibacterial agents affecting bacterial cells.
  • Metal nanoparticles exhibit excellent antibacterial activity due to inherent properties such as nanometer effect and high surface area.
  • excess metal ions reached in the form of nanoparticles are expected to be harmful to normal tissue as well as bacteria.
  • Korean Patent Laid-Open Publication No. 2009-0046888 et al. Discloses a method for producing a metal-organic framework including copper, but there is no report on the possibility of activity of the antimicrobial agent.
  • the present invention has been made to provide an effective antimicrobial agent comprising a metal-organic framework.
  • the present invention was to provide a silicone resin having an antimicrobial activity including a metal-organic framework. It is another object of the present invention to provide a hydrogel having antimicrobial activity, including a metal-organic framework.
  • the present invention provides an antimicrobial agent comprising a metal-organic framework (MOF) of the formula (1).
  • MOF metal-organic framework
  • M is Cu, Zn or Co
  • L 1 is a hydrocarbon group having two carboxylate groups as substituents
  • L 2 is a bis (4-pyridyl) compound or a derivative thereof
  • x is a number from 1 to 10.
  • the present invention provides an antimicrobial silicone resin comprising the metal-organic framework (MOF) and the silicone resin of the formula (1).
  • MOF metal-organic framework
  • the present invention Formula 1 provides an antimicrobial hydrogel comprising a metal-organic framework (MOF) and a hydrogel.
  • MOF metal-organic framework
  • the antimicrobial agent including the metal-organic framework compound of the present invention has the advantage of excellent antibacterial activity and very safe.
  • the present invention has the effect of providing a method for producing a metal-organic framework compound under relatively mild conditions using water as a solvent.
  • the antimicrobial silicone resin including the metal-organic framework compound and the silicone resin of the present invention has an advantage of being excellent in antibacterial activity against various bacteria and can be used very safely where a silicone product is needed.
  • the present invention has the effect of providing a hydrogel excellent in antimicrobial activity.
  • the antimicrobial hydrogel of the present invention has the advantage of showing antimicrobial activity without degrading the inherent absorption capacity of the hydrogel.
  • the present invention has the effect of providing a method for preparing a hydrogel having antimicrobial properties by a relatively simple method by mixing a metal-organic framework compound.
  • MOFs metal-organic frameworks
  • present inventors invented an antibacterial material having antimicrobial properties by applying the MOF to various industrial materials.
  • MOF was designed in consideration of the inherent properties of metal and organic ligands such as oxidation number, counter ion, coordination mode, ligand size and crosslinking properties.
  • the present invention provides an antimicrobial agent comprising the MOF compound of Formula 1 below.
  • M is Cu, Zn or Co
  • L 1 is a hydrocarbon group having two carboxylate groups as substituents
  • L 2 is a bis (4-pyridyl) compound or a derivative thereof
  • x is a number from 1 to 10.
  • the MOF is harmless to the human body because the water molecules are crystallized.
  • the metal of the MOF compound of the present invention is copper, zinc or cobalt. Copper, zinc or cobalt in the present invention can increase the antibacterial effect.
  • L1 of this invention is a hydrocarbon group containing two carboxylate groups as a substituent.
  • L1 is preferably the following Chemical Formula 2.
  • R is a C1-C7 linear or branched hydrocarbon group which may have a bond or a single bond or a double bond.
  • L1 is more preferably malonat, succinate, fumarate, glutarate, adipate or muconate.
  • the metal of the MOF of the present invention is a L2 ligand in which bis (4-pyridyl) or a derivative thereof is bound.
  • the bis (4-pyridyl) or a derivative thereof is preferably represented by the following Chemical Formula 3.
  • A is a C1-C7 linear or branched hydrocarbon group which may have a bond or a single bond or a double bond.
  • Bis (4-pyridyl) is more preferably 4,4'-bipyridine (bpy), 1,2-bis (4-pyridyl) ethane (1,2-bis (4) -pyridyl) ethane, bpa), 1,2-bis (4-pyridyl) ethene (1,2-bis (4-pyridyl) ethene, bpe) or 1,3-bis (4-pyridyl) propane (1 , 3-bis (4-pyridyl) propane, bpp).
  • 1 illustrates a structural formula of [Cu 2 (Glu) 2 ( ⁇ L 2)] ⁇ (H 2 O) as an example of the metal-organic framework compound of the present invention.
  • 1 represents a copper atom
  • 2 represents an oxygen atom of an L1 ligand
  • 3 represents a nitrogen atom of an L2 ligand
  • 4 represents a carbon atom of an L1 ligand
  • some structures of the L1 ligand and the L2 ligand are omitted in the structural formula of FIG. 1. .
  • the metal coordinates with a part of the ligand to form a second building unit, and the coordination sites of the remaining organic ligands act as linkers to form a 2D framework, and the 2D framework is again linked through a linker. It has a 3D skeletal structure.
  • the above structures are connected regularly to provide determinism and a certain amount of empty space.
  • Solvate molecules in the MOF compounds of the present invention are trapped in one-dimensional (1D) channels.
  • the metal-organic framework of the present invention has a pore volume of 10-40% by volume, preferably 15-35% by volume, according to PLATON analysis.
  • the metal-organic framework compounds of the present invention all contain well-defined one-dimensional (1D) channels and have a pore shape with suitable pore size and pore volume. It is believed that these pores and pore volumes provide excellent antibacterial activity.
  • the metal-organic framework compound of formula 1 of the present invention is not limited but is preferably prepared by the following method.
  • a metal (II) salt compound, a hydrocarbon compound having two carboxylate groups, and a pyridyl compound are mixed with water and then dissolved. After the reaction in a high pressure vessel at 25 ⁇ 100 °C for 12 hours to 10 days. After cooling the reaction solution, the resulting crystals are recovered.
  • the metal (II) salt compound may be a nitrate, sulfate, carbonate or chloride salt of the metal.
  • Hydrocarbon compound having two carboxylate groups as the substituent is preferably HOOCRCOOH (R is a straight or branched chain hydrocarbon group having 1 to 7 carbon atoms which may have a bond or a single bond or a double bond) or sodium salt thereof, calcium Salts or potassium salts.
  • R is a straight or branched chain hydrocarbon group having 1 to 7 carbon atoms which may have a bond or a single bond or a double bond
  • sodium salt thereof calcium Salts or potassium salts.
  • ultrasonic waves When mixing with water, ultrasonic waves may be used to increase solubility, and NaOH aqueous solution may be added if necessary.
  • the metal-organic framework compounds of the present invention have antimicrobial activity.
  • the compounds of the present invention are particularly effective against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumoniae and Methicillin-resistant Staphylococcus, MR. Excellent antimicrobial activity against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumoniae and Methicillin-resistant Staphylococcus, MR. Excellent antimicrobial activity against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumoniae and Methicillin-resistant Staphylococcus, MR. Excellent antimicrobial activity against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumoniae and Methicillin-resistant Staphylococcus, MR. Excellent anti
  • the present invention provides an antimicrobial product comprising the antimicrobial agent.
  • the antimicrobial product may preferably be an antimicrobial filter.
  • the antimicrobial filter may be prepared by simply mixing the filter component, and may be manufactured in a nonwoven form by mixing and spinning a polymer to prepare a fiber.
  • the present invention provides an antimicrobial silicone resin comprising the organo-metal framework compound of Formula 1 and a silicone resin.
  • Silicon is a polymer formed by siloxane bonds (Si-O-Si) and has both inorganic and organic properties due to its molecular structure.
  • Si-O-Si siloxane bonds
  • the inorganic properties due to the siloxane bonds in the molecular structure it has characteristics such as heat resistance, chemical stability, wear resistance, cold resistance, excellent weather resistance, electrical properties, low compression set, permanent distortion, and excellent reactivity, solubility, workability due to organic properties It has a back. Therefore, recently, it is widely used in various fields including electronic devices, automobiles, architecture, medical care, and food.
  • the present invention was prepared by mixing the metal-organic framework compound of the present invention in silicone to produce an antimicrobial silicone resin.
  • the antimicrobial silicone resin of the present invention preferably includes an organic polysiloxane including a repeating unit represented by Formula 4 below.
  • R 1 is hydrogen or an alkyl group or alkenyl group having 1 to 6 carbon atoms
  • R 2 is a functional group selected from the group consisting of hydrogen, hydroxy, an alkyl group having 1 to 10 carbon atoms, and an aryl group.
  • the organopolysiloxane preferably has a degree of polymerization of 100 to 10,000.
  • the antimicrobial silicone resin of the present invention may be prepared by mixing a metal-organic framework compound and a silicone resin.
  • the step of mixing the metal-organic framework compound and the silicone resin is preferably as follows, but not limited thereto.
  • It can be prepared by adding a metal-organic framework compound to the polysiloxane main body of a two-component, room temperature vulcanization (RTV) silicone rubber, mixing and adding the curing agent, and then curing it at room temperature.
  • RTV room temperature vulcanization
  • the polysiloxane motif preferably includes organic polysiloxanes comprising repeating units of formula (4).
  • R 1 is hydrogen or an alkyl group or alkenyl group having 1 to 6 carbon atoms
  • R 2 is a functional group selected from the group consisting of hydrogen, hydroxy, an alkyl group having 1 to 10 carbon atoms, and an aryl group.
  • the curing agent may include a curing agent such as acetic acid type, alcohol type, oxime type, amine type, amide type, aminoxy type, acetone type, metal catalyst type of the following formula (5).
  • R is selected from the group consisting of hydrogen, acetoxy, alkoxy, oxime, amine, amide, amineoxy and carbonyl It is a functional group.
  • the antimicrobial silicone resin of the present invention may contain 0.001 to 5% by weight, preferably 0.05 to 1% by weight, of the metal-organic framework compound based on the total weight of the antimicrobial silicone resin.
  • the metal-organic framework is included in the above range, the antimicrobial silicone resin may have an antimicrobial effect, and the mixing is appropriate and economical.
  • the present invention provides an antibacterial product comprising antibacterial silicone.
  • the present invention provides an antimicrobial hydrogel comprising the metal-organic framework compound of Formula 1 and a hydrogel.
  • Hydrogel is a gel (gel) with water as a dispersion medium, the hydrosol is formed by the loss of fluidity due to cooling or hydrophilic polymer having a three-dimensional network structure and microcrystalline structure containing water to expand or expand. Hydrogels of electrolyte polymers often exhibit high absorbency and have been widely used as absorbent polymers.
  • Hydrogels do not dissolve in water and have the property of absorbing water more than its own weight. By using this property, we can effectively treat wounds without scars by creating a wet environment by absorbing exudates at the wound site, and have various uses such as being used to prevent adhesion of the intestines during surgery. In particular, recently used in contact lenses and biomedical research has been made in various fields such as artificial disks, artificial cartilage.
  • hydrogels have the advantage of being able to create a wet environment because of their hydrophobic properties, but because they do not have antimicrobial activity in themselves, infection by bacteria may be a problem.
  • the present invention prepared an antimicrobial hydrogel by mixing the metal-organic framework compound of the present invention in a hydrogel.
  • hydrogel may refer to a three-dimensional network structure in which a hydrophilic polymer is crosslinked by covalent or non-covalent bonds.
  • the polymer used in the production of the antimicrobial hydrogel of the present invention is a variety of synthetics such as polyethylene glycol, polyvinyl alcohol (PVA), hyaluronic acid (hyaluronic acid), alginic acid, pectin, chitosan (chitosan), etc. Or natural polymers, preferably polyethylene glycol.
  • synthetics such as polyethylene glycol, polyvinyl alcohol (PVA), hyaluronic acid (hyaluronic acid), alginic acid, pectin, chitosan (chitosan), etc.
  • natural polymers preferably polyethylene glycol.
  • the hydrogel of the present invention may be produced by a crosslinking reaction between a polymer having SH, NH 2 , an epoxide group, and the like at the end and a polymer having a double bond-containing functional group at the end.
  • the functional group including the double bond at the terminal may be an acrylic acid group, methacrylic acid group, glycidyl methacrylate, and the like, but the present invention is not limited thereto.
  • Hydrogel of the present invention may have a degree of polymerization of 100 ⁇ 10,000.
  • the metal-organic framework compound may be included in an amount of 0.001 to 5% by weight, preferably 0.05 to 1% by weight, based on the total weight of the antibacterial hydrogel.
  • the metal-organic framework is included in the above range, the moisture content of the antimicrobial hydrogel is excellent and may exhibit an excellent antimicrobial effect.
  • the mixing of the metal-organic framework compound and the hydrogel is appropriate and economical.
  • the production method of the antimicrobial hydrogel including the metal-organic framework compound of the present invention will be described in detail using polyethylene glycol sulfhydryl (4-arm PEG-SH) and polyethylene glycol diacrylate (PEG-DA) as an example.
  • the present invention is not limited to the following production method.
  • the antimicrobial hydrogel including the metal-organic framework compound of the present invention and the hydrogel
  • PEG-SH polyethylene glycol sulfhydryl (4-arm PEG-SH) in the first E-tube and dissolve it in Phosphate buffer saline (PBS).
  • PBS Phosphate buffer saline
  • linear polyethylene glycol diacrylate (linear PEG-DA) in the second E-tube, and add PBS to it.
  • the MOF is placed in the first E-tube and dispersed.
  • reaction temperature becomes like this. Preferably it is 20-70 degreeC.
  • the temperature the faster the chemical crosslinking.
  • the pH of the solvent the better the reaction.
  • the pH is preferably about 7.5 to 9 and the total concentration of the solute (polymer) can be adjusted to 1 to 15wt%. The higher the solute concentration, the higher the strength of the hydrogel.
  • Antimicrobial hydrogels comprising the metal-organic framework compounds and hydrogels of the present invention have antimicrobial activity.
  • the present invention provides an antimicrobial product comprising an antimicrobial hydrogel comprising a metal-organic framework compound.
  • antimicrobial products include antimicrobial nonwovens, antimicrobial wet bands, dressings, cartilage tissue, and contact lenses.
  • the MOF is placed in the first E-tube and distributed by pipette.
  • the pipette is transferred to a mold to form a hydrogel in which the MOF is physically collected.
  • the total polymer weight was 33.6 mg
  • the volume of the solvent was 300 uL
  • the concentration of the polymer was about 10 wt%.
  • Antimicrobial hydrogels were prepared in the same manner as in Preparation Example 3-1, except that [Co 2 (Glu) 2 (bpe)] ⁇ 6 (H 2 O) was used instead of [Co 2 (Glu) 2 (bpe)]. .
  • the MOF-containing antimicrobial hydrogel of the present invention has a higher water content than the hydrogel alone, and thus can be usefully used in products requiring water.
  • Sample preparation Samples should be prepared according to the concentration to be tested.
  • the test method is KCL-FIR-1002: 2011 and the test environment is 37.0 ⁇ 0.2 °C.
  • Test Items Test result Initial concentration (CFU / mL) Concentration after 24 hours (CFU / mL) Cell loss rate (%) Antibacterial test by Staphylococcus aureus BLANK 1.9 x 10 4 8.2 x 10 5 - Cu 2 (Glu) 2 (bpa) (0.002%) 1.9 x 10 4 ⁇ 10 99.9 Cu 2 (Glu) 2 (bpa) (0.01%) 1.9 x 10 4 ⁇ 10 99.9 Antibacterial test by E.
  • CFU Colony Forming Unit
  • MRSA Staphylococcus aureus subsp. Aureus ATCC 33591
  • the MOF of the present invention has excellent antibacterial effect against various bacteria.
  • Test piece manufacturing method for the antimicrobial test is as follows.
  • step (2) pour the mixture of step (1) into the mold and spread it evenly and then cure at room temperature.
  • the antimicrobial test method is as follows.
  • Sample preparation A 5 cm x 5 cm (within thickness 1 cm) test piece is prepared using a silicone resin composition.
  • Control Piece Prepare the control piece using a stomacher film 5cm x 5cm.
  • test specimen or control Place the test specimen or control in a petri dish and inoculate the test surface with an initial bacterial count of 1.0-4.0x10 5 CFU / mL.
  • the test method is KCL-FIR-1003: 2011 and the test environment is 37.0 ⁇ 0.2 °C.
  • Test Items Test result Initial concentration (CFU / mL) Concentration after 24 hours (CFU / mL) Cell loss rate (%) Antibacterial test by E. coli BLANK 1.2 x 10 5 3.8 x 10 6 - Cu-Glu-Bpa / Si 1.2 x 10 5 4.3 x 10 5 88.6 Antibacterial test by Staphylococcus aureus BLANK 1.6 x 10 5 2.2 x 10 6 - Cu-Glu-Bpa / Si 1.6 x 10 5 2.7 x 10 5 87.7 Antimicrobial test by MRSA BLANK 3.0 x 10 5 9.8 x 10 5 - Cu-Glu-Bpa / Si 3.0 x 10 5 1.8 x 10 5 81.6
  • CFU Colony Forming Unit
  • the antimicrobial silicone resin including the metal-organic framework of the present invention has excellent antibacterial effect against various bacteria.
  • Antimicrobial effect was measured by the following procedure using an antibacterial hydrogel containing [Cu 2 (Glu) 2 (bpe)]. 6 (H 2 O) and an antibacterial hydrogel containing [Co 2 (Glu) 2 (bpe)]. It was. The antibacterial effect was measured in the same manner for PEG hydrogel containing no MOF as a control.
  • Control Piece Prepare the control piece using a stomacher film 5cm x 5cm.
  • the test method is KCL-FIR-1003: 2018 and the test environment is 37.0 ⁇ 0.2 °C.
  • Test Items Test result Initial concentration (CFU / mL) Concentration after 24 hours (CFU / mL) Cell loss rate (%) Antibacterial test by E. coli BLANK 1.1 x 10 5 5.9 x 10 6 - Cu-Glu-Bpe / PEG 1.1 x 10 5 ⁇ 10 99.9 Antibacterial test by Staphylococcus aureus BLANK 3.5 x 10 5 6.7 x 10 6 - Cu-Glu-Bpe / PEG 3.5 x 10 5 ⁇ 10 99.9 Antibacterial test by E.
  • CFU Colony Forming Unit
  • the antimicrobial hydrogel resin including the metal-organic framework of the present invention has excellent antibacterial effect against various bacteria.
  • the antimicrobial test results of the PEG hydrogel carried out for the comparative test shows that the PEG hydrogel has little antimicrobial properties, it can be seen that the antimicrobial properties of the present invention is not due to the hydrogel itself.
  • the metal-organic framework compound of the present invention can be used as an antimicrobial agent, and the silicone resin and hydrogel containing the compound can impart antimicrobial activity in the field of use of silica resin and the field of hydrogel use, respectively.

Abstract

본 발명은 금속-유기프레임워크 화합물을 포함하는 항균제, 금속-유기프레임워크 및 실리콘 수지를 포함하는 항균 실리콘 수지 및 금속-유기프레임워크 및 하이드로겔 포함 항균 하이드로겔에 관한 것이다.

Description

금속-유기프레임워크 화합물을 포함하는 항균제, 이를 포함하는 항균 실리콘 및 항균 하이드로겔
본 발명은 금속-유기프레임워크 화합물을 포함하는 항균제, 이를 포함하는 항균 실리콘 수지 및 이를 포함하는 항균 하이드로겔에 관한 것이다.
금속-유기프레임워크(Metal-Organic Framework, MOF)는 지난 몇 십 년 동안, 에너지 관련 가스 저장 (H2 및 CH4), CO2 포집 / 분리, 탄화수소 분리, 촉매분야 및 양성자 전도와 같은 광범위한 응용 분야에서 많은 관심을 끌어 왔다. 최근에 금속-유기프레임워크의 높은 다공성 및 규칙적인 구조 특성을 활용하고자 하는 시도가 있었는데 예를 들면 조영제 또는 제약 화합물의 수송에의 활용을 위한 시도가 있었다.
한편, 다제 내성 박테리아가 생겨나서 전통 약물의 발전을 위협하면서, Cu, Zn, Co, Ag를 포함하는 전이 금속 이온과 금속 나노 입자가 박테리아 세포에 영향을 미치는 새로운 항균제로 주목 받고 있다. 금속 나노 입자는 나노 미터 효과 및 높은 표면적과 같은 고유한 특성으로 인해 우수한 항 박테리아 활성을 나타낸다. 그러나, 나노 입자 형태로 도달한 과도한 금속 이온은 박테리아뿐만 아니라 정상 조직에도 해로울 것으로 예상되고 있다.
이 문제를 해결하기 위해 많은 연구자들이 생물-활성 금속 이온을 유기 리간드에 배위시킴으로써 금속 이온을 포착하려고 하였다. 관련하여, 대한민국 공개특허 2009-0046888 등에서 구리를 포함하는 금속 유기 골격 물질의 제조 방법을 제시하고 있으나 상기 문헌에는 항균제의 활성 가능성에 대한 보고는 없다.
이에 본 발명은 금속-유기프레임워크를 포함하는 유효한 항균제를 제공하고자 하였다. 또한 본 발명은 금속-유기프레임워크를 포함하여 항균 활성을 갖는 실리콘 수지를 제공하고자 하였다. 또한 본 발명은 금속-유기프레임워크를 포함하여 항균 활성을 갖는 하이드로겔을 제공하고자 하였다.
상기 목적 달성을 위하여, 본 발명은 하기 화학식 1의 금속-유기프레임워크(MOF)를 포함하는 항균제를 제공한다.
[화학식 1]
[M2(L1)2(μ-L2)]·x(H2O)
상기 식에서 M은 Cu, Zn 또는 Co 이고,
L1은 치환기로 2개의 카복실레이트기를 가지는 탄화수소기이고,
L2는 비스(4-피리딜) 화합물 또는 그 유도체이고
x는 1 내지 10의 수이다.
본 발명은 상기 화학식 1의 금속-유기프레임워크(MOF) 및 실리콘 수지를 포함하는 항균 실리콘 수지를 제공한다.
본 발명은 상기 화학식 1은 금속-유기프레임워크(MOF) 및 하이드로겔을 포함하는 항균 하이드로겔을 제공한다.
본 발명의 금속-유기프레임워크 화합물 포함 항균제는 항균 활성이 우수하고 매우 안전하다는 장점이 있다. 본 발명은 금속-유기프레임워크 화합물을 물을 용매로 하는 비교적 마일드한 조건에서 제조할 수 있는 방법을 제공하는 효과가 있다.
본 발명의 금속-유기프레임워크 화합물 및 실리콘 수지를 포함하는 항균 실리콘 수지는 다양한 세균에 대해 항균활성이 우수하여 실리콘 제품을 필요로 하는 곳에 매우 안전하게 사용될 수 있다는 장점이 있다.
본 발명은 항균 활성이 우수한 하이드로겔을 제공하는 효과가 있다. 특히 본 발명의 항균 하이드로겔은 하이드로겔 본래의 흡수능력 저하 없이 항균 활성을 보이는 장점이 있다. 본 발명은 금속-유기프레임워크 화합물을 혼합하여 비교적 간단한 방법으로 항균성을 갖는 하이드로겔을 제조하는 방법을 제공하는 효과가 있다.
도 1은 본 발명의 금속-유기프레임워크 화합물의 구조식을 도시한 것이다.
본 발명자들은 금속-유기프레임워크(MOF)가 항균 활성을 갖는 것을 발견하고 MOF를 포함하는 항균제를 발명하였다. 또한 본 발명자들은 상기 MOF를 다양한 산업분야 소재에 적용시켜 항균성을 갖는 항균 소재를 발명하였다. 본 발명에서 MOF는 산화수, 상대 이온, 배위 모드, 리간드의 크기 및 가교 특성과 같은 금속 및 유기 리간드의 고유한 특성을 고려하여 설계되었다.
본 발명은 하기 화학식 1의 MOF 화합물을 포함하는 항균제를 제공한다.
[화학식 1]
[M2(L1)2(μ-L2)]·x(H2O)
상기 식에서 M은 Cu, Zn 또는 Co이고,
L1은 치환기로 2개의 카복실레이트기를 가지는 탄화수소기이고,
L2는 비스(4-피리딜) 화합물 또는 그 유도체이고
x는 1 내지 10의 수이다.
상기 MOF는 물 분자가 결정화 되어 있어 인체에 무해하다.
본 발명의 MOF 화합물의 금속은 구리, 아연 또는 코발트이다. 본 발명에서 구리, 아연 또는 코발트는 항균 효과를 높여 줄 수 있다.
본 발명의 L1은 치환기로 2개의 카복실레이트기를 포함한 탄화수소기이다. 상기 L1은 바람직하게는 하기 화학식 2와 같다.
[화학식 2]
-OOC-R-COO-
상기 식에서 R은 결합, 또는 단일결합이나 이중결합을 가질 수 있는 탄소수 1~7의 직쇄 또는 분지쇄의 탄화수소기이다.
L1은 더욱 바람직하게는 말로네이트(malonat), 석시네이트(succinate), 퓨마레이트(fumarate), 글루타레이트(Glutarate), 아디페이트(adipate) 또는 뮤코네이트(muconate)이다.
본 발명의 MOF의 금속은 L2 리간드로 비스(4-피리딜) 또는 그 유도체가 결합되어 있다. 상기 비스(4-피리딜) 또는 그 유도체는 바람직하게는 하기 화학식 3와 같다.
[화학식 3]
Figure PCTKR2019005403-appb-I000001
상기 식에서
A는 결합, 또는 단일결합이나 이중결합을 가질 수 있는 탄소수 1~7의 직쇄 또는 분지쇄의 탄화수소기이다.
비스(4-피리딜)은 더욱 바람직하게는 4,4'-비피리딘(4,4'-bipyridine, bpy), 1,2-비스(4-피리딜)에탄(1,2-bis(4-pyridyl)ethane, bpa), 1,2-비스(4-피리딜)에텐(1,2-bis(4-pyridyl)ethene, bpe) 또는 1,3-비스(4-피리딜)프로판(1,3-bis(4-pyridyl)propane, bpp)이다.
도 1은 본 발명의 금속-유기프레임워크 화합물의 일 예로 [Cu2(Glu)2(μ-L2)]x(H2O)의 구조식을 도시한 것이다. 도 1에서 1은 구리원자, 2는 L1 리간드의 산소원자, 3은 L2 리간드의 질소원자 및 4는 L1 리간드의 탄소원자를 의미하고, 도 1의 구조식에서 L1 리간드 및 L2 리간드의 일부 구조는 생략하였다. 본 발명의 MOF는 금속이 리간드의 일부와 배위하여 second building unit를 형성하고 나머지 유기 리간드의 배위 자리가 링커(linker) 작용을 하여 2D 프레임워크(2D framework)을 이루고 2D 프레임워크는 다시 링커를 통해 3D 골격구조를 갖는다. 위 구조는 규칙적으로 연결되어 결정성과 일정한 크기의 빈 공간을 제공한다.
본 발명의 MOF 화합물에서 용매화 물 분자는 1 차원 (1D) 채널에 포획되어있다. 본 발명의 금속-유기프레임워크는 PLATON 분석에 의하면 각각 공극 부피가 10~40부피%, 바람직하게는 15~35부피%를 가지고 있다. 본 발명의 금속-유기프레임워크 화합물은 모두 규격화된(well-defined) 1 차원(1D) 채널을 포함하고 있으며, 적당한 기공 크기와 공극 부피를 가진 기공 모양을 가지고 있다. 이러한 기공 및 공극부피가 항 박테리아 활성을 우수하게 하는 것으로 생각된다.
본 발명의 상기 화학식 1의 금속-유기프레임워크 화합물은 제한되지는 않지만 바람직하게는 하기 방법으로 제조된다.
본 발명은 금속(II) 염 화합물, 2개의 카복실레이트기를 가지는 탄화수소 화합물 및 피리딜 화합물을 물에 혼합한 후 용해시킨다. 이후 고압용기에서 25~100℃ 에서 12시간~10일 동안 반응시킨다. 상기 반응 용액을 냉각시킨 후 생성된 결정을 회수한다.
상기 금속(II) 염 화합물은 금속의 질산염, 황산염, 탄산염, 염화염일 수 있다.
상기 치환기로 2개의 카복실레이트기를 가지는 탄화수소 화합물은 바람직하게는 HOOCRCOOH (R은 결합, 또는 단일결합이나 이중결합을 가질 수 있는 탄소수 1~7의 직쇄 또는 분지쇄의 탄화수소기) 또는 그의 나트륨염, 칼슘염 또는 칼륨염이다.
물에 혼합할 때는 용해도를 높이기 위하여 초음파를 사용할 수 있으며, 필요 시 NaOH 수용액을 추가할 수 있다.
본 발명의 금속-유기프레임워크 화합물은 항균 활성을 가진다.
본 발명의 화합물은 특히 대장균(Escherichia coli), 황색포도상구균(Staphylococcus aureus), 녹농균(Pseudomonas aeruginosa), 폐렴균(Klebsiella pneumoniae) 및 메티실린 내성 황색포도상구균(Methicillin-Resistant Staphylococcus Aureus, MRSA)와 같은 세균에 대한 항균활성이 우수하다.
본 발명의 다른 일 구현예에 따르면, 본 발명은 상기 항균제를 포함하는 항균 제품을 제공한다.
상기 항균 제품은 바람직하게는 항균 필터일 수 있다. 상기 항균 필터는 필터 성분에 단순 혼합하여 제조할 수 있고, 섬유를 제조할 수 있는 고분자에 혼합하여 방사하여 부직포 형태로 제조할 수 있다.
본 발명은 상기 화학식 1의 유기-금속프레임워크 화합물 및 실리콘 수지를 포함하는 항균 실리콘 수지를 제공한다.
실리콘(silicone)은 실록산 결합(Si-O-Si)에 의해 연결되어 생긴 고분자로 이러한 분자구조로 인하여 무기적인 성질과 유기적인 성질을 동시에 갖고 있다. 즉, 분자 구조상 실록산 결합에 기인하는 무기적 특성 때문에 내열성, 화학적 안정성, 내마모성, 내한성, 우수한 내후성, 전기 특성, 저압축 영구 왜곡성 등의 특성을 지니고 있고 유기적 특성으로 인하여 우수한 반응성, 용해성, 작업성 등을 가지고 있다. 그러므로 최근, 전자 기기, 자동차, 건축, 의료, 식품을 비롯한 다양한 분야에서 널리 사용되고 있다.
그러나 실리콘은 고온 다습한 환경에서 곰팡이가 발생하는 문제가 있다. 이러한 문제점을 해결하기 위하여 본 발명은 실리콘에 본 발명의 금속-유기프레임워크 화합물을 혼합하여 항균 실리콘 수지를 제조하였다.
일 실시예에서 본 발명의 항균 실리콘 수지는 바람직하게는 하기 화학식 4의 반복 단위를 포함하는 유기 폴리실록산을 포함한다.
[화학식 4]
-[Si(R1)(R2)-O]-
상기 식에서
R1은 수소 또는 탄소 수 1 내지 6인 알킬기 또는 알케닐기이고,
R2는 수소, 히드록시, 탄소 수 1 내지 10인 알킬기 및 아릴기로 이루어진 군에서 선택되는 작용기이다.
상기 유기폴리실록산은 바람직하게는 100~10,000의 중합도를 가진다.
본 발명의 항균 실리콘 수지는 금속-유기프레임워크 화합물과 실리콘 수지를 혼합하여 제조할 수 있다. 상기 금속-유기프레임워크 화합물과 실리콘 수지를 혼합하는 단계는 바람직하게는 하기와 같지만 이에 제한적이지는 않다.
2액형이고 상온 경화형(Room Temperature Vulcanization, RTV) 실리콘 고무의 폴리실록산 주제에 금속-유기프레임워크 화합물을 넣고 혼합한 후 경화제를 넣고 다시 혼합하고 이후 이를 실온에서 경화시켜 제조할 수 있다.
상기 폴리실록산 주제는 바람직하게는 하기 화학식 4의 반복 단위를 포함하는 유기 폴리실록산을 포함한다.
[화학식 4]
-[Si(R1)(R2)-O]-
상기 식에서
R1은 수소 또는 탄소수 1 내지 6인 알킬기 또는 알케닐기이고,
R2는 수소, 히드록시, 탄소수 1 내지 10인 알킬기 및 아릴기로 이루어진 군에서 선택되는 작용기이다.
상기 경화제는 하기 화학식 5의 초산형, 알콜형, 옥심형, 아민형, 아미드형, 아미녹시형, 아세톤형, 금속 촉매형 등의 경화제를 포함할 수 있다.
[화학식 5]
CH3SiR3
상기 식에서
R은 수소(hydro), 아세톡시(acetoxy), 알콕시(alkoxy), 옥심(oxime), 아민(amine), 아마이드(amide), 아민옥시(amineoxy) 및 카르보닐(carbonyl)로 이루어지는 그룹으로부터 선택되는 작용기이다.
일 실시예에서 본 발명의 항균 실리콘 수지는 금속-유기프레임워크 화합물을 항균 실리콘 수지 총 중량 대비 0.001 내지 5중량%, 바람직하게는 0.05 내지 1중량% 포함할 수 있다. 금속-유기프레임워크가 상기 범위로 포함될 때 항균 실리콘 수지가 항균 효과를 나타낼 수 있으며 혼합이 적절하게 이루어지며 경제적이다.
본 발명은 항균 실리콘를 포함하는 항균 제품을 제공한다.
상기 항균 제품으로 전기밥솥, 냉장고, 전기 포트 등의 각종 전기/전자 제품용 패킹, 식품을 보존하는 케이스 등의 식품용 패킹, 카테터(catheter) 등의 각종 의료용 튜브, 물안경, 스노우쿨, 마우스피스, 골프채 그립 등 레저산업 용품 등을 들 수 있다.
본 발명은 상기 화학식 1의 금속-유기프레임워크 화합물 및 하이드로겔을 포함하는 항균 하이드로겔을 제공한다.
하이드로겔은 물을 분산매로 하는 겔(gel)로, 하이드로졸이 냉각으로 인하여 유동성을 상실하거나 3차원 망목 구조와 미결정 구조를 갖는 친수성 고분자가 물을 함유하여 팽창하거나 하여 형성된다. 전해질 고분자의 히드로겔은 고흡수성을 나타내는 것이 많으며 흡수성 고분자로서 다방면에 실용화되어 있다.
하이드로겔은 물에 녹지 않고 자체 무게보다 여러 배 이상의 물을 흡수할 수 있는 특성이 있다. 이러한 특성을 이용하여 상처 부위에서 삼출물 흡수에 의한 습윤 환경을 조성하여 흉터 없이 효과적으로 상처를 치료할 수 있으며, 수술 시 장관의 유착을 방지하기 위해 사용되는 등 그 용도가 다양하다. 특히 최근에는 콘택트렌즈에 사용되며 생체 의학적으로 인공 디스크, 인공연골 등의 여러 분야에서 그 용도에 대한 연구가 이루어지고 있다.
그러나 하이드로겔들은 함수특성 때문에 습윤 환경을 조성할 수 있는 장점은 있지만, 그 자체로는 항균 활성이 없어 세균에 의한 감염이 문제가 되는 경우가 있다. 이러한 문제점을 해결하기 위하여 본 발명은 하이드로겔에 본 발명의 금속-유기프레임워크 화합물을 혼합하여 항균 하이드로겔을 제조하였다.
본 명세서에서 용어 "하이드로겔(hydrogel)"은 친수성 고분자가 공유 또는 비공유 결합으로 가교되어져 만들어진 3차원 망상구조물을 의미할 수 있다.
본 발명의 항균 하이드로겔 제조에 이용되는 고분자는 폴리에틸렌글리콜, 폴리비닐알코올(polyvinyl alcohol, PVA), 히알루론산(hyaluronic acid), 알긴산(alginic acid), 펙틴(pectin), 키토산(chitosan) 등 다양한 합성 또는 천연 고분자들 일 수 있고 바람직하게는 폴리에틸렌글리콜이다.
본 발명의 하이드로겔은 바람직하게는 말단에 SH, NH2, epoxide기 등을 갖는 고분자와 말단에 이중결합 포함 작용기를 갖는 고분자와의 가교반응에 의해 생성될 수 있다. 말단에 이중결합 포함 작용기는 아크릴산기, 메타크릴산기, 글라이시딜 메타크릴레이트 등일 수 있으나 본 발명이 이들에 제한되는 것은 아니다.
본 발명의 하이드로겔은 100~10,000의 중합도를 가질 수 있다.
본 발명은 상기 금속-유기프레임워크 화합물이 항균 하이드로겔 총 중량 대비 0.001 내지 5중량%, 바람직하게는 0.05 내지 1중량% 포함될 수 있다. 금속-유기프레임워크가 상기 범위로 포함될 때 항균 하이드로겔의 함수율이 우수하며, 우수한 항균 효과를 나타낼 수 있다. 또한 금속-유기프레임워크 화합물과 하이드로겔의 혼합이 적절하게 이루어지며 경제적이다.
다음으로 폴리에틸렌글리콜설퍼하이드릴(4-arm PEG-SH)과 폴리에틸렌글리콜디아크릴레이트(PEG-DA)를 일예로 본 발명의 금속-유기프레임워크 화합물 포함 항균 하이드로겔의 제조 방법을 구체적으로 설명한다. 그러나 본 발명이 하기 제조 방법에 한정되지는 않는다.
본 발명의 금속-유기프레임워크 화합물 및 하이드로겔 포함 항균 하이드로겔의 제조를 위하여
첫번째 E-튜브(E-tube)에 4-arm 폴리에틸렌글리콜설퍼하이드릴(4-arm PEG-SH)을 넣고 여기에 인산완충식염수(Phosphate buffer saline, PBS)를 넣어 녹인다.
두번째 E-튜브(E-tube)에 선형 폴리에틸렌글리콜디아크릴레이트(linear PEG-DA)를 넣고 여기에 PBS를 넣고 녹인다.
필요한 경우 각각의 용액에 소량의 1N NaOH를 넣어줘서 pH을 8.2정도로 맞춘다.
다음으로 MOF를 첫번째 E-튜브에 넣고 분산시킨다.
두번째 E-튜브에 있는 linear PEG-DA를 MOF가 있는 첫번째 E-튜브로 옮기고 섞어 준다.
여기에 UV 광개시제를 0.01-1% w/v이 되도록 넣어준다.
일정 몰드(mold)에 옮기고 UV light (1-200mW/cm2)를 5분간 조사하면 MOF가 물리적으로 포집된 UV 광가교 된 수화젤이 형성된다.
4-arm PEG-SH와 PEG-DA가 섞이는 순간부터 미카엘타입 부가반응(Michael type addition)이 일어나서 화학적 가교가 일어나기 시작한다. 상기 반응은 UV의 빛의 세기, 광개시제의 농도뿐만 아니라 온도와 용매의 pH, 용질의 농도에 의존한다. 본 발명에서 반응 온도는 바람직하게는 20~70℃이다. 온도가 높을수록 화학적 가교결합이 빨라진다. 또한, 용매의 pH는 높을수록 반응이 잘 일어나는데 본 발명에서 pH는 바람직하게는 7.5~9 정도이며 용질(고분자)의 총 농도는 1~15wt%로 조절될 수 있다. 용질의 농도가 높을수록 강도가 높은 수화젤이 제작 된다.
본 발명의 금속-유기프레임워크 화합물 및 하이드로겔을 포함하는 항균 하이드로겔은 항균 활성을 가진다. 본 발명은 금속-유기프레임워크 화합물 포함 항균 하이드로겔을 포함하는 항균 제품을 제공한다. 상기 항균 제품으로 항균 부직포, 항균 습윤밴드, 드레싱, 연골조직, 콘텍트렌즈 등을 들 수 있다.
이하 일 실시예를 통하여 본 발명을 구체적으로 설명한다. 그러나 본 발명이 하기 실시예에 한정되는 것은 아니다.
제조예 1. [M2(Glu)2(L2)]·x(H2O)의 제조
제조예 1-1. [Cu2(Glu)2(bpy)]·3(H2O)
증류수 (20 mL), Cu(NO3)2 ·3H2O (0.193 g, 0.8 mmol), 글루타르산 (0.317 g, 2.4 mmol) 및 4,4'-비피리딘 (0.3744 g, 2.4 mmol)을 포함하는 용액에 대해 초음파 처리하고 테프론으로 라이닝 된 고압 용기에 넣었다. 용기를 80 ℃의 오븐에 48 시간 동안 두었다. 실온으로 냉각시킨 후, 청록색 블록 결정을 여과에 의해 회수하고, 증류수로 세척하고, 공기 중에서 밤새 건조시켰다. 수율은 0.028g이었다. [Cu2(C5H6O4)2(C10H8N2)]·3(H2O) (MW=597.6)
제조예 1-2. [Cu2(Glu)2(bpa)]·3(H2O)
1.0 M NaOH 수용액(200 mL), Cu(NO3)2 ·3H2O (0.48 g, 2.0 mmol), 글루타르산 (0.26 g, 2.0 mmol) 및 1,2- 비스(4-피리딜)에탄 (0.18 g, 1.0 mmol) 을 사용하여 제조예 1-1의 방법으로 제조하여 청록색 바늘형 결정의 형태로 [Cu2(Glu)2(bpa)]·3(H2O)을 얻었다. 수율은 0.40 g이었다. [Cu2(C5H6O4)2(C12H12N2)]·3(H2O) (MW=625.6)
제조예 1-3. [Cu2(Glu)2(bpe)]·6(H2O)
1.0 M NaOH 수용액(200 mL), Cu(NO3)2 ·3H2O (0.48g, 2.0mmol), 글루타르산 (0.26g, 2.0mmol) 및 1,2-비스(4-피리딜)에틸렌 (0.18g, 1.0mmol)을 사용하여 제조예 1-1의 방법으로 제조하여 청록색 바늘형 결정 형태의 [Cu2(Glu)2(bpe)]·6(H2O)를 얻었다. 수율은 0.46 g이었다. [[Cu2(C5H6O4)2(C12H10N2)]·6(H2O) (MW=677.7)
제조예 1-4. [Cu2(Glu)2(bpp)]·6(H2O)
Cu(NO3)2 ·3H2O (0.0624g, 0.25mmol), 글루타르산 (0.033g, 0.25mmol), 1,3- 비스(4- 피리딜)프로판 (0.050g, 0.25mmol) 및 우레아 0.052 g, 0.87 mmol)를 포함하는 수용액을 실온에서 7 일 동안 방치 하였다. 생성된 터키석형 결정을 여과에 의해 회수하고, 증류수로 세척하고, 공기 중에서 밤새 건조시켰다. 수율은 0.033 g이었다. [Cu2(C5H6O4)2(C13H14N2)]·6(H2O) (MW=693.7)
상기 화합물의 구조분석 결과를 하기 표 1에 나타내었다.
1 2 3 4
Empirical formula C20H26Cu2N2O11 C22H30Cu2N2O11 C22H34Cu2N2O14 C23H38Cu2N2O14
Formula weight 597.5 625.6 677.7 693.7
Temperature (K) 296(2) 223(2) 296(2) 296(2)
Wavelength (Å) 0.71073 Å 0.71073 Å 0.71073 Å 0.71073 Å
Space group C 2/c C 2/c C 2/c C 2/c
제조예 1-5. [Co2(Glu)2(bpa)]의 제조
DMF (20 mL) 중에 Co(NO3)6H2O (0.232 g, 0.8 mmol), 글루타르산 (0.317 g, 2.4 mmol) 및 1,2-bis(4-pyridyl)ethane (0.442 g, 2.4 mmol)을 포함하는 용액에 대해 초음파 처리하고 테프론으로 라이닝 된 고압 용기에 넣었다. 용기를 130 ℃의 오븐에 48 시간 동안 두었다. 실온으로 냉각시킨 후, 결정을 여과에 의해 회수하고, DMF로 세척하고, 공기 중에서 밤새 건조시켰다. 수율은 0.028g이었다. [Co2(C5H6O4)2(C12H12N2)] (MW=562.3)
제조예 1-6. [Co2(Glu)2(bpe)]의 제조
DMF (20 mL) 중에 Co(NO3)6H2O (0.232 g, 0.8 mmol), 글루타르산 (0.317 g, 2.4 mmol) 및 1,2-비스(4-피리딜)에틸렌 (0.437 g, 2.4 mmol)을 포함하는 용액에 대해 초음파 처리하고 테프론으로 라이닝 된 고압 용기에 넣었다. 용기를 130 ℃의 오븐에 48 시간 동안 두었다. 실온으로 냉각시킨 후, 결정을 여과에 의해 회수하고, DMF로 세척하고, 공기 중에서 밤새 건조시켰다. 수율은 0.028g이었다. [Co2(C5H6O4)2(C12H10N2)] (MW=560.3)
제조예 1-7. [Zn2(Glu)2(bpe)]·2(H2O)의 제조
Zn(NO3)6H2O (0.0304g, 0.1mmol)와 글루타르산 (0.0133g, 0.1mmol)을 4mL H2O에 녹인 용액위에 1,2-비스(4-피리딜)에틸렌(1,2-bis(4-pyridyl)ethylene) (0.0376g, 0.2mmol)을 녹인 4mL 아세토나이트라일 용액을 조심스럽게 올린다. 2주 동안 방치 후 결정을 얻을 수 있다. 수율은 0.0287g이다. [Zn2(C5H6O4)2(C12H10N2)]·2(H2O) (MW=609.3)
제조예 2. MOF 포함 항균 실리콘 수지의 제조
제조예 2-1. [Cu2(Glu)2(bpa)]·3(H2O) 포함 항균 실리콘 수지
2액형 상온경화형(RTV) 실리콘 고무(Shin Etsu KE-1402)의 폴리실록산(polysiloxane) 주제 100g에 [Cu2(Glu)2(bpa)]·3(H2O) 10mg을 넣고 잘 혼합 한 후 경화제(CAT-1402) 10g을 넣고 다시 잘 저어준 후 실온에서 경화시켜 항균 실리콘 수지를 제조한다.
제조예 2-2. [Cu2(Glu)2(bpe)]·6(H2O) 포함 항균 실리콘 수지
[Cu2(Glu)2(bpa)]·3(H2O) 대신 [Cu2(Glu)2(bpe)]·6(H2O)를 사용한 것을 제외하고 제조예 2-1과 같이 수행하여 항균 실리콘 수지를 제조하였다.
제조예 2-3. [Co2(Glu)2(bpa)] 포함 항균 실리콘 수지
[Cu2(Glu)2(bpa)]·3(H2O) 대신 [Co2(Glu)2(bpa)]를 사용한 것을 제외하고 제조예 2-1과 같이 수행하여 항균 실리콘 수지를 제조하였다.
제조예 2-4. [Zn2(Glu)2(bpe)]·2(H2O) 포함 항균 실리콘 수지
[Cu2(Glu)2(bpa)]·3(H2O) 대신 [Zn2(Glu)2(bpe)]·2(H2O)를 사용한 것을 제외하고 제조예 2-1과 같이 수행하여 항균 실리콘 수지를 제조하였다.
제조예 3. MOF 포함 항균 하이드로겔의 제조
제조예 3-1. [Cu2(Glu)2(bpe)]·6(H2O) 포함 항균 하이드로겔
첫번째 E-튜브(E-tube)에 4arm 폴리에틸렌글리콜설퍼하이드릴(4-arm PEG-SH) 20mg을 넣는다. 여기에 인산완충식염수(Phosphate buffer saline, PBS) 150uL를 넣고 휘저어주어(voltexing) 녹인다.
두번째 E-튜브(E-tube)에 선형 폴리에틸렌글리콜디아크릴레이트(linear PEG-AC) 13.6mg을 넣는다. 여기에 PBS 150uL를 넣고 휘저어주어 녹인다.
각각의 용액에 소량의 1N NaOH를 넣어줘서 pH을 8.2정도로 맞춘다.
MOF를 첫번째 E-튜브에 넣고 피펫(pipet)으로 분산시킨다.
두번째 E-튜브에 있는 linear PEG-AC를 MOF가 있는 첫번째 E-튜브로 옮기고 휘저어 섞어 준다.
일정 몰드(mold)에 피펫을 이용해 옮기면 MOF가 물리적으로 포집된 수화젤이 형성된다.
상기 반응 결과, 총 고분자의 무게는 33.6mg, 용매의 부피는 300uL, 고분자의 농도는 약 10wt% 이다.
Thiol:acryl=1:1 molar ratio (1:0.68 weight ratio)
제조예 3-2. Cu-MOF 포함 항균 하이드로겔
[Cu2(Glu)2(bpe)]·6(H2O) 대신 [Cu2(Glu)2(bpa)]·3(H2O)를 사용한 것을 제외하고 제조예 3-1과 같이 수행하여 항균 하이드로겔을 제조하였다.
제조예 3-3. Co-MOF 포함 항균 하이드로겔
[Cu2(Glu)2(bpe)]·6(H2O) 대신 [Co2(Glu)2(bpe)]를 사용한 것을 제외하고 제조예 3-1과 같이 수행하여 항균 하이드로겔을 제조하였다.
제조예 3-4. Zn-MOF 포함 항균 하이드로겔
[Cu2(Glu)2(bpe)]·6(H2O) 대신 [Zn2(Glu)2(bpe)]·2(H2O)를 사용한 것을 제외하고 제조예 3-1과 같이 수행하여 항균 하이드로겔을 제조하였다.
상기에서 제조한 [Cu2(Glu)2(bpe)]·6(H2O), [Co2(Glu)2(bpe)] 및 [Zn2(Glu)2(bpe)]·2(H2O) 포함 항균 하이드로겔의 함수율을 측정하여 그 결과를 하기 표 2에 나타내었다. 하기 표에서 control은 MOF를 포함하지 않는 하이드로겔이다.
Sample Control Cu-Glu-bpe Co-Glu-bpe Zn-Glu-bpe
Swelling ratio 20.1±1.3 21.9±0.5 24.7±0.3 24.9±0.9
Swelling ratio = Ws/Wd
Ws = 함수된 하이드로겔 무게
Wd = 건조한 하이드로겔 무게
상기 표 2에 의하면 본 발명의 MOF 포함 항균 하이드로겔은 하이드로겔 단독 대비 함수율이 더 높은 것을 알 수 있고, 따라서 함수가 필요한 제품에 유용하게 사용될 수 있음을 알 수 있다.
실시예 1. 금속-유기프레임워크 포함 항균제에 대한 항균시험
[Cu2(Glu)2(bpa)]·3(H2O)의 농도를 0.002중량% 및 0.01중량%로 준비하고 하기와 같은 절차로 항균효과를 측정하였다. 대조군에 대해서도 동일하게 진행하였다.
1) 시료준비 : 시료는 시험을 원하는 농도에 따라 준비한다.
2) 삼각플라스크에 위의 준비된 시료를 넣는다
3) 121℃에서 15분 동안 멸균기를 이용하여 멸균시킨다
4) 멸균된 삼각플라스크 안에 생리식염수(NaCl 8.5%) 99mL(생리식염수 량은 시료농도에 따라 변경 가능)과 배양된 시험균주액 1mL를 넣는다. (총 부피 100mL, 시험균주는 Nutrient 액체배지에 배양하여 사용함)
5) 37 ℃, 24시간동안 진탕배양시킨다.
6) 진탕배양시킨 용액에서 일정량을 채취하여 한천배지에 도말한다.
7) 세균수를 측정한다.
시험방법은 KCL-FIR-1002 : 2011 이고 시험환경은 37.0±0.2℃이다.
결과를 하기 표 3에 나타내었다.
시험항목 시험결과
초기농도(CFU/mL) 24시간 후 농도(CFU/mL) 세포감소율(%)
황색포도상구균에 의한 항균시험 BLANK 1.9x104 8.2x105 -
Cu2(Glu)2(bpa)(0.002%) 1.9x104 < 10 99.9
Cu2(Glu)2(bpa)(0.01%) 1.9x104 < 10 99.9
대장균에 의한 항균시험 BLANK 3.0x104 8.2x105 -
Cu2(Glu)2(bpa)(0.002%) 3.0x104 < 10 99.9
녹농균에 의한 항균시험 BLANK 3.2x104 7.4x105 -
Cu2(Glu)2(bpa)(0.002%) 3.2x104 < 10 99.9
폐렴균에 의한 항균시험 BLANK 2.0x104 3.0x105 -
Cu2(Glu)2(bpa)(0.002%) 2.0x104 < 10 99.9
MRSA균에 의한 항균시험 BLANK 2.3x104 8.1x105 -
Cu2(Glu)2(bpa)(0.002%) 2.3x104 < 10 99.9
CFU : Colony Forming Unit
사용균주 : Staphylococcus aureus ATCC 6538
Escherichia coli ATCC 25922
Pseudomonas aeruginosa ATCC 15442
Klebsiella pneumoniae ATCC 4352
MRSA(Staphylococcus aureus subsp. aureus ATCC 33591)
상기 항균실험 결과에 의하면 본 발명의 MOF가 다양한 균에 대해 항균효과가 우수함을 알 수 있다.
실시예 2. 항균 실리콘 수지에 대한 항균시험
항균 시험을 위한 시험편 제조방법은 다음과 같다.
(1) 2액형 상온경화형(RTV) 실리콘 고무(Shin Etsu KE-1402)의 폴리실록산(polysiloxane) 주제 100g에 10mg의 Cu-MOF를 넣고 잘 혼합 한 후 경화제(CAT-1402) 10g을 넣고 다시 잘 저어준다.
(2) 상기 단계 (1)의 혼합물을 형틀에 부어서 고르게 펼친 후 실온에서 경화시킨다.
(3) 24 시간 경과 후 형틀에서 실리콘 고무를 분리하여 5cm x 5cm 넓이로 잘라서 항균성 실험을 위한 시편을 만든다.
항균시험 방법은 다음과 같다.
제조예 2에서 제조한 Cu-Glu-Bpa/Si 수지 조성물을 이용하여 하기와 같은 절차로 항균효과를 측정하였다. 대조군에 대해서도 동일하게 진행하여 항균효과를 측정하였다.
1) 시료 준비: 실리콘 수지 조성물을 이용하여 5cm x 5cm(두께 1cm 이내) 시험편을 준비한다.
2) 대조편 준비: 스토마커 필름(stomacher film) 5cm x 5cm을 이용하여 대조편을 준비한다.
3) 시험편 및 대조편 전면을 에탄올을 흡수시킨 가제 또는 탈지면으로 가볍게 2 ∼ 3회 닦은 후, 충분히 건조한다.
4) 멸균수를 사용해 균수가 2.5 ∼ 10 ×105 CFU/mL 가 되도록 조제하고, 접종원으로 한다.
5) 페트리디쉬(petri dish) 내에 시험편 또는 대조편을 넣고 시험면에 초기 세균수가 1.0~4.0x105 CFU/mL가 되도록 접종한다.
6) 37 ℃, 24시간동안 정치배양시킨다.
7) 생균수를 측정한다.
시험방법은 KCL-FIR-1003:2011 방법이고 시험환경은 37.0±0.2℃이다.
항균시험 결과를 하기 표 4에 나타내었다.
시험항목 시험결과
초기농도(CFU/mL) 24시간 후 농도(CFU/mL) 세포감소율(%)
대장균에 의한 항균시험 BLANK 1.2x105 3.8x106 -
Cu-Glu-Bpa/Si 1.2x105 4.3x105 88.6
황색포도상구균에 의한 항균시험 BLANK 1.6x105 2.2x106 -
Cu-Glu-Bpa/Si 1.6x105 2.7x105 87.7
MRSA에 의한 항균시험 BLANK 3.0x105 9.8x105 -
Cu-Glu-Bpa/Si 3.0x105 1.8x105 81.6
CFU : Colony Forming Unit
사용균주 : Escherichia coli ATCC 8739
Staphylococcus aureus ATCC 6538P
MRSA(Staphylococcus aureus subsp. aureus) ATCC 33591
상기 항균실험 결과에 의하면 본 발명의 금속-유기프레임워크 포함 항균 실리콘 수지가 다양한 균에 대해 항균효과가 우수함을 알 수 있다.
실시예 3. MOF 포함 항균 하이드로겔에 대한 항균시험
[Cu2(Glu)2(bpe)]·6(H2O) 포함 항균 하이드로겔 및 [Co2(Glu)2(bpe)] 포함 항균 하이드로겔을 이용하여 하기와 같은 절차로 항균효과를 측정하였다. 대조군으로 MOF를 포함하지 않는 PEG 하이드로겔에 대해서도 동일하게 진행하여 항균효과를 측정하였다.
1) 시료 준비: 하이드로겔을 이용하여 5cm x 5cm(두께 1cm 이내) 시험편을 준비한다.
2) 대조편 준비: 스토마커 필름(stomacher film) 5cm x 5cm을 이용하여 대조편을 준비한다.
3) 시험편 및 대조편 전면을 에탄올을 흡수시킨 가제 또는 탈지면으로 가볍게 2 ∼ 3회 닦은 후, 충분히 건조한다.
4) 멸균수를 사용해 균수가 2.5 ∼ 10 ×105 CFU/mL 가 되도록 조제하고, 접종원으로 한다.
5) 페트리디쉬(petri dish) 내에 시험편 또는 대조편을 넣고 시험면에 초기 세균수가 1.1~3.6x105 CFU/mL가 되도록 접종한다.
6) 37 ℃, 24시간동안 정치배양시킨다.
7) 생균수를 측정한다.
시험방법은 KCL-FIR-1003:2018 이고 시험환경은 37.0±0.2℃이다.
항균시험 결과를 하기 표 5에 나타내었다.
시험항목 시험결과
초기농도(CFU/mL) 24시간 후 농도(CFU/mL) 세포감소율(%)
대장균에 의한 항균시험 BLANK 1.1x105 5.9x106 -
Cu-Glu-Bpe/PEG 1.1x105 < 10 99.9
황색포도상구균에 의한 항균시험 BLANK 3.5x105 6.7x106 -
Cu-Glu-Bpe/PEG 3.5x105 < 10 99.9
대장균에 의한 항균시험 BLANK 1.1x105 5.9x106 -
Co-Glu-Bpe/PEG 1.1x105 < 10 99.9
황색포도상구균에 의한 항균시험 BLANK 3.6x105 6.0x106 -
Co-Glu-Bpe/PEG 3.6x105 < 10 99.9
대장균에 의한 항균시험 BLANK 1.1x105 5.9x106 -
PEG 1.1x105 5.7x106 3.3
황색포도상구균에 의한 항균시험 BLANK 3.6x105 6.0x106 -
PEG 3.6x105 5.6x106 6.6
CFU : Colony Forming Unit
사용균주 : Escherichia coli ATCC 8739
Staphylococcus aureus ATCC 6538P
상기 항균실험 결과에 의하면 본 발명의 금속-유기프레임워크 포함 항균 하이드로겔 수지가 다양한 균에 대해 항균효과가 우수함을 알 수 있다. 한편, 비교시험을 위하여 실시한 PEG 하이드로겔의 항균시험결과 PEG 하이드로겔은 항균성이 거의 없는 바, 본 발명의 항균성이 하이드로겔 자체에 의한 것이 아닌 것을 알 수 있다.
본 발명의 금속-유기프레임워크 화합물은 항균제로 사용 가능하고, 상기 화합물을 포함하는 실리콘 수지 및 하이드로겔은 각각 실리코 수지 사용분야 및 하이드로겔 사용분야에서 항균성을 부여할 수 있다.

Claims (19)

  1. 하기 화학식 1의 금속-유기프레임워크 화합물을 포함하는 항균제.
    [화학식 1]
    [M2(L1)2(μ-L2)]·x(H2O)
    상기 식에서 M은 Cu, Zn 또는 Co이고,
    L1은 치환기로 2개의 카복실레이트기를 가지는 탄화수소기이고,
    L2는 비스(4-피리딜) 또는 그 유도체이고
    x는 1 내지 10의 수이다.
  2. 청구항 1에 있어서, L1이 하기 화학식 2의 기인 것을 특징으로 하는 항균제.
    [화학식 2]
    -OOC-R-COO-
    상기 식에서 R은 결합이거나, 단일결합이나 이중결합을 가질 수 있는 탄소수 1-7의 직쇄 또는 분지쇄의 탄화수소기이다.
  3. 청구항 1에 있어서, L2가 하기 화학식 3의 화합물인 것을 특징으로 하는 항균제
    [화학식 3]
    Figure PCTKR2019005403-appb-I000002
    상기 식에서
    A는 결합이거나, 단일결합이나 이중결합을 가질 수 있는 탄소수 1-7의 직쇄 또는 분지쇄의 탄화수소기이다.
  4. 청구항 1에 있어서, L2가 4,4'-비피리딘 (4,4'-bipyridine, bpy), 1,2-비스(4-피리딜)에텐(1,2-bis(4-pyridyl)ethene, bpe), 1,2-비스(4-피리딜)에탄(1,2-bis(4-pyridyl)ethane, bpa) 또는 1,3-비스(4-피리딜)프로판(1,2-bis(4-pyridyl)propane, bpp)인 것을 특징으로 하는 항균제
  5. 하기 화학식 1의 금속-유기프레임워크 화합물 및 실리콘 수지를 포함하는 항균 실리콘 수지
    [화학식 1]
    [M2(L1)2(μ-L2)]·x(H2O)
    상기 식에서 M은 Cu, Zn 또는 Co이고,
    L1은 2개의 카복실레이트기를 가지는 탄화수소기이고,
    L2는 비스(4-피리딜) 또는 그 유도체이고
    x는 1 내지 10의 수이다.
  6. 청구항 5에 있어서, L1이 하기 화학식 2의 기인 것을 특징으로 하는 항균 실리콘 수지
    [화학식 2]
    -OOC-R-COO-
    상기 식에서 R은 결합이거나, 단일결합이나 이중결합을 가질 수 있는 탄소수 1-7의 직쇄 또는 분지쇄의 탄화수소기이다.
  7. 청구항 5에 있어서, L2가 하기 화학식 3의 화합물인 것을 특징으로 하는 항균 실리콘 수지
    [화학식 3]
    Figure PCTKR2019005403-appb-I000003
    상기 식에서
    A는 결합이거나, 단일결합이나 이중결합을 가질 수 있는 탄소수 1-7의 직쇄 또는 분지쇄의 탄화수소기이다.
  8. 청구항 5에 있어서, L2가 4,4'-비피리딘 (4,4'-bipyridine, bpy), 1,2-비스(4-피리딜)에텐(1,2-bis(4-pyridyl)ethene, bpe), 1,2-비스(4-피리딜)에탄(1,2-bis(4-pyridyl)ethane, bpa) 또는 1,3-비스(4-피리딜)프로판(1,2-bis(4-pyridyl)propane, bpp)인 것을 특징으로 하는 항균 실리콘 수지
  9. 청구항 5에 있어서, 상기 실리콘 수지는 하기 화학식 4의 반복 단위를 포함하는 유기 폴리실록산을 포함하는 항균 실리콘 수지
    [화학식 4]
    -[Si(R1)(R2)-O]-
    상기 식에서
    R1은 수소 또는 탄소수 1 내지 6인 알킬기 또는 알케닐기이고,
    R2는 수소, 히드록시, 탄소수 1 내지 10인 알킬기 및 아릴기로 이루어진 군에서 선택되는 작용기이다.
  10. 청구항 9에 있어서, 상기 유기 폴리실록산은 바람직하게는 100-10,000의 중합도를 가지는 항균 실리콘 수지
  11. 청구항 9에 있어서, 상기 실리콘 수지는 하기 화학식 5의 초산형, 알콜형, 옥심형, 아민형, 아미드형, 아미녹시형, 아세톤형 및 금속 촉매형에서 선택되는 1종 이상의 경화제를 포함하는 항균 실리콘 수지
    [화학식 5]
    CH3SiR3
    상기 식에서
    R은 수소(hydro), 아세톡시(acetoxy), 알콕시(alkoxy), 옥심(oxime), 아민(amine), 아마니드(amide), 아미녹시(amineoxy) 및 카르보닐(carbonyl)로 이루어지는 그룹으로부터 선택되는 작용기이다.
  12. 청구항 5에 있어서, 상기 금속-유기프레임워크 화합물을 항균 실리콘 수지 총 중량 대비 0.001 내지 5중량% 포함하는 항균 실리콘 수지
  13. 하기 화학식 1의 금속-유기프레임워크 화합물 및 하이드로겔을 포함하는 항균 하이드로겔
    [화학식 1]
    [M2(L1)2(μ-L2)]·x(H2O)
    상기 식에서 M은 Cu, Zn 또는 Co이고,
    L1은 2개의 카복실레이트기를 가지는 탄화수소기이고,
    L2는 비스(4-피리딜) 또는 그 유도체이고
    x는 1 내지 10의 수이다.
  14. 청구항 13에 있어서, L1이 하기 화학식 2의 기인 것을 특징으로 하는 항균 하이드로겔
    [화학식 2]
    -OOC-R-COO-
    상기 식에서 R은 결합이거나, 단일결합이나 이중결합을 가질 수 있는 탄소수 1~7의 직쇄 또는 분지쇄의 탄화수소기이다.
  15. 청구항 13에 있어서, L2가 하기 화학식 3의 화합물인 것을 특징으로 하는 항균 하이드로겔
    [화학식 3]
    Figure PCTKR2019005403-appb-I000004
    상기 식에서
    A는 결합이거나, 단일결합이나 이중결합을 가질 수 있는 탄소수 1~7의 직쇄 또는 분지쇄의 탄화수소기이다.
  16. 청구항 13에 있어서, L2가 4,4'-비피리딘 (4,4'-bipyridine, bpy), 1,2-비스(4-피리딜)에텐(1,2-bis(4-pyridyl)ethene, bpe), 1,2-비스(4-피리딜)에탄(1,2-bis(4-pyridyl)ethane, bpa) 또는 1,3-비스(4-피리딜)프로판(1,2-bis(4-pyridyl)propane, bpp)인 것을 특징으로 하는 항균 하이드로겔
  17. 청구항 13에 있어서, 상기 하이드로겔은 말단에 SH, NH2 또는 epoxide기를 갖는 고분자와 말단에 이중결합 포함 작용기를 갖는 고분자와의 가교반응에 의해 생성되고 중합도는 100-10,000인 것을 특징으로 하는 항균 하이드로겔
  18. 청구항 17에 있어서, 상기 고분자는 폴리에틸렌글리콜인 것을 특징으로 하는 항균 하이드로겔
  19. 청구항 13에 있어서, 상기 금속-유기프레임워크를 항균 하이드로겔 총 중량 대비 0.001 내지 5중량% 포함하는 항균 하이드로겔
PCT/KR2019/005403 2018-06-04 2019-05-07 금속-유기프레임워크 화합물을 포함하는 항균제, 이를 포함하는 항균 실리콘 및 항균 하이드로겔 WO2019235742A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020180064185A KR102103876B1 (ko) 2018-06-04 2018-06-04 금속-유기프레임워크 포함 항균 실리콘 수지 조성물
KR10-2018-0064185 2018-06-04
KR10-2019-0034804 2019-03-27
KR1020190034804A KR102264090B1 (ko) 2019-03-27 2019-03-27 금속-유기프레임워크 포함 항균 하이드로겔

Publications (1)

Publication Number Publication Date
WO2019235742A1 true WO2019235742A1 (ko) 2019-12-12

Family

ID=68769432

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/005403 WO2019235742A1 (ko) 2018-06-04 2019-05-07 금속-유기프레임워크 화합물을 포함하는 항균제, 이를 포함하는 항균 실리콘 및 항균 하이드로겔

Country Status (1)

Country Link
WO (1) WO2019235742A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3888465A4 (en) * 2019-01-15 2022-04-13 LG Chem, Ltd. ANTIBACTERIAL COMPOSITION
CN116712594A (zh) * 2023-06-12 2023-09-08 四川大学 一种多功能抗菌伤口敷料及其制备方法与应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101459599B1 (ko) * 2012-11-02 2014-11-07 서울과학기술대학교 산학협력단 신규한 Cu-MOF 화합물, 이를 포함하는 선택적 CO2 흡착체 및 불균일 에스터 교환 반응 촉매
KR20150007484A (ko) * 2013-07-11 2015-01-21 서울과학기술대학교 산학협력단 신규한 아연-금속 유기 구조체 화합물, 이를 포함하는 이산화탄소 흡착제 및 에스터 교환 반응 불균일 촉매
JP2018501393A (ja) * 2014-12-22 2018-01-18 ブルースター シリコンズ フランス ソシエテ パ アクシオンス シンプリフィエ 有機ポリシロキサンおよびその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101459599B1 (ko) * 2012-11-02 2014-11-07 서울과학기술대학교 산학협력단 신규한 Cu-MOF 화합물, 이를 포함하는 선택적 CO2 흡착체 및 불균일 에스터 교환 반응 촉매
KR20150007484A (ko) * 2013-07-11 2015-01-21 서울과학기술대학교 산학협력단 신규한 아연-금속 유기 구조체 화합물, 이를 포함하는 이산화탄소 흡착제 및 에스터 교환 반응 불균일 촉매
JP2018501393A (ja) * 2014-12-22 2018-01-18 ブルースター シリコンズ フランス ソシエテ パ アクシオンス シンプリフィエ 有機ポリシロキサンおよびその製造方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JO, J. H. ET AL.: "Antibacterial activities of Cu-MOFs containing glutarates and bipyridyl ligands", DALTON TRANSACTIONS, vol. 48, no. 23, 11 April 2019 (2019-04-11), pages 8084 - 8093 *
LEE, D. N. ET AL.: "Highly bioactive porous 3D Cu-MOFs against MRSA. In: Joint Event On: World Congress on Novel Trends and Advances in Biotechnology", CELL & STEM CELL RESEARCH & 15TH ANNUAL CONGRESS ON PEDIATRICS, vol. 10, 28 November 2018 (2018-11-28), pages 27 *
SCAETEANU, G. V. ET AL.: "Synthesis, Structural Characterization, Antimicrobial Activity, and In Vitro Biocompatibility of New Unsaturated Carboxylate Complexes with 2,2'-Bipyridine", MOLECULES, vol. 23, no. 1, 12 January 2018 (2018-01-12), pages 1 - 18 *
SHETA, S. M. ET AL.: "Simple synthesis of novel copper metal-organic framework nanoparticles: biosensing and biological applications", DALTON TRANSACTIONS, vol. 47, no. 14, 1 January 2018 (2018-01-01), pages 4847 - 4855, XP055662629 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3888465A4 (en) * 2019-01-15 2022-04-13 LG Chem, Ltd. ANTIBACTERIAL COMPOSITION
CN116712594A (zh) * 2023-06-12 2023-09-08 四川大学 一种多功能抗菌伤口敷料及其制备方法与应用
CN116712594B (zh) * 2023-06-12 2024-03-19 四川大学 一种多功能抗菌伤口敷料及其制备方法与应用

Similar Documents

Publication Publication Date Title
EP0583170B1 (en) Hydrogel compositions and methods for the preparation thereof
WO2019235742A1 (ko) 금속-유기프레임워크 화합물을 포함하는 항균제, 이를 포함하는 항균 실리콘 및 항균 하이드로겔
Sui et al. Poly (N-isopropylacrylamide)–poly (ferrocenylsilane) dual-responsive hydrogels: synthesis, characterization and antimicrobial applications
Lu et al. A novel in situ‐formed hydrogel wound dressing by the photocross‐linking of a chitosan derivative
WO2017026618A1 (ko) 항균 드레싱재 및 그 제조방법
US6162864A (en) Polyvinyl alcohol
WO2013180458A1 (ko) 약물전달용 가교물 하이드로 젤 및 그 하이드로 젤의 제조방법
Sakthivel et al. Investigation on pH/salt-responsive multifunctional itaconic acid based polymeric biocompatible, antimicrobial and biodegradable hydrogels
AU2018349776B2 (en) Amphiphilic antimicrobial hydrogel
WO2017039030A1 (ko) 히알루론산 조성물 및 그의 제조방법
EP2473210A2 (en) In situ-forming hydrogel for tissue adhesives and biomedical use thereof
WO2016043547A1 (ko) 조직 수복용 조성물 및 이의 제조방법
WO2020149633A1 (ko) 항균 조성물
Lundin et al. Iodine binding and release from antimicrobial hemostatic polymer foams
US5840760A (en) materials and methods for controlling methicillin-resistant Staphylococcus aureus microbes
CN114392388A (zh) 一种水凝胶组合物及其应用
Yang et al. Hyaluronic acid-based injectable nanocomposite hydrogels with photo-thermal antibacterial properties for infected chronic diabetic wound healing
WO2022154645A1 (ko) 히알루론산, 폴리에틸렌글리콜 및 실리콘 함유 성분을 포함하는 생체적합성 하이드로겔
WO2023224427A1 (ko) 폴리머 재료
Sundaran et al. Fabrication and in vitro evaluation of photo cross-linkable silk fibroin–epsilon-poly-L-lysine hydrogel for wound repair
CN116999611A (zh) 一种兼具抗菌和近红外响应的可注射伤口敷料及其制备方法
WO2023172037A1 (ko) 페이스트 조성물, 생분해성 주사용 페이스트 및 이의 제조방법
KR20240048724A (ko) 하이드로겔 및 이의 제조방법
WO2023120907A1 (ko) 고흡수성 수지의 제조방법
WO2021210902A1 (ko) 고흡수성 수지 및 이의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19814705

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19814705

Country of ref document: EP

Kind code of ref document: A1