WO2019069783A1 - 熱硬化性樹脂組成物 - Google Patents

熱硬化性樹脂組成物 Download PDF

Info

Publication number
WO2019069783A1
WO2019069783A1 PCT/JP2018/035911 JP2018035911W WO2019069783A1 WO 2019069783 A1 WO2019069783 A1 WO 2019069783A1 JP 2018035911 W JP2018035911 W JP 2018035911W WO 2019069783 A1 WO2019069783 A1 WO 2019069783A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
parts
meth
compound
ester
Prior art date
Application number
PCT/JP2018/035911
Other languages
English (en)
French (fr)
Inventor
佑也 森脇
耕資 浅田
克 呑海
直巳 竹中
Original Assignee
共栄社化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 共栄社化学株式会社 filed Critical 共栄社化学株式会社
Priority to JP2018557066A priority Critical patent/JP6526928B1/ja
Priority to EP18865015.4A priority patent/EP3623424A4/en
Priority to CN201880064208.6A priority patent/CN111164148B/zh
Priority to US16/226,830 priority patent/US20190144603A1/en
Publication of WO2019069783A1 publication Critical patent/WO2019069783A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/46Polyesters chemically modified by esterification
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D129/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Coating compositions based on hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Coating compositions based on derivatives of such polymers
    • C09D129/02Homopolymers or copolymers of unsaturated alcohols
    • C09D129/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D135/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least another carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D135/02Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J129/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Adhesives based on hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Adhesives based on derivatives of such polymers
    • C09J129/02Homopolymers or copolymers of unsaturated alcohols
    • C09J129/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J135/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least another carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J135/02Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/06Unsaturated polyesters
    • C08J2367/07Unsaturated polyesters having terminal carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules

Definitions

  • the present invention relates to a thermosetting resin composition in which a transesterification reaction is a curing reaction.
  • thermosetting resin compositions are used in applications such as paints and adhesives. Most of such thermosetting resin compositions use a resin having two or more hydroxyl groups in combination with a curing agent, and cure the resin by the crosslinking reaction of the curing agent and the hydroxyl group.
  • melamine resins As such a curing agent, melamine resins, epoxy compounds, and polyisocyanate compounds are widely used. These curing agents are widely used generally because of their good thermal reactivity and the excellent properties of the resulting cured resin. However, since melamine resins generate formaldehyde and cause sick house syndrome, their use may be limited in recent years. Moreover, when used as a paint, it is known from the chemical structure that there is a problem in acid resistance.
  • Epoxy compounds are said to be low in storage stability and high in curing temperature although they are high in curability and film physical properties, and polyisocyanate curing systems are high in cost for materials with high curability and film physical properties, and are designed It is said that the width is narrow. For this reason, while having high curability, there is a wide range of design for target coating film physical property expression, and further, there is a demand for a coating composition that has high storage stability and does not produce by-product harmful substances. ing.
  • Patent Document 1 describes a powder coating that uses a transesterification reaction as a curing reaction. However, in the said invention, it is only described that curing reaction by transesterification is performed using a resin having both an ester group and a hydroxyl group, and a polyol and a curing agent having an ester group are mixed and used. There is no statement about what to do.
  • Patent Document 1 only describes the use in powder coatings, and does not disclose the use in general solvent-based or water-based compositions. Moreover, although water resistance is calculated
  • Patent Document 2 describes a paint in which a transesterification reaction is a curing reaction.
  • the detailed composition of the resin to be used is not limited, and the composition suitable for the transesterification reaction-cured composition has not been clarified.
  • it is characterized by using a catalyst composed of a catalyst epoxy compound having an oxirane functional group and an inorganic cation salt, which is completely different from the present invention.
  • thermosetting resin composition which is inexpensive and has good curability, and which can be used in various applications as a transesterification reaction. is there.
  • the present invention provides an ester compound (A) having at least two alkyl ester groups in the molecule A compound (B) having at least two hydroxyl groups in the molecule, and Transesterification catalyst (C) A thermosetting resin composition characterized by containing
  • the ester compound (A) is preferably a compound having two or more tertiary alkyl ester groups or a homopolymer or copolymer of a monomer having a tertiary alkyl ester.
  • the ester compound (A) is preferably a t-butyl ester of a carboxylic acid.
  • the thermosetting resin composition is preferably a solvent-based or water-based one.
  • the present invention is a cured film formed by three-dimensionally crosslinking the above-mentioned thermosetting resin composition.
  • thermosetting resin composition of the present invention is suitably used as a new thermosetting resin composition, which is inexpensive and highly safe without generation of formaldehyde, and replaces conventional isocyanate-based and melamine-based curing systems. be able to. It can also be a low temperature curable composition. Furthermore, since the ester compound (A) and the compound (B) having at least two hydroxyl groups in the molecule are used in combination, the coating film properties can be changed based on the structure of the compound (B).
  • maintenance Rigid pendulum tester data of Example 5 maintained at 140 ° C.
  • Rigid pendulum tester data of Example 6 maintained at 140 ° C.
  • Rigid pendulum tester data of Example 7 maintained at 140 ° C.
  • Rigid pendulum tester data of Example 16 maintained at 140 ° C.
  • Rigid pendulum tester data of Example 20 maintained at 140 ° C.
  • thermosetting resin composition of the present invention is used by combining an ester compound (A) having at least two alkyl ester groups in the molecule and a compound (B) having at least two hydroxyl groups in the molecule, It is a resin composition which is thermally cured by the reaction which arises between these compounds. That is, by using a compound having two or more alkyl ester groups in combination with a compound having at least two hydroxyl groups in the molecule, curing is performed by transesterification of the hydroxyl group and the alkyl ester group. This transesterification reaction is shown in the following formulas 1 to 3.
  • ester compound (A) acts as a crosslinker at a relatively low molecular weight in the above reaction is as follows.
  • the compound (B) having the relatively low molecular weight and acting as a crosslinking agent is as follows when it works as an example.
  • thermosetting resin composition of the present invention is not limited to the curing reaction represented by the above-mentioned chemical formula 1, chemical formula 2 and chemical formula 3, but includes those which cause an intermediate reaction between the two.
  • thermosetting resin composition obtained by using only the resin having an alkyl ester group and a hydroxyl group in the molecule simultaneously causes intramolecular crosslinking. That is, since both an alkyl ester group and a hydroxyl group are present in the same molecule, they are easily accessible to cause an intramolecular reaction.
  • an intramolecular reaction causes a change in molecular structure, it does not involve an increase in molecular weight, and thus is an undesirable reaction for curing by three-dimensional crosslinking.
  • the alkyl ester group and the hydroxyl group are present in separate molecules, an intermolecular reaction is likely to occur, whereby a curing reaction can be efficiently generated.
  • the combination of the components (A) and (B) is not particularly limited, but one of the ester compound (A) and the compound (B) having at least two hydroxyl groups in the molecule (
  • component (X) in that the weight average molecular weight is 3,000 to 300,000
  • component (Y) is that the weight average molecular weight is 50,000 or less preferable.
  • the upper limit of the weight average molecular weight of the component (X) is more preferably 100,000, still more preferably 50,000, and still more preferably 30,000.
  • the lower limit of the weight average molecular weight of the component (X) is more preferably 3,000, and still more preferably 5,000.
  • the upper limit of the weight average molecular weight of the component (Y) is more preferably 50,000, preferably 30,000, and still more preferably 20,000.
  • the ratio of (weight average molecular weight of the component (Y)) / (weight average molecular weight of the component (X)) is more preferably 90% or less, and most preferably 80% or less. In particular, when the weight molecular weight of (X) increases, it is preferable to reduce the ratio of (weight average molecular weight of the above component (Y)) / (weight average molecular weight of the above component (X)).
  • the curing reaction easily proceeds efficiently. That is, in the case of causing a curing reaction in the present invention, it is necessary to cause an intermolecular reaction as described above, and for this purpose, it is necessary for the alkyl ester group and the hydroxyl group to be close to each other. From this point of view, since the molecule having a small molecular weight is easy to move, it becomes easy to get close to the functional group of the partner, which makes the reaction easy to occur.
  • ester compound (A) having two or more alkyl ester groups An ester compound (A) having two or more alkyl ester groups is used in combination with a compound (B), and a composition which causes curing by transesterification is inexpensive and highly safe without generation of formaldehyde, and curing reaction is efficient Can occur. Furthermore, in the coating composition using the conventional polyisocyanate compound and melamine resin, it is preferable also in that it can be similarly used as a coating material or an adhesive agent only by substituting a hardening
  • the compound having at least two alkyl ester groups in the molecule preferably has a weight average molecular weight of 100,000 or less.
  • it is used in combination with a compound containing a hydroxyl group.
  • the influence of the compound (A) on the physical properties of the resin composition after curing is relatively small.
  • the compound (B) used in the curable resin composition which used the conventional polyisocyanate and the compound (B) which has a melamine resin in combination with at least 2 hydroxyl groups the curing obtained This is preferable in that the performance of the resin composition to be obtained later can be easily predicted.
  • the weight average molecular weight of the compound having an alkyl ester group is more preferably 50,000 or less, still more preferably 20,000 or less. Furthermore, the molecular weight may be as low as 10,000 or less or 6,000 or less. For example, a high molecular weight of 20,000 to 100,000 is preferable in that the curing reaction proceeds with fewer reaction points, and a low molecular weight of 20,000 or less results in leveling of the coating. And the crosslink density can be increased. Moreover, since the miscibility with the compound (B) is high, it is preferable in that it is easy to make a composition having high uniformity, and that it is possible to prevent an increase in the viscosity of the coating even if it is blended in a large amount.
  • thermosetting paint compositions are used in many fields, the weight average molecular weight of 100,000 or less is also preferable in that the same compound can be used in a wide range of applications.
  • the weight average molecular weight in this specification is a value of the polystyrene conversion molecular weight measured by the gel permeation chromatography (GPC) by the method described in the Example.
  • the alkyl ester group is not limited. However, since a transesterification reaction is more likely to occur than a secondary alkyl ester group or a primary alkyl ester group, and a reaction at a low temperature can be rapidly generated, the tertiary alkyl ester group is a part of the alkyl ester group. It is more preferable to include as or all. As the tertiary alkyl ester group, t-butyl ester group is particularly preferable.
  • the alkyl ester group other than tertiary is not particularly limited, and methyl ester group, ethyl ester group, benzyl ester group, n-propyl ester group, isopropyl ester group, n-butyl ester group, isobutyl ester group, sec- It is possible to use one having a known ester group such as a butyl ester group.
  • the alkyl group preferably has 50 or less carbon atoms.
  • the alkyl group is preferably produced as an alcohol during the transesterification reaction and volatilized, and therefore the alkyl group preferably has 20 or less carbon atoms, and more preferably 10 or less carbon atoms.
  • the boiling point of the alcohol that volatilizes in the curing reaction is preferably 300 ° C. or less, and more preferably 200 ° C. or less.
  • (meth) acrylate means acrylate and / or methacrylate.
  • (Meth) acrylic acid means acrylic acid and / or methacrylic acid.
  • (meth) acryloyl means acryloyl and / or methacryloyl.
  • (meth) acrylamide means acrylamide and / or methacrylamide.
  • A-1 Polymer Having an Alkyl Ester Group and a Monomer Having a Polymerizable Unsaturated Bond as Part or All of the Constituent Units
  • A-1 Such a polymer is preferable in that a compound having two or more alkyl ester groups in the molecule can be obtained inexpensively by a general-purpose material.
  • the monomer having an alkyl ester group and a polymerizable unsaturated bond a great variety of compounds are known, and typically, compounds represented by the following general formula can be mentioned. .
  • R 1 , R 2 and R 3 each represents hydrogen, an alkyl group, a carboxyl group or an alkyl ester group, and R 4 represents a hydrocarbon group having 50 or less carbon atoms
  • Examples of the compound represented by the general formula (1) include ester derivatives of known unsaturated carboxylic acids such as (meth) acrylic acid, crotonic acid, itaconic acid, maleic acid or fumaric acid.
  • the most representative of the monomer having an alkyl ester group represented by the above general formula (1) and a polymerizable unsaturated bond is an ester of (meth) acrylic acid and an alcohol, for example, methyl (meth) ) Acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, benzyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, sec-butyl (meth) acrylate And t-butyl (meth) acrylate.
  • tertiary alkyl esters such as t-butyl (meth) acrylate are most preferable in terms of crosslinking reactivity.
  • t-butyl (meth) acrylate is a tertiary alkyl ester, the transesterification reaction rate is fast, and thus the curing reaction proceeds efficiently. For this reason, it is superior in crosslinking reactivity to primary alkyl esters and secondary alkyl esters, and is a very preferable raw material for donating an ester group for achieving the object of the present invention.
  • t-butyl (meth) acrylate has a high Tg, and the resin using this as a raw material becomes hard. For this reason, conventionally, it has been considered to be necessarily not preferable in order to obtain thin film formability and low temperature curability as a raw material for paints.
  • thermosetting resin composition since a thermosetting resin composition is used in combination with the compound (B), a homopolymer of t-butyl (meth) acrylate which is not originally preferable in thin film formability and low temperature curability. Even in this case, the compound (B) having at least two hydroxyl groups in the molecule to be used in combination is also preferable in that it can be used without causing the problems as described above.
  • t-butyl (meth) acrylate may be copolymerized with other monomers described in detail below to adjust the Tg. In this case, it is preferable to set Tg to 80 ° C. or less.
  • the monomer having an alkyl ester group and a polymerizable unsaturated bond is a monomer having an alkyl ester group in addition to the compound represented by the general formula (1) described above, and the polymerizable unsaturated bond and an ester group May be a compound bonded via a linking group.
  • Such monomers are
  • R 1, R 2 and R 3 are the same or different and are hydrogen, an alkyl group, a carboxyl group, an alkyl ester group or a structure represented by the following R 5- [COOR 6 ].
  • R 5 representing R has 50 or less atoms in its main chain, and has at least one functional group selected from the group consisting of an ester group, an ether group, an amide group and a urethane in the main chain, And an aliphatic, alicyclic or aromatic alkylene group which may have a side chain.
  • R 6 is an alkyl group having 50 or less carbon atoms) What is represented by the general formula of can be used.
  • an alkyl ester group is present from an acrylic resin main chain via a linking group. The preferred points of such a structure are described in detail below.
  • R 7 is H or methyl group.
  • R 8 is an alkylene group in which the number of atoms in the main chain is 48 or less and which may have an ester group, an ether group and / or an amide group in the main chain, and may have a side chain.
  • R 9 is an alkyl group having 50 or less carbon atoms.
  • Such compounds are derivatives of (meth) acrylic acid and can be obtained by known synthetic methods using (meth) acrylic acid as a raw material.
  • the number of atoms in the main chain of R 8 is more preferably 40 or less, still more preferably 30 or less, and still more preferably 20 or less.
  • the atom which may be contained in the main chain of R 2 is not particularly limited, and may have an oxygen atom, a nitrogen atom, a sulfur atom, a silicon atom or the like in addition to a carbon atom. More specifically, those having an ether group, an ester group, an amino group, an amido group, a thioether group, a sulfonic acid ester group, a thioester group, a siloxane group or the like in addition to the alkyl group in the main chain of R 8 It may be.
  • Such a compound in which (meth) acrylic acid and an ester group are linked via a linking group represented by R 8 is particularly preferable in that it tends to increase the reaction rate of transesterification.
  • the reaction speed is increased because the side chain structure is a long chain, and when the ester group is present at the end, the ester group is easily moved and the degree of freedom is increased, so that the hydroxyl group is easily approached, thereby the reaction Is supposed to be promoted. This is similarly promoted to the compound (B) having at least two hydroxyl groups in the molecule having hydroxyl groups.
  • R represents an alkyl group.
  • a polymer obtained by homopolymerizing or copolymerizing one or more of such acrylic monomers having an alkyl ester group with other monomers can be used in the present invention.
  • the monomer to be used in combination is not particularly limited, and, for example, Various ⁇ -olefins, such as ethylene, propylene or butene-1; Various halogenated olefins other than fluoroolefins, such as vinyl chloride or vinylidene chloride; Various alkyl (meth) acrylates having 1 to 18 carbon atoms, and further, various cycloalkyl (meth) acrylates, aralkyl (meth) acrylates, phenyl (meth) acrylates or substituted phenyl group-containing (meth ) Acrylates; Various aromatic vinyl compounds such as styrene, ⁇ -methylstyrene or vinyltoluene; N-dimethylaminoethyl (meth) acrylamide, N-diethylaminoethyl (meth) acrylamide, N
  • “having two or more alkyl ester groups” is calculated from the weight average molecular weight and the alkyl ester group equivalent as described above. It means that the number of alkyl ester groups per molecular weight is 2 or more.
  • the number of (meth) acrylates of alkyl per molecule varies, but the average value thereof needs to be 2 or more.
  • the value is more preferably 2.2 or more, and most preferably 2.3 or more.
  • the copolymerization of the alkyl (meth) acrylate may use a hydroxyl group-containing vinyl monomer, or may contain no hydroxyl group. Particularly representative examples of such hydroxyl group-containing vinyl monomers are exemplified below.
  • 2-Hydroxyethylvinylether 3-hydroxypropylvinylether, 2-hydroxypropylvinylether, 4-hydroxybutylvinylether, 3-hydroxybutylvinylether, 2-hydroxy-2-methylpropylvinylether, 5-hydroxypentylvinylether or 6-hydroxyhexyl
  • Various hydroxyl group-containing vinyl ethers such as vinyl ethers; or addition reaction products of the various vinyl ethers listed above with ⁇ -caprolactone; 2-hydroxyethyl (meth) allyl ether, 3-hydroxypropyl (meth) allyl ether, 2-hydroxypropyl (meth) allyl ether, 4-hydroxybutyl (meth) allyl ether, 3-hydroxybutyl (meth) allyl ether, Various hydroxyl group-containing allyl ethers such as 2-hydroxy-2-methylpropyl (meth) allyl ether, 5-hydroxypentyl (meth) allyl ether or 6-
  • the above method (A-1) is not particularly limited by the method of production, and can be produced by polymerization according to a known method. More specifically, mentioning a polymerization method such as a solution polymerization method in an organic solvent, an emulsion polymerization method in water, a mini emulsion polymerization method in water, an aqueous solution polymerization method, a suspension polymerization method, a UV curing method, etc. Can.
  • a polymerization method such as a solution polymerization method in an organic solvent, an emulsion polymerization method in water, a mini emulsion polymerization method in water, an aqueous solution polymerization method, a suspension polymerization method, a UV curing method, etc.
  • a compound obtained by the addition reaction of malonic acid ester with a vinyl group can also be used as the ester compound (A) of the present invention.
  • Such a reaction can be represented by the following general formula.
  • R 10 represents an alkyl group having 50 or less carbon atoms.
  • n 1 is 1 to 10.
  • n 2 is 1 to 20;
  • R 11 , R 12 , R 13 and R 14 are not particularly limited, and can be any functional group depending on the purpose. More specifically, H, C1-20 alkyl group, carboxyl group, ester group, hydroxyl group, amine group, amide group, epoxy group, urethane group, silane group, ethylene glycol group, phenoxy group, and any arbitrary linkage It may contain one or more vinyl groups via groups.
  • (meth) acrylate derivatives, polyvalent (meth) acrylate derivatives and the like can be mentioned.
  • the alkyl group in the ester group is most preferably a tertiary alkyl group such as a t-butyl group.
  • a tertiary alkyl group it is preferable in that the transesterification proceeds efficiently.
  • the compound obtained by the addition reaction of the above (A-2) malonic ester with a vinyl group a compound having a compound having one or more unsaturated bonds in one molecule as a raw material is used, and the malonic ester is used. It may have one or more backbones derived from the same in one molecule.
  • R represents an alkyl group.
  • Various multifunctional carboxylic acids are versatile raw materials widely provided at low cost in polyester raw materials, polyamide raw materials, neutralizing agents, synthetic raw materials and many other uses.
  • Compounds obtained by alkylating such polyfunctional carboxylic acids by known methods can also be used in the present invention.
  • the esterification can be carried out by the above-mentioned alkyl group having 50 or less carbon atoms, and in particular, one esterified by a tertiary alkyl group such as a t-butyl group is preferable.
  • ester compound (A) When such a compound is used as the ester compound (A), it can be esterified inexpensively by a known method, and a polyvalent ester group can be introduced with a relatively low molecular weight. Moreover, the compatibility to the organic solvent becomes good by esterifying, and it can be used suitably. It is preferable in that.
  • carboxylic acid used here, For example, carbon number can use a 50 or less thing. More specifically, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid, brassic acid, octadecanedioic acid, citric acid, butanetetraic acid Aliphatic polyvalent carboxylic acids such as carboxylic acids; 1,2-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, 4-cyclohexene-1,2-dicarboxylic acid, 3-methyl-1,2-cyclohexanedicarboxylic acid, 4-methyl -1, 2- cyclohexanedicarboxylic acid, 1, 2, 4- cyclohexane tricarboxy
  • Fatty acids such as lauric acid, myristic acid, palmitic acid, stearic acid, oleic acid, linoleic acid, linolenic acid, benzoic acid, p-tert-butylbenzoic
  • the compounds having two or more alkyl ester groups described above may be used in combination. Moreover, you may use the acid anhydride of these compounds as a raw material.
  • the method for the alkyl esterification of the above-mentioned polyfunctional carboxylic acid is not particularly limited, and known methods such as dehydration condensation with an alcohol can be applied.
  • the ester compound (A) corresponding to the above (A-3) preferably has a molecular weight of 10,000 or less. Such a configuration is preferable in that the molecule is easy to move and curing proceeds. Molecular weights can also be lower molecular weights, such as 6,000 or less, 4000 or less, or 2000 or less.
  • thermosetting resin composition of the present invention in addition to the ester compound (A) which is a compound having two or more alkyl ester groups described above, at least two in the molecule having at least two hydroxyl groups in the molecule And a compound (B) having a hydroxyl group of As a result, the compound (B) having at least two hydroxyl groups in the molecule reacts with the above-mentioned ester compound (A) to efficiently cure the coating.
  • Acrylic polyol polyester polyol, polyether polyol, polycarbonate polyol, polyurethane polyol, etc.
  • two or more may be used simultaneously.
  • low molecular weight low molecular weight polyols can be used.
  • resins generally used in the paint field can be used. These will be described in detail below.
  • Acrylic polyol (B-1) The acrylic polyol is obtained, for example, by copolymerizing a hydroxyl group-containing polymerizable unsaturated monomer (b 1 ) and another polymerizable unsaturated monomer (b 2 ) copolymerizable with the above (b 1 ) by a known method. It can be manufactured. More specifically, polymerization methods such as a solution polymerization method in an organic solvent, an emulsion polymerization method in water, a mini-emulsion polymerization method in water, an aqueous solution polymerization method and the like can be mentioned.
  • the hydroxyl group-containing polymerizable unsaturated monomer (b 1 ) is a compound having one or more hydroxyl group and one or more polymerizable unsaturated bond in one molecule.
  • the hydroxyl group-containing polymerizable unsaturated monomer (b 1 ) is not particularly limited. Particularly representative examples of such hydroxyl group-containing vinyl monomers are exemplified below.
  • 2-Hydroxyethylvinylether 3-hydroxypropylvinylether, 2-hydroxypropylvinylether, 4-hydroxybutylvinylether, 3-hydroxybutylvinylether, 2-hydroxy-2-methylpropylvinylether, 5-hydroxypentylvinylether or 6-hydroxyhexyl
  • Various hydroxyl group-containing vinyl ethers such as vinyl ethers; or addition reaction products of the various vinyl ethers listed above with ⁇ -caprolactone; 2-hydroxyethyl (meth) allyl ether, 3-hydroxypropyl (meth) allyl ether, 2-hydroxypropyl (meth) allyl ether, 4-hydroxybutyl (meth) allyl ether, 3-hydroxybutyl (meth) allyl ether, Various hydroxyl group-containing allyl ethers such as 2-hydroxy-2-methylpropyl (meth) allyl ether, 5-hydroxypentyl (meth) allyl ether or 6-
  • polymerizable unsaturated monomer (b 2 ) copolymerizable with the hydroxyl group-containing polymerizable unsaturated monomer (b 1 ) for example, the following monomers (i) to (xix) and the like, and any combination thereof are It can be mentioned.
  • Alkyl or cycloalkyl (meth) acrylate For example, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, tert-butyl (meth) acrylate, n-Hexyl (meth) acrylate, n-octyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, nonyl (meth) acrylate, tridecyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, isostearyl (Meth) acrylate, cyclohexyl (meth) acrylate, methylcyclohexyl (meth) acrylate,
  • Carboxyl group-containing polymerizable unsaturated monomer (Meth) acrylic acid, maleic acid, crotonic acid, ⁇ -carboxyethyl acrylate, etc.
  • nitrogen-containing polymerizable unsaturated monomers (Meth) acrylonitrile, (meth) acrylamide, N, N-dimethylaminoethyl (meth) acrylate, N, N-diethylaminoethyl (meth) acrylate, N, N-dimethylaminopropyl (meth) acrylamide, methylene bis (meth) acrylamide , Ethylene bis (meth) acrylamide, an adduct of glycidyl (meth) acrylate and an amine compound, etc.
  • (Xii) polymerizable unsaturated monomers having two or more polymerizable unsaturated groups in one molecule: Allyl (meth) acrylate, 1,6-hexanediol di (meth) acrylate, etc.
  • epoxy group-containing polymerizable unsaturated monomer Glycidyl (meth) acrylate, ⁇ -methylglycidyl (meth) acrylate, 3,4-epoxycyclohexylmethyl (meth) acrylate, 3,4-epoxycyclohexylethyl (meth) acrylate, 3,4-epoxycyclohexylpropyl (meth) acrylate , Allyl glycidyl ether etc
  • (Xvii) a polymerizable unsaturated monomer having a UV-absorbing functional group: 2-hydroxy-4- (3-methacryloyloxy-2-hydroxypropoxy) benzophenone, 2-hydroxy-4- (3-acryloyloxy-2-hydroxypropoxy) benzophenone, 2,2'-dihydroxy-4- (3- Methacryloyloxy-2-hydroxypropoxy) benzophenone, 2,2'-dihydroxy-4- (3-acryloyloxy-2-hydroxypropoxy) benzophenone, 2- (2'-hydroxy-5'-methacryloyloxyethylphenyl) -2H -Benzotriazole, etc.
  • UV-stable polymerizable unsaturated monomers 4- (Meth) acryloyloxy-1,2,2,6,6-pentamethylpiperidine, 4- (meth) acryloyloxy-2,2,6,6-tetramethylpiperidine, 4-cyano-4- (meth) ) Acryloylamino-2,2,6,6-tetramethylpiperidine, 1- (meth) acryloyl-4- (meth) acryloylamino-2,2,6,6-tetramethylpiperidine, 1- (meth) acryloyl- 4-Cyano-4- (meth) acryloylamino-2,2,6,6-tetramethylpiperidine, 4-crotonoyloxy-2,2,6,6-tetramethylpiperidine, 4-crotonoylamino-2, 2,6,6-Tetramethylpiperidine, 1-crotonoyl-4-crotonoyloxy-2,2,6,6-tetramethylpiperidine, 1-crot
  • (Xix) polymerizable unsaturated monomer having a carbonyl group Acrolein, diacetone acrylamide, diacetone methacrylamide, acetoacetoxyethyl methacrylate, formyl styrene, vinyl alkyl ketone having about 4 to about 7 carbon atoms (eg, vinyl methyl ketone, vinyl ethyl ketone, vinyl butyl ketone), etc.
  • polymerizable unsaturated group means a radically polymerizable or ionically polymerizable unsaturated group.
  • a vinyl group, a (meth) acryloyl group, etc. are mentioned, for example.
  • the lower limit is more preferably 1.0% by weight, still more preferably 1.5% by weight.
  • the upper limit is more preferably 40% by weight.
  • the hydroxyl value of the acrylic polyol (B-1) is preferably 1 to 200 mg KOH / g from the viewpoint of water resistance and the like of the formed coating.
  • the lower limit is more preferably 2 mg KOH / g, further preferably 5 mg KOH / g.
  • the upper limit is more preferably 180 mg KOH / g, further preferably 170 mg KOH / g.
  • a commercially available thing can also be used as such an acrylic polyol (B-1). It does not specifically limit as a thing marketed, For example, DIC Corporation product Acridic A-801-P, A-817, A-837, A-848-RN, A-814, 57-773, A-829 , 55-129, 49-394-IM, A-875-55, A-870, A-871, A-859-B, 52-668-BA, WZU-591, WXU-880, BL-616, CL -1000, CL-408, etc. can be mentioned.
  • the ester group in the ester compound (A) can be optionally blended relative to the number of hydroxyl groups derived from the acrylic polyol (B-1), but in the case where the ester group is a tertiary ester And 1 to 200% (by number) is preferable.
  • Polyester polyol (B-2) The polyester polyol (B-2) can be usually produced by an esterification reaction or transesterification reaction of an acid component and an alcohol component.
  • an acid component the compound normally used as an acid component is mentioned at the time of manufacture of polyester resin.
  • an aliphatic polybasic acid, an alicyclic polybasic acid, an aromatic polybasic acid etc., and those anhydrides and esterified compounds can be mentioned, for example.
  • the aliphatic compound which has a 2 or more carboxyl group in 1 molecule the acid anhydride of the said aliphatic compound, and the ester of the said aliphatic compound
  • fatty acids such as succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid, brassic acid, octadecanedioic acid, citric acid, butanetetracarboxylic acid, etc.
  • the aliphatic polybasic acid is preferably adipic acid and / or adipic acid anhydride from the viewpoint of the smoothness of the resulting coating film.
  • the above-described alicyclic polybasic acids, and their anhydrides and esters are generally compounds having one or more alicyclic structures and two or more carboxyl groups in one molecule, and acid anhydrides of the above compounds. And esterified compounds of the above compounds. Alicyclic structures are predominantly 4 to 6 membered ring structures.
  • Examples of the above-mentioned alicyclic polybasic acids, and their anhydrides and esterified compounds include 1,2-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, 4-cyclohexene-1 , 2-dicarboxylic acid, 3-methyl-1,2-cyclohexanedicarboxylic acid, 4-methyl-1,2-cyclohexanedicarboxylic acid, 1,2,4-cyclohexanetricarboxylic acid, 1,3,5-cyclohexanetricarboxylic acid, etc.
  • An alicyclic polyvalent carboxylic acid; an anhydride of the above-mentioned alicyclic polyvalent carboxylic acid; an ester of a lower alkyl of about 1 to about 4 carbon atoms of the above-mentioned alicyclic polyvalent carboxylic acid, etc., and any of them A combination is mentioned.
  • 1,2-cyclohexanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid anhydride 1, from the viewpoint of the smoothness of the resulting coating film 3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, 4-cyclohexene-1,2-dicarboxylic acid, 4-cyclohexene-1,2-dicarboxylic acid anhydride are preferred, and 1,2-cyclohexanedicarboxylic acid and / or Or 1,2-cyclohexanedicarboxylic acid anhydride is more preferred.
  • the above-mentioned aromatic polybasic acids, and their anhydrides and esters are generally an aromatic compound having two or more carboxyl groups in one molecule, an acid anhydride of the above-mentioned aromatic compound and an ester of the above-mentioned aromatic compound
  • aromatic polyvalent carboxylic acids such as phthalic acid, isophthalic acid, terephthalic acid, naphthalenedicarboxylic acid, 4,4'-biphenyldicarboxylic acid, trimellitic acid and pyromellitic acid
  • Anhydrides of acids; esters of lower alkyl of about 1 to about 4 carbon atoms of the above-mentioned aromatic polyvalent carboxylic acid, and the like, and any combination thereof can be mentioned.
  • aromatic polybasic acids, and their anhydrides and esters phthalic acid, phthalic anhydride, isophthalic acid, trimellitic acid and trimellitic anhydride are preferable.
  • acid components other than the above-mentioned aliphatic polybasic acid, alicyclic polybasic acid and aromatic polybasic acid as the above-mentioned acid component for example, coconut oil fatty acid, cottonseed oil fatty acid, hempseed oil fatty acid, rice bran oil fatty acid, fish oil fatty acid , Tall oil fatty acid, soybean oil fatty acid, linseed oil fatty acid, soy sauce fatty acid, rapeseed oil fatty acid, castor oil fatty acid, dehydrated castor oil fatty acid, safflower oil fatty acid and other fatty acids; lauric acid, myristic acid, palmitic acid, stearic acid, oleic acid Acids, linoleic acid, linolenic acid, benzoic acid, p-tert-butylbenzoic acid, monocarboxylic acids such as 10-phenyloctadecanoic acid, etc .; lactic acid, 3-hydroxybutanoi
  • polyhydric alcohols having two or more hydroxyl groups in one molecule such as ethylene glycol, propylene glycol, diethylene glycol, trimethylene glycol, tetraethylene glycol, triethylene glycol, dipropylene glycol, 1,4 -Butanediol, 1,3-butanediol, 2,3-butanediol, 1,2-butanediol, 2-methyl-1,3-propanediol, 3-methyl-1,2-butanediol, 1,1 , 1-trimethylolpropane, 2-butyl-2-ethyl-1,3-propanediol, 1,2-pentanediol, 1,5-pentanediol, 1,4-pentanediol, 2,4-pentanediol, 2,3-Dimethyltrimethylene glycol, tetramethylene glycol , 3-methyl-4,3-pentanediol,
  • alcohol components other than the polyhydric alcohol for example, monoalcohols such as methanol, ethanol, propyl alcohol, butyl alcohol, stearyl alcohol, 2-phenoxyethanol, etc .; propylene oxide, butylene oxide, “Cardura E10” (The alcohol compound etc. which were obtained by making monoepoxy compounds, such as a brand name and the product made by HEXIONSpecialty Chemicals company, and glycidyl ester of synthetic
  • combination highly branched saturated fatty acid, and an acid be made to react are mentioned.
  • the polyester polyol (B-2) is not particularly limited, and may be produced according to a conventional method.
  • the acid component and the alcohol component are heated in a nitrogen stream at about 150 to about 250 ° C. for about 5 to about 10 hours to carry out the esterification reaction or transesterification reaction of the acid component and the alcohol component.
  • polyester polyol (B-2) can be produced.
  • Low molecular weight polyol (B-3) The compound (B) is not limited to the above-mentioned resin, and a low molecular weight polyol (specifically, a molecular weight of 2,000 or less) can also be used.
  • a low molecular weight polyol for example, ethylene glycol, propylene glycol, diethylene glycol, trimethylene glycol, tetraethylene glycol, triethylene glycol, dipropylene glycol, 1,4-butanediol, 1,3-butanediol, 2,3- Butanediol, 1,2-butanediol, 2-methyl-1,3-propanediol, 3-methyl-1,2-butanediol, 1,1,1-trimethylolpropane, 2-butyl-2-ethyl- 1,3-propanediol, 1,2-pentanediol, 1,5-pentanediol, 1,4-pentanedio
  • thermosetting resin composition using such a low molecular weight polyol is known as a general-purpose product, and can be obtained inexpensively. Furthermore, the low molecular weight polyol is highly water soluble and can be suitably used as a crosslinking agent for the purpose of aqueous curing. In recent years, environmental problems have been called for, and they can be suitably used as a very important crosslinking agent in promoting the reduction of VOCs.
  • the compound (B) of the present invention may be used in combination of two or more of the polyacrylic polyol (B-1), the polyester polyol (B-2) and the low molecular weight polyol (B-3).
  • the ester group in the ester compound (A) can be optionally blended relative to the number of hydroxyl groups derived from the compound (B), but 1 to 200 when the ester group is a tertiary ester. It is preferably% (number ratio).
  • thermosetting resin composition of the present invention contains a compound (B) having two or more hydroxyl groups, a conventional thermosetting resin using a polyisocyanate curing agent, a melamine resin or the like as the polyol It has the advantage of being able to use what has been used in the composition as it is.
  • the ester compound (A) when used in combination with the compound (B) having a plurality of hydroxyl groups in the molecule, is a tertiary alkyl (meth) acrylate, 1 to 10 based on the structural unit of the polymer It is preferable to contain in the ratio of 100 mol%. That is, it is preferable to use a compound in which a tertiary alkyl (meth) acrylate is blended at a high ratio as described above, since a sufficient crosslinking density can be obtained.
  • thermosetting resin composition of the present invention contains a transesterification catalyst (C). That is, a transesterification catalyst (C) is blended in order to efficiently cause a transesterification reaction between an ester group and a hydroxyl group to obtain a sufficient thermosetting property.
  • transesterification catalyst (C) arbitrary compounds known as what can activate transesterification can be used.
  • various acidic compounds such as hydrochloric acid, sulfuric acid, nitric acid, acetic acid, phosphoric acid or sulfonic acid; various basic compounds such as LiOH, KOH or NaOH, amines etc; PbO, zinc acetate
  • various metal compounds such as lead acetate, antimony trioxide, tetraisopropyl titanate, dibutyltin dilaurate, dibutyltin dioctate or monobutyl stannic acid and the like.
  • photoresponsive catalysts or heat latent catalysts that generate an acid by light or heat can also be used.
  • compounds having a sulfonic acid group dodecylbenzenesulfonic acid, phenolsulfonic acid, metasulfonic acid, p-toluenesulfonic acid), or alkalis of sulfonic acids, which can sufficiently exert the effects of the present invention It is desirable to use a compound having a group consisting of a metal salt or an amine salt.
  • a compound having a sulfonic acid group as an SO 3 H group, not “alkali metal salt or amine salt of sulfonic acid” which is a heat latent catalyst.
  • the transesterification reaction which is a curing reaction of the present invention is not necessarily highly reactive. For this reason, it is because a better curing performance can be obtained by using a compound having higher acidity.
  • bisphenol A or its derivative can also be used as a catalyst of transesterification.
  • a compound is more preferably not used.
  • the use of such a compound is not preferable in that it has been suggested that the compound may adversely affect the environment.
  • the amount of the transesterification catalyst (C) used is preferably 0.01 to 50% by weight based on the total weight of the ester compound (A) and the compound (B). It is preferable at the point which can perform favorable hardening reaction at low temperature by setting it as the thing within such a range.
  • thermosetting resin composition of the present invention is not particularly limited, but is preferably an organic solvent-based or water-based form. This is preferable in that thin film coating is possible and low temperature curing can be performed.
  • the aqueous system may be either water-soluble or water-dispersible, and may be added to water and mixed with water such as ethanol, methanol, alcohol, glycol, ether or ketone at any ratio. It may contain an aqueous solvent capable of
  • the organic solvent-based thermosetting resin composition is a composition in which the above components are dissolved or dispersed in various organic solvents.
  • Organic solvents which can be used are not particularly limited, and hydrocarbons such as 1-hexane, 1-octane, 1-decane, 1-tetradecane, cyclohexane, benzene, xylene, ethers such as dimethyl ether and diethyl ether, acetone, methyl ethyl ketone Etc., chlorinated hydrocarbons such as trichloromethane, carbon tetrachloride, dichloroethane, trichloroethane, tetrachloroethylene etc., ethanol, methanol, propanol, butanol, acetone, cyclohexanone etc can be used.
  • a solution containing an ester compound (A) and a main agent solution containing a compound (B) may be combined and mixed and used immediately before use. This is preferable in that the storage stability is good.
  • it can also be set as the 2 liquid type of the type which mixes the catalyst solution containing a transesterification catalyst (C) in the solution containing an ester compound (A) and the compound (B) which has at least 2 hydroxyl groups in a molecule.
  • the ester compound (A), the compound (B) and the transesterification catalyst (C) are dried, mixed and pulverized by a conventional method. It can be manufactured by
  • thermosetting composition of the present invention is further used in combination with other crosslinking agents generally used in the field of paints and adhesives. It may be It does not specifically limit as a crosslinking agent which can be used, An isocyanate compound, a block isocyanate compound, a melamine resin, an epoxy resin, a silane compound etc. can be mentioned. Moreover, a vinyl ether, an anionically polymerizable monomer, a cationically polymerizable monomer, a radically polymerizable monomer etc. may be used together. A curing agent may be used in combination to accelerate the reaction of the crosslinking agent used in combination.
  • thermosetting resin composition of this invention is preferable at the point which can acquire favorable sclerosis
  • thermosetting resin composition of the present invention may contain a non-aqueous dispersion resin (NAD), if necessary depending on the purpose.
  • NAD non-aqueous dispersion resin
  • the non-aqueous dispersion resin (NAD) is not essential and may not contain it.
  • thermosetting resin composition of the present invention can be suitably used in the fields of thermosetting coatings, thermosetting adhesives and the like.
  • additives commonly used in the paint field may be used in addition to the above-described components.
  • color pigments, extender pigments, bright pigments, etc., and any combination thereof may be used in combination.
  • a pigment When a pigment is used, it is preferably contained in the range of 1 to 500% by weight in total, based on 100% by weight of the total solid content of the resin component.
  • the lower limit is more preferably 3% by weight, still more preferably 5% by weight.
  • the upper limit is more preferably 400% by weight, still more preferably 300% by weight.
  • color pigments examples include titanium oxide, zinc flower, carbon black, molybdenum red, Prussian blue, cobalt blue, azo pigments, phthalocyanine pigments, quinacridone pigments, isoindoline pigments, graphene pigments, perylene pigments Dioxazine pigments, diketopyrrolopyrrole pigments, etc., and any combination thereof.
  • extender pigment examples include clay, kaolin, barium sulfate, barium carbonate, calcium carbonate, talc, silica, alumina white and the like, barium sulfate and / or talc are preferable, and barium sulfate is more preferable.
  • the bright pigment for example, aluminum (including vapor deposited aluminum), copper, zinc, brass, nickel, aluminum oxide, mica, aluminum oxide coated with titanium oxide or iron oxide, titanium oxide or iron oxide coated Mica, glass flakes, holographic pigments etc., as well as any combinations thereof.
  • the aluminum pigments include non-leafing type aluminum and leafing type aluminum.
  • thermosetting paint is optionally added to paints such as thickeners, UV absorbers, light stabilizers, antifoaming agents, plasticizers, organic solvents other than the hydrophobic solvents, surface conditioners, anti-settling agents, etc. It may further contain an agent.
  • the thickener examples include inorganic thickeners such as silicates, metal silicates, montmorillonite and colloidal alumina; copolymers of (meth) acrylic acid and (meth) acrylic acid ester, poly A polyacrylic acid-based thickener such as sodium acrylate; having a hydrophilic portion and a hydrophobic portion in one molecule, and in the aqueous medium, the hydrophobic portion adsorbs to the surface of the pigment in the paint or the surface of emulsion particles Associative thickeners having a thickening action due to association of the hydrophobic portions with each other; cellulose derivative thickeners such as carboxymethyl cellulose, methyl cellulose and hydroxyethyl cellulose; casein, sodium caseinate, ammonium caseinate and the like Protein based thickeners; Alginic acid based thickeners such as sodium alginate; polyvinyl alcohol, polyvinyl pyrrolidone, polyvinyl alcohol Polyvinyl-based thickeners
  • polyacrylic acid-based thickeners are commercially available.
  • ACRYSOLASE-60 “ACRYSOLTT-615”, “ACRYSOLRM-5” (all trade names) manufactured by Rohm and Haas
  • Sannopco "SN sickener 613”, “SN sickener 618”, “SN sickener 630”, “SN sickener 634", “SN sickener 636” (trade names) and the like can be mentioned.
  • the above-mentioned associative thickener is commercially available, for example, "UH-420", “UH-450”, “UH-462”, “UH-472", “UH-540” manufactured by ADEKA. “UH-752”, “UH-756VF”, “UH-814N” (trade names), “ACRYSOLRM-8W”, “ACRYSOLRM-825”, “ACRYSOLRM-2020 NPR”, manufactured by Rohm and Haas, “ACRYSOLRM” -12W, “ACRYSOLSCT-275” (all brand names), "SN Thickener 612", “SN Thickener 621N”, “SN Thickener 625N”, “SN Thickener 627N”, “SN Thickener 660T” manufactured by San Nopco As mentioned above, a brand name etc. are mentioned.
  • thermosetting paint can be applied is not particularly limited.
  • the outer plate of an automobile body such as a passenger car, a truck, a motorcycle, or a bus; automobile parts; mobile phones, audio equipment, etc.
  • household appliances such as household appliances, building materials, furniture, adhesives, coating agents for films and glass, and the like.
  • a paint for automobiles it can be used for the effect of any layer such as a middle coat paint, a base paint and a clear paint.
  • the article to be coated may be a surface of a metal such as a car body molded from the above metal material and subjected to surface treatment such as phosphate treatment, chromate treatment, complex oxide treatment, etc. It may be a substrate having a coating.
  • a to-be-coated-article which has the said coating film you may surface-treat to a base material if desired, and the thing in which the undercoat film was formed on it etc. can be mentioned.
  • a vehicle body having a primer coating film formed of an electrodeposition paint is preferable, and a vehicle body having a primer coating film formed of a cationic electrodeposition paint is more preferable.
  • the above-mentioned to-be-coated-article may be that by which surface treatment, primer coating, etc. were given to plastic surfaces, such as the above-mentioned plastic material and automobile parts fabricated from it, if desired. Moreover, what combined said plastic material and said metal material may be used.
  • thermosetting coating is not particularly limited, and examples thereof include air spray coating, airless spray coating, rotary atomization coating, curtain coating coating, etc., and air spray coating, rotary atomization coating and the like are preferable. .
  • electrostatic may be applied if desired.
  • a wet coating film can be formed from the aqueous coating composition by the coating method.
  • the wet coating film can be cured by heating.
  • the curing can be carried out by a known heating means, for example, a drying furnace such as a hot air furnace, an electric furnace, or an infrared induction heating furnace.
  • the wet coating is preferably at a temperature in the range of about 80 to about 180 ° C., more preferably about 100 to about 170 ° C., and still more preferably about 120 to about 160 ° C., preferably for about 10 to about 60 minutes. And more preferably, it can be cured by heating for about 15 to about 40 minutes. Further, it is preferable in that it can cope with low temperature curing at 80 to 140 ° C.
  • thermosetting resin composition of the present invention When the thermosetting resin composition of the present invention is used in the field of paints, sufficient curing performance having performances such as smoothness and water resistance / acid resistance is required. On the other hand, when used in the field of adhesives, adhesives and the like, the curing performance as high as required in paints is not required.
  • the thermosetting resin composition of the present invention can be made into the level which can be used as a paint, even if it is a composition which does not reach such a level, in the field of adhesives, adhesives, etc. May be available.
  • the present invention is a cured film formed by three-dimensionally crosslinking the above-mentioned thermosetting resin composition.
  • Such a cured film has sufficient performance so that it can be used as a paint and an adhesive.
  • Synthesis example 1 Additional test experiments of the resin composition described in the prior art (Japanese Patent Laid-Open No. 9-59543) were conducted.
  • As a comparative resin 375 parts of t-butyl methacrylate (manufactured by Kyoeisha Chemical Co., Ltd .: Light Ester TB) and 125 parts of hydroxyethyl methacrylate (manufactured by Kyoeisha Chemical Co., Ltd .: Light Ester HO-250) are used as a monomer mixed liquid,
  • An initiator solution was prepared by dissolving 25 parts of t-butylperoxy octoate as an initiator and 3 parts of 2,2'-azobis (isobutyronitrile) in xylene.
  • Synthesis example 2 240 parts of n-butyl methacrylate (manufactured by Kyoeisha Chemical Co., Ltd .: Light Ester NB), 110 parts of hydroxyethyl methacrylate (manufactured by Kyoeisha Chemical Co., Ltd .: Light Ester HO-250), 30 parts of styrene as a monomer mixture, As an initiator, 25 parts of 2,2′-azobis (2,4-dimethylvaleronitrile) (Wako Pure Chemical Industries, Ltd. V-65) was dissolved in an aromatic hydrocarbon (T-SOL 100) to prepare an initiator solution.
  • T-SOL 100 aromatic hydrocarbon
  • Synthesis example 3 240 parts of n-butyl methacrylate (manufactured by Kyoeisha Chemical Co., Ltd .: Light Ester NB), 62 parts of hydroxyethyl methacrylate (manufactured by Kyoeisha Chemical Co., Ltd .: Light Ester HO-250), 25 parts of styrene, reactive emulsifier (No. A 10 parts industrial chemical: aqualon KH-10) was mixed, 150 parts of ion-exchanged water was mixed, and the mixture was emulsified at room temperature for 1 hour using a homomixer to prepare a monomer emulsion.
  • an initiator 9 parts of ammonium peroxodisulfate and 7 parts of sodium bisulfite were dissolved in ion exchange water to prepare an initiator solution.
  • ion exchange water Into a stirable flask, 260 parts of ion-exchanged water was charged, and a monomer solution and an initiator solution were dropped to perform polymerization while nitrogen was enclosed. The polymerization temperature at this time was 80.degree. The dropwise addition was carried out for 2 hours, and aging was further carried out at 80 ° C. for 4 hours to obtain polyol B.
  • Synthesis example 4 As an initiator, 25 parts of 2,2′-azobis (2,4-dimethylvaleronitrile) (Wako Pure Chemical Industries, Ltd. V-65) was dissolved in an aromatic hydrocarbon (T-SOL 100) to prepare an initiator solution. 250 parts of aromatic hydrocarbon (T-SOL 100) is put into a stirable flask, and 240 parts of t-butyl methacrylate (manufactured by Kyoeisha Chemical Co., Ltd. product: Light Ester TB) and an initiator solution are dropped while sealing in nitrogen. The polymerization was carried out. The polymerization temperature at this time was 100 ° C. The dropwise addition was carried out for 2 hours, and aging was further carried out at 100 ° C. for 4 hours to obtain an ester compound solution A.
  • T-SOL 100 aromatic hydrocarbon
  • Synthesis example 5 As an initiator, 25 parts of 2,2′-azobis (2,4-dimethylvaleronitrile) (Wako Pure Chemical Industries, Ltd. V-65) was dissolved in an aromatic hydrocarbon (T-SOL 100) to prepare an initiator solution. Put 250 parts of aromatic hydrocarbon (T-SOL 100) in a stirable flask and add 240 parts of t-butyl acrylate (Kyoeisha Chemical Co., Ltd. product: Light Acrylate TB) and an initiator solution while sealing in nitrogen. The polymerization was carried out. The polymerization temperature at this time was 100 ° C. The dropwise addition was carried out for 2 hours, and aging was further carried out at 100 ° C. for 4 hours to obtain an ester compound solution B.
  • T-SOL 100 aromatic hydrocarbon
  • Synthesis example 6 Starting with 240 parts of n-butyl methacrylate (Kyoeisha Chemical Co., Ltd. product: Light Ester NB), 120 parts of t-butyl methacrylate (Kyoeisha Chemical Co., Ltd. product: Light ester TB), and 30 parts of styrene as a monomer mixed liquid As an agent, 25 parts of 2,2'-azobis (2,4-dimethylvaleronitrile) (Wako Pure Chemical Industries, Ltd. V-65) was dissolved in an aromatic hydrocarbon (T-SOL 100) to prepare an initiator solution.
  • T-SOL 100 aromatic hydrocarbon
  • Synthesis example 7 Use 245 parts of n-butyl methacrylate (Kyoeisha Chemical Co., Ltd. product: Light Ester NB), 110 parts of t-butyl acrylate (Kyoeisha Chemical Co., Ltd. product: Light acrylate TB), and 30 parts of styrene as a monomer mixture
  • an initiator 25 parts of 2,2′-azobis (2,4-dimethylvaleronitrile) (Wako Pure Chemical Industries, Ltd. V-65) was dissolved in an aromatic hydrocarbon (T-SOL 100) to prepare an initiator solution.
  • 250 parts of an aromatic hydrocarbon was placed in a stirable flask, and a monomer solution and an initiator solution were added dropwise while sealing with nitrogen. The polymerization temperature at this time was 100 ° C. The dropwise addition was carried out for 2 hours, and aging was further carried out at 100 ° C. for 4 hours to obtain an ester compound solution D.
  • Synthesis example 8 Ethylene glycol monoacetoacetate monomethacrylate 54 parts, n-butyl acrylate 32 parts, potassium carbonate 38 parts, 18-crown-6 ether 2 parts, and tetrahydrofuran 112 parts were mixed and stirred at 50 ° C. for 3 hours. After completion of the reaction, cyclohexane and water were added and washed with water. The organic layer was neutralized with a saturated aqueous ammonium chloride solution and then washed twice with water, and the obtained organic layer was concentrated under reduced pressure to obtain monomer A.
  • Synthesis example 9 54 parts of ethylene glycol monoacetoacetate monomethacrylate, 32 parts of tertiary butyl acrylate, 38 parts of potassium carbonate, 2 parts of 18-crown-6 ether and 112 parts of tetrahydrofuran were mixed and stirred at 50 ° C. for 3 hours. After completion of the reaction, cyclohexane and water were added and washed with water. The organic layer was neutralized with a saturated aqueous ammonium chloride solution and then washed twice with water, and the obtained organic layer was concentrated under reduced pressure to obtain monomer B.
  • Synthesis example 10 54 parts of ethylene glycol monoacetoacetate monomethacrylate, 58 parts of tertiary butyl acrylate, 38 parts of potassium carbonate, 2 parts of 18-crown-6 ether, and 112 parts of tetrahydrofuran were mixed and stirred at 50 ° C. for 3 hours. After completion of the reaction, cyclohexane and water were added and washed with water. The organic layer was neutralized with a saturated aqueous ammonium chloride solution and then washed twice with water, and the obtained organic layer was concentrated under reduced pressure to obtain monomer C.
  • Synthesis example 11 6.4 parts of sulfuric acid, 31 parts of magnesium sulfate and 130 parts of methylene chloride were mixed and stirred at room temperature for 15 minutes. After stirring, 15 parts of 2-methacryloyloxyethyl succinic acid (Kyoeisha Chemical Product Light Ester HO-MS) and 24 parts of tertiary butyl alcohol were added, and the mixture was stirred at room temperature for 20 hours. After completion of the reaction, water was added and washed with water. The organic layer was neutralized with saturated aqueous sodium hydrogen carbonate solution and then washed twice with water, and the obtained organic layer was concentrated under reduced pressure to obtain monomer D.
  • 2-methacryloyloxyethyl succinic acid Kerata Chemical Product Light Ester HO-MS
  • Synthesis example 12 An initiator solution, 7.5 parts of 2,2′-azobis (2,4-dimethylvaleronitrile) (Wako Pure Chemical Industries, Ltd. V-65) is mixed with an aromatic hydrocarbon (T-SOL 100), and an initiator solution is prepared. And 150 parts of an aromatic hydrocarbon (T-SOL 100) was placed in a stirrable flask, and 150 parts of monomer A and an initiator solution were added dropwise while sealing in nitrogen. The polymerization temperature at this time was 100 ° C. The dropwise addition was carried out for 2 hours, and aging was further carried out at 100 ° C. for 4 hours to obtain an ester compound solution E.
  • T-SOL 100 2,2′-azobis (2,4-dimethylvaleronitrile)
  • Synthesis example 13 An initiator, 7.5 parts of 2,2′-azobis (2,4-dimethylvaleronitrile) (Wako Pure Chemical Industries, Ltd. V-65) is mixed with an aromatic hydrocarbon (T-SOL 100) and mixed with an initiator solution. did. 150 parts of aromatic hydrocarbon (T-SOL 100) was placed in a stirrable flask, and 150 parts of monomer B and an initiator solution were added dropwise while sealing in nitrogen. The polymerization temperature at this time was 100 ° C. The dropwise addition was carried out for 2 hours, and aging was further carried out at 100 ° C. for 4 hours to obtain an ester compound solution F.
  • Synthesis example 14 An initiator, 7.5 parts of 2,2′-azobis (2,4-dimethylvaleronitrile) (Wako Pure Chemical Industries, Ltd. V-65) is mixed with an aromatic hydrocarbon (T-SOL 100) and mixed with an initiator solution. did. 150 parts of aromatic hydrocarbon (T-SOL 100) was placed in a stirrable flask, and 150 parts of monomer C and an initiator solution were added dropwise while sealing in nitrogen. The polymerization temperature at this time was 100 ° C. The dropwise addition was carried out for 2 hours, and aging was further carried out at 100 ° C. for 4 hours to obtain an ester compound solution G.
  • Synthesis example 15 An initiator, 7.5 parts of 2,2′-azobis (2,4-dimethylvaleronitrile) (Wako Pure Chemical Industries, Ltd. V-65) is mixed with an aromatic hydrocarbon (T-SOL 100) and mixed with an initiator solution. did. 150 parts of aromatic hydrocarbon (T-SOL 100) was placed in a stirrable flask, and 150 parts of monomer D and an initiator solution were added dropwise while sealing in nitrogen. The polymerization temperature at this time was 100 ° C. The dropwise addition was carried out for 2 hours, and aging was further carried out at 100 ° C. for 4 hours to obtain an ester compound solution H.
  • Synthesis example 16 A monomer solution was prepared by mixing 75 parts of n-butyl methacrylate (manufactured by Kyoeisha Chemical Co., Ltd. product: Light Ester NB), 65 parts of monomer A and 10 parts of styrene. 7.5 parts of 2,2′-azobis (2,4-dimethylvaleronitrile) (Wako Pure Chemical Industries, Ltd. V-65) was dissolved in an aromatic hydrocarbon (T-SOL 100) to prepare an initiator solution. 150 parts of aromatic hydrocarbon (T-SOL 100) was placed in a stirrable flask, and the monomer solution and the initiator solution were added dropwise while sealing with nitrogen. The polymerization temperature at this time was 100 ° C. The dropwise addition was carried out for 2 hours, and aging was further carried out at 100 ° C. for 4 hours to obtain an ester compound I.
  • T-SOL 100 aromatic hydrocarbon
  • Synthesis example 17 A monomer solution was prepared by mixing 75 parts of n-butyl methacrylate (manufactured by Kyoeisha Chemical Co., Ltd. product: Light Ester NB), 65 parts of monomer B, and 10 parts of styrene. 7.5 parts of 2,2′-azobis (2,4-dimethylvaleronitrile) (Wako Pure Chemical Industries, Ltd. V-65) was dissolved in an aromatic hydrocarbon (T-SOL 100) to prepare an initiator solution. 150 parts of aromatic hydrocarbon (T-SOL 100) was placed in a stirrable flask, and the monomer solution and the initiator solution were added dropwise while sealing with nitrogen. The polymerization temperature at this time was 100 ° C. The dropwise addition was carried out for 2 hours, and aging was further carried out at 100 ° C. for 4 hours to obtain an ester compound J.
  • T-SOL 100 aromatic hydrocarbon
  • Synthesis example 18 A monomer solution was prepared by mixing 75 parts of n-butyl methacrylate (manufactured by Kyoeisha Chemical Co., Ltd .: Light Ester NB), 65 parts of a monomer C and 10 parts of styrene. 7.5 parts of 2,2′-azobis (2,4-dimethylvaleronitrile) (Wako Pure Chemical Industries, Ltd. V-65) was dissolved in an aromatic hydrocarbon (T-SOL 100) to prepare an initiator solution. 150 parts of aromatic hydrocarbon (T-SOL 100) was placed in a stirrable flask, and the monomer solution and the initiator solution were added dropwise while sealing with nitrogen. The polymerization temperature at this time was 100 ° C. The dropwise addition was carried out for 2 hours, and aging was further carried out at 100 ° C. for 4 hours to obtain an ester compound K.
  • T-SOL 100 aromatic hydrocarbon
  • Synthesis example 19 A monomer solution was prepared by mixing 75 parts of n-butyl methacrylate (manufactured by Kyoeisha Chemical Co., Ltd .: Light Ester NB), 65 parts of monomer D and 10 parts of styrene. 7.5 parts of 2,2′-azobis (2,4-dimethylvaleronitrile) (Wako Pure Chemical Industries, Ltd. V-65) was dissolved in an aromatic hydrocarbon (T-SOL 100) to prepare an initiator solution. 150 parts of aromatic hydrocarbon (T-SOL 100) was placed in a stirrable flask, and the monomer solution and the initiator solution were added dropwise while sealing with nitrogen. The polymerization temperature at this time was 100 ° C. The dropwise addition was carried out for 2 hours, and aging was further carried out at 100 ° C. for 4 hours to obtain an ester compound L.
  • T-SOL 100 aromatic hydrocarbon
  • Synthesis example 20 240 parts of n-butyl methacrylate (manufactured by Kyoeisha Chemical Co., Ltd .: Light Ester NB), 110 parts of t-butyl acrylate (manufactured by Kyoeisha Chemical Co., Ltd .: Light Acrylate TB), 30 parts of styrene, reactive emulsifier A pharmaceutical preparation: 11 parts of Aqualon KH-10) was mixed, and then 173 parts of ion-exchanged water was mixed and emulsified using a homomixer at room temperature for 1 hour to prepare a monomer emulsion.
  • an initiator 11 parts of ammonium peroxodisulfate and 8 parts of sodium bisulfite were dissolved in water to prepare an initiator solution.
  • a monomer solution and an initiator solution were dropped to perform polymerization while nitrogen was enclosed.
  • the polymerization temperature at this time was 80.degree.
  • the dropwise addition was carried out for 2 hours, and aging was further carried out at 80 ° C. for 4 hours to obtain an ester compound solution M.
  • Mn number average molecular weight
  • Mw weight average molecular weight
  • thermosetting resin composition The polyol and the crosslinking agent obtained by the above-mentioned synthesis example were mixed in the proportions of Tables 2 and 3 below to prepare a thermosetting resin composition.
  • Comparative Example 1 Zinc acetate is mixed with Comparative Polymer Solution A so as to be 0.2 wt% relative to the solid content of Comparative Polymer Solution A, and a 400 ⁇ m coating film is formed with WET using an applicator, and cured at 170 ° C. for 20 minutes went. Thereafter, the gel fraction, the xylene rubbing test, the water resistance, and the hardenability of the adjusting liquid were confirmed by a rigid pendulum test.
  • Example 1 30 parts of ester compound A and phenolsulfonic acid (PHS) are mixed with 100 parts of polyol A so as to be 2 wt% relative to the solid content of the mixture, and a 400 ⁇ m-thick coating film is formed with WET using an applicator. And curing at 140 ° C. for 30 minutes. Thereafter, gel fraction, xylene rubbing test and water resistance test were conducted.
  • PHS phenolsulfonic acid
  • Example 2 30 parts of ester compound B and 100 parts by weight of phenolsulfonic acid (PHS) are mixed with 100 parts of polyol A so as to be 2 wt% relative to the solid content of the mixture, and a 400 ⁇ m coating film is formed with WET using an applicator. And curing for 30 minutes at 140.degree. Thereafter, gel fraction, xylene rubbing test and water resistance test were conducted.
  • PHS phenolsulfonic acid
  • Example 3 30 parts of ester compound C and methanesulfonic acid (MSA) are mixed to 100 parts of Polyol A so as to be 3 wt% relative to the solid content of the mixture, and a 400 ⁇ m-thick coating film is formed with WET using an applicator. And curing for 30 minutes at 140.degree. Thereafter, gel fraction, xylene rubbing test and water resistance test were conducted.
  • MSA methanesulfonic acid
  • Example 4 30 parts of ester compound D and methanesulfonic acid (MSA) are mixed to 100 parts of Polyol A so as to be 3 wt% relative to the solid content of the mixture, and a 400 ⁇ m-thick coating film is formed with WET using an applicator. And curing for 30 minutes at 140.degree. Thereafter, gel fraction, xylene rubbing test and water resistance test were conducted.
  • MSA methanesulfonic acid
  • Comparative Example 1 is the confirmation of the prior art (Japanese Patent Application Laid-Open No. 9-59543), but the gel fraction was not the reported result. In addition, evaluation of xylene rubbing and water resistance gave bad results. In Examples 1 to 4, the film performance such as gel fraction, xylene rubbing, water resistance, etc. is improved, and it is clear that curing reaction is performed.
  • Example 5 30 parts of ester compound E and 100 parts by weight of phenolsulfonic acid (PHS) are mixed with 100 parts of polyol A so as to be 2 wt% with respect to the solid content of the mixture, and a 400 ⁇ m coating film is formed with WET using an applicator. And curing for 30 minutes at 140.degree. Thereafter, a rigid pendulum test was conducted with a gel fraction, a xylene rubbing test, a water resistance, and a control solution.
  • PHS phenolsulfonic acid
  • Example 6 30 parts of ester compound F and 100 parts by weight of phenolsulfonic acid (PHS) are mixed with 100 parts of polyol A so as to be 2 wt% with respect to the solid content of the mixture, and a coating of 400 ⁇ m is made with WET using an applicator And curing for 30 minutes at 140.degree. Thereafter, a rigid pendulum test was conducted with a gel fraction, a xylene rubbing test, a water resistance, and a control solution.
  • PHS phenolsulfonic acid
  • Example 7 30 parts of ester compound G and phenolsulfonic acid (PHS) are mixed with 100 parts of polyol A so as to be 2 wt% relative to the solid content of the mixture, and a 400 ⁇ m-thick coating film is formed with WET using an applicator. And curing for 30 minutes at 140.degree. Thereafter, a rigid pendulum test was conducted with a gel fraction, a xylene rubbing test, a water resistance, and a control solution.
  • PHS phenolsulfonic acid
  • Example 8 30 parts of ester compound H and 100 parts by weight of phenolsulfonic acid (PHS) are mixed with 100 parts of polyol A so as to be 2 wt% with respect to the solid content of the mixture, and a 400 ⁇ m coating film is formed with WET using an applicator. And curing for 30 minutes at 140.degree. Thereafter, gel fraction, xylene rubbing test and water resistance test were conducted.
  • PHS phenolsulfonic acid
  • Example 9 100 parts of ester compound I and 100 parts by weight of phenolsulfonic acid (PHS) are mixed with 100 parts of polyol A so as to be 2 wt% with respect to the solid content of the mixture, and a 400 ⁇ m coating film is made with WET using an applicator. And curing for 30 minutes at 140.degree. Thereafter, gel fraction, xylene rubbing test and water resistance test were conducted.
  • PHS phenolsulfonic acid
  • Example 10 100 parts of ester compound J and phenolsulfonic acid (PHS) are mixed with 100 parts of Polyol A so as to be 2 wt% relative to the solid content of the mixture, and a 400 ⁇ m-thick coating film is formed with WET using an applicator. And curing for 30 minutes at 140.degree. Thereafter, gel fraction, xylene rubbing test and water resistance test were conducted.
  • PHS phenolsulfonic acid
  • Example 11 Ester compound K 55 parts and phenol sulfonic acid (PHS) are mixed so that it becomes 2 wt% with respect to solid content of the mixture with respect to 100 parts of polyol A, and a 400 ⁇ m-thick coating film is made with WET using an applicator. And curing for 30 minutes at 140.degree. Thereafter, gel fraction, xylene rubbing test and water resistance test were conducted.
  • PHS phenol sulfonic acid
  • Example 12 100 parts of ester compound L and phenolsulfonic acid (PHS) are mixed with 100 parts of Polyol A so as to be 2 wt% relative to the solid content of the mixture, and a 400 ⁇ m-thick coating film is formed with WET using an applicator. And curing for 30 minutes at 140.degree. Thereafter, gel fraction, xylene rubbing test and water resistance test were conducted.
  • PHS phenolsulfonic acid
  • Example 13 100 parts of ester compound M and phenolsulfonic acid (PHS) are mixed with 130 parts of Polyol B so as to be 2 wt% relative to the solid content of the mixture, and a 400 ⁇ m-thick coating film is formed with WET using an applicator. And curing for 30 minutes at 140.degree. Thereafter, gel fraction, xylene rubbing test and water resistance test were conducted.
  • PHS phenolsulfonic acid
  • thermosetting is achieved.
  • crosslinking proceeds more effectively in the tertiary ester group than in the primary ester, and the reactivity is further improved by lengthening the side chain through the linking group.
  • Synthesis example 21 24 parts of t-butyl acrylate, 40 parts of di-t-butyl malonate, 28 parts of potassium carbonate, 1.5 parts of 18-crown-6 ether and 64 parts of tetrahydrofuran were mixed and stirred at 50 ° C. for 1 hour. After completion of the reaction, cyclohexane and water were added and washed with water. The organic layer was neutralized with a saturated aqueous ammonium chloride solution and then washed twice with water, and the obtained organic layer was concentrated under reduced pressure to obtain an ester compound N.
  • Synthesis example 22 Mix 31 parts of 1,6-hexanediol diacrylate, 60 parts of di-t-butyl malonate, 42 parts of potassium carbonate, 1.1 parts of 18-crown-6 ether, 91 parts of tetrahydrofuran, and stir at 50 ° C. for 3 hours did. After completion of the reaction, cyclohexane and water were added and washed with water. The organic layer was neutralized with a saturated aqueous ammonium chloride solution and then washed twice with water, and the obtained organic layer was concentrated under reduced pressure to obtain an ester compound O.
  • Synthesis example 23 Eighty parts of trimethylolpropane triacrylate, 37 parts of di-t-butyl malonate, 56 parts of potassium carbonate, 1.5 parts of 18-crown-6 ether, and 117 parts of tetrahydrofuran were mixed and stirred at 50 ° C. for 3 hours. After completion of the reaction, cyclohexane and water were added and washed with water. The organic layer was neutralized with a saturated aqueous ammonium chloride solution and then washed twice with water, and the obtained organic layer was concentrated under reduced pressure to obtain an ester compound P.
  • Synthesis example 24 41 parts of pentaerythritol triacrylate hexamethylene diisocyanate urethane prepolymer (manufactured by Kyoeisha Chemical Co., Ltd .: urethane acrylate UA-306H), 70 parts of di-t-butyl malonate, 49 parts of potassium carbonate, 18-crown-6 ether Three parts were mixed with 111 parts of tetrahydrofuran and stirred at 50 ° C. for 3 hours. After completion of the reaction, cyclohexane and water were added and washed with water.
  • the organic layer is neutralized with a saturated aqueous ammonium chloride solution and then washed twice with water, and the obtained organic layer is concentrated under reduced pressure, and the ester compound is diluted to a solid content of 50% with an aromatic hydrocarbon (T-SOL 100). I got Q.
  • Example 14 15 parts of ester compound N and phenolsulfonic acid (PHS) are mixed with 100 parts of Polyol A so as to be 2 wt% relative to the solid content of the mixture, and a 400 ⁇ m-thick coating film is formed with WET using an applicator. And curing for 30 minutes at 140.degree. Thereafter, gel fraction, xylene rubbing test and water resistance test were conducted.
  • PHS phenolsulfonic acid
  • Example 15 18 parts of ester compound O and phenolsulfonic acid (PHS) are mixed with 100 parts of Polyol A so as to be 2 wt% relative to the solid content of the mixture, and a coating of 400 ⁇ m is made with WET using an applicator. And curing for 30 minutes at 140.degree. Thereafter, gel fraction, xylene rubbing test and water resistance test were conducted.
  • PHS phenolsulfonic acid
  • Example 16 18 parts of ester compound P and 100 parts by weight of phenolsulfonic acid (PHS) are mixed with 100 parts of polyol A so as to be 2 wt% with respect to the solid content of the mixture, and a coating of 400 ⁇ m is made with WET using an applicator And curing for 30 minutes at 140.degree. Thereafter, a rigid pendulum test was conducted with a gel fraction, a xylene rubbing test, a water resistance, and a control solution.
  • PHS phenolsulfonic acid
  • Example 17 43 parts of ester compound Q and phenolsulfonic acid (PHS) are mixed with 100 parts of Polyol A so as to be 2 wt% relative to the solid content of the mixture, and a 400 ⁇ m-thick coating film is formed with WET using an applicator. And curing for 30 minutes at 140.degree. Thereafter, gel fraction, xylene rubbing test and water resistance test were conducted.
  • PHS phenolsulfonic acid
  • Example 18 Using 100 parts of Polyol A, add 15 parts of sebacic acid diethyl ester and phenolsulfonic acid (PHS) to 2 wt% relative to the solid content of the mixture, and use a applicator to coat a 400 ⁇ m film with WET It was prepared and cured at 140 ° C. for 30 minutes. Thereafter, gel fraction, xylene rubbing test and water resistance test were conducted.
  • PHS phenolsulfonic acid
  • Example 19 15 parts of sebacic acid diisopropyl ester and 100 parts by weight of phenolsulfonic acid (PHS) are mixed with 100 parts of polyol A so as to be 2% by weight with respect to the solid content of the mixture, and a 400 ⁇ m coating film is wet with WET using an applicator. It was prepared and cured at 140 ° C. for 30 minutes. Thereafter, gel fraction, xylene rubbing test and water resistance test were conducted.
  • PHS phenolsulfonic acid
  • Example 20 18 parts of sebacic acid ditertiary butyl ester and 100 parts by weight of phenolsulfonic acid (PHS) are mixed with 100 parts of Polyol A so as to be 2 wt% relative to the solid content of the mixture, and coated with 400 ⁇ m WET using an applicator. A film was made and cured at 140 ° C. for 30 minutes. Thereafter, a rigid pendulum test was conducted with a gel fraction, a xylene rubbing test, a water resistance, and a control solution.
  • PHS phenolsulfonic acid
  • Example 21 A mixture of 12 parts of di-t-butyl malonate and 2 parts by weight of phenolsulfonic acid (PHS) based on 100 parts of Polyol A is added to a solid content of the mixture, and 400 ⁇ m by WET using an applicator. A coating was prepared and cured at 140 ° C. for 30 minutes. Thereafter, gel fraction, xylene rubbing test and water resistance test were conducted.
  • PHS phenolsulfonic acid
  • Example 22 12 parts of di-t-butyl malonate and phenolsulfonic acid (PHS) were mixed to 100% of Acrydic A-405 (polyol resin manufactured by DIC) to 2 wt% relative to the solid content of the mixture. Using a applicator, a coating of 400 ⁇ m was made with WET and cured at 140 ° C. for 30 minutes. Thereafter, gel fraction, xylene rubbing test and water resistance test were conducted.
  • PHS phenolsulfonic acid
  • A-405 DIC made Acridic A-405 (acrylic polyol resin)
  • Example 23 8 parts of hexanediol was dissolved in 40 parts of sorbite, 60 parts of ester compound A was further mixed, and p-toluenesulfonic acid (PTS) was mixed so as to be 2 wt% relative to the solid content.
  • PTS p-toluenesulfonic acid
  • a 400 ⁇ m coating was made with WET using an applicator and cured at 140 ° C. for 30 minutes. Thereafter, gel fraction, xylene rubbing test and water resistance test were conducted.
  • Example 24 100 parts of ester compound G was mixed with 20 parts of trimethylolpropane (TMP), and phenolsulfonic acid (PHS) was mixed so as to be 2 wt% with respect to the solid content.
  • TMP trimethylolpropane
  • PHS phenolsulfonic acid
  • a 400 ⁇ m coating was made with WET using an applicator and cured at 140 ° C. for 30 minutes. Thereafter, gel fraction, xylene rubbing test and water resistance test were conducted.
  • Example 25 100 parts of ester compound K was mixed with 10 parts of trimethylolpropane (TMP), and phenolsulfonic acid (PHS) was mixed so as to be 2 wt% with respect to the solid content.
  • TMP trimethylolpropane
  • PHS phenolsulfonic acid
  • a 400 ⁇ m coating was made with WET using an applicator and cured at 140 ° C. for 30 minutes. Thereafter, gel fraction, xylene rubbing test and water resistance test were conducted.
  • Example 26 14 parts of hexanediols were mixed with 100 parts of ester compounds M, and p-toluenesulfonic acid (PTS) was mixed so that it might be 2 wt% with respect to solid content. A 400 ⁇ m coating was made with WET using an applicator and cured at 140 ° C. for 30 minutes. Thereafter, gel fraction, xylene rubbing test and water resistance test were conducted.
  • PTS p-toluenesulfonic acid
  • crosslinking proceeds efficiently even when a low molecular weight polyol is used as the crosslinking agent.
  • This can be suitably carried out with a water-soluble solvent or an aqueous system by using a low water-soluble low molecular weight polyol.
  • the physical properties in Tables 1 to 6 above were measured by the following methods.
  • the gel fraction was obtained by dissolving the film obtained in the example for 30 minutes in acetone reflux using Soxhlet, and measuring the remaining weight% of the film as the gel fraction.
  • the gel fraction was 0 to 40%, which is not acceptable for practical use.
  • the gel fraction of 40 to 80% was evaluated as ⁇ as it was acceptable for practical use.
  • the gel fraction of 80 to 100% was regarded as ⁇ because of its excellent performance.
  • thermosetting resin of the example was coated on a PET film and rubbed ten times with a pharmaceutical gauze impregnated with xylene, and the surface was observed.
  • a product which can not withstand practical use is rated as x
  • a product which can withstand practical use is designated as ⁇
  • a product whose performance is further excellent is designated as ⁇ .
  • the gel fraction is 40 or more, it is judged that a certain curing reaction occurs, and it is apparent that it has a function as a curable resin composition.
  • those having excellent properties such as xylene rubbing and water resistance are also suitable for use in many applications including paints (particularly paints forming the outermost layer) based on these properties.
  • the curable resin composition of the present invention can be used in the fields of pressure-sensitive adhesives and adhesives, and the inner layer in multilayer coatings It becomes a thing.
  • thermosetting resin composition of the present invention has excellent effect performance at low temperatures.
  • thermosetting resin composition of the present invention has excellent effect performance at low temperatures.
  • two or more of these reaction systems can be combined.
  • it is clear that it can be suitably used in applications such as paints and adhesives.
  • thermosetting resin composition of the present invention can be used as a cured film as various coating compositions, adhesive compositions, and pressure-sensitive adhesive compositions.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Paints Or Removers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

安価で硬化性も良好であり、各種の用途において使用することができるエステル交換反応を硬化反応とする熱硬化性樹脂組成物を提供する。分子中に少なくとも2個のアルキルエステル基を有するエステル化合物(A)、分子中に少なくとも2個の水酸基を有する化合物(B)、及び、エステル交換触媒(C)を含有する熱硬化型樹脂組成物である。

Description

熱硬化性樹脂組成物
本発明は、エステル交換反応を硬化反応とする熱硬化性樹脂組成物に関する。
塗料や接着剤等の用途において、多くの熱硬化性樹脂組成物が使用されている。このような熱硬化性樹脂組成物の多くは、2以上の水酸基を有する樹脂を硬化剤と併用し、硬化剤と水酸基との架橋反応によって樹脂を硬化させるものである。
このような硬化剤としては、メラミン樹脂やエポキシ化合物、ポリイソシアネート化合物が汎用されている。これらの硬化剤は、熱反応性が良好で、得られた硬化樹脂の性質が優れているため、広く一般的に使用されている。しかし、メラミン樹脂は、ホルムアルデヒドを発生してシックハウス症候群の原因とされるため、近年は用途が制限される場合もある。また、塗料として使用する場合、化学構造から耐酸性に問題があることが知られている。
エポキシ化合物は、硬化性や塗膜物性が高いものの、貯蔵安定性が低く硬化温度が高いと言われており、ポリイソシアネート硬化系は、硬化性や塗膜物性が高いもののコストが高く、設計の幅が狭いと言われている。このため、高い硬化性を有しつつ、目的とする塗膜物性発現のための設計の幅が広く、更には、貯蔵安定性も高く有害な物質を副生しないような塗料組成物が求められている。
特許文献1には、エステル交換反応を硬化反応とする粉体塗料が記載されている。しかし、当該発明においては、エステル基と水酸基の両方を有する樹脂を使用してエステル交換反応による硬化反応を行うことが記載されているのみで、ポリオールとエステル基を有する硬化剤を混合して使用することに関する記載はない。
さらに、特許文献1には粉体塗料への使用が記載されているのみであり、一般的な溶剤系や水系の組成物に使用することについては開示されていない。
また、塗料や接着剤として利用する場合には耐水性が求められるが、充分な耐水性を有する組成物は記載されていない。実際に特許文献1に従い溶液型の塗料を製造して確認すると、耐水性が出なかったり、架橋反応性が充分でなかったりする。すなわち、溶剤系や水系の組成物のような組成物として、塗料や接着剤の用途に適用するための具体的な方法は特許文献1には一切開示されていない。
特許文献2には、エステル交換反応を硬化反応とする塗料が記載されている。当該文献においては、使用する樹脂についての詳細な組成については限定がなされておらず、エステル交換反応による硬化組成物に適した組成が明らかにされていない。また、オキシラン官能基を有する触媒エポキシ化合物と無機カチオン塩よりなる触媒を用いる事を特徴としており本件と全く違う。
特開平9-59543号公報 特開平2-147675号公報
本発明は、上記に鑑み、安価で硬化性も良好であり、各種の用途において使用することができるエステル交換反応を硬化反応とする熱硬化性樹脂組成物を提供することを目的とするものである。
本発明は、分子中に少なくとも2個のアルキルエステル基を有するエステル化合物(A)
分子中に少なくとも2個の水酸基を有する化合物(B)、及び、
エステル交換触媒(C)
を含有することを特徴とする熱硬化型樹脂組成物である。
上記エステル化合物(A)は、3級アルキルエステル基を2つ以上含有する化合物又は3級アルキルエステルを持つモノマーの単独重合体若しくは共重合体であることが好ましい。
上記エステル化合物(A)は、カルボン酸のt-ブチルエステルであることが好ましい。
上記熱硬化型樹脂組成物は、溶剤系又は水系であることが好ましい。
本発明は、上述した熱硬化型樹脂組成物を三次元架橋することによって形成されたことを特徴とする硬化膜である。
本発明の熱硬化性樹脂組成物は、安価でホルムアルデヒドの発生もなく安全性が高く、従来のイソシアネート系やメラミン系の硬化系に代わる、新たな熱硬化性樹脂組成物として、好適に使用することができる。また、低温硬化性の組成物とすることもできる。
更に、エステル化合物(A)と分子中に少なくとも2個の水酸基を有する化合物(B)とを組み合わせて使用するものであることから、化合物(B)の構造に基づいて塗膜物性を変化させられる、エステル化合物(A)として高価なものを使用しても配合量を低減させることで、コストアップを生じにくい、混合比によって容易に架橋密度を調整できる、共重合組成や化学構造を変化させることによって、種々の性能を容易に調整することができるため、相溶性・架橋密度・硬さ・柔らかさ等の物性を調整することが容易である、等の優れた効果を有するものでもある。
比較例1の170℃保持の剛体振り子試験機データ。 実施例5の140℃保持の剛体振り子試験機データ。 実施例6の140℃保持の剛体振り子試験機データ。 実施例7の140℃保持の剛体振り子試験機データ。 実施例16の140℃保持の剛体振り子試験機データ。 実施例20の140℃保持の剛体振り子試験機データ。
以下、本発明を詳細に説明する。
本発明の熱硬化性樹脂組成物は、分子中に少なくとも2個のアルキルエステル基を有するエステル化合物(A)と分子中に少なくとも2個の水酸基を有する化合物(B)とを組み合わせて使用し、これらの化合物間で生じる反応によって、熱硬化させる樹脂組成物である。
すなわち、2以上のアルキルエステル基を有する化合物を分子中に少なくとも2個の水酸基を有する化合物と併用して使用することによって、水酸基とアルキルエステル基のエステル交換反応によって、硬化させるものである。このエステル交換反応を下記化1~3に示す。
Figure JPOXMLDOC01-appb-C000001
上記反応において、エステル化合物(A)のほうが比較的低分子量で架橋剤として作用する場合の一例を示すと、以下のようになる。
Figure JPOXMLDOC01-appb-C000002

また、化合物(B)のほうが、比較的低分子量で架橋剤として作用する場合作用する場合の一例を示すと、以下のようになる。
Figure JPOXMLDOC01-appb-C000003
本発明の熱硬化性樹脂組成物は、上述した化1、化2、化3に表される硬化反応に限定されるものではなく、両者の中間的な反応を生じるものを含み、上述した(A)(B)の成分間でエステル交換反応を生じる点に特徴を有するものである。
本発明においては、上述したように分子間で架橋反応を生じさせる点が重要である。すなわち、分子内にアルキルエステル基及び水酸基を有する樹脂のみを使用して得られた熱硬化性樹脂組成物は、分子内架橋も同時に生じる。すなわち、同一分子内にアルキルエステル基と水酸基の両方が存在しているため、これらが接近しやすく、分子内反応を生じやすい。しかし、分子内反応は分子構造の変化を生じるものの、分子量の上昇を伴わないため、三次元架橋で硬化させる上では好ましくない反応である。
本発明においては、アルキルエステル基及び水酸基がそれぞれ別個の分子中に存在するため、分子間反応が生じやすく、これによって、効率よく硬化反応を生じさせることができる。
本発明においては、(A)(B)の成分の組み合わせについて、特に限定されるものではないが、エステル化合物(A)及び分子中に少なくとも2個の水酸基を有する化合物(B)のうち一方(以下これを成分(X)と記す)は重量平均分子量が3,000~300,000であり、他方(以下これを成分(Y)と記す)は重量平均分子量が50,000以下であることが好ましい。
上記成分(X)の重量平均分子量の上限は、100,000であることがより好ましく、50,000であることが更に好ましく、30,000であることが更に好ましい。上記成分(X)の重量平均分子量の下限は、3,000であることがより好ましく、5,000であることが更に好ましい。
上記成分(Y)の重量平均分子量の上限は、50,000であることがより好ましく、30,000であることが好ましく、更に20,000であることが更に好ましい。
更には、(上記成分(Y)の重量平均分子量)/(上記成分(X)の重量平均分子量)の比が90%以下であることがより好ましく、80%以下であることが最も好ましい。特に(X)の重量分子量が大きくなる場合は(上記成分(Y)の重量平均分子量)/(上記成分(X)の重量平均分子量)の比を小さくする方が好ましい。
すなわち、(A)と(B)とが、同じような分子量である場合よりも、一方が比較的高分子量で他方が比較的低分子量であることが好ましい。
このようにすることで、硬化反応が効率よく進行しやすい点で好ましいものである。すなわち、本発明において硬化反応を生じさせる場合、上述したように分子間の反応を生じさせることが必要であり、そのために、アルキルエステル基と水酸基とが接近することが必要とされる。このような観点からみると、分子量が小さい分子は移動しやすいために、相手方の官能基に接近しやすくなり、これによって反応が生じやすくなる。しかし、両方が高分子量であると、粘度上昇に伴い分子中の官能基が自由に動くことが困難となり、架橋反応が生じにくくなると推測される。
以下に、(A)(B)の成分について詳述する
(2以上のアルキルエステル基を有するエステル化合物(A))
2以上のアルキルエステル基を有するエステル化合物(A)を化合物(B)と併用し、エステル交換反応によって硬化を生じさせる組成物は、安価でホルムアルデヒドの発生もなく安全性が高く、効率よく硬化反応を生じさせることができる。更に、従来のポリイソシアネート化合物やメラミン樹脂を使用した塗料組成物において、硬化剤をエステル化合物(A)に置換するのみで、同様に塗料や接着剤として使用することができる点でも好ましい。
更に、上記分子中に少なくとも2個のアルキルエステル基を有する化合物は、重量平均分子量が100,000以下であることが好ましい。
上述したように、本発明においては、水酸基を含有する化合物と併用して使用するものである。この場合に、アルキルエステル基を有する化合物は、重量平均分子量が50,000以下である化合物を使用すると、化合物(A)が硬化後の樹脂組成物の物性に与える影響が比較的小さくなる。このため、従来のポリイソシアネートやメラミン樹脂を少なくとも2個の水酸基を有する化合物(B)と組み合わせて使用した硬化性樹脂組成物において使用されている化合物(B)を使用したときに、得られる硬化後の樹脂組成物の性能が予測しやすくなる点で好ましいものである。上記アルキルエステル基を有する化合物は、重量平均分子量は50,000以下であることがより好ましく、20,000以下であることが更に好ましい。更には、10,000以下や6,000以下といった低分子量のものとすることもできる。例えば、20,000~100,000という高分子量のものとした場合は、より少ない反応点で硬化反応が進むという点で好ましく、20,000以下の低分子量のものは、塗膜のレべリング性、架橋密度を高くできる。また、化合物(B)との混和性が高いため、均一性の高い組成物としやすいこと、多量に配合しても塗料の粘度の上昇を防ぐことができること等の点で好ましい。
また、熱硬化性塗料組成物は、多くの分野で使用されるものであるが、重量平均分子量が100,000以下とすることによって、同一の化合物を幅広い用途において使用できる点でも好ましい。なお、本明細書における重量平均分子量は、実施例に記載した方法によるゲルパーミエーションクロマトグラフィ(GPC)により測定した、ポリスチレン換算分子量の値である。
本発明においては、アルキルエステル基を限定されることはない。しかしながら、二級アルキルエステル基や一級アルキルエステル基に比べてエステル交換反応が生じやすく、すみやかに低温での反応を生じさせることができるため、三級アルキルエステル基をアルキルエステル基のうちの一部又は全部として含むことがより好ましい。当該三級アルキルエステル基としては、t-ブチルエステル基が特に好適である。また、三級以外のアルキルエステル基としては特に限定されず、メチルエステル基、エチルエステル基、ベンジルエステル基、n-プロピルエステル基、イソプロピルエステル基、n-ブチルエステル基、イソブチルエステル基、sec-ブチルエステル基等の、公知のエステル基を有するものを使用することができる。なお、アルキル基は炭素数50以下のものとすることが好ましい。上記アルキル基は、エステル交換反応中にアルコールとして生成され、揮散することが好ましいため、アルキル基としては炭素数が20以下のものであることがより好ましく、10以下であることが更に好ましい。また、硬化反応において揮発するアルコールの沸点が300℃以下であることが好ましく、200℃以下であることが更に好ましい。
本発明の2個以上のアルキルエステル基を有する化合物としては、以下に示すものを使用することができる。なお、本発明で使用する2個以上のアルキルエステル基を有する化合物としては、以下に例示するものに限定されるものではない。
なお、以下の本明細書において、「(メタ)アクリレート」は、アクリレート及び/又はメタクリレートを意味する。「(メタ)アクリル酸」は、アクリル酸及び/又はメタクリル酸を意味する。また、「(メタ)アクリロイル」は、アクリロイル及び/又はメタクリロイルを意味する。また、「(メタ)アクリルアミド」は、アクリルアミド及び/又はメタクリルアミドを意味する。
(アルキルエステル基及び重合性不飽和結合を有する単量体を構成単位の一部又は全部とする重合体)(A-1)
このような重合体は、汎用的な材料によって、安価に分子中に2以上のアルキルエステル基を有する化合物を得ることができる点で好ましいものである。
上記アルキルエステル基及び重合性不飽和結合を有する単量体としては、非常に多くの種類の化合物が知られているが、典型的には、下記一般式で表される化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000004
(式中、R,R,Rは、水素、アルキル基、カルボキシル基、アルキルエステル基を表す
は、炭素数50以下の炭化水素基を表す)
このような一般式(1)で表される化合物は、(メタ)アクリル酸、クロトン酸、イタコン酸、マレイン酸もしくはフマル酸等の公知の不飽和カルボン酸のエステル誘導体を挙げることができる。
上記一般式(1)で表されるアルキルエステル基及び重合性不飽和結合を有する単量体として最も代表的なものは、(メタ)アクリル酸とアルコールとのエステルであり、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、ベンジル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、sec-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレートを挙げることができる。
これらのなかでも、架橋の反応性という観点において、t-ブチル(メタ)アクリレート等の3級アルキルエステルが最も好ましい。
t-ブチル(メタ)アクリレートは、3級アルキルのエステルであることから、エステル交換反応速度が速く、このため硬化反応が効率よく進行する。このため、1級アルキルエステルや2級アルキルエステルよりも架橋反応性に優れ、本発明の目的を達成するエステル基を供与する上で非常に好ましい原料である。
一方、t-ブチル(メタ)アクリレートは高Tgであり、これを原料として使用した樹脂は固いものとなる。このため、従来、塗料用原料としては薄膜形成性や低温硬化性を得る上では必ずしも好ましくないと考えられていた。
本発明においては、化合物(B)と併用して熱硬化性樹脂組成物とするものであることから、薄膜形成性や低温硬化性において本来好ましいものではないt-ブチル(メタ)アクリレートのホモポリマーであっても、併用する分子中に少なくとも2個の水酸基を有する化合物(B)によって、上述したような問題を生じることなく使用できる点でも好ましいものである。
また、t-ブチル(メタ)アクリレートを以下で詳述するその他の単量体と共重合させて、Tgを調整してもよい。この場合、Tgを80℃以下とすることが好ましい。
上記アルキルエステル基及び重合性不飽和結合を有する単量体は、上述した一般式(1)で表される化合物のほかに、アルキルエステル基を有する単量体は重合性不飽和結合とエステル基が連結基を介して結合した化合物であってもよい。このような単量体は、
Figure JPOXMLDOC01-appb-C000005
n:1~10 
式中、R1、,Rは、同一又は異なって、水素、アルキル基、カルボキシル基、アルキルエステル基又は下記R-[COOR]で表される構造。
を表す
は、主鎖の原子数が50以下であり、主鎖中にエステル基、エーテル基、アミド基、ウレタンからなる群より選択される1又は2以上の官能基を有していてもよく、側鎖を有していてもよい脂肪族、脂環族又は芳香族アルキレン基。
Rは、炭素数50以下のアルキル基)
の一般式で表されるものを使用することができる。
当該構造では、アクリル樹脂主鎖から連結基を介してアルキルエステル基が存在するものである。このような構造の好ましい点については、以下に詳述する。
上記一般式(2)で表される構造としてより具体的には、例えば、
Figure JPOXMLDOC01-appb-C000006
n:1~10
(式中、Rは、H又はメチル基。
は、主鎖の原子数が48以下であり、主鎖中にエステル基、エーテル基及び/又はアミド基を有していてもよく、側鎖を有していてもよいアルキレン基。
は、炭素数50以下のアルキル基)
で表されるものが例示できる。このような化合物は(メタ)アクリル酸の誘導体であり、(メタ)アクリル酸を原料として使用する公知の合成方法によって得ることができる。
上記Rの主鎖の原子数は、40以下であることがより好ましく、30以下であることが更に好ましく、20以下であることが更に好ましい。Rの主鎖に含まれてもよい原子としては特に限定されず、炭素原子のほかに酸素原子、窒素原子、硫黄原子、ケイ素原子等を有するものであってもよい。更に具体的には、Rの主鎖中には、アルキル基のほかにエーテル基、エステル基、アミノ基、アミド基、チオエーテル基、スルホン酸エステル基、チオエステル基、シロキサン基等を有するものであってもよい。
このような、(メタ)アクリル酸とエステル基とをRで表される連結基を介して結合した化合物は、特に、エステル交換の反応速度が速くなる傾向がある点で好ましい。反応速度が速くなるのは、側鎖構造が長鎖となり、その末端にエステル基が存在していると、エステル基が動きやすく、自由度が大きくなるため、水酸基とも接近しやすく、これによって反応が促進されると推測される。このことは水酸基を持つ分子中に少なくとも2個の水酸基を有する化合物(B)にも同様に促進される。
また、上記一般式(2)~(3)で表される化合物においても、Rに3級アルキル基(例えば、t-ブチル基)を使用すると、最もエステル交換の反応速度が速くなるため、好ましいものである。
上記一般式(2)~(3)で表される化合物の具体的な構造の例を以下に示す。
Figure JPOXMLDOC01-appb-C000007

式中Rはアルキル基を表す。
このようなアルキルエステル基を有するアクリル単量体の1種又は2種以上を単独重合又はその他の単量体と共重合して得られた重合体を本発明において使用することができる。
上記アルキルエステル基を有するアクリル単量体の共重合を使用する場合、併用する単量体としては特に限定されず、例えば、
エチレン、プロピレンもしくはブテン-1のような、種々のα-オレフィン類;
塩化ビニルもしくは塩化ビニリデンのような、フルオロオレフィンを除く、種々のハロゲン化オレフィン類;
炭素数が1~18である、種々のアルキル(メタ)アクリレートをはじめ、さらには、種々のシクロアルキル(メタ)アクリレート、アラルキル(メタ)アクリレート、フェニル(メタ)アクリレートまたは置換フェニル基含有の(メタ)アクリレート;
スチレン、α-メチルスチレンもしくはビニルトルエンのような、種々の芳香族ビニル化合物;N-ジメチルアミノエチル(メタ)アクリルアミド、N-ジエチルアミノエチル(メタ)アクリルアミド、N-ジメチルアミノプロピル(メタ)アクリルアミドもしくはN-ジエチルアミノプロピル(メタ)アクリルアミドのような、種々のアミノ基含有アミド系不飽和単量体;
ジメチルアミノエチル(メタ)アクリレートもしくはジエチルアミノエチル(メタ)アクリレートのような、種々のジアルキルアミノアルキル(メタ)アクリレート類;tert-ブチルアミノエチル(メタ)アクリレート、tert-ブチルアミノプロピル(メタ)アクリレート、アジリジニルエチル(メタ)アクリレート、ピロリジニルエチル(メタ)アクリレートもしくはピペリジニルエチル(メタ)アクリレートのような、種々のアミノ基含有単量体;
(メタ)アクリル酸、クロトン酸、イタコン酸、マレイン酸もしくはフマル酸のような、種々のカルボキシル基含有単量体類;グリシジル(メタ)アクリレート、β-メチルグリシジル(メタ)アクリレートもしくは(メタ)アリルグリシジルエーテルのような、種々のエポキシ基含有単量体;マレイン酸、フマル酸もしくはイタコン酸のような、各種のα、β-不飽和ジカルボン酸と、炭素数が1~18である一価アルコールとのモノ-ないしはジエステル類;
ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリプロポキシシラン、ビニルメチルジエトキシシラン、ビニルトリス(β-メトキシエトキシ)シラン、アリルトリメトキシシラン、トリメトキシシリルエチルビニルエーテル、トリエトキシシリルエチルビニルエーテル、メチルジメトキシシリルエチルビニルエーテル、トリメトキシシリルプロピルビニルエーテル、トリエトキシシリルプロピルビニルエーテル、メチルジエトキシシリルプロピルビニルエーテル、γ-(メタ)アクリロイルオキシプロピルトリメトキシシラン、γ-(メタ)アクリロイルオキシプロピルトリエトキシシランもしくはγ-(メタ)アクリロイルオキシプロピルメチルジメトキシシランのような、種々の加水分解性シリル基を含有する単量体;
ふっ化ビニル、ふっ化ビニリデン、トリフルオロエチレン、テトラフルオロエチレン、クロロトリフルオロエチレン、ブロモトリフルオロエチレン、ペンタフルオロプロピレンもしくは、ヘキサフルオロプロピレンのような、種々のふっ素含有α-オレフィン類;またはトリフルオロメチルトリフルオロビニルエーテル、ペンタフルオロエチルトリフルオロビニルエーテルもしくはヘプタフルオロプロピルトリフルオロビニルエーテルのような、各種のパーフルオロアルキル・パーフルオロビニルエーテルないしは(パー)フルオロアルキルビニルエーテル(ただし、アルキル基の炭素数は1~18の範囲内であるものとする。)などのような種々のフッ素原子含有単量体;
グリシジル(メタ)アクリレート、β-メチルグリシジル(メタ)アクリレート、3,4-エポキシシクロヘキシルメチル(メタ)アクリレート、3,4-エポキシシクロヘキシルエチル(メタ)アクリレート、3,4-エポキシシクロヘキシルプロピル(メタ)アクリレート、アリルグリシジルエーテル等の、エポキシ基を有する単量体;
メチルビニルエーテル、エチルビニルエーテル、n-プロピルビニルエーテル、イソプロピルビニルエーテル、n-ブチルビニルエーテル、イソブチルビニルエーテル、tert-ブチルビニルエーテル、n-ペンチルビニルエーテル、n-ヘキシルビニルエーテル、n-オクチルビニルエーテル、2-エチルヘキシルビニルエーテル、クロロメチルビニルエーテル、クロロエチルビニルエーテル、ベンジルビニルエーテルもしくはフェニルエチルビニルエーテルのような、種々のアルキルビニルエーテルないしは置換アルキルビニルエーテル類;
シクロペンチルビニルエーテル、シクロヘキシルビニルエーテルもしくはメチルシクロヘキシルビニルエーテルのような、種々のシクロアルキルビニルエーテル類;ビニル-2,2-ジメチルプロパノエート、ビニル-2,2-ジメチルブタノエート、ビニル-2,2-ジメチルペンタノエート、ビニル-2,2-ジメチルヘキサノエート、ビニル-2-エチル-2-メチルブタノエート、ビニル-2-エチル-2-メチルペンタノエート、ビニル-3-クロロ-2,2-ジメチルプロパノエートなどをはじめ、さらには、酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、イソ酪酸ビニル、カプロン酸ビニル、カプリル酸ビニル、カプリン酸ビニルもしくはラウリン酸ビニル、C9 である分岐脂肪族カルボン酸ビニル、C10である分岐脂肪族カルボン酸ビニル、C11である分岐脂肪族カルボン酸ビニルまたはステアリン酸ビニルのような、種々の脂肪族カルボン酸ビニル;あるいはシクロヘキサンカルボン酸ビニル、メチルシクロヘキサンカルボン酸ビニル、安息香酸ビニルもしくはp-tert-ブチル安息香酸ビニルのような、環状構造を有するカルボン酸のビニルエステル類などを挙げることができる。
上記アルキルの(メタ)アクリレートを構成単位の一部又は全部とする重合体において、「2以上のアルキルエステル基を有する」とは、上述した重量平均分子量とアルキルエステル基当量とから算出される、一分子量あたりのアルキルエステル基数が2以上になることを意味する。
すなわち、重合体であると、分子あたりのアルキルの(メタ)アクリレート数はばらつきを有するものとなるが、その平均値が2以上であることが必要である。当該値は、2.2以上であることがより好ましく、2.3以上であることがもっとも好ましい。
上記アルキルの(メタ)アクリレートの共重合は、水酸基含有ビニル単量体を使用するものであってもよいし、水酸基を含有しないものとしてもよい。
このような水酸基含有ビニル単量体として特に代表的なものを以下に例示する。
2-ヒドロキシエチルビニルエーテル、3-ヒドロキシプロピルビニルエーテル、2-ヒドロキシプロピルビニルエーテル、4-ヒドロキシブチルビニルエーテル、3-ヒドロキシブチルビニルエーテル、2-ヒドロキシ-2-メチルプロピルビニルエーテル、5-ヒドロキシペンチルビニルエーテルもしくは6-ヒドロキシヘキシルビニルエーテルのような、種々の水酸基含有ビニルエーテル類;またはこれら上掲の各種のビニルエーテルと、ε-カプロラクトンとの付加反応生成物;
2-ヒドロキシエチル(メタ)アリルエーテル、3-ヒドロキシプロピル(メタ)アリルエーテル、2-ヒドロキシプロピル(メタ)アリルエーテル、4-ヒドロキシブチル(メタ)アリルエーテル、3-ヒドロキシブチル(メタ)アリルエーテル、2-ヒドロキシ-2-メチルプロピル(メタ)アリルエーテル、5-ヒドロキシペンチル(メタ)アリルエーテルもしくは6-ヒドロキシヘキシル(メタ)アリルエーテルのような、種々の水酸基含有アリルエーテル;またはこれら上掲の各種のアリルエーテルと、ε-カプロラクトンとの付加反応生成物;
あるいは2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、3-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレートもしくはポリプロピレングリコールモノ(メタ)アクリレートのような、種々の水酸基含有(メタ)アクリレート類;またはこれら上掲の各種の(メタ)アクリレートと、ε-カプロラクトンの付加反応主成分などである。
上記(A-1)は、その製造方法を特に限定されるものではなく、公知の方法により重合することによって製造することができる。より具体的には、有機溶媒中での溶液重合法、水中での乳化重合法、水中でのミニエマルション重合法、水溶液重合法、懸濁重合法、UV硬化法、等の重合方法を挙げることができる。
また、有機溶媒中での溶液重合を行った後で、水への分散を行って水性化したものや、水中での重合を行って得られた樹脂を有機溶媒に溶解したものであってもよい。
(A-2)(マロン酸エステルと、ビニル基との付加反応によって得られる化合物)
マロン酸エステルと、ビニル基との付加反応によって得られる化合物も本発明のエステル化合物(A)として使用することができる。このような反応は、下記一般式で表すことができる。
Figure JPOXMLDOC01-appb-C000008

上記一般式中、R10は、炭素数50以下のアルキル基を示す。
は、1~10である。nは、1~20である。
11,R12,R13,R14は、特に限定されず、目的に応じて任意の官能基とすることができる。
より具体的には、H、C1~20のアルキル基、カルボキシル基、エステル基、ヒドロキシル基、アミン基、アミド基、エポキシ基、ウレタン基、シラン基、エチレングリコール基、フェノキシ基、更に任意の連結基を介して1つ以上のビニル基を含有しても良い。
汎用的には(メタ)アクリレート誘導体、多価(メタ)アクリレート誘導体
等を挙げることができる。
上記マロン酸エステル構造を有する化合物の場合も、エステル基中のアルキル基は、t-ブチル基等の3級アルキル基であることが最も好ましい。3級アルキル基とすることで、エステル交換反応が効率よく進行する点で好ましいものである。
また、上記(A-2)マロン酸エステルと、ビニル基との付加反応によって得られる化合物は、一分子中に1以上の不飽和結合を有する化合物を原料とするものを使用し、マロン酸エステルに由来する骨格を一分子中に1以上有するものであってもよい。
マロン酸エステルに由来する構造を有する化合物はそのほかにも多く知られているが、上記構造を有する化合物は、マロン酸エステルとビニル基の付加反応が進行し易く、合成が容易であり、出発原料を選ぶことでエステル基の数を調整できるため、硬化性能や硬化後の樹脂の性能を容易に調整できるという点で特に好ましい。
このような化合物の例を以下に示す。
Figure JPOXMLDOC01-appb-C000009
式中Rはアルキル基を表す。
(多官能カルボン酸のアルキルエステル化物)(A-3)
多官能カルボン酸またはと、アルコールの反応によって得られる化合物も本発明のエステル化合物(A)として使用することができる。このような反応は、下記一般式で表すことができる。
Figure JPOXMLDOC01-appb-C000010
各種の多官能カルボン酸は、ポリエステル原料、ポリアミド原料、中和剤、合成原料その他の多くの用途において幅広く安価に提供される汎用原料である。このような多官能カルボン酸を公知の方法によってアルキルエステル化した化合物も本発明において使用することができる。エステル化は、上述した炭素数50以下のアルキル基によるものとすることができ、特に、t-ブチル基等の3級アルキル基によってエステル化したものが好ましい。
このような化合物をエステル化合物(A)として使用すると、公知の方法で安価にエステル化することができ、比較的低分子量で多価エステル基を導入することができる。また、エステル化することで有機溶剤への相溶性が良くなり好適に使用することができる。
という点で好ましい。
ここで使用する多官能カルボン酸としては特に限定されず、例えば、炭素数が50以下のものを使用することができる。
より具体的には、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカン二酸、ドデカン二酸、ブラシル酸、オクタデカン二酸、クエン酸、ブタンテトラカルボン酸等の脂肪族多価カルボン酸;
1,2-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸、4-シクロヘキセン-1,2-ジカルボン酸、3-メチル-1,2-シクロヘキサンジカルボン酸、4-メチル-1,2-シクロヘキサンジカルボン酸、1,2,4-シクロヘキサントリカルボン酸、1,3,5-シクロヘキサントリカルボン酸等の脂環族多価カルボン酸
フタル酸、イソフタル酸、テレフタル酸、ナフタレンジカルボン酸、4,4'-ビフェニルジカルボン酸、トリメリット酸、ピロメリット酸等の芳香族多価カルボン酸;
ヤシ油脂肪酸、綿実油脂肪酸、麻実油脂肪酸、米ぬか油脂肪酸、魚油脂肪酸、トール油脂肪酸、大豆油脂肪酸、アマニ油脂肪酸、桐油脂肪酸、ナタネ油脂肪酸、ヒマシ油脂肪酸、脱水ヒマシ油脂肪酸、サフラワー油脂肪酸等の脂肪酸;ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、オレイン酸、リノール酸、リノレン酸、安息香酸、p-tert-ブチル安息香酸、シクロヘキサン酸、10-フェニルオクタデカン酸等のモノカルボン酸;乳酸、3-ヒドロキシブタン酸、3-ヒドロキシ-4-エトキシ安息香酸等のヒドロキシカルボン酸;
等を挙げることができる。
本発明においては、上述した2以上のアルキルエステル基を有する化合物を併用して使用するものであっても差し支えない。また、原料としてはこれらの化合物の酸無水物を使用しても良い。
本発明においては、上述した多官能カルボン酸のアルキルエステル化の方法は特に限定されるものではなく、アルコールとの脱水縮合等の公知の方法を適用することができる。
上記(A-3)に該当するエステル化合物(A)は、分子量が10,000以下であることが好ましい。このようなものとすることで、分子が動きやすく硬化が進行する点で好ましいものである。分子量は6,000以下、4000以下、2000以下といった、より低分子量のものとすることもできる。
分子中に少なくとも2個の水酸基を有する化合物(B)
本発明の熱硬化性樹脂組成物においては、上述した2以上のアルキルエステル基を有する化合物であるエステル化合物(A)に加えて、分子中に少なくとも2個の水酸基を有する分子中に少なくとも2個の水酸基を有する化合物(B)を含有するものである。これによって、分子中に少なくとも2個の水酸基を有する化合物(B)と上述したエステル化合物(A)との反応を生じさせ、塗膜を効率よく硬化させるものである。
このような化合物(B)としては特に限定されず、アクリルポリオール、ポリエステルポリオール、ポリエーテルポリオール、ポリカーボネートポリオール、ポリウレタンポリオール、等を挙げることができる。これらのうち、2以上を同時に使用するものであってもよい。
また、分子量の小さい低分子量ポリオールを使用することもできる。
なかでも、アクリルポリオール及び/又はポリエステルポリオールを使用することが特に好ましい。
ここで使用されるアクリルポリオール及び/又はポリエステルポリオールは、塗料分野において汎用される樹脂を使用することができる。
以下、これらについて詳述する。
アクリルポリオール(B-1)
アクリルポリオールは、例えば、水酸基含有重合性不飽和モノマー(b1)及び上記(b1)と共重合可能な他の重合性不飽和モノマー(b2)を、公知の方法により共重合することによって製造することができる。より具体的には、有機溶媒中での溶液重合法、水中での乳化重合法、水中でのミニエマルション重合法、水溶液重合法、等の重合方法を挙げることができる。
水酸基含有重合性不飽和モノマー(b1)は、1分子中に水酸基及び重合性不飽和結合をそれぞれ1個以上有する化合物である。水酸基含有重合性不飽和モノマー(b1)としては、特に限定されない。
このような水酸基含有ビニル単量体として特に代表的なものを以下に例示する。
2-ヒドロキシエチルビニルエーテル、3-ヒドロキシプロピルビニルエーテル、2-ヒドロキシプロピルビニルエーテル、4-ヒドロキシブチルビニルエーテル、3-ヒドロキシブチルビニルエーテル、2-ヒドロキシ-2-メチルプロピルビニルエーテル、5-ヒドロキシペンチルビニルエーテルもしくは6-ヒドロキシヘキシルビニルエーテルのような、種々の水酸基含有ビニルエーテル類;またはこれら上掲の各種のビニルエーテルと、ε-カプロラクトンとの付加反応生成物;
2-ヒドロキシエチル(メタ)アリルエーテル、3-ヒドロキシプロピル(メタ)アリルエーテル、2-ヒドロキシプロピル(メタ)アリルエーテル、4-ヒドロキシブチル(メタ)アリルエーテル、3-ヒドロキシブチル(メタ)アリルエーテル、2-ヒドロキシ-2-メチルプロピル(メタ)アリルエーテル、5-ヒドロキシペンチル(メタ)アリルエーテルもしくは6-ヒドロキシヘキシル(メタ)アリルエーテルのような、種々の水酸基含有アリルエーテル;またはこれら上掲の各種のアリルエーテルと、ε-カプロラクトンとの付加反応生成物;
あるいは2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、3-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレートもしくはポリプロピレングリコールモノ(メタ)アクリレートのような、種々の水酸基含有(メタ)アクリレート類;またはこれら上掲の各種の(メタ)アクリレートと、ε-カプロラクトンの付加反応主成分などである。
水酸基含有重合性不飽和モノマー(b1)と共重合可能な他の重合性不飽和モノマー(b2)としては、例えば、下記モノマー(i)~(xix)等、並びにそれらの任意の組み合わせが挙げられる。
(i)アルキル又はシクロアルキル(メタ)アクリレート:
例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、n-ヘキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ノニル(メタ)アクリレート、トリデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、メチルシクロヘキシル(メタ)アクリレート、tert-ブチルシクロヘキシル(メタ)アクリレート、シクロドデシル(メタ)アクリレート、トリシクロデカニル(メタ)アクリレート、等
(ii)イソボルニル基を有する重合性不飽和モノマー:
イソボルニル(メタ)アクリレート等
(iii)アダマンチル基を有する重合性不飽和モノマー:
アダマンチル(メタ)アクリレート等
(iv)トリシクロデセニル基を有する重合性不飽和モノマー:
トリシクロデセニル(メタ)アクリレート等
(v)芳香環含有重合性不飽和モノマー:
ベンジル(メタ)アクリレート、スチレン、α-メチルスチレン、ビニルトルエン等
(vi)アルコキシシリル基を有する重合性不飽和モノマー:
ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(2-メトキシエトキシ)シラン、γ-(メタ)アクリロイルオキシプロピルトリメトキシシラン、γ-(メタ)アクリロイルオキシプロピルトリエトキシシラン等
(vii)フッ素化アルキル基を有する重合性不飽和モノマー:
パーフルオロブチルエチル(メタ)アクリレート、パーフルオロオクチルエチル(メタ)アクリレート等のパーフルオロアルキル(メタ)アクリレート;フルオロオレフィン等
(viii)マレイミド基等の光重合性官能基を有する重合性不飽和モノマー
(ix)ビニル化合物:
N-ビニルピロリドン、エチレン、ブタジエン、クロロプレン、プロピオン酸ビニル、酢酸ビニル等
(x)カルボキシル基含有重合性不飽和モノマー:
(メタ)アクリル酸、マレイン酸、クロトン酸、β-カルボキシエチルアクリレート等
(xi)含窒素重合性不飽和モノマー:
(メタ)アクリロニトリル、(メタ)アクリルアミド、N,N-ジメチルアミノエチル(メタ)アクリレート、N,N-ジエチルアミノエチル(メタ)アクリレート、N,N-ジメチルアミノプロピル(メタ)アクリルアミド、メチレンビス(メタ)アクリルアミド、エチレンビス(メタ)アクリルアミド、グリシジル(メタ)アクリレートとアミン化合物との付加物等
(xii)重合性不飽和基を1分子中に2個以上有する重合性不飽和モノマー:
アリル(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート等
(xiii)エポキシ基含有重合性不飽和モノマー:
グリシジル(メタ)アクリレート、β-メチルグリシジル(メタ)アクリレート、3,4-エポキシシクロヘキシルメチル(メタ)アクリレート、3,4-エポキシシクロヘキシルエチル(メタ)アクリレート、3,4-エポキシシクロヘキシルプロピル(メタ)アクリレート、アリルグリシジルエーテル等
(xiv)分子末端がアルコキシ基であるポリオキシエチレン鎖を有する(メタ)アクリレート
(xv)スルホン酸基を有する重合性不飽和モノマー:
2-アクリルアミド-2-メチルプロパンスルホン酸、2-スルホエチル(メタ)アクリレート、アリルスルホン酸、4-スチレンスルホン酸等;これらスルホン酸のナトリウム塩及びアンモニウム塩等
(xvi)リン酸基を有する重合性不飽和モノマー:
アシッドホスホオキシエチル(メタ)アクリレート、アシッドホスホオキシプロピル(メタ)アクリレート、アシッドホスホオキシポリ(オキシエチレン)グリコール(メタ)アクリレート、アシッドホスホオキシポリ(オキシプロピレン)グリコール(メタ)アクリレート等
(xvii)紫外線吸収性官能基を有する重合性不飽和モノマー:
2-ヒドロキシ-4-(3-メタクリロイルオキシ-2-ヒドロキシプロポキシ)ベンゾフェノン、2-ヒドロキシ-4-(3-アクリロイルオキシ-2-ヒドロキシプロポキシ)ベンゾフェノン、2,2'-ジヒドロキシ-4-(3-メタクリロイルオキシ-2-ヒドロキシプロポキシ)ベンゾフェノン、2,2'-ジヒドロキシ-4-(3-アクリロイルオキシ-2-ヒドロキシプロポキシ)ベンゾフェノン、2-(2'-ヒドロキシ-5'-メタクリロイルオキシエチルフェニル)-2H-ベンゾトリアゾール等
(xviii)紫外線安定性重合性不飽和モノマー:
4-(メタ)アクリロイルオキシ-1,2,2,6,6-ペンタメチルピペリジン、4-(メタ)アクリロイルオキシ-2,2,6,6-テトラメチルピペリジン、4-シアノ-4-(メタ)アクリロイルアミノ-2,2,6,6-テトラメチルピペリジン、1-(メタ)アクリロイル-4-(メタ)アクリロイルアミノ-2,2,6,6-テトラメチルピペリジン、1-(メタ)アクリロイル-4-シアノ-4-(メタ)アクリロイルアミノ-2,2,6,6-テトラメチルピペリジン、4-クロトノイルオキシ-2,2,6,6-テトラメチルピペリジン、4-クロトノイルアミノ-2,2,6,6-テトラメチルピペリジン、1-クロトノイル-4-クロトノイルオキシ-2,2,6,6-テトラメチルピペリジン等
(xix)カルボニル基を有する重合性不飽和モノマー:
アクロレイン、ダイアセトンアクリルアミド、ダイアセトンメタクリルアミド、アセトアセトキシエチルメタクリレート、ホルミルスチロール、炭素数約4~約7のビニルアルキルケトン(例えば、ビニルメチルケトン、ビニルエチルケトン、ビニルブチルケトン)等
本明細書において、「重合性不飽和基」は、ラジカル重合、またはイオン重合しうる不飽和基を意味する。上記重合性不飽和基としては、例えば、ビニル基、(メタ)アクリロイル基等が挙げられる。
アクリルポリオール(B-1)を製造する際の水酸基含有重合性不飽和モノマー(b1)の割合は、モノマー成分の合計量を基準として、0.5~50重量%が好ましい。このような範囲内とすることで、適度な架橋反応を生じさせることができ、優れた塗膜物性を得ることができる。
上記下限は、1.0重量%であることがより好ましく、1.5重量%であることが更に好ましい。上記上限は、40重量%であることがより好ましい。
アクリルポリオール(B-1)の水酸基価は、形成される塗膜の耐水性等の観点から、1~200mgKOH/gであることが好ましい。上記下限は、2mgKOH/gであることがより好ましく、5mgKOH/gであることが更に好ましい。上記上限は、180mgKOH/gであることがより好ましく、170mgKOH/gであることが更に好ましい。
このようなアクリルポリオール(B-1)としては、市販のものを使用することもできる。市販のものとしては特に限定されず、例えば、DIC株式会社品のアクリディックA-801-P、A-817、A-837,A-848-RN、A-814,57-773、A-829、55-129、49-394-IM、A-875-55、A-870、A-871、A-859-B、52-668-BA、WZU―591、WXU-880、BL-616、CL-1000、CL-408等を挙げることができる。
また、本発明の熱硬化性塗料は、アクリルポリオール(B-1)由来の水酸基数に対して、エステル化合物(A)におけるエステル基は任意に配合できるが、エステル基が3級エステルの場合は、1~200%(個数比)であることが好ましい。
ポリエステルポリオール(B-2)
ポリエステルポリオール(B-2)は、通常、酸成分とアルコール成分とのエステル化反応又はエステル交換反応によって製造することができる。
上記酸成分としては、ポリエステル樹脂の製造に際して、酸成分として通常使用される化合物が挙げられる。上記酸成分としては、例えば、脂肪族多塩基酸、脂環族多塩基酸、芳香族多塩基酸等、並びにそれらの無水物及びエステル化物を挙げることができる。
上記脂肪族多塩基酸並びにそれらの無水物及びエステル化物としては、一般に、1分子中に2個以上のカルボキシル基を有する脂肪族化合物、上記脂肪族化合物の酸無水物及び上記脂肪族化合物のエステル化物、例えば、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカン二酸、ドデカン二酸、ブラシル酸、オクタデカン二酸、クエン酸、ブタンテトラカルボン酸等の脂肪族多価カルボン酸;上記脂肪族多価カルボン酸の無水物;上記脂肪族多価カルボン酸の炭素数約1~約4の低級アルキルのエステル化物等、並びにそれらの任意の組み合わせが挙げられる。
上記脂肪族多塩基酸としては、得られる塗膜の平滑性の観点から、アジピン酸及び/又はアジピン酸無水物であることが好ましい。
上記脂環族多塩基酸、並びにそれらの無水物及びエステル化物は、一般に、1分子中に1個以上の脂環式構造と2個以上のカルボキシル基とを有する化合物、上記化合物の酸無水物及び上記化合物のエステル化物が挙げられる。脂環式構造は、主として4~6員環構造である。上記脂環族多塩基酸、並びにそれらの無水物及びエステル化物としては、例えば、1,2-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸、4-シクロヘキセン-1,2-ジカルボン酸、3-メチル-1,2-シクロヘキサンジカルボン酸、4-メチル-1,2-シクロヘキサンジカルボン酸、1,2,4-シクロヘキサントリカルボン酸、1,3,5-シクロヘキサントリカルボン酸等の脂環族多価カルボン酸;上記脂環族多価カルボン酸の無水物;上記脂環族多価カルボン酸の炭素数約1~約4の低級アルキルのエステル化物等、並びにそれらの任意の組み合わせが挙げられる。
上記脂環族多塩基酸、並びにそれらの無水物及びエステル化物としては、得られる塗膜の平滑性の観点から、1,2-シクロヘキサンジカルボン酸、1,2-シクロヘキサンジカルボン酸無水物、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸、4-シクロヘキセン-1,2-ジカルボン酸、4-シクロヘキセン-1,2-ジカルボン酸無水物が好ましく、そして1,2-シクロヘキサンジカルボン酸及び/又は1,2-シクロヘキサンジカルボン酸無水物がより好ましい。
上記芳香族多塩基酸、並びにそれらの無水物及びエステル化物は、一般に、1分子中に2個以上のカルボキシル基を有する芳香族化合物、上記芳香族化合物の酸無水物及び上記芳香族化合物のエステル化物であり、例えば、フタル酸、イソフタル酸、テレフタル酸、ナフタレンジカルボン酸、4,4'-ビフェニルジカルボン酸、トリメリット酸、ピロメリット酸等の芳香族多価カルボン酸;上記芳香族多価カルボン酸の無水物;上記芳香族多価カルボン酸の炭素数約1~約4の低級アルキルのエステル化物等、並びにそれらの任意の組み合わせが挙げられる。
上記芳香族多塩基酸、並びにそれらの無水物及びエステル化物としては、フタル酸、無水フタル酸、イソフタル酸、トリメリット酸、及び無水トリメリット酸が好ましい。
また、上記酸成分として、上記脂肪族多塩基酸、脂環族多塩基酸及び芳香族多塩基酸以外の酸成分、例えば、ヤシ油脂肪酸、綿実油脂肪酸、麻実油脂肪酸、米ぬか油脂肪酸、魚油脂肪酸、トール油脂肪酸、大豆油脂肪酸、アマニ油脂肪酸、桐油脂肪酸、ナタネ油脂肪酸、ヒマシ油脂肪酸、脱水ヒマシ油脂肪酸、サフラワー油脂肪酸等の脂肪酸;ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、オレイン酸、リノール酸、リノレン酸、安息香酸、p-tert-ブチル安息香酸、シクロヘキサン酸、10-フェニルオクタデカン酸等のモノカルボン酸;乳酸、3-ヒドロキシブタン酸、3-ヒドロキシ-4-エトキシ安息香酸等のヒドロキシカルボン酸等、並びにそれらの任意の組み合わせが挙げられる。
上記アルコール成分としては、1分子中に2個以上の水酸基を有する多価アルコール、例えば、エチレングリコール、プロピレングリコール、ジエチレングリコール、トリメチレングリコール、テトラエチレングリコール、トリエチレングリコール、ジプロピレングリコール、1,4-ブタンジオール、1,3-ブタンジオール、2,3-ブタンジオール、1,2-ブタンジオール、2-メチル-1,3-プロパンジオール、3-メチル-1,2-ブタンジオール、1,1,1-トリメチロールプロパン、2-ブチル-2-エチル-1,3-プロパンジオール、1,2-ペンタンジオール、1,5-ペンタンジオール、1,4-ペンタンジオール、2,4-ペンタンジオール、2,3-ジメチルトリメチレングリコール、テトラメチレングリコール、3-メチル-4,3-ペンタンジオール、3-メチル-1,5-ペンタンジオール、2,2,4-トリメチル-1,3-ペンタンジオール、1,6-ヘキサンジオール、1,5-ヘキサンジオール、1,4-ヘキサンジオール、2,5-ヘキサンジオール、ネオペンチルグリコール、1,4-シクロヘキサンジメタノール、トリシクロデカンジメタノール、ヒドロキシピバリン酸ネオペンチルグリコールエステル、水添ビスフェノールA、水添ビスフェノールF、ジメチロールプロピオン酸等の2価アルコール;上記2価アルコールにε-カプロラクトン等のラクトン化合物を付加したポリラクトンジオール;ビス(ヒドロキシエチル)テレフタレート等のエステルジオール化合物;ビスフェノールAのアルキレンオキサイド付加物、ポリエチレングリコール、ポリプロピレングリコール、ポリブチレングリコール等のポリエーテルジオール化合物;グリセリン、トリメチロールエタン、トリメチロールプロパン、ジグリセリン、トリグリセリン、1,2,6-ヘキサントリオール、ペンタエリスリトール、ジペンタエリスリトール、トリス(2-ヒドロキシエチル)イソシアヌル酸、ソルビトール、マンニット等の3価以上のアルコール;上記3価以上のアルコールにε-カプロラクトン等のラクトン化合物を付加させたポリラクトンポリオール化合物;グリセリンの脂肪酸エステル化物等が挙げられる。
また、上記アルコール成分として、上記多価アルコール以外のアルコール成分、例えば、メタノール、エタノール、プロピルアルコール、ブチルアルコール、ステアリルアルコール、2-フェノキシエタノール等のモノアルコール;プロピレンオキサイド、ブチレンオキサイド、「カージュラE10」(商品名、HEXIONSpecialtyChemicals社製、合成高分岐飽和脂肪酸のグリシジルエステル)等のモノエポキシ化合物と酸とを反応させて得られたアルコール化合物等が挙げられる。
ポリエステルポリオール(B-2)は、特に限定されず、通常の方法に従って製造されうる。例えば、上記酸成分とアルコール成分とを、窒素気流中、約150~約250℃で、約5~約10時間加熱し、上記酸成分とアルコール成分とのエステル化反応又はエステル交換反応を実施することにより、ポリエステルポリオール(B-2)を製造することができる。
低分子量ポリオール(B-3)
上記化合物(B)としては、上述したような樹脂に限られるものではなく、低分子量ポリオール(具体的には分子量2,000以下)を使用することもできる。
低分子量ポリオールとしては、例えば、エチレングリコール、プロピレングリコール、ジエチレングリコール、トリメチレングリコール、テトラエチレングリコール、トリエチレングリコール、ジプロピレングリコール、1,4-ブタンジオール、1,3-ブタンジオール、2,3-ブタンジオール、1,2-ブタンジオール、2-メチル-1,3-プロパンジオール、3-メチル-1,2-ブタンジオール、1,1,1-トリメチロールプロパン、2-ブチル-2-エチル-1,3-プロパンジオール、1,2-ペンタンジオール、1,5-ペンタンジオール、1,4-ペンタンジオール、2,4-ペンタンジオール、2,3-ジメチルトリメチレングリコール、テトラメチレングリコール、3-メチル-4,3-ペンタンジオール、3-メチル-1,5-ペンタンジオール、2,2,4-トリメチル-1,3-ペンタンジオール、1,6-ヘキサンジオール、1,5-ヘキサンジオール、1,4-ヘキサンジオール、2,5-ヘキサンジオール、ネオペンチルグリコール、1,4-シクロヘキサンジメタノール、トリシクロデカンジメタノール、ヒドロキシピバリン酸ネオペンチルグリコールエステル、水添ビスフェノールA、水添ビスフェノールF、ジメチロールプロピオン酸等の2価アルコール;上記2価アルコールにε-カプロラクトン等のラクトン化合物を付加したポリラクトンジオール;ビス(ヒドロキシエチル)テレフタレート等のエステルジオール化合物;ビスフェノールAのアルキレンオキサイド付加物、ポリエチレングリコール、ポリプロピレングリコール、ポリブチレングリコール等のポリエーテルジオール化合物;グリセリン、トリメチロールエタン、トリメチロールプロパン、ジグリセリン、トリグリセリン、1,2,6-ヘキサントリオール、ペンタエリスリトール、ジペンタエリスリトール、トリス(2-ヒドロキシエチル)イソシアヌル酸、ソルビトール、マンニット等の3価以上のアルコール等を挙げることができる。
このような低分子量ポリオールを使用した熱硬化性樹脂組成物は、汎用品として知られているものであり、安価で入手することができる。更に低分子ポリオールは水溶性が強く、水系での硬化を目的とする場合は架橋剤として好適に使用できる。近年では環境問題が叫ばれており、VOCの低減を進める上では非常に重要な架橋剤として好適に使用ができる。
本発明の化合物(B)は、ポリアクリルポリオール(B-1)、ポリエステルポリオール(B-2)及び低分子量ポリオール(B-3)の2以上を併用して使用するものであってもよい。
また、本発明の熱硬化性塗料は、化合物(B)由来の水酸基数に対して、エステル化合物(A)におけるエステル基は任意に配合できるが、エステル基が3級エステルの場合は1~200%(個数比)であることが好ましい。
本発明の熱硬化性樹脂組成物が、2以上の水酸基を有する化合物(B)を配合するものである場合、ポリオールとしては、ポリイソシアネート硬化剤やメラミン樹脂等を使用した従来の熱硬化性樹脂組成物において使用されてきたものをそのまま使用できるという利点を有する。
このように、分子内に水酸基を複数有する化合物(B)と併用して使用する場合、エステル化合物(A)は、3級アルキル(メタ)アクリレートを、重合体の構成単位を基準として、1~100モル%の割合で含有するものであることが好ましい。すなわち、このように、3級アルキル(メタ)アクリレートを高い割合で配合したものを使用することで、充分な架橋密度が得られるため、好ましい。
(エステル交換触媒)
本発明の熱硬化型樹脂組成物は、エステル交換触媒(C)を含有するものである。すなわち、エステル基と水酸基との間のエステル交換反応を効率よく生じさせ、充分な熱硬化性を得るために、エステル交換触媒(C)を配合する。
上記エステル交換触媒(C)としては、エステル交換反応を活性化させることができるものとして公知の任意の化合物を使用することができる。
具体的には、例えば、塩酸、硫酸、硝酸、酢酸、燐酸またはスルホン酸などのような種々の酸性化合物;LiOH、KOHまたはNaOH、アミン類などのような種々の塩基性化合物;PbO、酢酸亜鉛、酢酸鉛、三酸化アンチモン、テトライソプロピルチタネート、ジブチル錫ジラウレート、ジブチル錫ジオクテートまたはモノブチル錫酸などのような種々の金属化合物等を挙げることができる。また、光や熱によって酸を発生させる光応答性触媒、熱潜在性触媒も使用することができる。
なかでも、本発明の効果を、充分、発揮せしめ得るものとして、スルホン酸基を有する化合物(ドデシルベンゼンスルホン酸、フェノールスルホン酸、メタスルホン酸、パラトルエンスルホン酸)であるとか、あるいはスルホン酸のアルカリ金属塩ないしはアミン塩からなる基を有する化合物の使用が望ましい。
更には、熱潜在性触媒である「スルホン酸のアルカリ金属塩ないしはアミン塩」ではなく、SOH基としてのスルホン酸基を有する化合物を使用することが最も好ましい。本発明の硬化反応であるエステル交換反応は、反応性が必ずしも高くない。このため、より高い酸性を有する化合物を使用したほうが、良好な硬化性能が得られるためである。
なお、ビスフェノールA又はその誘導体をエステル交換の触媒として使用することもできる。但し、本発明においては、このような化合物は使用しないことがより好ましい。このような化合物は、環境に対して好ましくない影響を与える可能性が示唆されているという点から使用が好ましいものではない。
上記エステル交換触媒(C)の使用量は、エステル化合物(A)と化合物(B)との重量の合計に対して、0.01~50重量%であることが好ましい。このような範囲内のものとすることで、良好な硬化反応を低温で行うことができる点で好ましい。
本発明の熱硬化性樹脂組成物は、その形態を特に限定されるものではないが、有機溶媒系又は水系の形態を有するものであることが特に好ましい。これによって、薄膜塗装可能であり、低温硬化を行うことができる点で好ましい。水系としては、水溶性、水分散性のいずれであってもよく、水に加えて、エタノール、メタノール、アルコール系、グリコール系、エーテル系、ケトン系等の水と任意の割合で混合することができる水性溶媒を含有するものであってもよい。
有機溶媒系の熱硬化性樹脂組成物は、各種有機溶媒中に上記成分が溶解又は分散した状態の組成物である。使用することができる有機溶媒は特に限定されず、1-ヘキサン、1-オクタン、1-デカン、1-テトラデカン、シクロヘキサン、ベンゼン、キシレン等の炭化水素、ジメチルエーテル、ジエチルエーテル等のエーテル、アセトン、メチルエチルケトン、等のケトン、トリクロロメタン、四塩化炭素、ジクロロエタン、トリクロロエタン、テトラクロロエチレン等の塩素系炭化水素、エタノール、メタノール、プロパノール、ブタノール、アセトン、シクロヘキサノン等の公知の任意のものを使用することができる。
また、2液型の樹脂組成物として、エステル化合物(A)を含む溶液と、化合物(B)を含む主剤溶液とを組み合わせて、使用直前に混合して使用するものであってもよい。このようにすることで、保存安定性が良好なものとなる点で好ましい。また、エステル化合物(A)及び分子中に少なくとも2個の水酸基を有する化合物(B)を含む溶液に、エステル交換触媒(C)を含む触媒溶液を混合するタイプの2液型とすることもできる。
更に、粉体塗料等の、粉体形状の熱硬化性樹脂組成物とする場合は、エステル化合物(A)、化合物(B)及びエステル交換触媒(C)を通常の方法によって乾燥・混合・粉砕することによって製造することができる。
本発明の熱硬化性組成物は、上記(A)~(C)の成分に加えて、更に、塗料や接着剤の分野において一般的に使用されるその他の架橋剤を併用して使用するものであってもよい。使用できる架橋剤としては特に限定されず、イソシアネート化合物、ブロックイソシアネート化合物、メラミン樹脂、エポキシ樹脂、シラン化合物等を挙げることができる。また、ビニルエーテル、アニオン重合性単量体、カチオン重合性単量体、ラジカル重合性単量体等を併用するものであってもよい。これらの併用した架橋剤の反応を促進させるための硬化剤を併用するものであってもよい。
なお、上述したその他架橋剤は必須ではなく、本発明の熱硬化性樹脂組成物はこれを含有しないものであっても、良好な硬化性を得ることができる点で好ましいものである。
本発明の熱硬化性樹脂組成物は、目的に応じて必要な場合には、非水分散樹脂(NAD)を含有するものであってもよい。但し、非水分散樹脂(NAD)は、必須ではなくこれを含有しないものであっても差し支えない。
本発明の熱硬化性樹脂組成物は、熱硬化性塗料、熱硬化性接着剤等の分野において好適に使用することができる。
熱硬化性塗料として使用する場合は、上述した各成分以外に、塗料分野において一般的に使用される添加剤を併用するものであってもよい。例えば、着色顔料、体質顔料、光輝性顔料等、並びにそれらの任意の組み合わせを併用してもよい。
顔料を使用する場合、樹脂成分の合計固形分100重量%を基準として、好ましくは合計で1~500重量%の範囲で含むことが好ましい。上記下限はより好ましくは3重量%であり、更に好ましくは5重量部である。上記上限はより好ましくは400重量%であり、更に好ましくは300重量%である。
上記着色顔料としては、例えば、酸化チタン、亜鉛華、カーボンブラック、モリブデンレッド、プルシアンブルー、コバルトブルー、アゾ系顔料、フタロシアニン系顔料、キナクリドン系顔料、イソインドリン系顔料、スレン系顔料、ペリレン系顔料、ジオキサジン系顔料、ジケトピロロピロール系顔料等、並びにそれらの任意の組み合わせが挙げられる。
上記体質顔料としては、例えば、クレー、カオリン、硫酸バリウム、炭酸バリウム、炭酸カルシウム、タルク、シリカ、アルミナホワイト等が挙げられ、硫酸バリウム及び/又はタルクが好ましく、そして硫酸バリウムがより好ましい。
上記光輝性顔料としては、例えば、アルミニウム(蒸着アルミニウムを含む)、銅、亜鉛、真ちゅう、ニッケル、酸化アルミニウム、雲母、酸化チタン又は酸化鉄で被覆された酸化アルミニウム、酸化チタン又は酸化鉄で被覆された雲母、ガラスフレーク、ホログラム顔料等、並びにそれらの任意の組み合わせが挙げられる。上記アルミニウム顔料には、ノンリーフィング型アルミニウム及びリーフィング型アルミニウムが含まれる。
上記熱硬化性塗料は、所望により、増粘剤、紫外線吸収剤、光安定剤、消泡剤、可塑剤、上記疎水性溶媒以外の有機溶剤、表面調整剤、沈降防止剤等の塗料用添加剤をさらに含有するものであってもよい。
上記増粘剤としては、例えば、ケイ酸塩、金属ケイ酸塩、モンモリロナイト、コロイド状アルミナ等の無機系増粘剤;(メタ)アクリル酸と(メタ)アクリル酸エステルとの共重合体、ポリアクリル酸ソーダ等のポリアクリル酸系増粘剤;1分子中に親水性部分と疎水性部分を有し、水性媒体中において、上記疎水性部分が塗料中の顔料やエマルション粒子の表面に吸着する、上記疎水性部分同士が会合する等により増粘作用を示す会合型増粘剤;カルボキシメチルセルロース、メチルセルロース、ヒドロキシエチルセルロース等の繊維素誘導体系増粘剤;カゼイン、カゼイン酸ソーダ、カゼイン酸アンモニウム等のタンパク質系増粘剤;アルギン酸ソーダ等のアルギン酸系増粘剤;ポリビニルアルコール、ポリビニルピロリドン、ポリビニルベンジルエーテル共重合体等のポリビニル系増粘剤;プルロニックポリエーテル、ポリエーテルジアルキルエステル、ポリエーテルジアルキルエーテル、ポリエーテルエポキシ変性物等のポリエーテル系増粘剤;ビニルメチルエーテル-無水マレイン酸共重合体の部分エステル等の無水マレイン酸共重合体系増粘剤;ポリアマイドアミン塩等のポリアマイド系増粘剤等、並びにそれらの任意の組み合わせが挙げられる。
上記ポリアクリル酸系増粘剤は市販されており、例えば、ロームアンドハース社製の「ACRYSOLASE-60」、「ACRYSOLTT-615」、「ACRYSOLRM-5」(以上、商品名)、サンノプコ社製の「SNシックナー613」、「SNシックナー618」、「SNシックナー630」、「SNシックナー634」、「SNシックナー636」(以上、商品名)等が挙げられる。
また、上記会合型増粘剤は市販されており、例えば、ADEKA社製の「UH-420」、「UH-450」、「UH-462」、「UH-472」、「UH-540」、「UH-752」、「UH-756VF」、「UH-814N」(以上、商品名)、ロームアンドハース社製の「ACRYSOLRM-8W」、「ACRYSOLRM-825」、「ACRYSOLRM-2020NPR」、「ACRYSOLRM-12W」、「ACRYSOLSCT-275」(以上、商品名)、サンノプコ社製の「SNシックナー612」、「SNシックナー621N」、「SNシックナー625N」、「SNシックナー627N」、「SNシックナー660T」(以上、商品名)等が挙げられる。
上記熱硬化性塗料を適用することができる被塗物としては、特に制限されず、例えば、乗用車、トラック、オートバイ、バス等の自動車車体の外板部;自動車部品;携帯電話、オーディオ機器、等の家庭電気製品、建築材料、家具、接着剤、フィルムやガラスのコーティング剤等、様々な例を挙げることができる。自動車用塗料として使用する場合は、中塗り塗料、ベース塗料、クリヤー塗料等の任意の層の効果に用いることができる。
上記被塗物は、上記金属材料及びそれから成形された車体等の金属表面に、リン酸塩処理、クロメート処理、複合酸化物処理等の表面処理が施されたものであってもよく、また、塗膜を有する被塗物であってもよい。
上記塗膜を有する被塗物としては、基材に所望により表面処理を施し、その上に下塗り塗膜が形成されたもの等を挙げることができる。特に、電着塗料によって下塗り塗膜が形成された車体が好ましく、カチオン電着塗料によって下塗り塗膜が形成された車体がより好ましい。
上記被塗物は、上記プラスチック材料、それから成形された自動車部品等のプラスチック表面に、所望により、表面処理、プライマー塗装等がなされたものであってもよい。また、上記プラスチック材料と上記金属材料とが組み合わさったものであってもよい。
上記熱硬化性塗料の塗装方法としては、特に制限されず、例えば、エアスプレー塗装、エアレススプレー塗装、回転霧化塗装、カーテンコート塗装等が挙げられ、エアスプレー塗装、回転霧化塗装等が好ましい。塗装に際して、所望により、静電印加してもよい。上記塗装方法により、上記水性塗料組成物からウェット塗膜を形成することができる。
上記ウェット塗膜は、加熱することにより硬化させることができる。当該硬化は、公知の加熱手段、例えば、熱風炉、電気炉、赤外線誘導加熱炉等の乾燥炉により実施することができる。上記ウェット塗膜は、好ましくは約80~約180℃、より好ましくは約100~約170℃、そしてさらに好ましくは約120~約160℃の範囲の温度で、好ましくは約10~約60分間、そしてより好ましくは約15~約40分間加熱することにより硬化させることができる。また、80~140℃での低温硬化にも対応することができる点で好ましいものである。
なお、本発明の熱硬化性樹脂組成物は、塗料分野において使用する場合は平滑性や耐水性・耐酸性等の性能を有する充分な硬化性能が必要とされる。
一方、接着剤や粘着剤等の分野において使用する場合は、塗料において要求されるほどの高い硬化性能は必要とされない。本発明の熱硬化性樹脂組成物は、塗料として使用できるレベルのものとすることが可能であるが、このような水準に到達しない組成物であっても、接着剤や粘着剤等の分野においては使用できる場合がある。
本発明は、上述した熱硬化型樹脂組成物を三次元架橋することによって形成されたことを特徴とする硬化膜である。
このような硬化膜は、塗料・接着剤として使用することができるような充分な性能を有したものである。
以下、実施例に基づいて本発明を更に詳細に説明する。なお、本発明は以下の実施例に限定されるものではない。なお文中、部は重量を表す。
合成例1 
先行文献(特開平9-59543号公報)に記載された樹脂組成の追試実験を行った。比較樹脂として、t-ブチルメタアクリレート(共栄社化学(株)品:ライトエステルTB)375部、ヒドロキシエチルメタアクリレート(共栄社化学(株)品:ライトエステルHO-250)125部をモノマー混合液とし、開始剤としてt-ブチルパーオキシオクエート 25部、及び2,2‘-アゾビス(イソブチロニトリル)3部をキシレンに溶解し開始剤溶液とした。撹拌可能なフラスコにキシレンを500部入れ、窒素封入しながら、モノマー溶液および開始剤溶液を滴下した。この時の重合温度を130℃とした。滴下には4時間で行い、更に130℃で熟成を10時間行い、比較ポリマー溶液Aを得た。
合成例2 
n-ブチルメタアクリレート(共栄社化学(株)品:ライトエステルNB) 240部、ヒドロキシエチルメタアクリレート(共栄社化学(株)品:ライトエステルHO-250) 110部、 スチレン 30部をモノマー混合液とし、開始剤として2,2'-アゾビス(2,4-ジメチルバレロニトリル)(和光純薬 V-65) 25部を芳香族炭化水素(T-SOL 100)に溶解し開始剤溶液とした。撹拌可能なフラスコに芳香族炭化水素(T-SOL 100) 250部及びシクロヘキサノン 250部を入れ、窒素封入しながら、モノマー溶液および開始剤溶液を滴下した。この時の重合温度を100℃とした。滴下には2時間で行い、更に100℃で熟成を4時間行い、ポリオールAを得た。
合成例3
n-ブチルメタアクリレート(共栄社化学(株)品:ライトエステルNB) 240部、ヒドロキシエチルメタアクリレート(共栄社化学(株)品:ライトエステルHO-250) 62部、 スチレン 25部、反応性乳化剤(第一工業製薬品:アクアロンKH-10)10部、を混合した後、イオン交換水150部を混合しホモミキサーを用いて室温で1時間乳化を行い、モノマー乳化液を調整した。開始剤としてペルオキソ二硫酸アンモニウム9部と重亜硫酸ソーダ7部をイオン交換水に溶解し開始剤溶液とした。
撹拌可能なフラスコにイオン交換水260部を入れ、窒素封入しながら、モノマー溶液および開始剤溶液を滴下し重合を行った。この時の重合温度を80℃とした。滴下には2時間で行い、更に80℃で熟成を4時間行い、ポリオールBを得た
合成例4 
開始剤として2,2'-アゾビス(2,4-ジメチルバレロニトリル)(和光純薬 V-65) 25部を芳香族炭化水素(T-SOL 100)に溶解し開始剤溶液とした。
撹拌可能なフラスコに芳香族炭化水素(T-SOL 100) 250部を入れ、窒素封入しながら、t-ブチルメタアクリレート(共栄社化学(株)品:ライトエステルTB) 240部と開始剤溶液を滴下し重合を行った。この時の重合温度を100℃とした。滴下には2時間で行い、更に100℃で熟成を4時間行い、エステル化合物溶液Aを得た。
合成例5 
開始剤として2,2'-アゾビス(2,4-ジメチルバレロニトリル)(和光純薬 V-65) 25部を芳香族炭化水素(T-SOL 100)に溶解し開始剤溶液とした。
撹拌可能なフラスコに芳香族炭化水素(T-SOL 100) 250部を入れ、窒素封入しながら、t-ブチルアクリレート(共栄社化学(株)品:ライトアクリレートTB) 240部と開始剤溶液を滴下し重合を行った。この時の重合温度を100℃とした。滴下には2時間で行い、更に100℃で熟成を4時間行い、エステル化合物溶液Bを得た。
合成例6   
n-ブチルメタアクリレート(共栄社化学(株)品:ライトエステルNB) 240部、t-ブチルメタアクリレート(共栄社化学(株)品:ライトエステルTB)120部、 スチレン 30 部をモノマー混合液とし、開始剤として2,2'-アゾビス(2,4-ジメチルバレロニトリル)(和光純薬 V-65) 25部を芳香族炭化水素(T-SOL100)に溶解し開始剤溶液とした。
撹拌可能なフラスコに芳香族炭化水素(T-SOL 100) 250部及びシクロヘキサノン 250部を入れ、窒素封入しながら、モノマー溶液および開始剤溶液を滴下した。この時の重合温度を100℃とした。滴下には2時間で行い、更に100℃で熟成を4時間行い、エステル化合物溶液Cを得た。
合成例7 
n-ブチルメタアクリレート(共栄社化学(株)品:ライトエステルNB) 245部、t-ブチルアクリレート(共栄社化学(株)品:ライトアクリレートTB) 110部、スチレン 30部をモノマー混合液とし、
開始剤として2,2'-アゾビス(2,4-ジメチルバレロニトリル)(和光純薬 V-65) 25部を芳香族炭化水素(T-SOL 100)に溶解し開始剤溶液とした。
撹拌可能なフラスコに芳香族炭化水素 250部を入れ、窒素封入しながら、モノマー溶液および開始剤溶液を滴下した。この時の重合温度を100℃とした。滴下には2時間で行い、更に100℃で熟成を4時間行い、エステル化合物溶液Dを得た。
合成例8 
エチレングリコールモノアセトアセタートモノメタクリラート54部、n-ブチルアクリレート32部 炭酸カリウム38部、18-クラウン-6エーテル2部、テトラヒドロフラン112部を混合し、50℃で3時間撹拌した。反応終了後、シクロヘキサンと水を投入し、水洗した。有機層は飽和塩化アンモニウム水溶液で中和後、2度水洗し、得られた有機層を減圧下濃縮し、モノマーAを得た。
合成例9 
エチレングリコールモノアセトアセタートモノメタクリラート54部、ターシャリーブチルアクリレート32部、炭酸カリウム38部、18-クラウン-6エーテル2部、テトラヒドロフラン112部を混合し、50℃で3時間撹拌した。反応終了後、シクロヘキサンと水を投入し、水洗した。有機層は飽和塩化アンモニウム水溶液で中和後、2度水洗し、得られた有機層を減圧下濃縮し、モノマーBを得た。
合成例10 
エチレングリコールモノアセトアセタートモノメタクリラート54部、ターシャリーブチルアクリレート58部、炭酸カリウム38部、18-クラウン-6エーテル2部、テトラヒドロフラン112部を混合し、50℃で3時間撹拌した。反応終了後、シクロヘキサンと水を投入し、水洗した。有機層は飽和塩化アンモニウム水溶液で中和後、2度水洗し、得られた有機層を減圧下濃縮し、モノマーCを得た。
合成例11 
硫酸6.4部、硫酸マグネシウム31部、塩化メチレン130部を混合し、室温で15分間撹拌した。撹拌後、2-メタクリロイロキシエチルコハク酸(共栄社化学品 ライトエステルHO-MS)15部、ターシャリーブチルアルコール24部を投入し、室温で20時間撹拌した。反応終了後、水を投入し、水洗した。有機層は飽和炭酸水素ナトリウム水溶液で中和後、2度水洗し、得られた有機層を減圧下濃縮し、モノマーDを得た。
合成例12 
開始剤である、2,2'-アゾビス(2,4-ジメチルバレロニトリル)(和光純薬 V-65)7.5部を芳香族炭化水素(T-SOL 100)に混合し、開始剤溶液とした。
撹拌可能なフラスコに芳香族炭化水素(T-SOL 100) 150部を入れ、窒素封入しながら、モノマーA 150部および開始剤溶液を滴下した。この時の重合温度を100℃とした。滴下には2時間で行い、更に100℃で熟成を4時間行い、エステル化合物溶液Eを得た。
合成例13 
開始剤である、2,2'-アゾビス(2,4-ジメチルバレロニトリル)(和光純薬 V-65)7.5部を芳香族炭化水素(T-SOL100)に混合し、開始剤溶液とした。撹拌可能なフラスコに芳香族炭化水素(T-SOL100) 150部を入れ、窒素封入しながら、モノマーB 150部および開始剤溶液を滴下した。この時の重合温度を100℃とした。滴下には2時間で行い、更に100℃で熟成を4時間行い、エステル化合物溶液Fを得た。
合成例14 
開始剤である、2,2'-アゾビス(2,4-ジメチルバレロニトリル)(和光純薬 V-65)7.5部を芳香族炭化水素(T-SOL100)に混合し、開始剤溶液とした。撹拌可能なフラスコに芳香族炭化水素(T-SOL100) 150部を入れ、窒素封入しながら、モノマーC 150部および開始剤溶液を滴下した。この時の重合温度を100℃とした。滴下には2時間で行い、更に100℃で熟成を4時間行い、エステル化合物溶液Gを得た。
合成例15 
開始剤である、2,2'-アゾビス(2,4-ジメチルバレロニトリル)(和光純薬 V-65)7.5部を芳香族炭化水素(T-SOL100)に混合し、開始剤溶液とした。撹拌可能なフラスコに芳香族炭化水素(T-SOL100) 150部を入れ、窒素封入しながら、モノマーD 150部および開始剤溶液を滴下した。この時の重合温度を100℃とした。滴下には2時間で行い、更に100℃で熟成を4時間行い、エステル化合物溶液Hを得た。
合成例16 
n-ブチルメタアクリレート(共栄社化学(株)品:ライトエステルNB)75部、モノマーA65部、スチレン10部を混合しモノマー溶液とした。2,2'-アゾビス(2,4-ジメチルバレロニトリル)(和光純薬 V-65)7.5部を芳香族炭化水素(T-SOL 100)に溶かし、開始剤溶液とした。 撹拌可能なフラスコに芳香族炭化水素(T-SOL100) 150部を入れ、窒素封入しながら、モノマー溶液および開始剤溶液を滴下した。この時の重合温度を100℃とした。滴下には2時間で行い、更に100℃で熟成を4時間行い、エステル化合物Iを得た。
合成例17 
n-ブチルメタアクリレート(共栄社化学(株)品:ライトエステルNB)75部、モノマーB65部、スチレン10部を混合しモノマー溶液とした。2,2'-アゾビス(2,4-ジメチルバレロニトリル)(和光純薬 V-65)7.5部を芳香族炭化水素(T-SOL 100)に溶かし、開始剤溶液とした。 撹拌可能なフラスコに芳香族炭化水素(T-SOL100) 150部を入れ、窒素封入しながら、モノマー溶液および開始剤溶液を滴下した。この時の重合温度を100℃とした。滴下には2時間で行い、更に100℃で熟成を4時間行い、エステル化合物Jを得た。
合成例18 
n-ブチルメタアクリレート(共栄社化学(株)品:ライトエステルNB)75部、モノマーC65部、スチレン10部を混合しモノマー溶液とした。2,2'-アゾビス(2,4-ジメチルバレロニトリル)(和光純薬 V-65)7.5部を芳香族炭化水素(T-SOL 100)に溶かし、開始剤溶液とした。 撹拌可能なフラスコに芳香族炭化水素(T-SOL100) 150部を入れ、窒素封入しながら、モノマー溶液および開始剤溶液を滴下した。この時の重合温度を100℃とした。滴下には2時間で行い、更に100℃で熟成を4時間行い、エステル化合物Kを得た。
合成例19 
n-ブチルメタアクリレート(共栄社化学(株)品:ライトエステルNB)75部、モノマーD65部、スチレン10部を混合しモノマー溶液とした。2,2'-アゾビス(2,4-ジメチルバレロニトリル)(和光純薬 V-65)7.5部を芳香族炭化水素(T-SOL 100)に溶かし、開始剤溶液とした。 撹拌可能なフラスコに芳香族炭化水素(T-SOL100) 150部を入れ、窒素封入しながら、モノマー溶液および開始剤溶液を滴下した。この時の重合温度を100℃とした。滴下には2時間で行い、更に100℃で熟成を4時間行い、エステル化合物Lを得た。
合成例20 
n-ブチルメタアクリレート(共栄社化学(株)品:ライトエステルNB) 240部、t-ブチルアクリレート(共栄社化学(株)品:ライトアクリレートTB)110部、スチレン 30 部、反応性乳化剤(第一工業製薬品:アクアロンKH-10)11部、を混合した後、イオン交換水を173部混合しホモミキサーを用いて室温で1時間乳化を行い、モノマー乳化液を調整した。開始剤としてペルオキソ二硫酸アンモニウム11部と重亜硫酸ソーダ8部を水に溶解し開始剤溶液とした。
撹拌可能なフラスコにイオン交換水290部を入れ、窒素封入しながら、モノマー溶液および開始剤溶液を滴下し重合を行った。この時の重合温度を80℃とした。滴下には2時間で行い、更に80℃で熟成を4時間行い、エステル化合物溶液Mを得た。
これらの化合物の性質を表1に示した。
なお、表1中、Mn(数平均分子量),Mw(重量平均分子量)は、ゲルパーミエーションクロマトグラフィ(GPC)により測定した、ポリスチレン換算分子量の値である。カラムはGPC KF-804L(昭和電工(株)製)、溶剤はテトラヒドロフランを使用した。
























Figure JPOXMLDOC01-appb-T000011
上述した合成例によって得られたポリオール及び架橋剤を下記表2,3の割合で混合し、熱硬化性樹脂組成物を調製した。
比較例1
比較ポリマー溶液Aに酢酸亜鉛を比較ポリマー溶液Aの固形分に対して0.2wt%になるように混合し、アプリケーターを用いてWETで400μmの塗膜を作成し、170℃で20分硬化を行った。その後、ゲル分率、キシレンラビング試験、耐水性と、調整液を剛体振り子試験にて硬化性の確認を行った。
実施例1
ポリオールA 100部に対して、エステル化合物A30部及び、フェノールスルホン酸(PHS)を混合物の固形分に対して2wt%になるように混合し、アプリケーターを用いてWETで400μmの塗膜を作成し、140℃で30分硬化を行った。その後、ゲル分率、キシレンラビング試験、耐水性試験を行った。
実施例2
ポリオールA 100部に対して、エステル化合物B 30部及び、フェノールスルホン酸(PHS)を混合物の固形分に対して2wt%になるように混合し、アプリケーターを用いてWETで400μmの塗膜を作成し、140℃で30分硬化を行った。その後、ゲル分率、キシレンラビング試験、耐水性試験を行った。
実施例3
ポリオールA 100部に対して、エステル化合物C 30部及び、メタンスルホン酸(MSA)を混合物の固形分に対して3wt%になるように混合し、アプリケーターを用いてWETで400μmの塗膜を作成し、140℃で30分硬化を行った。その後、ゲル分率、キシレンラビング試験、耐水性試験を行った。
実施例4
ポリオールA 100部に対して、エステル化合物D 30部及び、メタンスルホン酸(MSA)を混合物の固形分に対して3wt%になるように混合し、アプリケーターを用いてWETで400μmの塗膜を作成し、140℃で30分硬化を行った。その後、ゲル分率、キシレンラビング試験、耐水性試験を行った。

























Figure JPOXMLDOC01-appb-T000012
PHS:フェノールスルホン酸
MSA:メタンスルホン酸
本明細書の実施例中の表においては、各成分が溶液である場合、表中の配合量はすべて溶液基準での重量である。
比較例1は、先行文献(特開平9-59543号公報)の確認となるが、ゲル分率は報告されている結果とはならなかった。また、キシレンラビング、耐水性を評価すると悪い結果となった。
実施例1~4では、ゲル分率、キシレンラビング、耐水性等、膜性能が向上しており、硬化反応がしているのは明らかである。
実施例5
ポリオールA 100部に対して、エステル化合物E 30部及び、フェノールスルホン酸(PHS)を混合物の固形分に対して2wt%になるように混合し、アプリケーターを用いてWETで400μmの塗膜を作成し、140℃で30分硬化を行った。その後、ゲル分率、キシレンラビング試験、耐水性、及び調整液にて剛体振り子試験を行った。
実施例6
ポリオールA 100部に対して、エステル化合物F 30部及び、フェノールスルホン酸(PHS)を混合物の固形分に対して2wt%になるように混合し、アプリケーターを用いてWETで400μmの塗膜を作成し、140℃で30分硬化を行った。その後、ゲル分率、キシレンラビング試験、耐水性、及び調整液にて剛体振り子試験を行った。
実施例7
ポリオールA 100部に対して、エステル化合物G 30部及び、フェノールスルホン酸(PHS)を混合物の固形分に対して2wt%になるように混合し、アプリケーターを用いてWETで400μmの塗膜を作成し、140℃で30分硬化を行った。その後、ゲル分率、キシレンラビング試験、耐水性、及び調整液にて剛体振り子試験を行った。
実施例8
ポリオールA 100部に対して、エステル化合物H 30部及び、フェノールスルホン酸(PHS)を混合物の固形分に対して2wt%になるように混合し、アプリケーターを用いてWETで400μmの塗膜を作成し、140℃で30分硬化を行った。その後、ゲル分率、キシレンラビング試験、耐水性試験を行った。
実施例9
ポリオールA 100部に対して、エステル化合物I 100部及び、フェノールスルホン酸(PHS)を混合物の固形分に対して2wt%になるように混合し、アプリケーターを用いてWETで400μmの塗膜を作成し、140℃で30分硬化を行った。その後、ゲル分率、キシレンラビング試験、耐水性試験を行った。
実施例10
ポリオールA 100部に対して、エステル化合物J 100部及び、フェノールスルホン酸(PHS)を混合物の固形分に対して2wt%になるように混合し、アプリケーターを用いてWETで400μmの塗膜を作成し、140℃で30分硬化を行った。その後、ゲル分率、キシレンラビング試験、耐水性試験を行った。
実施例11
ポリオールA 100部に対して、エステル化合物K 55部及び、フェノールスルホン酸(PHS)を混合物の固形分に対して2wt%になるように混合し、アプリケーターを用いてWETで400μmの塗膜を作成し、140℃で30分硬化を行った。その後、ゲル分率、キシレンラビング試験、耐水性試験を行った。
実施例12
ポリオールA 100部に対して、エステル化合物L 100部及び、フェノールスルホン酸(PHS)を混合物の固形分に対して2wt%になるように混合し、アプリケーターを用いてWETで400μmの塗膜を作成し、140℃で30分硬化を行った。その後、ゲル分率、キシレンラビング試験、耐水性試験を行った。
実施例13
ポリオールB 130部に対して、エステル化合物M 100部及び、フェノールスルホン酸(PHS)を混合物の固形分に対して2wt%になるように混合し、アプリケーターを用いてWETで400μmの塗膜を作成し、140℃で30分硬化を行った。その後、ゲル分率、キシレンラビング試験、耐水性試験を行った。
















































Figure JPOXMLDOC01-appb-T000013




















Figure JPOXMLDOC01-appb-T000014
実施例1~13の結果のゲル分率や剛体振り子試験結より、熱硬化しているのは明らかである。また1級エステルより3級エステル基の方がより効果的に架橋が進行し、更には、連結基を介して側鎖を長くするとより反応性が向上する。
合成例21 
t-ブチルアクリレート24部、マロン酸ジ-t-ブチル40部、炭酸カリウム28部、18-クラウン-6エーテル1.5部、テトラヒドロフラン64部を混合し、50℃で1時間撹拌した。反応終了後、シクロヘキサンと水を投入し、水洗した。有機層は飽和塩化アンモニウム水溶液で中和後、2度水洗し、得られた有機層を減圧下濃縮することで、エステル化合物Nを得た。
合成例22 
1,6-ヘキサンジオールジアクリレート31部、マロン酸ジ-t-ブチル60部、炭酸カリウム42部、18-クラウン-6エーテル 1.1部、テトラヒドロフラン91部を混合し、50℃で3時間撹拌した。反応終了後、シクロヘキサンと水を投入し、水洗した。有機層は飽和塩化アンモニウム水溶液で中和後、2度水洗し、得られた有機層を減圧下濃縮することで、エステル化合物Oを得た。
合成例23 
トリメチロールプロパントリアクリレート80部、マロン酸ジ-t-ブチル37部、炭酸カリウム56部、18-クラウン-6エーテル1.5部、テトラヒドロフラン117部を混合し、50℃で3時間撹拌した。反応終了後、シクロヘキサンと水を投入し、水洗した。有機層は飽和塩化アンモニウム水溶液で中和後、2度水洗し、得られた有機層を減圧下濃縮することで、エステル化合物Pを得た。
合成例24 
ペンタエリスリトールトリアクレートヘキサメチレンジイソシアネートウレタンプレポリマー(共栄社化学(株)品:ウレタンアクリレートUA-306H)41部、マロン酸ジ-t-ブチル70部、炭酸カリウム49部、18-クラウン-6エーテル 1.3部、テトラヒドロフラン111部を混合し、50℃で3時間撹拌した。反応終了後、シクロヘキサンと水を投入し、水洗した。有機層は飽和塩化アンモニウム水溶液で中和後、2度水洗し、得られた有機層を減圧下濃縮し、芳香族炭化水素(T-SOL100)にて固形分50%に希釈することでエステル化合物Qを得た。
実施例14 
ポリオールA 100部に対して、エステル化合物N 15部及び、フェノールスルホン酸(PHS)を混合物の固形分に対して2wt%になるように混合し、アプリケーターを用いてWETで400μmの塗膜を作成し、140℃で30分硬化を行った。その後、ゲル分率、キシレンラビング試験、耐水性試験を行った。
実施例15 
ポリオールA 100部に対して、エステル化合物O 18部及び、フェノールスルホン酸(PHS)を混合物の固形分に対して2wt%になるように混合し、アプリケーターを用いてWETで400μmの塗膜を作成し、140℃で30分硬化を行った。その後、ゲル分率、キシレンラビング試験、耐水性試験を行った。
実施例16 
ポリオールA 100部に対して、エステル化合物P 18部及び、フェノールスルホン酸(PHS)を混合物の固形分に対して2wt%になるように混合し、アプリケーターを用いてWETで400μmの塗膜を作成し、140℃で30分硬化を行った。その後、ゲル分率、キシレンラビング試験、耐水性、及び調整液にて剛体振り子試験を行った。
実施例17 
ポリオールA 100部に対して、エステル化合物Q 43部及び、フェノールスルホン酸(PHS)を混合物の固形分に対して2wt%になるように混合し、アプリケーターを用いてWETで400μmの塗膜を作成し、140℃で30分硬化を行った。その後、ゲル分率、キシレンラビング試験、耐水性試験を行った。
Figure JPOXMLDOC01-appb-T000015

実施例18
ポリオールA 100部に対して、セバシン酸ジエチルエステル 15部及び、フェノールスルホン酸(PHS)を混合物の固形分に対して2wt%になるように混合し、アプリケーターを用いてWETで400μmの塗膜を作成し、140℃で30分硬化を行った。その後、ゲル分率、キシレンラビング試験、耐水性試験を行った。
実施例19
ポリオールA 100部に対して、セバシン酸ジイソプロピルエステル 15部及び、フェノールスルホン酸(PHS)を混合物の固形分に対して2wt%になるように混合し、アプリケーターを用いてWETで400μmの塗膜を作成し、140℃で30分硬化を行った。その後、ゲル分率、キシレンラビング試験、耐水性試験を行った。
実施例20
ポリオールA 100部に対して、セバシン酸ジターシャリーブチルエステル 18部及び、フェノールスルホン酸(PHS)を混合物の固形分に対して2wt%になるように混合し、アプリケーターを用いてWETで400μmの塗膜を作成し、140℃で30分硬化を行った。その後、ゲル分率、キシレンラビング試験、耐水性、及び調整液にて剛体振り子試験を行った。
実施例21
ポリオールA 100部に対して、マロン酸ジ-t-ブチル 12部及び、フェノールスルホン酸(PHS)を混合物の固形分に対して2wt%になるように混合し、アプリケーターを用いてWETで400μmの塗膜を作成し、140℃で30分硬化を行った。その後、ゲル分率、キシレンラビング試験、耐水性試験を行った。
実施例22
アクリディックA-405(DIC製ポリオール樹脂) 100部に対して、マロン酸ジ-t-ブチル 12部及び、フェノールスルホン酸(PHS)を混合物の固形分に対して2wt%になるように混合し、アプリケーターを用いてWETで400μmの塗膜を作成し、140℃で30分硬化を行った。その後、ゲル分率、キシレンラビング試験、耐水性試験を行った。












































Figure JPOXMLDOC01-appb-T000016
A-405:DIC製 アクリディックA-405(アクリルポリオール樹脂)
実施例14~22では、多価エステル化合物を架橋剤として使用することにより、架橋反応が効率よく行われているのは明らかである。また3級エステルの方が、キシレンラビン、耐水性がより向上し、架橋反応がより行われている。
また、ポリマーであるポリオール樹脂と比較的低分子量のエステル化合物の組み合わせでは、反応性、相溶性で有利に働き、反応効率が向上したものと思われる。
実施例23  
ヘキサンジオール8部をソルフィット40部に溶解し、更にエステル化合物A60部を混合し、パラトルエンスルホン酸(PTS)を固形分に対して2wt%になるように混合した。アプリケーターを用いてWETで400μmの塗膜を作成し、140℃で30分硬化を行った。その後、ゲル分率、キシレンラビング試験、耐水性試験を行った。
実施例24
エステル化合物G100部にトリメチロールプロパン(TMP)20部を混合し、フェノールスルホン酸(PHS)を固形分に対して2wt%になるように混合した。アプリケーターを用いてWETで400μmの塗膜を作成し、140℃で30分硬化を行った。その後、ゲル分率、キシレンラビング試験、耐水性試験を行った。
実施例25
エステル化合物K100部にトリメチロールプロパン(TMP)10部を混合し、フェノールスルホン酸(PHS)を固形分に対して2wt%になるように混合した。アプリケーターを用いてWETで400μmの塗膜を作成し、140℃で30分硬化を行った。その後、ゲル分率、キシレンラビング試験、耐水性試験を行った。
実施例26
エステル化合物M100部にヘキサンジオール14部を混合し、パラトルエンスルホン酸(PTS)を固形分に対して2wt%になるように混合した。アプリケーターを用いてWETで400μmの塗膜を作成し、140℃で30分硬化を行った。その後、ゲル分率、キシレンラビング試験、耐水性試験を行った。







































Figure JPOXMLDOC01-appb-T000017
実施例23~26では、低分子量のポリオールを架橋剤として使用しても効率よく架橋が進むことが分かる。これは水溶性の高い低分子ポリオールを使うことで水溶性溶剤又は、水系での硬化を好適に行う事ができる。
なお、上記表1~6中の各物性は、以下の方法によって測定したものである。
ゲル分率は、実施例で得られた皮膜をソックスレーを用いてアセトン還流中で30分間溶解を行い、皮膜の残存重量%をゲル分率として測定した。
ゲル分率は0~40%を実用に耐えられないものとして×とした。
ゲル分率は40~80%を実用に耐えるものとして○とした。
ゲル分率は80~100%を性能が優れているものとして◎とした。
キシレンラビングは、PETフィルムに実施例の熱硬化性樹脂を塗膜化し、にキシレンを染み込ませた薬方ガーゼで10回擦り、表面を観察した。
評価は実用に耐えられないものを×とし、実用に耐えられるものを○とし、更に性能が優れているものを◎とした。
耐水性の評価は、ポリマーと架橋剤及び触媒の混合溶液をガラス版に塗工し、各焼き付け条件にて処理後、80℃温水に5時間、半浸漬した。
評価は実用に耐えられないものを×とし、実用に耐えられるものを○とし、更に性能が優れているものを◎とした。
剛体振り子試験器
エーアンドディ社製剛体振り子試験器(型番 RPT-3000W)を用いて、昇温速度 10℃/分 で各温度(140℃、170℃)まで昇温後保持しその時の周期及び耐対数減衰率の変化を求めた。特に塗膜の硬化状態を確認するために用いた。
振り子:FRB-100  
膜厚(WET):100μm 
ゲル分率が40以上であれば、一定の硬化反応を生じるものであると判断され、硬化性樹脂組成物としての機能を有するものであることが明らかである。
また、キシレンラビング、耐水性といった性能において優れた性質を有するものは、これらの性質に基づいて塗料(特に最外層を形成する塗料)を含めた多くの用途での使用にも適したものとなる。
ゲル分率は高いが、キシレンラビング、耐水性といった性能が重要ではない場合は、本件の硬化性樹脂組成物は、粘着剤や接着剤の分野や複層塗膜における内層等の分野において使用できるものとなる。
以上の実施例の結果から、本発明の熱硬化性樹脂組成物は、低温で優れた効果性能を有するものであることが明らかとなった。硬化を行う為の組み合わせがさまざまあり、これらの反応系を2つ以上組み合わせることもできる。このため、塗料・接着剤等の用途において好適に使用することができることが明らかである。
本発明の熱硬化型樹脂組成物は、硬化膜として各種塗料組成物や接着剤組成物、粘着剤組成物として使用することができる。

Claims (5)

  1. 分子中に少なくとも2個のアルキルエステル基を有するエステル化合物(A)
    分子中に少なくとも2個の水酸基を有する化合物(B)、及び、エステル交換触媒(C)
    を含有することを特徴とする熱硬化型樹脂組成物。
  2. 上記エステル化合物(A)は、アルキルエステル基を2つ以上含有する化合物、又はアルキルエステルを持つモノマーの単独重合体若しくは共重合体である請求項1記載の熱硬化型樹脂組成物。
  3. エステル化合物(A)は、カルボン酸のエステルである請求項1記載の熱硬化型樹脂組成物。
  4. 無溶剤、粉体、溶剤系又は水系である請求項1、2又は3記載の熱硬化型樹脂組成物。
  5. 請求項1,2,3又は4記載の熱硬化型樹脂組成物を三次元架橋することによって形成されたことを特徴とする硬化膜。
PCT/JP2018/035911 2017-10-04 2018-09-27 熱硬化性樹脂組成物 WO2019069783A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018557066A JP6526928B1 (ja) 2017-10-04 2018-09-27 熱硬化性樹脂組成物
EP18865015.4A EP3623424A4 (en) 2017-10-04 2018-09-27 COMPOSITION OF THERMOSETTING RESIN
CN201880064208.6A CN111164148B (zh) 2017-10-04 2018-09-27 热固化性树脂组合物
US16/226,830 US20190144603A1 (en) 2017-10-04 2018-12-20 Thermosetting resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2017/036131 2017-10-04
PCT/JP2017/036131 WO2019069398A1 (ja) 2017-10-04 2017-10-04 熱硬化性樹脂組成物

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/226,830 Continuation-In-Part US20190144603A1 (en) 2017-10-04 2018-12-20 Thermosetting resin composition

Publications (1)

Publication Number Publication Date
WO2019069783A1 true WO2019069783A1 (ja) 2019-04-11

Family

ID=65994435

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2017/036131 WO2019069398A1 (ja) 2017-10-04 2017-10-04 熱硬化性樹脂組成物
PCT/JP2018/035911 WO2019069783A1 (ja) 2017-10-04 2018-09-27 熱硬化性樹脂組成物

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/036131 WO2019069398A1 (ja) 2017-10-04 2017-10-04 熱硬化性樹脂組成物

Country Status (6)

Country Link
US (1) US20190144603A1 (ja)
EP (1) EP3623424A4 (ja)
JP (2) JP6526928B1 (ja)
CN (1) CN111164148B (ja)
TW (1) TWI789437B (ja)
WO (2) WO2019069398A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020202507A1 (ja) * 2019-04-03 2020-10-08 共栄社化学株式会社 水性熱硬化性樹脂組成物、及び、硬化膜
WO2020202434A1 (ja) * 2019-04-01 2020-10-08 共栄社化学株式会社 熱硬化性樹脂組成物、塗膜形成方法及び硬化塗膜
JPWO2020218372A1 (ja) * 2019-04-23 2021-09-27 共栄社化学株式会社 熱硬化性樹脂組成物、硬化膜及び非水分散樹脂粒子
WO2021229764A1 (ja) * 2020-05-14 2021-11-18 共栄社化学株式会社 熱硬化性樹脂組成物及び硬化膜
KR20220148194A (ko) 2020-02-28 2022-11-04 교에이샤 케미칼 주식회사 열경화성 수지 조성물 및 에스테르 교환 반응 촉매
WO2023080228A1 (ja) * 2021-11-08 2023-05-11 共栄社化学株式会社 硬化性樹脂組成物

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019138600A1 (ja) * 2018-01-15 2019-07-18 共栄社化学株式会社 不飽和基含有エステル化合物、重合体、熱硬化型樹脂組成物及び硬化膜
WO2019203100A1 (ja) * 2018-04-16 2019-10-24 共栄社化学株式会社 複層塗膜形成方法及び複層塗膜
US20220251274A1 (en) * 2019-07-11 2022-08-11 Kyoeisha Chemical Co., Ltd. Curable resin composition, cured film, coating resin molded body and multilayer film

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02147675A (ja) 1988-02-18 1990-06-06 Glidden Co 保護表面塗料組成物
US5260356A (en) * 1990-11-07 1993-11-09 The Glidden Company Transesterification cure of thermosetting latex coatings
JPH0770400A (ja) * 1993-09-02 1995-03-14 Mitsubishi Rayon Co Ltd 熱可塑性樹脂組成物およびその製造方法
JPH08188728A (ja) * 1994-08-22 1996-07-23 Basf Corp オーバースプレー不相容性欠陥に対して耐性がある粉体塗料組成物
JPH08291264A (ja) * 1995-04-21 1996-11-05 Dainippon Ink & Chem Inc 熱硬化性粉体塗料用樹脂組成物
JPH0959543A (ja) 1995-08-30 1997-03-04 Dainippon Ink & Chem Inc 粉体塗料用樹脂組成物
JPH09302271A (ja) * 1996-05-09 1997-11-25 Dainippon Ink & Chem Inc 熱硬化性粉体塗料用樹脂組成物
JPH09302274A (ja) * 1996-05-08 1997-11-25 Dainippon Ink & Chem Inc 熱硬化性粉体塗料用樹脂組成物
JP2002520429A (ja) * 1998-07-10 2002-07-09 エス・シー・ジョンソン・コマーシャル・マーケッツ・インコーポレーテッド 遊離基重合および縮合反応による重合体の製造方法およびそれに関する装置および生成物
JP2005029660A (ja) * 2003-07-10 2005-02-03 Fuji Xerox Co Ltd 水酸基含有ポリマー粒子の製造方法
JP2007100108A (ja) * 2007-01-22 2007-04-19 Dainippon Ink & Chem Inc 硬化性樹脂組成物
JP2013028772A (ja) * 2011-07-29 2013-02-07 Fujifilm Corp 被めっき層形成用組成物、および金属層を有する積層体の製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4742096A (en) * 1986-06-06 1988-05-03 The Glidden Company Powder coatings with catalyzed transesterification cure
US4749728A (en) * 1986-06-06 1988-06-07 The Glidden Company Epoxy/nucleophile transesterification catalysts and thermoset coatings
JP4146139B2 (ja) * 2002-03-07 2008-09-03 株式会社カネカ 熱可塑性エラストマー組成物
TWI275615B (en) * 2002-05-29 2007-03-11 Konishi Co Ltd. Curing resin composition
EP1698675A1 (en) * 2003-12-24 2006-09-06 Dainippon Ink and Chemicals, Incorporated Thermosetting powder coating composition
JP2007326967A (ja) * 2006-06-08 2007-12-20 Sanyo Chem Ind Ltd スラリー状組成物
JP6383158B2 (ja) * 2014-03-11 2018-08-29 株式会社カネカ 硬化性組成物およびその硬化物
JP6398026B1 (ja) * 2017-09-14 2018-09-26 共栄社化学株式会社 熱硬化性樹脂組成物

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02147675A (ja) 1988-02-18 1990-06-06 Glidden Co 保護表面塗料組成物
US5260356A (en) * 1990-11-07 1993-11-09 The Glidden Company Transesterification cure of thermosetting latex coatings
JPH0770400A (ja) * 1993-09-02 1995-03-14 Mitsubishi Rayon Co Ltd 熱可塑性樹脂組成物およびその製造方法
JPH08188728A (ja) * 1994-08-22 1996-07-23 Basf Corp オーバースプレー不相容性欠陥に対して耐性がある粉体塗料組成物
JPH08291264A (ja) * 1995-04-21 1996-11-05 Dainippon Ink & Chem Inc 熱硬化性粉体塗料用樹脂組成物
JPH0959543A (ja) 1995-08-30 1997-03-04 Dainippon Ink & Chem Inc 粉体塗料用樹脂組成物
JPH09302274A (ja) * 1996-05-08 1997-11-25 Dainippon Ink & Chem Inc 熱硬化性粉体塗料用樹脂組成物
JPH09302271A (ja) * 1996-05-09 1997-11-25 Dainippon Ink & Chem Inc 熱硬化性粉体塗料用樹脂組成物
JP2002520429A (ja) * 1998-07-10 2002-07-09 エス・シー・ジョンソン・コマーシャル・マーケッツ・インコーポレーテッド 遊離基重合および縮合反応による重合体の製造方法およびそれに関する装置および生成物
JP2005029660A (ja) * 2003-07-10 2005-02-03 Fuji Xerox Co Ltd 水酸基含有ポリマー粒子の製造方法
JP2007100108A (ja) * 2007-01-22 2007-04-19 Dainippon Ink & Chem Inc 硬化性樹脂組成物
JP2013028772A (ja) * 2011-07-29 2013-02-07 Fujifilm Corp 被めっき層形成用組成物、および金属層を有する積層体の製造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020202434A1 (ja) * 2019-04-01 2020-10-08 共栄社化学株式会社 熱硬化性樹脂組成物、塗膜形成方法及び硬化塗膜
WO2020202507A1 (ja) * 2019-04-03 2020-10-08 共栄社化学株式会社 水性熱硬化性樹脂組成物、及び、硬化膜
WO2020204091A1 (ja) * 2019-04-03 2020-10-08 共栄社化学株式会社 水性熱硬化性樹脂組成物、及び、硬化膜
JPWO2020218372A1 (ja) * 2019-04-23 2021-09-27 共栄社化学株式会社 熱硬化性樹脂組成物、硬化膜及び非水分散樹脂粒子
JP6989996B2 (ja) 2019-04-23 2022-01-12 共栄社化学株式会社 熱硬化性樹脂組成物、硬化膜及び非水分散樹脂粒子
KR20220148194A (ko) 2020-02-28 2022-11-04 교에이샤 케미칼 주식회사 열경화성 수지 조성물 및 에스테르 교환 반응 촉매
WO2021229764A1 (ja) * 2020-05-14 2021-11-18 共栄社化学株式会社 熱硬化性樹脂組成物及び硬化膜
WO2023080228A1 (ja) * 2021-11-08 2023-05-11 共栄社化学株式会社 硬化性樹脂組成物

Also Published As

Publication number Publication date
EP3623424A1 (en) 2020-03-18
JP2019065291A (ja) 2019-04-25
JPWO2019069783A1 (ja) 2019-11-14
US20190144603A1 (en) 2019-05-16
CN111164148A (zh) 2020-05-15
CN111164148B (zh) 2022-10-18
WO2019069398A1 (ja) 2019-04-11
EP3623424A4 (en) 2021-02-24
TW201930443A (zh) 2019-08-01
JP6526928B1 (ja) 2019-06-05
TWI789437B (zh) 2023-01-11

Similar Documents

Publication Publication Date Title
JP6526928B1 (ja) 熱硬化性樹脂組成物
JP6398026B1 (ja) 熱硬化性樹脂組成物
WO2019138600A1 (ja) 不飽和基含有エステル化合物、重合体、熱硬化型樹脂組成物及び硬化膜
WO2019203100A1 (ja) 複層塗膜形成方法及び複層塗膜
JP7093592B2 (ja) 熱硬化性樹脂組成物、塗膜形成方法及び硬化塗膜
JP7064800B2 (ja) エステル化合物、その製造方法、重合体、熱硬化性樹脂組成物及び硬化膜
JP6989996B2 (ja) 熱硬化性樹脂組成物、硬化膜及び非水分散樹脂粒子
WO2019240216A1 (ja) 熱硬化性樹脂組成物及び硬化膜

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018557066

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18865015

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018865015

Country of ref document: EP

Effective date: 20191212

NENP Non-entry into the national phase

Ref country code: DE