WO2019069666A1 - 空調装置 - Google Patents

空調装置 Download PDF

Info

Publication number
WO2019069666A1
WO2019069666A1 PCT/JP2018/034283 JP2018034283W WO2019069666A1 WO 2019069666 A1 WO2019069666 A1 WO 2019069666A1 JP 2018034283 W JP2018034283 W JP 2018034283W WO 2019069666 A1 WO2019069666 A1 WO 2019069666A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
evaporator
air conditioner
heat exchanger
air
Prior art date
Application number
PCT/JP2018/034283
Other languages
English (en)
French (fr)
Inventor
畠山 淳
智 荻原
尾崎 達也
知広 前田
光昭 長田
靖仁 大河原
Original Assignee
カルソニックカンセイ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018043559A external-priority patent/JP6496434B1/ja
Application filed by カルソニックカンセイ株式会社 filed Critical カルソニックカンセイ株式会社
Priority to US16/651,771 priority Critical patent/US11267315B2/en
Priority to EP18863956.1A priority patent/EP3693197A4/en
Priority to CN201880062778.1A priority patent/CN111163957B/zh
Publication of WO2019069666A1 publication Critical patent/WO2019069666A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00735Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models
    • B60H1/00785Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models by the detection of humidity or frost
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00421Driving arrangements for parts of a vehicle air-conditioning
    • B60H1/00428Driving arrangements for parts of a vehicle air-conditioning electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • B60H1/00907Controlling the flow of liquid in a heat pump system where the flow direction of the refrigerant changes and an evaporator becomes condenser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • B60H1/00921Controlling the flow of liquid in a heat pump system where the flow direction of the refrigerant does not change and there is an extra subcondenser, e.g. in an air duct
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3205Control means therefor
    • B60H1/3207Control means therefor for minimizing the humidity of the air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3205Control means therefor
    • B60H1/3213Control means therefor for increasing the efficiency in a vehicle heat pump
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H3/00Other air-treating devices
    • B60H3/02Moistening ; Devices influencing humidity levels, i.e. humidity control
    • B60H3/024Moistening ; Devices influencing humidity levels, i.e. humidity control for only dehumidifying the air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/04Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/04Compression machines, plants or systems, with several condenser circuits arranged in series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3229Cooling devices using compression characterised by constructional features, e.g. housings, mountings, conversion systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H2001/00961Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices comprising means for defrosting outside heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0409Refrigeration circuit bypassing means for the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0411Refrigeration circuit bypassing means for the expansion valve or capillary tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/12Inflammable refrigerants
    • F25B2400/121Inflammable refrigerants using R1234
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2519On-off valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/11Sensor to detect if defrost is necessary
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21163Temperatures of a condenser of the refrigerant at the outlet of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21171Temperatures of an evaporator of the fluid cooled by the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21175Temperatures of an evaporator of the refrigerant at the outlet of the evaporator

Definitions

  • the present invention relates to an air conditioner.
  • JP2013-535372A discloses an air conditioner capable of switching between cooling operation and heating operation by switching the flow of refrigerant in the refrigeration cycle.
  • the cooling operation is performed by switching the refrigeration cycle to the cooling mode
  • the heating operation is performed by switching the refrigeration cycle to the heat pump heating mode.
  • An object of the present invention is to provide an air conditioner capable of performing a dehumidifying and heating operation that dehumidifies while maintaining a heating state.
  • an air conditioner mounted on a vehicle includes a compressor for compressing a refrigerant, an outdoor heat exchanger for exchanging heat between the refrigerant and the outside air, and a compartment of the vehicle.
  • An evaporator which evaporates a refrigerant by absorbing heat of air being heated by the refrigerant, a heater which heats the air led to the casing using heat of the refrigerant compressed by the compressor, and the outdoor heat A receiver, disposed downstream of the exchanger, for separating the refrigerant led from the outdoor heat exchanger into a liquid-phase refrigerant and a gas-phase refrigerant and storing the liquid-phase refrigerant, the heater, and the outdoor heat exchanger A throttling mechanism for decompressing and expanding the refrigerant, and an expansion valve disposed between the outdoor heat exchanger and the evaporator for decompressing and expanding the refrigerant that has passed through the outdoor heat exchanger.
  • the operating condition in which the flow of refrigerant is throttled by the throttling mechanism and the heat is dissipated by the heater A first operation mode in which the liquid phase refrigerant is stored in the liquid receiver and the gas phase refrigerant is guided to the compressor, and a second operation in which the liquid phase refrigerant stored in the liquid receiver is guided to the evaporator The mode is switched.
  • the flow of the refrigerant is throttled by the throttling mechanism, and the first operating mode and the second operating mode are switched in the operating state where the heat is dissipated by the heater.
  • the liquid-phase refrigerant of the refrigerant led from the outdoor heat exchanger is stored in the liquid receiver while performing the heating operation.
  • the liquid phase refrigerant stored in the liquid receiver in the first operation mode is led to the evaporator. Therefore, by switching between the first operation mode and the second operation mode, the liquid phase refrigerant can be stored in the liquid receiver while performing the heating operation, and dehumidification can be performed using the liquid phase refrigerant. Therefore, it is possible to execute the dehumidifying heating operation that dehumidifies while maintaining the heating state.
  • FIG. 1 is a block diagram of an air conditioner according to a first embodiment of the present invention.
  • FIG. 2 is a block diagram of an air conditioner according to a modification of the first embodiment of the present invention.
  • FIG. 3 is a perspective view of the outdoor heat exchanger.
  • FIG. 4 is a diagram for explaining the flow of the refrigerant of the air conditioner during the cooling operation.
  • FIG. 5 is a diagram for explaining the flow of the refrigerant of the air conditioner in the heat pump heating mode during the heating operation and the dehumidifying and heating operation.
  • FIG. 6 is a diagram for explaining the flow of the refrigerant of the air conditioner in the dehumidifying and heating mode in the dehumidifying and heating operation.
  • FIG. 1 is a block diagram of an air conditioner according to a first embodiment of the present invention.
  • FIG. 2 is a block diagram of an air conditioner according to a modification of the first embodiment of the present invention.
  • FIG. 3 is a perspective view of the outdoor heat exchanger.
  • FIG. 7 is a Mollier diagram for describing the dehumidifying and heating mode during the dehumidifying and heating operation.
  • FIG. 8 is a diagram for explaining the temperature change amount of the evaporator with respect to the switching cycle between the heat pump heating mode and the dehumidifying heating mode.
  • FIG. 9 is a diagram showing the temperature immediately below the evaporator when the heat pump heating mode and the dehumidifying heating mode are alternately switched at an appropriate switching cycle.
  • FIG. 10 is a conceptual diagram for explaining a modification of switching between the heat pump heating mode and the dehumidifying heating mode.
  • FIG. 11 is a graph for explaining changes in the temperature of the evaporator.
  • FIG. 12 is a flowchart illustrating temporary switching from the dehumidifying and heating mode to the cooling mode during the dehumidifying and heating operation.
  • FIG. 13 is a flowchart illustrating switching between the heat pump heating mode and the dehumidifying heating mode when frost formation occurs on the outdoor heat exchanger.
  • FIG. 14 is a block diagram of an air conditioner according to a second embodiment of the present invention.
  • FIG. 15 is a diagram for explaining the flow of the refrigerant of the air conditioner in the heat pump heating mode during the heating operation and the dehumidifying and heating operation.
  • FIG. 16 is a diagram for explaining the flow of the refrigerant of the air conditioner in the dehumidifying and heating mode in the dehumidifying and heating operation.
  • the air conditioner 100 includes a refrigeration cycle 2 in which a refrigerant circulates, a hot water cycle 4 in which hot water circulates, and a HVAC (Heating Ventilation and Air Conditioning) unit 5 through which air used for air conditioning passes. And a controller 10 as a control unit that controls the operation of the air conditioner 100.
  • a refrigeration cycle 2 in which a refrigerant circulates
  • a hot water cycle 4 in which hot water circulates
  • a HVAC (Heating Ventilation and Air Conditioning) unit 5 through which air used for air conditioning passes.
  • a controller 10 as a control unit that controls the operation of the air conditioner 100.
  • the air conditioner 100 is a heat pump system capable of cooling and heating.
  • the air conditioner 100 is mounted on a vehicle (not shown) to perform air conditioning in a vehicle compartment (not shown).
  • a vehicle not shown
  • HFO-1234yf is used as the refrigerant
  • antifreeze is used as the hot water.
  • the refrigeration cycle 2 includes a compressor 21 as a compressor, a water-cooled condenser 22 as a hot water-refrigerant heat exchanger, an outdoor heat exchanger 23, a liquid receiver 24, an internal heat exchanger 30, and an evaporator.
  • the evaporator 25 the thermal expansion valve 26 as an expansion valve, the fixed throttle 27 as a throttle mechanism, the bypass passage 20a through which the refrigerant bypassing the fixed throttle 27 flows, and the second flow passage switching valve opening and closing the bypass passage 20a And 29 a refrigerant flow path 20 connecting these so that the refrigerant can circulate.
  • the refrigerant flow passage 20 is provided with a first flow passage switching valve 28.
  • the compressor 21 sucks and compresses a gaseous (gas phase) refrigerant.
  • the gaseous refrigerant has a high temperature and a high pressure.
  • the water-cooled condenser 22 functions as a condenser for condensing the refrigerant after passing through the compressor 21 during the heating operation.
  • the water-cooled condenser 22 exchanges heat between the refrigerant that has become high temperature and high pressure by the compressor 21 and the hot water circulating through the hot water cycle 4, and transfers the heat of the refrigerant to the hot water.
  • the refrigerant condensed by the water-cooled condenser 22 flows to the fixed throttle 27.
  • the water-cooled condenser 22 uses the heat of the refrigerant compressed by the compressor 21 to heat the air introduced into the vehicle compartment and used for air conditioning via the hot water circulating the hot water cycle 4.
  • the water cooled condenser 22 and the hot water cycle 4 correspond to a heater for heating the air introduced into the vehicle compartment.
  • the refrigerant compressed by the compressor 21 may be directly led to the heater core 42 without providing the hot water cycle 4.
  • the heater core 42 corresponds to a heater.
  • the outdoor heat exchanger 23 is disposed, for example, in an engine room (a motor room in an electric vehicle) of a vehicle, and performs heat exchange between the refrigerant and the outside air.
  • the outdoor heat exchanger 23 functions as a condenser during cooling operation and functions as an evaporator during heating operation. Outside air is introduced to the outdoor heat exchanger 23 by the traveling of the vehicle and the rotation of the outdoor fan 6.
  • the outdoor heat exchanger 23 has a refrigerant inlet 23a into which the refrigerant is introduced, and a refrigerant outlet 23b provided at a higher position than the refrigerant inlet 23a and from which the refrigerant is drawn. That is, in the outdoor heat exchanger 23, the refrigerant is introduced from the bottom and ascends inside and is drawn out from the top. As a result, during the heating operation, when the outdoor heat exchanger 23 exchanges heat between the outdoor air and the refrigerant, the non-evaporated refrigerant (refrigerant with a high degree of humidity) in the outdoor heat exchanger 23 is hard to be derived. Heat absorption increases.
  • the liquid receiver 24 is located downstream of the outdoor heat exchanger 23, introduces the refrigerant from the outdoor heat exchanger 23, and separates it into liquid (liquid phase) refrigerant and gaseous refrigerant.
  • the liquid receiver 24 has a liquid storage section 24 a for storing liquid refrigerant, an outlet for introducing the liquid refrigerant to the evaporator 25, and an outlet for introducing the gaseous refrigerant to the compressor 21.
  • the passage for introducing the gaseous refrigerant to the compressor 21 is configured to allow the return of the oil contained in the circuit.
  • the liquid receiver 24 guides the gaseous refrigerant flowing from the outdoor heat exchanger 23 to the compressor 21 during the heating operation. Only the separated gaseous refrigerant flows from the receiver 24 to the compressor 21. During the cooling operation, the receiver 24 stores the liquid refrigerant flowing from the outdoor heat exchanger 23 and guides a part of the liquid refrigerant to the evaporator 25 via the internal heat exchanger 30 and the thermal expansion valve 26. Only the separated liquid refrigerant flows from the receiver 24 to the evaporator 25.
  • a differential pressure valve 31 is provided between the receiver 24 and the thermal expansion valve 26.
  • the differential pressure valve 31 is provided upstream of the internal heat exchanger 30.
  • the differential pressure valve 31 opens when the pressure on the upstream side of the differential pressure valve 31 exceeds the set pressure.
  • the set pressure is preset to such a pressure that the differential pressure valve 31 does not open during the heating operation and the differential pressure valve 31 opens only during the cooling operation.
  • the evaporator 25 is disposed in the HVAC unit 5.
  • the operation mode of the refrigeration cycle 2 is the cooling mode or the dehumidifying heating mode
  • the evaporator 25 absorbs the heat of the air introduced to the vehicle compartment into the refrigerant to evaporate the refrigerant.
  • the refrigerant evaporated by the evaporator 25 flows to the compressor 21 through the internal heat exchanger 30.
  • the thermal expansion valve 26 is disposed between the internal heat exchanger 30 and the evaporator 25 and decompresses and expands the liquid refrigerant introduced from the outdoor heat exchanger 23 through the receiver 24 and the internal heat exchanger 30. .
  • the thermal expansion valve 26 automatically adjusts the degree of opening in accordance with the temperature of the refrigerant that has passed through the evaporator 25, that is, the degree of superheat of the gaseous refrigerant.
  • the thermal expansion valve 26 feeds back the temperature of the gaseous refrigerant that has passed through the evaporator 25 to adjust the degree of opening so that the gaseous refrigerant has an appropriate degree of superheat.
  • the internal heat exchanger 30 exchanges heat between the refrigerant upstream of the thermal expansion valve 26 and the refrigerant downstream of the evaporator 25 using a temperature difference.
  • the fixed throttle 27 is disposed between the water-cooled condenser 22 and the outdoor heat exchanger 23, and decompresses and expands the refrigerant compressed by the compressor 21 and condensed by the water-cooled condenser 22.
  • the fixed throttle 27 for example, an orifice or a capillary tube is used.
  • the throttling amount of the fixed throttling 27 is set in advance to correspond to a specific operating condition of high usage frequency.
  • an electromagnetic throttle valve 127 as an electric throttle mechanism having at least a full open and a predetermined throttle state and capable of adjusting the degree of opening stepwise or steplessly. May be used as a variable aperture (aperture mechanism). In this case, it is not necessary to provide the bypass 20a.
  • the electromagnetic throttle valve 127 is adjusted not to throttle the flow of the refrigerant during the cooling operation, and is regulated to throttle the flow of the refrigerant during the heating operation.
  • the first flow path switching valve 28 switches the flow of the refrigerant by opening and closing.
  • the first flow passage switching valve 28 is a solenoid valve having a solenoid controlled by the controller 10.
  • the first flow passage switching valve 28 is closed. As a result, the refrigerant condensed in the outdoor heat exchanger 23 flows into the receiver 24, the pressure on the upstream side of the differential pressure valve 31 exceeds the set pressure, and the liquid refrigerant is in the internal heat exchanger 30, temperature expansion type It passes through the valve 26 and the evaporator 25 and is led to the compressor 21.
  • the first flow passage switching valve 28 is opened. As a result, the refrigerant evaporated in the outdoor heat exchanger 23 flows into the receiver 24, passes through the first flow path switching valve 28, and is led to the compressor 21. Therefore, during the heating operation, the refrigerant flows bypassing the internal heat exchanger 30, the thermal expansion valve 26, and the evaporator 25.
  • the second flow path switching valve 29 switches the flow of the refrigerant by opening and closing.
  • the second flow passage switching valve 29 is a solenoid valve having a solenoid controlled by the controller 10.
  • the second flow passage switching valve 29 is opened. As a result, the refrigerant compressed by the compressor 21 passes through the water-cooled condenser 22 and then flows into the outdoor heat exchanger 23 bypassing the fixed throttle 27. On the other hand, during the heating operation, the second flow passage switching valve 29 is closed. Thereby, the refrigerant compressed by the compressor 21 flows into the outdoor heat exchanger 23 through the water cooling condenser 22 and the fixed throttle 27.
  • the hot water cycle 4 includes a water pump 41 as a pump, a heater core 42, a hot water heater 43 as an auxiliary heater, a water cooling condenser 22, and a hot water flow path 40 connecting these so that the hot water can circulate. Equipped with
  • the water pump 41 circulates the warm water in the warm water flow passage 40.
  • the heater core 42 is disposed in the HVAC unit 5 and heats air used for air conditioning by heat exchange between air passing through the heater core 42 and hot water during heating operation.
  • the hot water heater 43 assists the heating of the air introduced to the passenger compartment.
  • the hot water heater 43 has a heater (not shown) inside, and heats the hot water using an external power.
  • a heater for example, a sheathed heater or a PTC (Positive Temperature Coefficient) heater is used.
  • the hot water heater 43 instead of the hot water heater 43, for example, the exhaust heat of an air heater (not shown) that directly heats the air led to the compartment or the exhaust heat of an engine (not shown) as an internal combustion engine of the vehicle A hot water type heat exchanger (not shown) may be used to heat the air to be blown. Further, any one of the hot water heater 43, the air heater, and the hot water heat exchanger may be used alone, or any combination thereof may be used.
  • the HVAC unit 5 cools or heats air used for air conditioning.
  • the HVAC unit 5 includes a blower 52, an air mix door 53, and a case 51 that encloses air used for air conditioning so that the air can pass through.
  • An evaporator 25 and a heater core 42 are disposed in the HVAC unit 5. The air blown from the blower 52 exchanges heat with the refrigerant flowing in the evaporator 25 and with the hot water flowing in the heater core 42.
  • the blower 52 is a blower for blowing air into the HVAC unit 5.
  • the air mix door 53 regulates the amount of air passing through the heater core 42 disposed in the HVAC unit 5.
  • the air mix door 53 is installed on the blower 52 side of the heater core 42.
  • the air mix door 53 opens the heater core 42 during heating operation and closes the heater core 42 during cooling operation.
  • the amount of heat exchange between the air and the hot water in the heater core 42 is adjusted by the degree of opening of the air mix door 53.
  • an outdoor heat exchanger outlet temperature sensor 12 as a refrigerant temperature detector, an evaporator temperature sensor 13 as an evaporator temperature detector, and an outside air temperature sensor 15 as an outside air temperature detector are installed. ing.
  • the outdoor heat exchanger outlet temperature sensor 12 is provided at the outlet of the outdoor heat exchanger 23 and detects the temperature of the refrigerant in the refrigerant flow passage 20.
  • the outdoor heat exchanger outlet temperature sensor 12 detects the temperature of the refrigerant that has passed through the outdoor heat exchanger 23.
  • the outside air temperature sensor 15 detects the temperature of outside air taken in by the outdoor heat exchanger 23 and before passing through.
  • the evaporator temperature sensor 13 is disposed on the downstream side of the air flow of the evaporator 25 in the HVAC unit 5 and detects the temperature of the air passing through the evaporator 25.
  • the evaporator temperature sensor 13 may be directly installed in the evaporator 25.
  • the controller 10 is a microcomputer configured by a central processing unit (CPU), a read only memory (ROM), a random access memory (RAM), and the like. It is also possible to configure the controller 10 with a plurality of microcomputers.
  • the controller 10 causes the air conditioner 100 to exhibit various functions by reading the program stored in the ROM by the CPU.
  • the controller 10 is programmed to perform control of the refrigeration cycle 2. Signals from the outdoor heat exchanger outlet temperature sensor 12, the evaporator temperature sensor 13, and the outside air temperature sensor 15 are input to the controller 10. The controller 10 may receive signals from other sensors (not shown).
  • the controller 10 executes control of the refrigeration cycle 2 based on the input signal. That is, the controller 10 sets the output of the compressor 21 and executes the opening / closing control of the first flow passage switching valve 28 and the second flow passage switching valve 29, as shown by a broken line in FIG. Moreover, the controller 10 performs control of the warm water cycle 4 and the HVAC unit 5 by transmitting the output signal which is not shown in figure.
  • controller 10 includes a frost formation determination unit 18 that determines that frost formation has occurred in the outdoor heat exchanger 23.
  • the frosting judgment unit 18 can not sufficiently exchange heat between the refrigerant and the outside air at the outdoor heat exchanger 23. It is determined that frost formation has occurred.
  • the frosting determination unit 18 compares the temperature detected by the outside air temperature sensor 15 with the temperature detected by the outdoor heat exchanger outlet temperature sensor 12, and the temperature difference between the two forms frost on the outdoor heat exchanger 23. It is determined that the frost formation temperature difference that can be generated is equal to or more.
  • the frost formation determination unit 18 performs outdoor heat based on the elapsed time of the state in which the temperature difference between the detection temperature of the outside air temperature sensor 15 and the detection temperature of the outdoor heat exchanger outlet temperature sensor 12 is equal to or greater than the frost formation temperature difference. It is determined that frost formation has occurred in the exchanger 23.
  • the controller 10 closes the first flow passage switching valve 28 and opens the second flow passage switching valve 29.
  • the refrigerant compressed by the compressor 21 to a high temperature and high pressure flows to the outdoor heat exchanger 23 through the water cooling condenser 22 and the second flow path switching valve 29. At this time, since the hot water in the hot water cycle 4 is not circulated, almost no heat exchange is performed in the water-cooled condenser 22.
  • the refrigerant bypasses the fixed throttle 27 and passes through the bypass passage 20a.
  • the electromagnetic throttle valve 127 (see FIG. 2) is provided instead of the fixed throttle 27, the electromagnetic throttle valve 127 is adjusted so as not to throttle the flow of the refrigerant.
  • the refrigerant that has flowed to the outdoor heat exchanger 23 exchanges heat with the outside air introduced to the outdoor heat exchanger 23 and is cooled. Thereby, the liquid refrigerant is stored in the receiver 24. Part of the liquid refrigerant from the receiver 24 flows through the internal heat exchanger 30 to the thermal expansion valve 26 connected to the downstream side of the receiver 24.
  • the liquid refrigerant is decompressed and expanded by the thermal expansion valve 26 and flows to the evaporator 25, and when passing through the evaporator 25, the liquid refrigerant is evaporated by absorbing the heat of the air used for air conditioning.
  • the gaseous refrigerant evaporated in the evaporator 25 passes through the internal heat exchanger 30 and flows to the compressor 21 again.
  • the high pressure refrigerant discharged by the compressor 21 passes through the water cooling condenser 22, the high pressure refrigerant passing through the water cooling condenser 22 flows into the outdoor heat exchanger 23, and the liquid receiver 24
  • the refrigerant drawn from the exchanger 23 is separated into a gaseous refrigerant and a liquid refrigerant to store the liquid refrigerant
  • the thermal expansion valve 26 decompresses and expands the liquid refrigerant led from the liquid receiver 24, and the evaporator 25
  • the low-pressure refrigerant decompressed and expanded by the thermal expansion valve 26 and the air introduced to the casing are subjected to heat exchange to evaporate the refrigerant, and a gaseous refrigerant is introduced to the compressor 21.
  • the liquid refrigerant flowing from the receiver 24 to the internal heat exchanger 30 is a high-pressure fluid, and the liquid refrigerant is separated by the receiver 24 so that the degree of supercooling is substantially saturated at about 0 ° C. It is in a liquid state.
  • the gaseous refrigerant flowing from the evaporator 25 to the internal heat exchanger 30 decompresses and expands when passing through the temperature type expansion valve 26 and becomes a low temperature fluid. Therefore, the liquid refrigerant exchanges heat with the low-temperature gaseous refrigerant when flowing through the internal heat exchanger 30, and is excessively cooled by the gaseous refrigerant and has a degree of supercooling from the saturated liquid state. It will be in the cooling state.
  • the gaseous refrigerant is heated by the liquid refrigerant to be in a heated state having a degree of superheat.
  • the air cooled by the refrigerant in the evaporator 25 flows downstream of the HVAC unit 5 and is used as cooling air.
  • Heating operation During heating operation, the refrigeration cycle 2 is switched to the heat pump heating mode. During the heating operation, a so-called open air heat absorption heat pump operation is performed. In the heat pump heating mode, the refrigerant in the refrigeration cycle 2 and the hot water in the hot water cycle 4 circulate as shown by thick solid lines in FIG.
  • the controller 10 brings the first flow passage switching valve 28 into the open state and brings the second flow passage switching valve 29 into the closed state.
  • the refrigerant compressed to a high temperature by the compressor 21 flows to the water-cooled condenser 22.
  • the refrigerant that has flowed to the water-cooled condenser 22 heats the hot water inside the water-cooled condenser 22, passes through the fixed throttle 27, and expands under reduced pressure to become low temperature, and flows to the outdoor heat exchanger 23.
  • the refrigerant flowing to the outdoor heat exchanger 23 exchanges heat with the outside air introduced to the outdoor heat exchanger 23, and then flows to the receiver 24 to be separated into gas and liquid. Then, among the refrigerants separated into gas and liquid by the liquid receiver 24, gaseous refrigerant flows again to the compressor 21 through the first flow path switching valve 28. As described above, in the heat pump heating mode, the liquid refrigerant is stored in the liquid receiver 24, and the gaseous refrigerant is guided to the compressor 21.
  • the water cooling condenser 22 exchanges heat between the high pressure refrigerant discharged by the compressor 21 and the air led to the vehicle compartment through the hot water cycle 4, and the fixed throttle 27 is derived from the water cooling condenser 22
  • the refrigerant is decompressed and expanded, and the refrigerant decompressed and expanded by the fixed throttle 27 flows into the outdoor heat exchanger 23, and the liquid receiver 24 liquidates the low-pressure refrigerant drawn from the outdoor heat exchanger 23 with the gaseous refrigerant
  • the refrigerant is separated into refrigerants, and a gaseous refrigerant is introduced to the compressor 21.
  • the hot water heated by the refrigerant in the water-cooled condenser 22 circulates and flows to the heater core 42, and heats the air around the heater core 42.
  • the heated air flows downstream of the HVAC unit 5 and is used as a heating air.
  • the hot water may be heated by operating the hot water heater 43 in combination with or independently from the outside air heat absorption heat pump operation.
  • the refrigeration cycle 2 is alternately switched to the heat pump heating mode as the first operation mode and the dehumidifying and heating mode as the second operation mode.
  • the flow of the refrigerant is throttled by the fixed throttle 27, and corresponds to an operating state in which the heat is dissipated by the heater core 42. Since the heat pump heating mode is the same as in the heating operation, the detailed description will be omitted here.
  • the refrigerant in the refrigeration cycle 2 and the hot water in the hot water cycle 4 circulate as indicated by a thick solid line in FIG.
  • the controller 10 closes the first flow passage switching valve 28 and closes the second flow passage switching valve 29.
  • the refrigerant compressed to a high temperature by the compressor 21 flows to the water-cooled condenser 22.
  • the refrigerant that has flowed to the water-cooled condenser 22 heats the hot water inside the water-cooled condenser 22, passes through the fixed throttle 27, and decompresses and expands to become low temperature, and flows to the outdoor heat exchanger 23.
  • the electromagnetic throttle valve 127 (see FIG. 2) is provided instead of the fixed throttle 27, the electromagnetic throttle valve 127 is adjusted so as to throttle the flow of the refrigerant.
  • the refrigerant that has flowed to the outdoor heat exchanger 23 exchanges heat with the outside air introduced to the outdoor heat exchanger 23 and is then separated into gas and liquid by the receiver 24. Then, the liquid refrigerant stored in the liquid receiver 24 in the heat pump heating mode and the liquid refrigerant separated in the gas-liquid separation in the liquid receiver 24 flow through the internal heat exchanger 30. Thus, in the dehumidifying and heating mode, the liquid refrigerant stored in the receiver 24 is guided to the evaporator 25.
  • the liquid refrigerant is decompressed and expanded by the thermal expansion valve 26 and flows to the evaporator 25, and when passing through the evaporator 25, the liquid refrigerant is evaporated by absorbing the heat of the air used for air conditioning.
  • the gaseous refrigerant evaporated in the evaporator 25 passes through the internal heat exchanger 30 and flows to the compressor 21 again.
  • the water cooling condenser 22 exchanges heat between the high pressure refrigerant discharged by the compressor 21 and the air led to the vehicle compartment
  • the fixed throttle 27 decompresses and expands the refrigerant drawn from the water cooling condenser 22
  • the intermediate pressure refrigerant decompressed and expanded by the fixed throttle 27 flows into the outdoor heat exchanger 23, and the receiver 24 separates the refrigerant drawn from the outdoor heat exchanger 23 into a gaseous refrigerant and a liquid refrigerant
  • the thermal expansion valve 26 decompresses and expands the liquid refrigerant introduced from the liquid receiver 24, and the evaporator 25 exchanges heat between the low pressure refrigerant decompressed and expanded by the thermal expansion valve 26 and the air introduced to the vehicle compartment.
  • the refrigerant is evaporated, and a gaseous refrigerant is introduced to the compressor 21.
  • the air flowing downstream of the HVAC unit 5 is dehumidified by the evaporator 25 and is heated by the heater core 42 so as to be used as dehumidified heating air.
  • the hot water may be heated by operating the hot water heater 43 in combination with or independently from the outside air heat absorption heat pump operation.
  • the flow of the refrigerant is throttled by the fixed throttle 27, and the heat pump heating mode and the dehumidifying heating mode are switched in the operating state in which the heat is dissipated by the heater core 42.
  • the heat pump heating mode the liquid refrigerant is stored in the liquid receiver 24 out of the refrigerant led from the outdoor heat exchanger 23 while performing the heating operation.
  • the dehumidifying and heating mode the liquid refrigerant stored in the liquid receiver 24 in the heat pump heating mode is guided to the evaporator 25.
  • the liquid refrigerant can be stored in the liquid receiver 24 while performing the heating operation, and dehumidification can be performed using the liquid refrigerant. Therefore, it is possible to execute the dehumidifying heating operation that dehumidifies while maintaining the heating state.
  • the first flow passage switching valve 28 is switched so that the refrigerant passes through the thermal expansion valve 26 and the second flow passage switching valve 29 is switched so as to pass through the fixed throttle 27.
  • the refrigerant compressed by the compressor 21 exchanges heat with the water-cooled condenser 22, and then passes through the fixed throttle 27 to reduce the pressure. Then, after the heat exchange of the refrigerant in the outdoor heat exchanger 23, the pressure is further reduced in the thermal expansion valve 26.
  • the pressure of the refrigerant in the outdoor heat exchanger 23 is lower than the pressure of the refrigerant in the water-cooled condenser 22 in both the heat pump heating mode and the dehumidifying heating mode.
  • the first flow path switching valve 28 is opened and closed in a state where the pressure of the refrigerant is reduced to a certain extent by passing through the fixed throttle 27. That is, since the pressure difference between the upstream and the downstream of the first flow passage switching valve 28 when opening and closing the first flow passage switching valve 28 is small, the pressure fluctuation is compared with the case where the heat pump heating mode and the cooling mode are switched. Width and temperature fluctuation are small. Therefore, the generation of the sound resulting from the switching of the refrigerant path in the refrigeration cycle 2 is suppressed.
  • the air conditioner 100 guides the liquid refrigerant flowing from the outdoor heat exchanger 23 to the expansion valve, and guides the gaseous refrigerant flowing from the outdoor heat exchanger 23 to the compressor 21 during the heating operation. Prepare. Therefore, when switching the flow of the refrigerant in the refrigeration cycle 2 by opening and closing the first flow path switching valve 28 in order to switch from the heat pump heating mode to the dehumidifying heating mode, the receiver 24 to the temperature type expansion valve 26 Since the liquid refrigerant is introduced, it is difficult to generate sound.
  • the first flow passage switching valve 28 may not be completely closed when the valve is closed, but may generate a minute refrigerant flow.
  • the flow of the minute refrigerant can suppress the fluctuation of the flow rate of the refrigerant at the time of opening and closing of the first flow passage switching valve 28, so that it is difficult to generate a sound.
  • FIG. 8 shows a plurality of points (for example, 4 rows ⁇ 5 columns) perpendicular to the flow direction of the air flowing in the HVAC unit 5 in the evaporator 25 when the heat pump heating mode and the dehumidifying heating mode are alternately switched. It shows the result of measuring the amount of temperature change of 20).
  • the plots in FIG. 8 are temperature change amounts measured under different test conditions, and the curves in FIG. 8 are the average values of the respective measured values.
  • the appropriate range of the temperature change of the air having passed through the evaporator 25 is equal to or less than T 1 [° C.].
  • the temperature change amount of the evaporator 25 is within the appropriate range. If the switching cycle is shorter than 5 seconds, after the mode is switched to the dehumidifying and heating mode, the mode is switched to the heat pump heating mode again at a timing before the evaporator 25 is sufficiently cooled. On the other hand, when the switching cycle is longer than 70 seconds, after the mode is switched to the dehumidifying and heating mode, the evaporator 25 may be too cold and a part may freeze.
  • the temperature change amount of the air having passed through the evaporator 25 is set in advance. Are alternately switched within the range of.
  • the heat pump heating mode and the dehumidifying heating mode are alternately switched in a cycle of 5 seconds to 70 seconds
  • the temperature of the air having passed through the evaporator 25 fluctuates within a preset proper range, so the evaporator is Sufficient dehumidification performance can be exhibited while avoiding freezing of 25.
  • the average temperature of the air having passed through the heater core 42 is also maintained in the appropriate temperature range, so that the heating performance does not decrease. Therefore, it is possible to execute the dehumidifying heating operation by alternately switching the heat pump heating mode and the dehumidifying heating mode at a cycle of 5 seconds to 70 seconds.
  • the heat pump heating mode and the dehumidifying heating mode are alternately switched in a cycle of 12 seconds to 55 seconds.
  • the desirable range of the temperature change of the air passing through the evaporator 25 is T 2 [° C.] or less smaller than T 1 .
  • the temperature change amount of the evaporator 25 is within the desired range.
  • the heat pump heating mode and the dehumidifying heating mode are alternately switched to the dehumidifying heating mode as compared to the case where the heat pump heating mode and the dehumidifying heating mode are alternately switched in a cycle of 5 seconds to 70 seconds. Switching to the heat pump heating mode is further prevented. In addition, after the mode is switched to the dehumidifying and heating mode, the evaporator 25 is further prevented from being excessively cooled and partially freezing.
  • the heat pump heating mode and the dehumidifying heating mode are alternately switched in a cycle of 15 seconds to 50 seconds.
  • a more desirable range of the temperature change of the air passing through the evaporator 25 is T 3 [° C.] or less, which is smaller than T 2 .
  • the temperature change amount of the evaporator 25 is in the more desirable range.
  • the heat pump heating mode and the dehumidifying heating mode are alternately switched to the dehumidifying heating mode as compared to the case where the heat pump heating mode and the dehumidifying heating mode are alternately switched in a cycle of 12 seconds to 55 seconds. Switching to the heat pump heating mode is further prevented. In addition, after the mode is switched to the dehumidifying and heating mode, the evaporator 25 is further prevented from being excessively cooled and partially freezing.
  • the refrigeration cycle 2 is switched to heat pump heating mode first.
  • the liquid refrigerant may not be sufficiently stored in the receiver 24. Therefore, liquid refrigerant can be stored in the receiver 24 by operating the refrigeration cycle 2 in the heat pump heating mode first.
  • the horizontal axis is the temperature T E [° C.] of the evaporator 25, and the vertical axis is the operation mode of the refrigeration cycle 2.
  • the controller 10 when the refrigerating cycle 2 is in a state a dehumidifying heating mode operation, the temperature T E of the evaporator 25 becomes the first set temperature T E1 [° C.] or less, the refrigeration cycle Switch 2 to the heat pump heating mode.
  • the controller 10 while the refrigeration cycle 2 is the heat pump heating mode, if the temperature T E of the evaporator 25 reaches the second set temperature T E2 [° C.] or higher, the refrigeration cycle 2 in dehumidifying and heating mode Switch.
  • the first set temperature TE1 and the second set temperature TE2 are values set in advance.
  • the second set temperature TE2 is set higher than the first set temperature TE1 .
  • the first set temperature TE1 is set to 1 ° C.
  • the second set temperature TE2 is set to 4 ° C.
  • the temperature of the evaporator 25 fluctuates between the first set temperature TE1 and the second set temperature TE2 , so that sufficient dehumidification performance can be exhibited while avoiding freezing of the evaporator 25. Therefore, the heating mode dehumidifying heat pump heating mode, the temperature T E of the evaporator 25 by switching alternately to vary between a first set temperature T E1 and the second set temperature T E2, the dehumidifying heating operation It is possible to carry out.
  • the horizontal axis represents time t [sec]
  • the vertical axis represents the temperature T E of the evaporator 25.
  • the temperature T E of the evaporator 25 is changed so as to repeat periodically rising and falling and.
  • the refrigerating cycle 2 is dehumidification and heating mode
  • the refrigerant passing through the evaporator 25 is insufficient, the temperature of the evaporator 25 is gradually increased, there may not lowered to the first predetermined temperature T E1 temperatures below .
  • the operation mode of the refrigeration cycle 2 does not switch in the dehumidifying and heating mode.
  • the controller 10 executes the control shown in FIG. 12 in order to lower the temperature of the evaporator 25.
  • the controller 10 repeatedly executes the routine shown in FIG. 12 at fixed time intervals, for example, every 10 milliseconds.
  • step S11 the controller 10 determines whether the operation mode of the refrigeration cycle 2 is the dehumidifying and heating mode. If it is determined in step S11 that the dehumidifying and heating mode is selected, the process proceeds to step S12. On the other hand, if it is determined in step S11 that the dehumidifying and heating mode is not set, the process returns as it is and the process is exited.
  • step S12 the controller 10 detects the temperature T E of the evaporator 25 based on the signal input from the evaporator temperature sensor 13.
  • step S13 the controller 10 determines whether the temperature T E of the evaporator 25 detected in step S12 is equal to or higher than the first set temperature T E1 + ⁇ [° C.]. That is, in step S13, determines the temperature T E of the evaporator 25, whether or not the peeling only the first set temperature T E1 which is a target value alpha. ⁇ is preset to 2 ° C., for example.
  • step S13 If it is determined in step S13 that the temperature T E of the evaporator 25 is equal to or higher than the first set temperature T E1 + ⁇ , the process proceeds to step S14 and the time t is counted up. On the other hand, in step S13, the temperature T E of the evaporator 25 is not the first set temperature T E1 + alpha or more, that if it is determined that the first lower than the set temperature T E1 + alpha, the time t and proceeds to step S15 Reset
  • step S16 the controller 10 determines whether time t is equal to or longer than the set time t p .
  • the set time t p is preset to, for example, 60 seconds. If it is determined in step S16 that the time t is equal to or longer than the set time t p , the process proceeds to step S17. On the other hand, when it is determined in step S16 that the time t is not longer than the set time t p , that is, the time t is determined not to have passed the set time t p , the process proceeds to step S18.
  • step S17 since the liquid refrigerant does not sufficiently flow from the liquid receiver 24 to the evaporator 25, in order to store the liquid refrigerant in the liquid receiver 24, the controller 10 operates in the cooling mode as the third operation mode. Operate the refrigeration cycle 2. At this time, when the temperature of the air introduced to the vehicle compartment becomes lower than the target temperature, the warm air heated by the warm water heater 43 is used to heat the air cooled by passing through the evaporator 25 (reheating ).
  • the temperature T E of the evaporator 25 when the state does not become lower than the first set temperature T E1 continues is switched temporarily cooling mode.
  • the air conditioner 100 continues the state in which the temperature detected by the evaporator temperature sensor 13 is separated from the first set temperature T E1 by ⁇ or more and the time for which the temperature continues to be equal to or longer than the set time t p If it does, it is temporarily switched to the cooling mode.
  • the operation mode of the refrigeration cycle 2 will not be switched in the dehumidifying and heating mode and can be dehumidified It can be migrated.
  • the controller 10 continues the operation in the cooling mode until the temperature T E of the evaporator 25 drops to a sufficiently low temperature than the first set temperature T E1. Thereafter, the controller 10 switches the refrigeration cycle 2 to the dehumidifying and heating mode.
  • the dehumidifying heating operation by alternately switching the heat pump heating mode and the dehumidifying heating mode.
  • the controller 10 determines whether or not the temperature T E of the evaporator 25 is equal to or less than the first set temperature T E1 - ⁇ , and becomes lower than the first set temperature T E1 by at least ⁇ [° C.]. In this case, the refrigeration cycle 2 may be switched to the dehumidifying and heating mode.
  • the air conditioner 100 does not switch the refrigeration cycle 2 directly, but once switches to the dehumidifying heating mode and then switches to the cooling mode.
  • the dehumidifying and heating mode since the refrigerant flows to the evaporator 25, when switching from the dehumidifying and heating mode to the cooling mode, it is only necessary to switch the second flow path switching valve 29. At this time, the flow of the refrigerant in the evaporator 25 does not change. Moreover, in the dehumidifying and heating mode, the pressure difference between the upstream and the downstream of the fixed throttle 27 is smaller than that in the heat pump heating mode. Therefore, when switching from the heat pump heating mode to the cooling mode, the operation mode of the refrigeration cycle 2 can be smoothly switched by passing through the dehumidifying and heating mode.
  • the temperature of the outdoor heat exchanger 23 may decrease and frost may occur on the surface.
  • defrosting is generally performed in a so-called hot gas cycle in which the refrigerant compressed by the compressor 21 is led to the outdoor heat exchanger 23 as it is.
  • EV Electric Vehicle: electric vehicle
  • PHEV Plug-in Hybrid Electric Vehicle: Plug-in hybrid vehicle
  • charging is performed by connecting the external power supply.
  • defrosting can be performed in a hot gas cycle.
  • the cruising distance may be relatively long, and frost may be generated on the outdoor heat exchanger 23 during traveling, resulting in heating performance. May decrease.
  • the controller 10 executes the control shown in FIG. 13 in order to remove the frost formed on the outdoor heat exchanger 23 while traveling.
  • the controller 10 repeatedly executes the routine shown in FIG. 13 at constant time intervals of, for example, 10 milliseconds.
  • the frost formation determination unit 18 compares the detection temperature of the outside air temperature sensor 15 with the detection temperature of the outdoor heat exchanger outlet temperature sensor 12, and the temperature difference between them causes the outdoor heat exchanger 23 to generate frost. It is determined that the frost formation temperature difference is higher than the possible frost formation temperature.
  • the frost formation determination unit 18 performs outdoor heat based on the elapsed time of the state in which the temperature difference between the detection temperature of the outside air temperature sensor 15 and the detection temperature of the outdoor heat exchanger outlet temperature sensor 12 is equal to or greater than the frost formation temperature difference. It is determined that frost formation has occurred in the exchanger 23.
  • step S21 When it is determined in step S21 that frost formation has occurred in the outdoor heat exchanger 23, the process proceeds to step S22. On the other hand, when it is determined in step S21 that the frost formation on the outdoor heat exchanger 23 has been removed and the defrosting is not necessary, the process proceeds to step S25.
  • step S22 it is determined whether the HVAC unit 5 is in the outside air introduction mode used for air conditioning by taking in air outside the vehicle compartment.
  • step S22 If it is determined in step S22 that the mode is the open air introduction mode, the process proceeds to step S23. On the other hand, if it is determined that the outside air introduction mode is not set, that is, the HVAC unit 5 is in the inside air circulation mode for circulating the air in the vehicle compartment, the process proceeds to step S24.
  • step S23 the HVAC unit 5 is switched from the outside air introduction mode to the half inside air mode used for air conditioning by mixing the air outside the passenger compartment with the air inside the passenger compartment.
  • switching is performed so that the air outside the passenger compartment and the air inside the passenger compartment become 1: 1, that is, 50% of the air introduced into the passenger compartment becomes the internal air circulation.
  • the outside air introduction mode since the load on the evaporator 25 is low, the low pressure is lowered, and the temperature of the outdoor heat exchanger 23 is also lowered, which may prevent defrosting.
  • the temperature of the outdoor heat exchanger 23 can be raised by increasing the load of the evaporator 25.
  • step S24 the refrigeration cycle 2 is switched to the dehumidifying heating mode and the operation is performed. At this time, switching to the dehumidifying and heating mode is performed regardless of the dehumidifying and heating operation described above.
  • the refrigeration cycle 2 is switched from the heat pump heating mode to the dehumidifying heating mode.
  • the HVAC unit 5 is in the outside air introduction mode used for air conditioning by taking in air outside the vehicle room, the air outside the vehicle room is mixed with air in the vehicle room and switched to the half inside air mode used for air conditioning.
  • frost formation generated in the outdoor heat exchanger 23 can be removed by operating the refrigeration cycle 2 in the dehumidifying and heating mode with the HVAC unit 5 switched to the half inside air mode.
  • frost formation generated in the outdoor heat exchanger 23 can be removed without making the occupant aware that the defrosting operation is being performed.
  • step S25 to step S27 since it is determined in step S21 that the frost formation on the outdoor heat exchanger 23 has been removed and the defrosting is not required, the control for ending the defrosting operation is executed.
  • step S25 it is determined whether the HVAC unit 5 is in the semi-empty mode.
  • step S25 If it is determined in step S25 that the mode is the half inside air mode, the process proceeds to step S26. On the other hand, when it is determined that the mode is not the half inside air mode, that is, it is determined that the inside air circulation mode is set, the process proceeds to step S27.
  • step S26 the HVAC unit 5 switched to the half inside air mode in step S23 is returned to the outside air introduction mode.
  • step S27 the refrigeration cycle 2 switched to the dehumidifying and heating mode in step S24 is returned to the heat pump heating mode. Thereby, it is possible to return to the air conditioning mode desired by the occupant in the vehicle compartment.
  • the air conditioner 100 is configured to absorb refrigerant by absorbing the heat of air introduced to the casing of the vehicle, the compressor 21 for compressing the refrigerant, the outdoor heat exchanger 23 for exchanging heat between the refrigerant and the outside air, and the like.
  • a fixed throttle 27 provided between the heater core 42 and the outdoor heat exchanger 23 for decompressing and expanding the refrigerant;
  • a temperature type expansion valve 26 provided between the outdoor heat exchanger 23 and the evaporator 25 for decompressing and expanding the refrigerant that has passed through the outdoor heat exchanger 23, the flow of the refrigerant being throttled by the fixed throttle 27,
  • the heat pump heating mode in which the liquid refrigerant is stored in the liquid receiver 24 and the gaseous refrigerant is led to the compressor 21 in the operation state where the heat is dissipated by the core 42 and the dehumidifying unit which guides
  • the flow of the refrigerant is throttled by the fixed throttle 27, and the heat pump heating mode and the dehumidifying heating mode are switched in the operating state of radiating heat by the heater core 42.
  • the heat pump heating mode the liquid refrigerant is stored in the liquid receiver 24 out of the refrigerant led from the outdoor heat exchanger 23 while performing the heating operation.
  • the dehumidifying and heating mode the liquid refrigerant stored in the liquid receiver 24 in the heat pump heating mode is guided to the evaporator 25. Therefore, by switching between the heat pump heating mode and the dehumidifying heating mode, the liquid refrigerant can be stored in the liquid receiver 24 while performing the heating operation, and dehumidification can be performed using the liquid refrigerant. Therefore, it is possible to execute the dehumidifying heating operation that dehumidifies while maintaining the heating state.
  • the air conditioner 100 When the air conditioner 100 starts up, the refrigerant is throttled by the fixed throttle 27 and the heat is dissipated by the water-cooled condenser 22, the heat pump heating mode is started.
  • the liquid refrigerant can be stored in the liquid receiver 24 by operating the refrigeration cycle 2 in the heat pump heating mode first.
  • liquid receiver 24 is integrally configured such that the first liquid receiver 241 and the second liquid receiver 242 in the second embodiment described later share the liquid storage portion 24 a in which the liquid refrigerant is stored.
  • the gaseous refrigerant flowing from the outdoor heat exchanger 23 is guided to the compressor 21, and during the cooling operation, the liquid refrigerant flowing from the outdoor heat exchanger 23 is guided to the evaporator 25.
  • the refrigerant circulates through different paths in the heat pump heating mode and the cooling mode. Therefore, there is a possibility that a sound may be generated when switching the path of the refrigerant due to the difference in the pressure of the refrigerant between the paths in the heat pump heating mode and the cooling mode.
  • the air conditioner 100 the gaseous refrigerant flowing from the outdoor heat exchanger 23 during the heating operation is guided to the compressor 21, and the liquid refrigerant flowing from the outdoor heat exchanger 23 during the cooling operation is A guiding receiver 24 is provided. Therefore, when switching the flow of refrigerant in the refrigeration cycle 2 to switch from the heat pump heating mode to the dehumidifying heating mode, the pressure difference before and after the first flow passage switching valve 28 is small, and the liquid stored in the heat pump heating mode Since the refrigerant is guided from the liquid receiver 24 to the thermal expansion valve 26, it is difficult to generate sound.
  • the air conditioner 100 absorbs the heat of the air introduced to the casing of the vehicle by the compressor 21 for compressing the refrigerant, the outdoor heat exchanger 23 for exchanging heat between the refrigerant and the outside air, and the refrigerant.
  • An evaporator 25 for evaporating the refrigerant, a heater core 42 for heating the air introduced into the vehicle compartment using the heat of the refrigerant compressed by the compressor 21, an outdoor heat exchanger 23, and an evaporator 25 are provided.
  • the liquid refrigerant and the gaseous refrigerant are separated, and the gaseous refrigerant flowing from the outdoor heat exchanger 23 is guided to the compressor 21 during the heating operation, and the outdoor heat exchange is performed during the cooling operation.
  • a first flow path switching valve 28 for switching the flow path of the refrigerant so as to bypass the thermal expansion valve 26 and the evaporator 25 during the heating operation
  • a second flow path switching valve 29 which switches the flow path of the refrigerant so as to bypass the fixed throttle 27 during the cooling operation, so that the refrigerant bypasses the thermal expansion valve 26 and the evaporator 25 during the dehumidifying and heating operation.
  • Dehumidifying and heating mode in which the second flow path switching valve 29 is switched to switch the path switching valve 28 and to pass through the fixed throttle 27 is alternately switched.
  • the water cooling condenser 22 exchanges heat between the high pressure refrigerant discharged by the compressor 21 and the air led to the vehicle compartment via the hot water cycle 4, and the fixed throttle 27 takes the refrigerant drawn from the water cooling condenser 22
  • the refrigerant expanded and decompressed by the fixed throttle 27 flows into the outdoor heat exchanger 23, and the receiver 24 receives the low-pressure refrigerant drawn from the outdoor heat exchanger 23 as the gaseous refrigerant and the liquid refrigerant.
  • the gaseous refrigerant is introduced to the compressor 21.
  • the water cooling condenser 22 exchanges heat between the high pressure refrigerant discharged by the compressor 21 and the air led to the vehicle compartment through the hot water cycle 4, and the fixed throttle 27 is derived from the water cooling condenser 22
  • the refrigerant is decompressed and expanded, and the intermediate pressure refrigerant decompressed and expanded by the fixed throttle 27 flows into the outdoor heat exchanger 23, and the receiver 24 uses the refrigerant drawn from the outdoor heat exchanger 23 as a gaseous refrigerant.
  • the liquid refrigerant is separated, the thermal expansion valve 26 decompresses and expands the liquid refrigerant introduced from the receiver 24, and the evaporator 25 reduces the pressure expanded and expanded by the thermal expansion valve 26 and the air introduced to the vehicle compartment , And evaporate the refrigerant, and the gaseous refrigerant is introduced to the compressor 21.
  • the heat pump heating mode and the dehumidifying and heating mode are alternately switched.
  • the first flow path switching valve 28 is switched so that the refrigerant passes through the thermal expansion valve 26
  • the second flow path switching valve 29 is switched so that the refrigerant passes through the fixed throttle 27.
  • the air conditioner 100 is provided between the outdoor heat exchanger 23 and the evaporator 25 and includes an expansion valve for decompressing and expanding the refrigerant that has passed through the outdoor heat exchanger 23.
  • the expansion valve is a refrigerant that has passed through the evaporator 25.
  • the thermal expansion valve 26 has an opening controlled in accordance with the temperature of the
  • the temperature expansion valve 26 and the internal heat exchanger 30 that exchanges heat between the refrigerant upstream of the evaporator 25 and the refrigerant downstream of the evaporator 25 are further provided.
  • the liquid refrigerant led from the liquid receiver 24 exchanges heat with the low temperature gaseous refrigerant when flowing through the internal heat exchanger 30, and is excessively cooled by the gaseous refrigerant. From the saturated liquid state to the subcooling state having the degree of subcooling. Therefore, by providing the internal heat exchanger 30, the liquid refrigerant is easily introduced to the thermal expansion valve 26.
  • the air conditioner 100 further includes a differential pressure valve 31 that opens when the pressure of the refrigerant introduced to the evaporator 25 during the cooling operation exceeds the set pressure.
  • the outdoor heat exchanger 23 also has a refrigerant inlet 23a into which the refrigerant is introduced, and a refrigerant outlet 23b provided at a higher position than the refrigerant inlet 23a and from which the refrigerant is drawn.
  • the heat pump heating mode and the dehumidifying heating mode are alternately switched so that the temperature of the air having passed through the evaporator 25 fluctuates within a preset appropriate range.
  • the heat pump heating mode and the dehumidifying heating mode are alternately switched in a cycle of 5 seconds to 70 seconds.
  • the temperature of the air that has passed through the evaporator 25 is within the preset appropriate range. Since it fluctuates, sufficient dehumidification performance can be exhibited while avoiding freezing of the evaporator 25. Further, at this time, the average temperature of the air that has passed through the heater core 42 is also maintained in the appropriate temperature range, so that the heating performance does not decrease. Therefore, it is possible to execute the dehumidifying heating operation by alternately switching the heat pump heating mode and the dehumidifying heating mode at a cycle of 5 seconds to 70 seconds.
  • the heat pump heating mode and the dehumidifying heating mode are alternately switched in a cycle of 12 seconds to 55 seconds.
  • the heat pump heating mode and the dehumidifying heating mode are alternately switched in a cycle of 15 seconds to 50 seconds.
  • the temperature of the air having passed through the evaporator 25 fluctuates in a predetermined desired range or a more desirable range, so that freezing of the evaporator 25 can be avoided and more sufficient dehumidifying performance can be exhibited. .
  • the temperature of the evaporator 25 is first set temperature T E1 is switched to the second operation mode when it is the second set temperature T E2 than is set high as compared with.
  • the temperature of the evaporator 25 fluctuates between the first set temperature TE1 and the second set temperature TE2 , so that sufficient dehumidification performance can be exhibited while avoiding freezing of the evaporator 25. Therefore, the heating mode dehumidifying heat pump heating mode, the temperature T E of the evaporator 25 by switching alternately to vary between a first set temperature T E1 and the second set temperature T E2, the dehumidifying heating operation It is possible to carry out.
  • the air conditioner 100 further includes a cooling mode for evaporating the refrigerant in the evaporator 25 and promoting the storage of the liquid refrigerant in the receiver 24 in a state where the fixed throttle 27 does not throttle the flow of the refrigerant. at the heating mode, when the state where the temperature T E of the evaporator 25 is not lower than the first set temperature T E1 continues is switched to cooling mode.
  • the air conditioner 100 further includes the evaporator temperature sensor 13 for detecting the temperature of the evaporator 25, and the temperature detected by the evaporator temperature sensor 13 in the dehumidifying heating mode is separated from the first set temperature TE1 by ⁇ or more. In this case, it is switched to the cooling mode.
  • the air conditioner 100 further includes the evaporator temperature sensor 13 for detecting the temperature of the evaporator 25, and in the dehumidifying and heating mode, the time when the temperature detected by the evaporator temperature sensor 13 is separated from the first set temperature TE1. in the case of a set time t p or more, and is switched to the cooling mode.
  • the air conditioner 100 further includes a cooling mode in which the evaporator 25 evaporates the refrigerant and promotes storage of the liquid refrigerant in the receiver 24 in a state where the fixed throttle 27 does not throttle the flow of the refrigerant.
  • a cooling mode in which the evaporator 25 evaporates the refrigerant and promotes storage of the liquid refrigerant in the receiver 24 in a state where the fixed throttle 27 does not throttle the flow of the refrigerant.
  • the refrigerant flows to the evaporator 25 in the dehumidifying and heating mode, it is only necessary to switch the second flow path switching valve 29 when switching from the dehumidifying and heating mode to the cooling mode. At this time, the flow of the refrigerant in the evaporator 25 does not change.
  • the pressure difference between the upstream and the downstream of the fixed throttle 27 is smaller than that in the heat pump heating mode. Therefore, when switching from the heat pump heating mode to the cooling mode, the operation mode of the refrigeration cycle 2 can be smoothly switched by passing through the dehumidifying and heating mode.
  • the air conditioner 100 further includes a frost formation determination unit 18 that determines that frost formation has occurred in the outdoor heat exchanger 23, and the frost formation determination unit 18 determines that frost formation has occurred in the outdoor heat exchanger 23. When it does, it changes from heat pump heating mode to dehumidification heating mode.
  • the air conditioner 100 takes in the air outside the vehicle exterior and uses the air for air conditioning in the outdoor air introduction mode. It is possible to switch to the half inside air mode used for air conditioning by mixing the air outside the vehicle with the air outside the room.
  • the refrigeration cycle 2 is switched from the heat pump heating mode to the dehumidifying heating mode.
  • the HVAC unit 5 is in the outside air introduction mode used for air conditioning by taking in air outside the vehicle room, the air outside the vehicle room is mixed with air in the vehicle room and switched to the half inside air mode used for air conditioning.
  • frost formation generated in the outdoor heat exchanger 23 can be removed by operating the refrigeration cycle 2 in the dehumidifying and heating mode with the HVAC unit 5 switched to the half inside air mode.
  • the air conditioner 200 includes a first receiver 241 and a second receiver 242 separately instead of a single receiver 24. It differs from the air conditioner 100 which concerns.
  • the first liquid receiver 241 is disposed downstream of the outdoor heat exchanger 23.
  • the first liquid receiver 241 separates the refrigerant led from the outdoor heat exchanger 23 into a liquid refrigerant and a gaseous refrigerant.
  • the first liquid receiver 241 has a first liquid storage portion 241 a that stores liquid refrigerant.
  • the second liquid receiver 242 is disposed upstream of the compressor 21.
  • the second liquid receiver 242 temporarily accumulates the refrigerant flowing through the refrigerant flow passage 20, and separates the liquid into a gaseous refrigerant and a liquid refrigerant.
  • the second liquid receiver 242 has a second liquid storage section 242 a that stores liquid refrigerant. From the second liquid receiver 242, only the separated gaseous refrigerant flows to the compressor 21.
  • the refrigerant from the outdoor heat exchanger 23 is introduced downstream of the outdoor heat exchanger 23, and the liquid refrigerant and the gaseous refrigerant are separated into gas and liquid to store the liquid phase refrigerant.
  • Two liquid reservoirs 241a and 242a are provided.
  • the first liquid storage section 241a has an outlet for gas-liquid separation of the refrigerant to lead out a liquid refrigerant
  • the second liquid storage section 242a has an outlet for gas-liquid separation on the refrigerant to lead out a gaseous refrigerant.
  • the refrigerant led from the outdoor heat exchanger 23 is led to the second liquid storage section 242a and the gaseous refrigerant is led to the compressor 21.
  • the refrigerant from the outdoor heat exchanger 23 is Among them, part of the liquid refrigerant is led to the first liquid storage section 241 a and stored.
  • the refrigerant led from the outdoor heat exchanger 23 is led to the first liquid storage section 241a, and the liquid refrigerant is led to the evaporator 25 through the internal heat exchanger 30 and the thermal expansion valve 26. It is eaten. Then, the gaseous refrigerant is introduced to the compressor 21 through the second liquid storage section 242 a of the refrigerant drawn from the evaporator 25.
  • the refrigeration cycle 2 is alternately switched to the heat pump heating mode as the first operation mode and the dehumidifying and heating mode as the second operation mode.
  • the heat pump heating mode the refrigerant in the refrigeration cycle 2 and the hot water in the hot water cycle 4 circulate as shown by a thick solid line in FIG.
  • the refrigerant in the refrigeration cycle 2 and the hot water in the hot water cycle 4 circulate as shown by thick solid lines in FIG.
  • the controller 10 brings the first flow passage switching valve 28 into an open state and brings the second flow passage switching valve 29 into a closed state.
  • the refrigerant compressed to a high temperature by the compressor 21 flows to the water-cooled condenser 22.
  • the refrigerant that has flowed to the water-cooled condenser 22 heats the hot water inside the water-cooled condenser 22, passes through the fixed throttle 27, and expands under reduced pressure to become low temperature, and flows to the outdoor heat exchanger 23.
  • the refrigerant having flowed to the outdoor heat exchanger 23 exchanges heat with the outside air introduced to the outdoor heat exchanger 23, and then flows through the first flow path switching valve 28 to the second liquid receiver 242, Among the refrigerants separated by gas-liquid separation in the two liquid receiver 242, the gaseous refrigerant again flows to the compressor 21. At this time, a part of the refrigerant from the outdoor heat exchanger 23 is supplied to the first liquid storage portion 241a. It is led and stored.
  • the hot water heated by the refrigerant in the water-cooled condenser 22 circulates and flows to the heater core 42, and heats the air around the heater core 42.
  • the heated air flows downstream of the HVAC unit 5 and is used as a heating air.
  • the controller 10 closes the first flow passage switching valve 28 and closes the second flow passage switching valve 29.
  • the refrigerant compressed to a high temperature by the compressor 21 flows to the water-cooled condenser 22.
  • the refrigerant that has flowed to the water-cooled condenser 22 heats the hot water inside the water-cooled condenser 22, passes through the fixed throttle 27, and expands under reduced pressure to become low temperature, and flows to the outdoor heat exchanger 23.
  • the refrigerant that has flowed to the outdoor heat exchanger 23 exchanges heat with the outside air introduced to the outdoor heat exchanger 23, and then is separated into gas and liquid by the first liquid receiver 241. Then, the liquid refrigerant stored in the first liquid receiver 241 in the heat pump heating mode and the liquid refrigerant separated by the first liquid receiver 241 are circulated through the internal heat exchanger 30. . As described above, in the dehumidifying and heating mode, the liquid refrigerant stored in the first liquid receiver 241 is guided to the evaporator 25.
  • the liquid refrigerant is decompressed and expanded by the thermal expansion valve 26 and flows to the evaporator 25, and when passing through the evaporator 25, the liquid refrigerant is evaporated by absorbing the heat of the air used for air conditioning.
  • the gaseous refrigerant evaporated in the evaporator 25 passes through the internal heat exchanger 30 and flows again to the compressor 21 via the second liquid receiver 242.
  • the air flowing downstream of the HVAC unit 5 is dehumidified by the evaporator 25 and is heated by the heater core 42 so as to be used as dehumidified heating air.
  • the heat pump heating mode and the dehumidifying heating mode are in the operating state where the flow of the refrigerant is throttled by the fixed throttle 27 and the heat is dissipated by the heater core 42. It is switched.
  • the liquid refrigerant is stored in the first liquid receiver 241 while performing the heating operation.
  • the liquid refrigerant stored in the first liquid receiver 241 in the heat pump heating mode is guided to the evaporator 25.
  • the liquid refrigerant can be stored in the first liquid receiver 241 while performing the heating operation, and dehumidification can be performed using the liquid refrigerant. Therefore, it is possible to execute the dehumidifying heating operation that dehumidifies while maintaining the heating state.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

空調装置(100)は、圧縮機(21)と、室外熱交換器(23)と、車両の車室に導かれる空気の熱を冷媒に吸収させることで冷媒を蒸発させる蒸発器(25)と、前記車室に導かれる空気を前記圧縮機にて圧縮された冷媒の熱を用いて加熱する加熱器(42)と、前記室外熱交換器(23)の下流に配置され、前記室外熱交換器(23)から導かれる冷媒を液相冷媒と気相冷媒とに分離させて液相冷媒を貯留する受液器(24)と、前記加熱器(42)と前記室外熱交換器(23)との間に設けられ、冷媒を減圧膨張させる絞り機構(27)と、を備え、前記絞り機構(27)で冷媒の流れが絞られ、前記加熱器(42)で放熱する運転状態において、前記受液器(24)に液相冷媒を貯留して気相冷媒が前記圧縮機(21)に導かれる第1運転モードと、前記受液器(24)に貯留された液相冷媒を前記蒸発器(25)に導く第2運転モードと、が切り換えられる。

Description

空調装置
 本発明は、空調装置に関するものである。
 JP2013-535372Aには、冷凍サイクル内の冷媒の流れを切り換えることで冷房運転と暖房運転とに切り換え可能な空調装置が開示されている。この空調装置では、冷房運転は、冷凍サイクルを冷房モードに切り換えることで実行され、暖房運転は、冷凍サイクルをヒートポンプ暖房モードに切り換えることで実行される。
 しかしながら、JP2013-535372Aに記載の空調装置では、除湿を行うためには、冷凍サイクルを冷房モードに切り換える必要がある。
 本発明は、暖房状態を維持しながら除湿を行う除湿暖房運転を実行可能な空調装置を提供することを目的とする。
 本発明のある態様によれば、車両に搭載される空調装置は、冷媒を圧縮する圧縮機と、冷媒と外気との間で熱交換を行う室外熱交換器と、前記車両の車室に導かれる空気の熱を冷媒に吸収させることで冷媒を蒸発させる蒸発器と、前記車室に導かれる空気を前記圧縮機にて圧縮された冷媒の熱を用いて加熱する加熱器と、前記室外熱交換器の下流に配置され、前記室外熱交換器から導かれる冷媒を液相冷媒と気相冷媒とに分離させて液相冷媒を貯留する受液器と、前記加熱器と前記室外熱交換器との間に設けられ、冷媒を減圧膨張させる絞り機構と、前記室外熱交換器と前記蒸発器との間に設けられ、前記室外熱交換器を通過した冷媒を減圧膨張させる膨張弁と、を備え、前記絞り機構で冷媒の流れが絞られ、前記加熱器で放熱する運転状態において、前記受液器に液相冷媒を貯留して気相冷媒が前記圧縮機に導かれる第1運転モードと、前記受液器に貯留された液相冷媒を前記蒸発器に導く第2運転モードと、が切り換えられる。
 上記態様では、絞り機構で冷媒の流れが絞られ、加熱器で放熱する運転状態において、第1運転モードと第2運転モードとが切り換えられる。第1運転モードでは、暖房運転を実行しながら、室外熱交換器から導かれる冷媒のうち液相冷媒が受液器に貯留される。第2運転モードでは、第1運転モードで受液器に貯留された液相冷媒が蒸発器に導かれる。よって、第1運転モードと第2運転モードとを切り換えることで、暖房運転を実行しながら受液器に液相冷媒を貯留し、その液相冷媒を用いて除湿を行うことができる。したがって、暖房状態を維持しながら除湿を行う除湿暖房運転を実行することができる。
図1は、本発明の第1の実施形態に係る空調装置の構成図である。 図2は、本発明の第1の実施形態の変形例に係る空調装置の構成図である。 図3は、室外熱交換器の斜視図である。 図4は、冷房運転時における空調装置の冷媒の流れを説明する図である。 図5は、暖房運転時及び除湿暖房運転時のヒートポンプ暖房モードにおける空調装置の冷媒の流れを説明する図である。 図6は、除湿暖房運転時の除湿暖房モードにおける空調装置の冷媒の流れを説明する図である。 図7は、除湿暖房運転時の除湿暖房モードについて説明するためのモリエル線図である。 図8は、ヒートポンプ暖房モードと除湿暖房モードとの切換周期に対する蒸発器の温度変化量を説明する図である。 図9は、ヒートポンプ暖房モードと除湿暖房モードとを適正な切換周期で交互に切り換えた場合の蒸発器直下温度を示す図である。 図10は、ヒートポンプ暖房モードと除湿暖房モードとの切り換えの変形例について説明する概念図である。 図11は、蒸発器の温度の変化について説明するグラフである。 図12は、除湿暖房運転時における、除湿暖房モードから冷房モードへの一時的な切り換えについて説明するフローチャートである。 図13は、室外熱交換器に着霜が発生した場合のヒートポンプ暖房モードと除湿暖房モードとの切り換えについて説明するフローチャートである。 図14は、本発明の第2の実施形態に係る空調装置の構成図である。 図15は、暖房運転時及び除湿暖房運転時のヒートポンプ暖房モードにおける空調装置の冷媒の流れを説明する図である。 図16は、除湿暖房運転時の除湿暖房モードにおける空調装置の冷媒の流れを説明する図である。
 以下、図面を参照して、本発明の実施形態について説明する。
 (第1の実施形態)
 以下、図1から図13を参照して、本発明の第1の実施形態に係る空調装置100について説明する。
 まず、図1から図3を参照して、空調装置100の構成について説明する。
 図1に示すように、空調装置100は、冷媒が循環する冷凍サイクル2と、温水が循環する温水サイクル4と、空調に利用される空気が通過するHVAC(Heating Ventilation and Air Conditioning)ユニット5と、空調装置100の動作を制御する制御部としてのコントローラ10と、を備える。
 空調装置100は、冷暖房可能なヒートポンプシステムである。空調装置100は、車両(図示省略)に搭載されて車室(図示省略)内の空調を行う。例えば、冷媒にはHFO-1234yfが用いられ、温水には不凍液が用いられる。
 冷凍サイクル2は、圧縮機としてのコンプレッサ21と、温水-冷媒熱交換器としての水冷コンデンサ22と、室外熱交換器23と、受液器24と、内部熱交換器30と、蒸発器としてのエバポレータ25と、膨張弁としての温度式膨張弁26と、絞り機構としての固定絞り27と、固定絞り27をバイパスする冷媒が流れるバイパス路20aと、バイパス路20aを開閉する第2流路切換弁29と、これらを冷媒が循環可能となるように接続する冷媒流路20と、を備える。冷媒流路20には、第1流路切換弁28が設けられる。
 コンプレッサ21は、ガス状(気相)冷媒を吸入し圧縮する。これにより、ガス状冷媒は高温高圧になる。
 水冷コンデンサ22は、暖房運転時に、コンプレッサ21を通過した後の冷媒を凝縮させる凝縮器として機能する。水冷コンデンサ22は、コンプレッサ21によって高温高圧となった冷媒と温水サイクル4を循環する温水との間で熱交換を行い、冷媒の熱を温水に伝達する。水冷コンデンサ22にて凝縮した冷媒は、固定絞り27へと流れる。
 水冷コンデンサ22は、コンプレッサ21にて圧縮された冷媒の熱を用いて、温水サイクル4を循環する温水を介して、車室内に導かれて空調に用いられる空気を加熱する。ここでは、水冷コンデンサ22と温水サイクル4とが、車室内に導かれる空気を加熱する加熱器に相当する。これに代えて、図2に示すように、温水サイクル4を設けずに、コンプレッサ21にて圧縮された冷媒がヒータコア42に直接導かれるようにしてもよい。この場合、ヒータコア42が加熱器に相当する。
 室外熱交換器23は、例えば車両のエンジンルーム(電気自動車においてはモータルーム)内に配置され、冷媒と外気との間で熱交換を行う。室外熱交換器23は、冷房運転時には凝縮器として機能し、暖房運転時には蒸発器として機能する。室外熱交換器23には、車両の走行や室外ファン6の回転によって、外気が導入される。
 図3に示すように、室外熱交換器23は、冷媒が導入される冷媒入口23aと、冷媒入口23aと比較して高い位置に設けられ冷媒が導出される冷媒出口23bと、を有する。即ち、室外熱交換器23では、冷媒は、下から導入されて内部を上昇し上から導出される。これにより、暖房運転時には、室外熱交換器23にて外気と冷媒とが熱交換する際に、室外熱交換器23内の未蒸発冷媒(湿り度が高い冷媒)が導出され難く、外気からの吸熱量が増える。
 受液器24は、室外熱交換器23の下流に位置し、室外熱交換器23からの冷媒を導入し、液状(液相)冷媒とガス状冷媒とに気液分離させる。受液器24は、液状冷媒を貯留する貯液部24aと、液状冷媒をエバポレータ25に導く出口と、ガス状冷媒をコンプレッサ21に導く出口と、を有する。図1では、概念図のため省略しているが、ガス状冷媒をコンプレッサ21に導く通路は、回路内に含まれるオイルの戻りが可能なように構成されている。
 受液器24は、暖房運転時には、室外熱交換器23から流入するガス状冷媒をコンプレッサ21に導く。受液器24からコンプレッサ21へは、分離したガス状冷媒のみが流れる。受液器24は、冷房運転時には、室外熱交換器23から流入する液状冷媒を貯留し、液状冷媒の一部を内部熱交換器30と温度式膨張弁26とを介してエバポレータ25に導く。受液器24からエバポレータ25へは、分離した液状冷媒のみが流れる。
 受液器24と温度式膨張弁26との間には、差圧弁31が設けられる。差圧弁31は、内部熱交換器30の上流に設けられる。差圧弁31は、差圧弁31の上流側の圧力が設定圧力を超えると開く。この設定圧力は、暖房運転時には差圧弁31が開かず、冷房運転時にのみ差圧弁31が開くような圧力に予め設定される。差圧弁31が設けられることによって、暖房運転時に受液器24から温度式膨張弁26を介してエバポレータ25に冷媒が流れることを防止できる。よって、エバポレータ25が凍結することや、冷媒流路20内を流れる潤滑用オイルがエバポレータ25に貯留されることが防止される。なお、差圧弁31を、内部熱交換器30と温度式膨張弁26との間に設けてもよい。
 エバポレータ25は、HVACユニット5内に配置される。エバポレータ25は、冷凍サイクル2の運転モードが冷房モード若しくは除湿暖房モードである場合に、車室に導かれる空気の熱を冷媒に吸収させて冷媒を蒸発させる。エバポレータ25にて蒸発した冷媒は、内部熱交換器30を介してコンプレッサ21へと流れる。
 温度式膨張弁26は、内部熱交換器30とエバポレータ25との間に配置され、室外熱交換器23から受液器24及び内部熱交換器30を介して導かれた液状冷媒を減圧膨張させる。温度式膨張弁26は、エバポレータ25を通過した冷媒の温度、即ちガス状冷媒の過熱度に応じて開度を自動的に調節する。
 エバポレータ25の負荷が増加した場合には、ガス状冷媒の過熱度が増加する。そうすると温度式膨張弁26の開度が大きくなって過熱度を調節する様に冷媒量が増加する。一方、エバポレータ25の負荷が減少した場合には、ガス状冷媒の過熱度が減少する。そうすると温度式膨張弁26の開度が小さくなって過熱度を調節する様に冷媒量が減少する。このように、温度式膨張弁26は、エバポレータ25を通過したガス状冷媒の温度をフィードバックして、ガス状冷媒が適切な過熱度となるように開度を調節する。
 内部熱交換器30は、温度式膨張弁26の上流の冷媒とエバポレータ25の下流の冷媒との間で、温度差を利用して熱交換させる。
 固定絞り27は、水冷コンデンサ22と室外熱交換器23との間に配置され、コンプレッサ21にて圧縮されて水冷コンデンサ22にて凝縮した冷媒を減圧膨張させる。固定絞り27には、例えば、オリフィスやキャピラリーチューブが用いられる。固定絞り27の絞り量は、予め使用頻度の高い特定の運転条件に対応するように設定される。
 固定絞り27に代えて、例えば、図2に示すように、少なくとも全開と所定の絞り状態とを有し、段階的に又は無段階に開度を調節できる電気式絞り機構としての電磁絞り弁127を可変絞り(絞り機構)として用いてもよい。この場合、バイパス路20aを設ける必要はない。電磁絞り弁127は、冷房運転時には、冷媒の流れを絞らないように調節され、暖房運転時には、冷媒の流れを絞るように調節される。
 第1流路切換弁28は、開閉によって冷媒の流れを切り換える。第1流路切換弁28は、コントローラ10によって制御されるソレノイドを有する電磁弁である。
 冷房運転時には、第1流路切換弁28が閉じられる。これにより、室外熱交換器23にて凝縮した冷媒は、受液器24に流入し、差圧弁31の上流側の圧力が設定圧力を超えて、液状冷媒が内部熱交換器30,温度式膨張弁26,及びエバポレータ25を通過してコンプレッサ21に導かれる。一方、暖房運転時には、第1流路切換弁28が開かれる。これにより、室外熱交換器23にて蒸発した冷媒は、受液器24に流入し、第1流路切換弁28を通過してコンプレッサ21に導かれる。よって、暖房運転時には、冷媒は、内部熱交換器30,温度式膨張弁26,及びエバポレータ25をバイパスして流れる。
 第2流路切換弁29は、開閉によって冷媒の流れを切り換える。第2流路切換弁29は、コントローラ10によって制御されるソレノイドを有する電磁弁である。
 冷房運転時には、第2流路切換弁29が開かれる。これにより、コンプレッサ21によって圧縮された冷媒は、水冷コンデンサ22を通過した後、固定絞り27をバイパスして室外熱交換器23へ流入する。一方、暖房運転時には、第2流路切換弁29が閉じられる。これにより、コンプレッサ21によって圧縮された冷媒は、水冷コンデンサ22及び固定絞り27を通過して室外熱交換器23へ流入する。
 温水サイクル4は、ポンプとしてのウォータポンプ41と、ヒータコア42と、補助加熱器としての温水ヒータ43と、水冷コンデンサ22と、これらを温水が循環可能となるように接続する温水流路40と、を備える。
 ウォータポンプ41は、温水流路40内の温水を循環させる。
 ヒータコア42は、HVACユニット5内に配置され、暖房運転時に、ヒータコア42を通過する空気と温水との熱交換によって、空調に用いられる空気を加熱する。
 温水ヒータ43は、車室に導かれる空気の加熱を補助する。温水ヒータ43は、内部にヒータ(図示省略)を有し、外部動力を用いて温水を加熱する。ヒータには、例えば、シーズヒータやPTC(Positive Temperature Coefficient)ヒータが用いられる。
 温水ヒータ43に代えて、例えば、車室に導かれる空気を直接加熱する空気式ヒータ(図示省略)、又は車両の内燃機関としてのエンジン(図示省略)の排熱を使用して車室に導かれる空気を加熱する温水式熱交換器(図示省略)を用いてもよい。また、温水ヒータ43、空気式ヒータ、及び温水式熱交換器のいずれか一つを単体で用いてもよく、これらを任意に組み合わせて用いてもよい。
 HVACユニット5は、空調に利用する空気を冷却又は加熱する。HVACユニット5は、ブロワ52と、エアミックスドア53と、これらを空調に利用する空気が通過可能となるように囲うケース51と、を備える。HVACユニット5内には、エバポレータ25とヒータコア42とが配置される。ブロワ52から送風された空気は、エバポレータ25内を流れる冷媒との間、及びヒータコア42内を流れる温水との間で熱交換を行う。
 ブロワ52は、HVACユニット5内に空気を送風する送風機である。
 エアミックスドア53は、HVACユニット5内に配置されたヒータコア42を通過する空気の量を調整する。エアミックスドア53は、ヒータコア42のブロワ52側に設置される。エアミックスドア53は、暖房運転時にヒータコア42側を開き、冷房運転時にヒータコア42側を閉じる。エアミックスドア53の開度によって、空気とヒータコア42内の温水との間の熱交換量が調節される。
 空調装置100には、冷媒温度検出器としての室外熱交換器出口温センサ12と、蒸発器温度検出器としてのエバポレータ温度センサ13と、外気温度検出器としての外気温センサ15と、が設置されている。
 室外熱交換器出口温センサ12は、室外熱交換器23の出口に設けられて冷媒流路20内の冷媒の温度を検出する。室外熱交換器出口温センサ12は、室外熱交換器23を通過した冷媒の温度を検出する。
 外気温センサ15は、室外熱交換器23に取り込まれて通過する前の外気の温度を検出する。
 エバポレータ温度センサ13は、HVACユニット5内におけるエバポレータ25の空気流れ下流側に設置され、エバポレータ25を通過した空気の温度を検出する。なお、エバポレータ温度センサ13は、エバポレータ25に直接設置されてもよい。
 コントローラ10は、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)などによって構成されるマイクロコンピュータである。コントローラ10を複数のマイクロコンピュータで構成することも可能である。コントローラ10は、ROMに記憶されたプログラムをCPUによって読み出すことで、空調装置100に各種機能を発揮させる。
 コントローラ10は、冷凍サイクル2の制御を実行するようにプログラムされている。コントローラ10には、室外熱交換器出口温センサ12と、エバポレータ温度センサ13と、外気温センサ15と、からの信号が入力される。なお、コントローラ10には、図示しない他のセンサからの信号が入力されてもよい。
 コントローラ10は、入力された信号に基づいて、冷凍サイクル2の制御を実行する。即ち、コントローラ10は、図1に破線で示すように、コンプレッサ21の出力を設定すると共に、第1流路切換弁28及び第2流路切換弁29の開閉制御を実行する。また、コントローラ10は、図示しない出力信号を送信することで、温水サイクル4及びHVACユニット5の制御を実行する。
 また、コントローラ10は、室外熱交換器23に着霜が発生したことを判定する着霜判定部18を有する。
 着霜判定部18は、室外熱交換器23の出口における冷媒の温度と外気温とがかい離している場合に、室外熱交換器23にて冷媒と外気とが熱交換を充分に行えず、着霜が発生していると判定する。
 具体的には、着霜判定部18は、外気温センサ15の検出温度と室外熱交換器出口温センサ12の検出温度とを比較し、両者の温度差が室外熱交換器23に着霜の発生し得る着霜温度差以上になっていることを判定する。着霜判定部18は、外気温センサ15の検出温度と室外熱交換器出口温センサ12の検出温度との温度差が着霜温度差以上になっている状態の経過時間に基づいて、室外熱交換器23に着霜が発生したことを判定する。
 次に、図4から図6を参照して、空調装置100の各空調運転モードについて説明する。
 <冷房運転>
 冷房運転時には、冷凍サイクル2は、冷房モードに切り換えられる。冷房モードでは、冷凍サイクル2内の冷媒は、図4に太実線で示すように循環する。
 コントローラ10は、第1流路切換弁28を閉じた状態にすると共に、第2流路切換弁29を開いた状態にする。
 コンプレッサ21で圧縮されて高温高圧になった冷媒は、水冷コンデンサ22及び第2流路切換弁29を通って、室外熱交換器23へと流れる。このとき、温水サイクル4内の温水は循環していないので、水冷コンデンサ22では、殆ど熱交換は行われない。また、冷媒は、固定絞り27をバイパスしてバイパス路20aを通過する。固定絞り27に代えて電磁絞り弁127(図2参照)を設ける場合には、電磁絞り弁127は、冷媒の流れを絞らないように調節される。
 室外熱交換器23へ流れた冷媒は、室外熱交換器23に導入される外気と熱交換を行い冷却された後、受液器24にて気液分離される。これにより、受液器24に液状冷媒が貯留される。受液器24の下流側に接続される温度式膨張弁26には、受液器24から液状冷媒の一部が内部熱交換器30を介して流通する。
 その後、液状冷媒は、温度式膨張弁26で減圧膨張してエバポレータ25へ流通し、エバポレータ25を通過する際に空調に利用する空気の熱を吸収することで蒸発する。エバポレータ25にて蒸発したガス状冷媒は、内部熱交換器30を通過し再びコンプレッサ21へと流れる。
 即ち、冷房モードでは、水冷コンデンサ22は、コンプレッサ21が吐出した高圧冷媒が通過し、室外熱交換器23には、水冷コンデンサ22を通過した高圧冷媒が流入し、受液器24は、室外熱交換器23から導出された冷媒をガス状冷媒と液状冷媒に分離させて液状冷媒を貯留し、温度式膨張弁26は、受液器24から導かれる液状冷媒を減圧膨張させ、エバポレータ25は、温度式膨張弁26にて減圧膨張した低圧冷媒と車室へ導かれる空気とを熱交換させて冷媒を蒸発させ、コンプレッサ21には、ガス状冷媒が導かれる。
 ここで、受液器24から内部熱交換器30に流通する液状冷媒は、高圧の流体であり、受液器24にて気液分離されることで、過冷却度がほぼ0℃の略飽和液状態となっている。一方、エバポレータ25から内部熱交換器30に流通するガス状冷媒は、温度式膨張弁26を通過する際に減圧膨張して低温の流体になっている。そのため、液状冷媒は、内部熱交換器30を流通する際に低温のガス状冷媒との間で熱交換を行い、ガス状冷媒により過度に冷却されて飽和液状態から過冷却度をもった過冷却状態となる。また、ガス状冷媒は、内部熱交換器30を流通する際に、液状冷媒によって加熱されることで過熱度を持った加熱状態となる。
 エバポレータ25にて冷媒によって冷却された空気は、HVACユニット5の下流に流されて冷房風として用いられる。
 <暖房運転>
 暖房運転時には、冷凍サイクル2は、ヒートポンプ暖房モードに切り換えられる。暖房運転時には、いわゆる外気吸熱ヒートポンプ運転が実行される。ヒートポンプ暖房モードでは、冷凍サイクル2内の冷媒及び温水サイクル4内の温水は、図5に太実線で示すように循環する。
 コントローラ10は、第1流路切換弁28を開いた状態にすると共に、第2流路切換弁29を閉じた状態にする。
 コンプレッサ21で圧縮され高温になった冷媒は、水冷コンデンサ22へと流れる。水冷コンデンサ22へ流れた冷媒は、水冷コンデンサ22の内部で温水を加熱し、固定絞り27を通って減圧膨張することで低温となって、室外熱交換器23へと流れる。
 室外熱交換器23へ流れた冷媒は、室外熱交換器23に導入される外気との間で熱交換した後、受液器24へと流れて気液分離される。そして、受液器24で気液分離された冷媒のうちガス状冷媒が、第1流路切換弁28を通って再びコンプレッサ21へと流れる。このように、ヒートポンプ暖房モードでは、受液器24には液状冷媒が貯留されて、ガス状冷媒がコンプレッサ21に導かれる。
 即ち、ヒートポンプ暖房モードでは、水冷コンデンサ22は、コンプレッサ21が吐出した高圧冷媒と車室へ導かれる空気とを温水サイクル4を介して熱交換させ、固定絞り27は、水冷コンデンサ22から導出された冷媒を減圧膨張させ、室外熱交換器23には、固定絞り27にて減圧膨張した冷媒が流入し、受液器24は、室外熱交換器23から導出された低圧冷媒をガス状冷媒と液状冷媒とに分離させ、コンプレッサ21には、ガス状冷媒が導かれる。
 一方、水冷コンデンサ22で冷媒によって加熱された温水は、循環してヒータコア42に流れ、ヒータコア42の周囲の空気を加熱する。加熱された空気は、HVACユニット5の下流側に流されることで、暖房風として用いられる。
 なお、水冷コンデンサ22で冷媒が充分に温水を加熱できない場合には、外気吸熱ヒートポンプ運転と併用して又は独立して温水ヒータ43を運転させることによって温水を加熱してもよい。
 <除湿暖房運転>
 除湿暖房運転時には、冷凍サイクル2は、第1運転モードとしてのヒートポンプ暖房モードと第2運転モードとしての除湿暖房モードとに交互に切り換えられる。暖房運転時及び除湿暖房運転時が、固定絞り27で冷媒の流れが絞られ、ヒータコア42で放熱する運転状態に該当する。ヒートポンプ暖房モードは、暖房運転の場合と同様であるため、ここでは詳細な説明を省略する。除湿暖房モードでは、冷凍サイクル2内の冷媒及び温水サイクル4内の温水は、図6に太実線で示すように循環する。
 コントローラ10は、第1流路切換弁28を閉じた状態にすると共に、第2流路切換弁29を閉じた状態にする。
 コンプレッサ21で圧縮され高温になった冷媒は、水冷コンデンサ22へと流れる。水冷コンデンサ22へ流れた冷媒は、水冷コンデンサ22の内部で温水を加熱し、固定絞り27を通過して減圧膨張することで低温となって、室外熱交換器23へと流れる。固定絞り27に代えて電磁絞り弁127(図2参照)を設ける場合には、電磁絞り弁127は、冷媒の流れを絞るように調節される。
 室外熱交換器23へ流れた冷媒は、室外熱交換器23に導入される外気との間で熱交換した後、受液器24にて気液分離される。そして、ヒートポンプ暖房モードにて受液器24内に貯留された液状冷媒と、受液器24で気液分離された液状冷媒とが、内部熱交換器30を介して流通する。このように、除湿暖房モードでは、受液器24に貯留された液状冷媒がエバポレータ25に導かれる。
 その後、液状冷媒は、温度式膨張弁26で減圧膨張してエバポレータ25へ流通し、エバポレータ25を通過する際に空調に利用する空気の熱を吸収することで蒸発する。エバポレータ25にて蒸発したガス状冷媒は、内部熱交換器30を通過し再びコンプレッサ21へと流れる。
 即ち、除湿暖房モードでは、水冷コンデンサ22は、コンプレッサ21が吐出した高圧冷媒と車室へ導かれる空気とを熱交換させ、固定絞り27は、水冷コンデンサ22から導出された冷媒を減圧膨張させ、室外熱交換器23には、固定絞り27にて減圧膨張した中間圧冷媒が流入し、受液器24は、室外熱交換器23から導出された冷媒をガス状冷媒と液状冷媒に分離させ、温度式膨張弁26は、受液器24から導かれる液状冷媒を減圧膨張させ、エバポレータ25は、温度式膨張弁26にて減圧膨張した低圧冷媒と車室へ導かれる空気とを熱交換させて冷媒を蒸発させ、コンプレッサ21には、ガス状冷媒が導かれる。
 HVACユニット5の下流に流れる空気は、エバポレータ25にて除湿され、ヒータコア42にて加熱されることで、除湿暖房風として用いられる。
 なお、水冷コンデンサ22で冷媒が充分に温水を加熱できない場合には、外気吸熱ヒートポンプ運転と併用して又は独立して温水ヒータ43を運転させることによって温水を加熱してもよい。
 このように、固定絞り27で冷媒の流れが絞られ、ヒータコア42で放熱する運転状態において、ヒートポンプ暖房モードと除湿暖房モードとが切り換えられる。ヒートポンプ暖房モードでは、暖房運転を実行しながら、室外熱交換器23から導かれる冷媒のうち液状冷媒が受液器24に貯留される。除湿暖房モードでは、ヒートポンプ暖房モードで受液器24に貯留された液状冷媒がエバポレータ25に導かれる。よって、ヒートポンプ暖房モードと除湿暖房モードとを切り換えることで、暖房運転を実行しながら受液器24に液状冷媒を貯留し、その液状冷媒を用いて除湿を行うことができる。したがって、暖房状態を維持しながら除湿を行う除湿暖房運転を実行することができる。
 また、除湿暖房モードでは、冷媒が温度式膨張弁26を通過するように第1流路切換弁28が切り換えられると共に固定絞り27を通過するように第2流路切換弁29が切り換えられる。図7に示すように、除湿暖房モードでは、コンプレッサ21にて圧縮された冷媒は、水冷コンデンサ22にて熱交換した後、固定絞り27を通過して圧力が低下する。そして、冷媒は、室外熱交換器23にて熱交換した後、温度式膨張弁26にて更に圧力が低下する。即ち、固定絞り27が冷媒の流れを絞るので、ヒートポンプ暖房モードと除湿暖房モードとで共に室外熱交換器23内の冷媒の圧力が水冷コンデンサ22内の冷媒の圧力よりも低くなっている。
 よって、ヒートポンプ暖房モードと除湿暖房モードとを切り換える場合は、固定絞り27を通過して冷媒の圧力がある程度低下した状態で第1流路切換弁28を開閉する。即ち、第1流路切換弁28を開閉する際の第1流路切換弁28の上流と下流との圧力差が小さいので、ヒートポンプ暖房モードと冷房モードとを切り換える場合と比較して、圧力変動幅及び温度変動幅が小さい。よって、冷凍サイクル2内の冷媒の経路の切り換えに起因する音の発生が抑制される。
 更に、空調装置100は、暖房運転時に室外熱交換器23から流入するガス状冷媒をコンプレッサ21に導き、冷房運転時に室外熱交換器23から流入する液状冷媒を膨張弁に導く受液器24を備える。そのため、ヒートポンプ暖房モードから除湿暖房モードに切り換えるために、第1流路切換弁28を開閉して冷凍サイクル2内の冷媒の流れを切り換える際には、受液器24から温度式膨張弁26へ液状冷媒が導かれるので、音が発生しにくい。
 以上より、除湿暖房運転を実行する際に冷凍サイクル2内の冷媒の経路の切り換えに起因する音の発生を抑制することができる。
 なお、第1流路切換弁28は、閉弁時に完全に閉じられるのではなく、微小な冷媒の流れが生じるものであってもよい。この微小な冷媒の流れによって、第1流路切換弁28の開閉時の冷媒の流量変動が抑えられるので、音が発生しにくい。
 また、ヒートポンプ暖房モードと除湿暖房モードとは、5秒から70秒の周期で交互に切り換えられる。図8は、ヒートポンプ暖房モードと除湿暖房モードとを交互に切り換えた場合に、エバポレータ25におけるHVACユニット5内を流れる空気の流れ方向に対して垂直な面の複数の点(例えば4行×5列の20点)の温度変化量を計測した結果を示すものである。図8中のプロットは、異なる試験条件で計測した温度変化量であり、図8中の曲線は、各計測値の平均値をとったものである。エバポレータ25を通過した空気の温度変化量の適正範囲は、T1[℃]以下である。
 図8に示すように、切換周期が5~70秒の場合に、エバポレータ25の温度変化量が適正範囲内にある。切換周期が5秒より短い場合には、除湿暖房モードに切り換えられた後、エバポレータ25が充分に冷える前のタイミングで再びヒートポンプ暖房モードに切り換えられる。一方、切換周期が70秒より長い場合には、除湿暖房モードに切り換えられた後、エバポレータ25が冷え過ぎて一部が凍結するおそれがある。
 図9に示すように、5~70秒の適正な切換周期である場合には、ヒートポンプ暖房モードと除湿暖房モードとは、エバポレータ25を通過した空気の温度が予め設定された適正な温度変化量の範囲内にて変動するように交互に切り換えられる。
 よって、ヒートポンプ暖房モードと除湿暖房モードとを、5秒から70秒の周期で交互に切り換える場合には、エバポレータ25を通過した空気の温度が予め設定された適正範囲内にて変動するので、エバポレータ25の凍結を回避しつつ、充分な除湿性能を発揮できる。また、このとき、図9に示すように、ヒータコア42を通過した空気の平均温度もまた適正な温度範囲に維持されるので、暖房性能が低下することもない。したがって、ヒートポンプ暖房モードと除湿暖房モードとを、5秒から70秒の周期で交互に切り換えることで、除湿暖房運転を実行することが可能である。
 なお、第1流路切換弁28を開閉してヒートポンプ暖房モードと除湿暖房モードとを切り換える際に、コンプレッサ21を停止させると、切り換え後にコンプレッサ21を起動する際の高低圧力差が大きいので、コンプレッサ21の起動トルクが大きくなる。そのため、第1流路切換弁28を開閉する際には、コンプレッサ21を停止させないことが望ましい。
 また、望ましくは、ヒートポンプ暖房モードと除湿暖房モードとは、12秒から55秒の周期で交互に切り換えられる。エバポレータ25を通過した空気の温度変化量の望ましい範囲は、T1より小さいT2[℃]以下である。図8に示すように、切換周期が12~55秒の場合に、エバポレータ25の温度変化量が望ましい範囲内にある。
 この場合、ヒートポンプ暖房モードと除湿暖房モードとを、5秒から70秒の周期で交互に切り換える場合と比較して、除湿暖房モードに切り換えられた後、エバポレータ25が充分に冷える前のタイミングで再びヒートポンプ暖房モードに切り換えられることが更に防止される。また、除湿暖房モードに切り換えられた後、エバポレータ25が冷え過ぎて一部が凍結することが更に防止される。
 より望ましくは、ヒートポンプ暖房モードと除湿暖房モードとは、15秒から50秒の周期で交互に切り換えられる。エバポレータ25を通過した空気の温度変化量のより望ましい範囲は、T2より更に小さいT3[℃]以下である。図8に示すように、切換周期が15~50秒の場合に、エバポレータ25の温度変化量がより望ましい範囲内にある。
 この場合、ヒートポンプ暖房モードと除湿暖房モードとを、12秒から55秒の周期で交互に切り換える場合と比較して、除湿暖房モードに切り換えられた後、エバポレータ25が充分に冷える前のタイミングで再びヒートポンプ暖房モードに切り換えられることが更に防止される。また、除湿暖房モードに切り換えられた後、エバポレータ25が冷え過ぎて一部が凍結することが更に防止される。
 なお、空調装置100の起動時に除湿暖房運転を実行する場合には、最初に冷凍サイクル2をヒートポンプ暖房モードに切り換える。例えば、コールドスタート時に空調装置100を起動した際には、受液器24に液状冷媒が充分に貯留されていないことがある。そのため、最初にヒートポンプ暖房モードで冷凍サイクル2を運転することで、受液器24に液状冷媒を貯留できる。
 次に、図10から図12を参照して、除湿暖房運転時における、ヒートポンプ暖房モードと除湿暖房モードとの切り換えの変形例について説明する。この変形例では、エバポレータ25の温度(エバポレータ25を通過した空気の温度)TEに基づいて冷凍サイクル2の運転モードを切り換える。
 図10では、横軸が、エバポレータ25の温度TE[℃]であり、縦軸が、冷凍サイクル2の運転モードである。
 図10に示すように、コントローラ10は、冷凍サイクル2が除湿暖房モード運転である状態で、エバポレータ25の温度TEが第1設定温度TE1[℃]以下になった場合には、冷凍サイクル2をヒートポンプ暖房モードに切り換える。一方、コントローラ10は、冷凍サイクル2がヒートポンプ暖房モードである状態で、エバポレータ25の温度TEが第2設定温度TE2[℃]以上になった場合には、冷凍サイクル2を除湿暖房モードに切り換える。
 ここで、第1設定温度TE1と第2設定温度TE2とは、予め設定される値である。第2設定温度TE2は、第1設定温度TE1と比較して高く設定される。例えば、第1設定温度TE1は、1℃に設定され、第2設定温度TE2は、4℃に設定される。
 これにより、エバポレータ25の温度が、第1設定温度TE1と第2設定温度TE2との間で変動するので、エバポレータ25の凍結を回避しつつ、充分な除湿性能を発揮できる。したがって、ヒートポンプ暖房モードと除湿暖房モードとを、エバポレータ25の温度TEが第1設定温度TE1と第2設定温度TE2との間で変動するように交互に切り換えることで、除湿暖房運転を実行することが可能である。
 図11では、横軸が時間t[秒]であり、縦軸がエバポレータ25の温度TEである。
 図11に示すように、冷凍サイクル2が除湿暖房モードである場合には、エバポレータ25を通過する冷媒によって、エバポレータ25の温度TEは下降する。一方、冷凍サイクル2がヒートポンプ暖房モードである場合には、エバポレータ25にて熱交換を行う空気の熱によって、エバポレータ25の温度TEは上昇する。
 即ち、ヒートポンプ暖房モードと除湿暖房モードとを交互に切り換えることで、エバポレータ25の温度TEは、周期的に上昇と下降とを繰り返すように変化する。
 しかしながら、冷凍サイクル2が除湿暖房モードである場合に、エバポレータ25を通過する冷媒が不足すると、エバポレータ25の温度が徐々に上昇して、第1設定温度TE1以下の温度まで下がらなくなるおそれがある。この場合、冷凍サイクル2の運転モードが、除湿暖房モードのまま切り換わらなくなる。
 そこで、コントローラ10は、エバポレータ25の温度を下げるために、図12に示す制御を実行する。コントローラ10は、図12に示すルーチンを、例えば10ミリ秒ごとの一定時間隔で繰り返し実行する。
 ステップS11では、コントローラ10は、冷凍サイクル2の運転モードが除湿暖房モードであるか否かを判定する。ステップS11にて、除湿暖房モードであると判定された場合には、ステップS12に移行する。一方、ステップS11にて、除湿暖房モードでないと判定された場合には、そのままリターンして処理を抜ける。
 ステップS12では、コントローラ10は、エバポレータ温度センサ13から入力される信号に基づいて、エバポレータ25の温度TEを検出する。
 ステップS13では、コントローラ10は、ステップS12にて検出したエバポレータ25の温度TEが、第1設定温度TE1+α[℃]以上であるか否かを判定する。即ち、ステップS13では、エバポレータ25の温度TEが、目標値である第1設定温度TE1とαだけ剥離しているか否かを判定する。αは、例えば2℃に予め設定される。
 ステップS13にて、エバポレータ25の温度TEが第1設定温度TE1+α以上であると判定された場合には、ステップS14に移行して時間tをカウントアップする。一方、ステップS13にて、エバポレータ25の温度TEが第1設定温度TE1+α以上でない、即ち第1設定温度TE1+αより低いと判定された場合には、ステップS15に移行して時間tをリセットする。
 ステップS16では、コントローラ10は、時間tが設定時間tp以上であるか否かを判定する。設定時間tpは、例えば60秒に予め設定される。ステップS16にて、時間tが設定時間tp以上であると判定された場合には、ステップS17に移行する。一方、ステップS16にて、時間tが設定時間tp以上でない、即ち時間tは設定時間tpを経過していないと判定された場合には、ステップS18に移行する。
 ステップS17では、受液器24からエバポレータ25へ液状冷媒が充分に流通していないので、受液器24に液状冷媒を貯留するために、コントローラ10は、第3運転モードとしての冷房モードにて冷凍サイクル2を運転する。このとき、車室に導かれる空気の温度が目標温度と比較して低くなる場合には、温水ヒータ43によって加熱された温水を用いて、エバポレータ25を通過して冷却された空気を加熱(リヒート)する。
 このように、空調装置100では、除湿暖房モードにて、エバポレータ25の温度TEが第1設定温度TE1より低くならない状態が継続した場合には、一時的に冷房モードに切り換えられる。具体的には、空調装置100は、除湿暖房モードにて、エバポレータ温度センサ13が検出した温度が第1設定温度TE1とα以上剥離している状態が継続する時間が設定時間tp以上となった場合に、一時的に冷房モードに切り換えられる。
 また、エバポレータ25の温度TEが第1設定温度TE1より低くならない場合に代えて、温度の代用特性の冷媒圧力に基づいて、除湿暖房モードから一時的に冷房モードに切り換えられるようにしてもよい。
 よって、エバポレータ25の温度TEが第1設定温度TE1より低い温度まで下がらなくなったとしても、冷凍サイクル2の運転モードが、除湿暖房モードのまま切り換えられなくなることはなく、除湿可能な状態に移行させることができる。
 その後、コントローラ10は、エバポレータ25の温度TEが第1設定温度TE1より充分に低い温度に下がるまで冷房モードによる運転を継続する。その後、コントローラ10は、冷凍サイクル2を除湿暖房モードに切り換える。これにより、ヒートポンプ暖房モードと除湿暖房モードとを交互に切り換えることによる除湿暖房運転を実行することができる。
 これに代えて、コントローラ10は、エバポレータ25の温度TEが、第1設定温度TE1-β以下であるか否かを判定し、第1設定温度TE1よりもβ[℃]以上低くなった場合に、冷凍サイクル2を除湿暖房モードに切り換えてもよい。
 なお、空調装置100では、冷凍サイクル2をヒートポンプ暖房モードから冷房モードに切り換える場合には、直接切り換えるのではなく、一旦、除湿暖房モードに切り換えてから冷房モードに切り換える。
 除湿暖房モードでは、エバポレータ25に冷媒が流れているので、除湿暖房モードから冷房モードに切り換える場合には、第2流路切換弁29を切り換えるだけでよい。このとき、エバポレータ25における冷媒の流れには変化がない。また、除湿暖房モードでは、固定絞り27の上流と下流との圧力差は、ヒートポンプ暖房モードの場合と比較して小さい。よって、ヒートポンプ暖房モードから冷房モードに切り換える場合に、除湿暖房モードを経由することで、冷凍サイクル2の運転モードを円滑に切り換えることができる。
 次に、図13を参照して、除湿暖房モードを利用した室外熱交換器23の除霜について説明する。
 ヒートポンプ暖房モードにて暖房運転を行った場合、室外熱交換器23の温度が低下して表面に着霜が発生することがある。この場合、コンプレッサ21にて圧縮した冷媒をそのまま室外熱交換器23に導くいわゆるホットガスサイクルにて除霜を行うのが一般的である。
 特に、EV(Electric Vehicle:電動車両)やPHEV(Plug-in Hybrid Electric Vehicle:プラグインハイブリッド車両)のように外部電源から充電可能な車両の場合には、外部電源を接続して充電を行っている際に、ホットガスサイクルにて除霜を行うことができる。
 しかしながら、外部電源からの充電ができないHEV(Hybrid Electric Vehicle:ハイブリッド車両)などでは、航続可能距離が比較的長いこともあり、走行中に室外熱交換器23に着霜が発生して、暖房性能が低下するおそれがある。
 そこで、コントローラ10は、走行中に室外熱交換器23に発生した着霜を取り除くために、図13に示す制御を実行する。コントローラ10は、図13に示すルーチンを、例えば10ミリ秒ごとの一定時間隔で繰り返し実行する。
 ステップS21では、着霜判定部18は、外気温センサ15の検出温度と室外熱交換器出口温センサ12の検出温度とを比較し、両者の温度差が室外熱交換器23に着霜の発生し得る着霜温度差以上になっていることを判定する。着霜判定部18は、外気温センサ15の検出温度と室外熱交換器出口温センサ12の検出温度との温度差が着霜温度差以上になっている状態の経過時間に基づいて、室外熱交換器23に着霜が発生したことを判定する。
 ステップS21にて、室外熱交換器23に着霜が発生したと判定された場合には、ステップS22に移行する。一方、ステップS21にて、室外熱交換器23の着霜が取り除かれて、除霜が必要ない状態になったと判定された場合には、ステップS25に移行する。
 ステップS22では、HVACユニット5が、車室外の空気を取り入れて空調に用いる外気導入モードであるか否かを判定する。
 ステップS22にて、外気導入モードであると判定された場合には、ステップS23に移行する。一方、外気導入モードでない、即ち、HVACユニット5が、車室内の空気を循環させる内気循環モードであると判定された場合には、ステップS24に移行する。
 ステップS23では、HVACユニット5を、外気導入モードから、車室外の空気に車室内の空気を混ぜて空調に用いる半内気モードに切り換える。ここでは、車室外の空気と車室内の空気とが1:1となるように、即ち車室内に導かれる空気の50%が内気循環となるように切り換える。外気導入モードのままでは、エバポレータ25の負荷が低いので、低圧圧力が低下し、室外熱交換器23の温度も低下して除霜できないおそれがある。これに対して、半内気モードでは、エバポレータ25の負荷を高めることで、室外熱交換器23の温度を上昇させることができる。
 ステップS24では、冷凍サイクル2を除湿暖房モードに切り換えて運転を実行する。このとき、除湿暖房モードへの切り換えは、上述した除湿暖房運転とは関係なく行われる。
 以上のように、着霜判定部18が室外熱交換器23に着霜が発生したと判定した場合に、冷凍サイクル2は、ヒートポンプ暖房モードから除湿暖房モードに切り換えられる。また、HVACユニット5が車室外の空気を取り入れて空調に用いる外気導入モードである場合には、車室外の空気に車室内の空気を混ぜて空調に用いる半内気モードに切り換えられる。このように、HVACユニット5を半内気モードに切り換えた状態で、冷凍サイクル2を除湿暖房モードで運転することによって、室外熱交換器23に発生した着霜を取り除くことができる。
 また、外気導入モードから半内気モードに切り換えても、車室内の乗員に大きな違和感はない。よって、除霜運転を実行していることを乗員に意識させずに、室外熱交換器23に発生した着霜を取り除くことができる。
 ステップS25からステップS27では、ステップS21にて、室外熱交換器23の着霜が取り除かれて、除霜が必要ない状態になったと判定されたので、除霜運転を終了する制御を実行する。
 ステップS25では、HVACユニット5が、半内気モードであるか否かを判定する。
 ステップS25にて、半内気モードであると判定された場合には、ステップS26に移行する。一方、半内気モードでない、即ち、内気循環モードであると判定された場合には、ステップS27に移行する。
 ステップS26では、ステップS23にて半内気モードに切り換えたHVACユニット5を、外気導入モードに復帰させる。そして、ステップS27では、ステップS24にて除湿暖房モードに切り換えた冷凍サイクル2を、ヒートポンプ暖房モードに復帰させる。これにより、車室内の乗員の所望の空調モードに戻すことができる。
 以上の第1の実施形態によれば、以下に示す効果を奏する。
 空調装置100は、冷媒を圧縮するコンプレッサ21と、冷媒と外気との間で熱交換を行う室外熱交換器23と、車両の車室に導かれる空気の熱を冷媒に吸収させることで冷媒を蒸発させるエバポレータ25と、車室に導かれる空気をコンプレッサ21にて圧縮された冷媒の熱を用いて加熱するヒータコア42と、室外熱交換器23の下流に配置され、室外熱交換器23から導かれる冷媒を液状冷媒とガス状冷媒とに分離させて液状冷媒を貯留する受液器24と、ヒータコア42と室外熱交換器23との間に設けられ、冷媒を減圧膨張させる固定絞り27と、室外熱交換器23とエバポレータ25との間に設けられ、室外熱交換器23を通過した冷媒を減圧膨張させる温度式膨張弁26と、を備え、固定絞り27で冷媒の流れが絞られ、ヒータコア42で放熱する運転状態において、受液器24に液状冷媒を貯留してガス状冷媒がコンプレッサ21に導かれるヒートポンプ暖房モードと、受液器24に貯留された液状冷媒をヒータコア42に導く除湿暖房モードと、が切り換えられる。
 この構成によれば、固定絞り27で冷媒の流れが絞られ、ヒータコア42で放熱する運転状態において、ヒートポンプ暖房モードと除湿暖房モードとが切り換えられる。ヒートポンプ暖房モードでは、暖房運転を実行しながら、室外熱交換器23から導かれる冷媒のうち液状冷媒が受液器24に貯留される。除湿暖房モードでは、ヒートポンプ暖房モードで受液器24に貯留された液状冷媒がエバポレータ25に導かれる。よって、ヒートポンプ暖房モードと除湿暖房モードとを切り換えることで、暖房運転を実行しながら受液器24に液状冷媒を貯留し、その液状冷媒を用いて除湿を行うことができる。したがって、暖房状態を維持しながら除湿を行う除湿暖房運転を実行することができる。
 また、空調装置100の起動時に、固定絞り27で冷媒の流れが絞られ、水冷コンデンサ22で放熱する運転を行う際には、ヒートポンプ暖房モードにて運転を開始する。
 この構成によれば、例えば、コールドスタート時に空調装置100を起動した際に、最初にヒートポンプ暖房モードで冷凍サイクル2を運転することで、受液器24に液状冷媒を貯留できる。
 また、受液器24は、後述する第2の実施形態の第1受液器241と第2受液器242とが、液状冷媒が貯留される貯液部24aを共有するように一体に構成され、暖房運転時には室外熱交換器23から流入するガス状冷媒をコンプレッサ21に導き、冷房運転時には室外熱交換器23から流入する液状冷媒をエバポレータ25に導く。
 ここで、除湿を行うために冷凍サイクル2をヒートポンプ暖房モードから冷房モードに切り換える場合には、ヒートポンプ暖房モードと冷房モードとでは、冷媒が異なる経路を循環する。そのため、ヒートポンプ暖房モードと冷房モードとにおける各経路間の冷媒の圧力の相違によって、冷媒の経路を切り換える際に音が発生するおそれがある。
 これに対して、空調装置100では、暖房運転時に室外熱交換器23から流入するガス状冷媒をコンプレッサ21に導き、冷房運転時に室外熱交換器23から流入する液状冷媒を温度式膨張弁26に導く受液器24が設けられる。そのため、ヒートポンプ暖房モードから除湿暖房モードに切り換えるために冷凍サイクル2内の冷媒の流れを切り換える際には、第1流路切換弁28の前後の圧力差が小さく、ヒートポンプ暖房モード時に貯留された液状冷媒が受液器24から温度式膨張弁26へ導かれるので、音が発生しにくい。
 また、空調装置100は、冷媒を圧縮するコンプレッサ21と、冷媒と外気との間で熱交換を行う室外熱交換器23と、車両の車室に導かれる空気の熱を冷媒に吸収させることで冷媒を蒸発させるエバポレータ25と、車室に導かれる空気をコンプレッサ21にて圧縮された冷媒の熱を用いて加熱するヒータコア42と、室外熱交換器23とエバポレータ25との間に設けられ、室外熱交換器23を通過した冷媒を減圧膨張させる温度式膨張弁26と、コンプレッサ21と室外熱交換器23との間に設けられ、コンプレッサ21によって圧縮された冷媒を減圧膨張させる固定絞り27と、液状冷媒とガス状冷媒とを分離させ、暖房運転時には室外熱交換器23から流入するガス状冷媒をコンプレッサ21に導き、冷房運転時には室外熱交換器23から流入する液状冷媒を温度式膨張弁26に導く受液器24と、暖房運転時に温度式膨張弁26及びエバポレータ25をバイパスするように冷媒の流路を切り換える第1流路切換弁28と、冷房運転時に固定絞り27をバイパスするように冷媒の流路を切り換える第2流路切換弁29と、を備え、除湿暖房運転時には、冷媒が温度式膨張弁26及びエバポレータ25をバイパスするように第1流路切換弁28を切り換えると共に固定絞り27を通過するように第2流路切換弁29を切り換えるヒートポンプ暖房モードと、冷媒が温度式膨張弁26及びエバポレータ25を通過するように第1流路切換弁28を切り換えると共に固定絞り27を通過するように第2流路切換弁29を切り換える除湿暖房モードと、が交互に切り換えられる。
 ヒートポンプ暖房モードでは、水冷コンデンサ22は、コンプレッサ21が吐出した高圧冷媒と車室へ導かれる空気とを温水サイクル4を介して熱交換させ、固定絞り27は、水冷コンデンサ22から導出された冷媒を減圧膨張させ、室外熱交換器23には、固定絞り27にて減圧膨張した冷媒が流入し、受液器24は、室外熱交換器23から導出された低圧冷媒をガス状冷媒と液状冷媒とに分離させ、コンプレッサ21には、ガス状冷媒が導かれる。
 一方、除湿暖房モードでは、水冷コンデンサ22は、コンプレッサ21が吐出した高圧冷媒と車室へ導かれる空気とを温水サイクル4を介して熱交換させ、固定絞り27は、水冷コンデンサ22から導出された冷媒を減圧膨張させ、室外熱交換器23には、固定絞り27にて減圧膨張した中間圧冷媒が流入し、受液器24は、室外熱交換器23から導出された冷媒をガス状冷媒と液状冷媒に分離させ、温度式膨張弁26は、受液器24から導かれる液状冷媒を減圧膨張させ、エバポレータ25は、温度式膨張弁26にて減圧膨張した低圧冷媒と車室へ導かれる空気とを熱交換させて冷媒を蒸発させ、コンプレッサ21には、ガス状冷媒が導かれる。
 この構成によれば、除湿暖房運転時には、ヒートポンプ暖房モードと除湿暖房モードとが交互に切り換えられる。除湿暖房モードでは、冷媒が温度式膨張弁26を通過するように第1流路切換弁28が切り換えられると共に固定絞り27を通過するように第2流路切換弁29が切り換えられる。ヒートポンプ暖房モードと除湿暖房モードとを切り換える場合は、ヒートポンプ暖房モードと冷房モードとを切り換える場合と比較して、圧力変動幅及び温度変動幅が小さい。したがって、除湿暖房運転を実行する際に冷凍サイクル2内の冷媒の経路の切り換えに起因する音の発生を抑制することができる。
 また、空調装置100は、室外熱交換器23とエバポレータ25との間に設けられ、室外熱交換器23を通過した冷媒を減圧膨張させる膨張弁を備え、膨張弁は、エバポレータ25を通過した冷媒の温度に応じて開度が調節される温度式膨張弁26である。
 この構成によれば、冷凍サイクル2を冷房モード若しくは除湿暖房モードで運転する場合に、ガス状冷媒のみをコンプレッサ21に導くことができるので、コンプレッサ21の上流にアキュムレータを更に設ける必要がない。
 また、温度式膨張弁26及びエバポレータ25の上流の冷媒と下流の冷媒との間で熱交換を行う内部熱交換器30を更に備える。
 この構成によれば、受液器24から導かれる液状冷媒は、内部熱交換器30を流通する際に低温のガス状冷媒との間で熱交換を行い、ガス状冷媒により過度に冷却されて飽和液状態から過冷却度をもった過冷却状態となる。よって、内部熱交換器30が設けられることで、液状冷媒が温度式膨張弁26へ導かれやすくなる。
 また、空調装置100は、冷房運転時にエバポレータ25に導かれる冷媒の圧力が設定圧力を超えると開く差圧弁31を更に備える。
 この構成によれば、暖房運転(ヒートポンプ暖房モード)時に受液器24から温度式膨張弁26を介してエバポレータ25に冷媒が流れることを防止できる。よって、エバポレータ25が凍結することや、冷媒流路20内を流れる潤滑用オイルがエバポレータ25に貯留されることが防止される。
 また、室外熱交換器23は、冷媒が導入される冷媒入口23aと、冷媒入口23aと比較して高い位置に設けられ冷媒が導出される冷媒出口23bと、を有する。
 この構成によれば、暖房運転時には、室外熱交換器23にて外気と冷媒とが熱交換する際に、室外熱交換器23内の未蒸発冷媒(湿り度が高い冷媒)が導出され難く、外気からの吸熱量が増える。
 また、ヒートポンプ暖房モードと除湿暖房モードとは、エバポレータ25を通過した空気の温度が予め設定された適正範囲内にて変動するように交互に切り換えられる。
 また、ヒートポンプ暖房モードと除湿暖房モードとは、5秒から70秒の周期で交互に切り換えられる。
 これらの構成によれば、ヒートポンプ暖房モードと除湿暖房モードとを、5秒から70秒の周期で交互に切り換える場合には、エバポレータ25を通過した空気の温度が予め設定された適正範囲内にて変動するので、エバポレータ25の凍結を回避しつつ、充分な除湿性能を発揮できる。また、このとき、ヒータコア42を通過した空気の平均温度もまた適正な温度範囲に維持されるので、暖房性能が低下することもない。したがって、ヒートポンプ暖房モードと除湿暖房モードとを、5秒から70秒の周期で交互に切り換えることで、除湿暖房運転を実行することが可能である。
 また、ヒートポンプ暖房モードと除湿暖房モードとは、12秒から55秒の周期で交互に切り換えられる。
 また、ヒートポンプ暖房モードと除湿暖房モードとは、15秒から50秒の周期で交互に切り換えられる。
 これらの構成によれば、エバポレータ25を通過した空気の温度が予め設定された望ましい範囲、若しくはより望ましい範囲にて変動するので、エバポレータ25の凍結を回避しつつ、より充分な除湿性能を発揮できる。
 また、除湿暖房モードにて、エバポレータ25の温度TEが第1設定温度TE1以下である場合に、ヒートポンプ暖房モードに切り換えられ、除湿暖房モードにて、エバポレータ25の温度が第1設定温度TE1と比較して高く設定される第2設定温度TE2以上である場合に第2運転モードに切り換えられる。
 この構成によれば、エバポレータ25の温度が、第1設定温度TE1と第2設定温度TE2との間で変動するので、エバポレータ25の凍結を回避しつつ、充分な除湿性能を発揮できる。したがって、ヒートポンプ暖房モードと除湿暖房モードとを、エバポレータ25の温度TEが第1設定温度TE1と第2設定温度TE2との間で変動するように交互に切り換えることで、除湿暖房運転を実行することが可能である。
 また、空調装置100は、固定絞り27が冷媒の流れを絞らない状態で、エバポレータ25にて冷媒を蒸発させると共に受液器24への液状冷媒の貯留を促進する冷房モードを更に有し、除湿暖房モードにて、エバポレータ25の温度TEが前記第1設定温度TE1より低くならない状態が継続した場合には、冷房モードに切り換えられる。
 また、空調装置100は、エバポレータ25の温度を検出するエバポレータ温度センサ13を更に備え、除湿暖房モードにて、エバポレータ温度センサ13が検出した温度が第1設定温度TE1とα以上剥離している場合に、冷房モードに切り換えられる。
 また、空調装置100は、エバポレータ25の温度を検出するエバポレータ温度センサ13を更に備え、除湿暖房モードにて、エバポレータ温度センサ13が検出した温度が第1設定温度TE1と剥離している時間が設定時間tp以上となった場合に、冷房モードに切り換えられる。
 これらの構成によれば、エバポレータ25の温度TEが第1設定温度TE1以下の温度まで下がらなくなったとしても、冷凍サイクル2の運転モードが、除湿暖房モードのまま切り換えられなくなることはなく、除湿可能な状態に移行させることができる。
 また、空調装置100では、固定絞り27が冷媒の流れを絞らない状態で、エバポレータ25にて冷媒を蒸発させると共に受液器24への液状冷媒の貯留を促進する冷房モードを更に有し、ヒートポンプ暖房モードから冷房モードに切り換える際には、除湿暖房モードを経由する。
 この構成によれば、除湿暖房モードでは、エバポレータ25に冷媒が流れているので、除湿暖房モードから冷房モードに切り換える場合には、第2流路切換弁29を切り換えるだけでよい。このとき、エバポレータ25における冷媒の流れには変化がない。また、除湿暖房モードでは、固定絞り27の上流と下流との圧力差は、ヒートポンプ暖房モードの場合と比較して小さい。よって、ヒートポンプ暖房モードから冷房モードに切り換える場合に、除湿暖房モードを経由することで、冷凍サイクル2の運転モードを円滑に切り換えることができる。
 また、空調装置100は、室外熱交換器23に着霜が発生したことを判定する着霜判定部18を更に備え、着霜判定部18が室外熱交換器23に着霜が発生したと判定した場合に、ヒートポンプ暖房モードから除湿暖房モードに切り換えられる。
 また、空調装置100は、着霜判定部18が室外熱交換器23に着霜が発生したと判定したときに、車室外の空気を取り入れて空調に用いる外気導入モードである場合には、車室外の空気に車室内の空気を混ぜて空調に用いる半内気モードに切り換えられる。
 これらの構成によれば、着霜判定部18が室外熱交換器23に着霜が発生したと判定した場合に、冷凍サイクル2は、ヒートポンプ暖房モードから除湿暖房モードに切り換えられる。また、HVACユニット5が車室外の空気を取り入れて空調に用いる外気導入モードである場合には、車室外の空気に車室内の空気を混ぜて空調に用いる半内気モードに切り換えられる。このように、HVACユニット5を半内気モードに切り換えた状態で、冷凍サイクル2を除湿暖房モードで運転することによって、室外熱交換器23に発生した着霜を取り除くことができる。
 (第2の実施形態)
 以下、図14から図16を参照して、本発明の第2の実施形態に係る空調装置200について説明する。以下に示す各実施形態では、第1の実施形態と異なる点を中心に説明し、同様の機能を有する構成には同一の符号を付して説明を省略する。
 図14に示すように、空調装置200は、単一の受液器24に代えて、第1受液器241と第2受液器242とを別々に備える点で、第1の実施形態に係る空調装置100とは相違する。
 第1受液器241は、室外熱交換器23の下流に配置される。第1受液器241は、室外熱交換器23から導かれる冷媒を液状冷媒とガス状冷媒とに分離させる。第1受液器241は、液状冷媒を貯留する第1貯液部241aを有する。
 第2受液器242は、コンプレッサ21の上流に配置される。第2受液器242は、冷媒流路20を流れる冷媒を一時的に溜めると共に、ガス状冷媒と液状冷媒とに気液分離する。第2受液器242は、液状冷媒を貯留する第2貯液部242aを有する。第2受液器242からは、分離したガス状冷媒のみがコンプレッサ21へと流れる。
 このように、本実施形態では、室外熱交換器23の下流に位置し、室外熱交換器23からの冷媒が導入され、液状冷媒とガス状冷媒とに気液分離させて液相冷媒を貯留する二つの貯液部241a,242aが設けられる。第1貯液部241aは、冷媒を気液分離させて液状冷媒を導出する出口を有し、第2貯液部242aは、冷媒を気液分離させてガス状冷媒を導出する出口を有する。
 ヒートポンプ暖房モードでは、室外熱交換器23から導かれる冷媒は、第2貯液部242aに導かれて、ガス状冷媒がコンプレッサ21に導かれるが、このとき、室外熱交換器23からの冷媒のうち液状冷媒の一部が、第1貯液部241aに導かれて貯留される。
 一方、除湿暖房モードでは、室外熱交換器23から導かれる冷媒は、第1貯液部241aに導かれ、液状冷媒が内部熱交換器30と温度式膨張弁26とを介してエバポレータ25に導かれる。そして、エバポレータ25から導出された冷媒は、第2貯液部242aを経由して、ガス状冷媒がコンプレッサ21に導かれる。
 除湿暖房運転時には、冷凍サイクル2は、第1運転モードとしてのヒートポンプ暖房モードと第2運転モードとしての除湿暖房モードとに交互に切り換えられる。ヒートポンプ暖房モードでは、冷凍サイクル2内の冷媒及び温水サイクル4内の温水は、図15に太実線で示すように循環する。除湿暖房モードでは、冷凍サイクル2内の冷媒及び温水サイクル4内の温水は、図16に太実線で示すように循環する。
 図15に示すように、ヒートポンプ暖房モードでは、コントローラ10は、第1流路切換弁28を開いた状態にすると共に、第2流路切換弁29を閉じた状態にする。
 コンプレッサ21で圧縮され高温になった冷媒は、水冷コンデンサ22へと流れる。水冷コンデンサ22へ流れた冷媒は、水冷コンデンサ22の内部で温水を加熱し、固定絞り27を通って減圧膨張することで低温となって、室外熱交換器23へと流れる。
 室外熱交換器23へ流れた冷媒は、室外熱交換器23に導入される外気との間で熱交換した後、第1流路切換弁28を通って第2受液器242へ流れ、第2受液器242で気液分離された冷媒のうちガス状冷媒が、再びコンプレッサ21へと流れるが、このとき、室外熱交換器23からの冷媒の一部が、第1貯液部241aに導かれて貯留される。
 一方、水冷コンデンサ22で冷媒によって加熱された温水は、循環してヒータコア42に流れ、ヒータコア42の周囲の空気を加熱する。加熱された空気は、HVACユニット5の下流側に流されることで、暖房風として用いられる。
 図16に示すように、除湿暖房モードでは、コントローラ10は、第1流路切換弁28を閉じた状態にすると共に、第2流路切換弁29を閉じた状態にする。
 コンプレッサ21で圧縮され高温になった冷媒は、水冷コンデンサ22へと流れる。水冷コンデンサ22へ流れた冷媒は、水冷コンデンサ22の内部で温水を加熱し、固定絞り27を通って減圧膨張することで低温となって、室外熱交換器23へと流れる。
 室外熱交換器23へ流れた冷媒は、室外熱交換器23に導入される外気との間で熱交換した後、第1受液器241にて気液分離される。そして、ヒートポンプ暖房モードにて第1受液器241内に貯留された液状冷媒と、第1受液器241にて気液分離された液状冷媒とが、内部熱交換器30を介して流通する。このように、除湿暖房モードでは、第1受液器241に貯留された液状冷媒がエバポレータ25に導かれる。
 その後、液状冷媒は、温度式膨張弁26で減圧膨張してエバポレータ25へ流通し、エバポレータ25を通過する際に空調に利用する空気の熱を吸収することで蒸発する。エバポレータ25にて蒸発したガス状冷媒は、内部熱交換器30を通過し、第2受液器242を介して再びコンプレッサ21へと流れる。
 HVACユニット5の下流に流れる空気は、エバポレータ25にて除湿され、ヒータコア42にて加熱されることで、除湿暖房風として用いられる。
 このように、第2の実施形態においても、第1の実施形態と同様に、固定絞り27で冷媒の流れが絞られ、ヒータコア42で放熱する運転状態において、ヒートポンプ暖房モードと除湿暖房モードとが切り換えられる。ヒートポンプ暖房モードでは、暖房運転を実行しながら、液状冷媒が第1受液器241に貯留される。除湿暖房モードでは、ヒートポンプ暖房モードで第1受液器241に貯留された液状冷媒がエバポレータ25に導かれる。よって、ヒートポンプ暖房モードと除湿暖房モードとを切り換えることで、暖房運転を実行しながら第1受液器241に液状冷媒を貯留し、その液状冷媒を用いて除湿を行うことができる。したがって、暖房状態を維持しながら除湿を行う除湿暖房運転を実行することができる。
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。
 本願は、2017年10月2日に日本国特許庁に出願された特願2017-193009,2017年11月17日に日本国特許庁に出願された特願2017-221741,及び2018年3月9日に日本国特許庁に出願された特願2018-043559に基づく優先権を主張し、これらの出願の全ての内容は参照により本明細書に組み込まれる。

Claims (22)

  1.  車両に搭載される空調装置であって、
     冷媒を圧縮する圧縮機と、
     冷媒と外気との間で熱交換を行う室外熱交換器と、
     前記車両の車室に導かれる空気の熱を冷媒に吸収させることで冷媒を蒸発させる蒸発器と、
     前記車室に導かれる空気を前記圧縮機にて圧縮された冷媒の熱を用いて加熱する加熱器と、
     前記室外熱交換器の下流に配置され、前記室外熱交換器から導かれる冷媒を液相冷媒と気相冷媒とに分離させて液相冷媒を貯留する受液器と、
     前記加熱器と前記室外熱交換器との間に設けられ、冷媒を減圧膨張させる絞り機構と、
     前記室外熱交換器と前記蒸発器との間に設けられ、前記室外熱交換器を通過した冷媒を減圧膨張させる膨張弁と、
    を備え、
     前記絞り機構で冷媒の流れが絞られ、前記加熱器で放熱する運転状態において、
     前記受液器に液相冷媒を貯留して気相冷媒が前記圧縮機に導かれる第1運転モードと、
     前記受液器に貯留された液相冷媒を前記蒸発器に導く第2運転モードと、
    が切り換えられる、
    空調装置。
  2.  請求項1に記載の空調装置であって、
     前記空調装置の起動時に、前記絞り機構で冷媒の流れが絞られ、前記加熱器で放熱する運転を行う際には、前記第1運転モードにて運転を開始する、
    空調装置。
  3.  請求項1又は2に記載の空調装置であって、
     暖房運転時に前記膨張弁及び前記蒸発器をバイパスするように冷媒の流路を切り換える第1流路切換弁と、
     冷房運転時に前記絞り機構をバイパスするように冷媒の流路を切り換える第2流路切換弁と、
    を更に備え、
     前記第1運転モードでは、前記第1流路切換弁は、冷媒が前記膨張弁及び前記蒸発器をバイパスするように切り換えられ、前記第2流路切換弁は、冷媒が前記絞り機構を通過するように切り換えられ、
     前記第2運転モードでは、前記第1流路切換弁は、冷媒が前記膨張弁及び前記蒸発器を通過するように切り換えられ、前記第2流路切換弁は、冷媒が前記絞り機構を通過するように切り換えられる、
    空調装置。
  4.  請求項1又は2に記載の空調装置であって、
     暖房運転時に前記膨張弁及び前記蒸発器をバイパスするように冷媒の流路を切り換える第1流路切換弁を更に備え、
     前記絞り機構は、開度を調節可能な電気式絞り機構であり、
     前記第1運転モードでは、前記第1流路切換弁は、冷媒が前記膨張弁及び前記蒸発器をバイパスするように切り換えられ、前記電気式絞り機構は、冷媒の流れを絞るように調節され、
     前記第2運転モードでは、前記第1流路切換弁は、冷媒が前記膨張弁及び前記蒸発器を通過するように切り換えられ、前記電気式絞り機構は、冷媒の流れを絞るように調節される、
    空調装置。
  5.  請求項1から4のいずれか一つに記載の空調装置であって、
     前記膨張弁は、前記蒸発器を通過した冷媒の温度に応じて開度が調節される温度式膨張弁である、
    空調装置。
  6.  請求項1から5のいずれか一つに記載の空調装置であって、
     前記蒸発器の上流の冷媒と下流の冷媒との間で熱交換を行う内部熱交換器を更に備える、
    空調装置。
  7.  請求項1から6のいずれか一つに記載の空調装置であって、
     冷房運転時に前記蒸発器に導かれる冷媒の圧力が設定圧力を超えると開く差圧弁を更に備える、
    空調装置。
  8.  請求項1から7のいずれか一つに記載の空調装置であって、
     前記室外熱交換器は、
     冷媒が導入される冷媒入口と、
     前記冷媒入口と比較して高い位置に設けられ冷媒が導出される冷媒出口と、
    を有する、
    空調装置。
  9.  請求項1から8のいずれか一つに記載の空調装置であって、
     前記第1運転モードでは、
     前記加熱器は、前記圧縮機が吐出した高圧冷媒と前記車室へ導かれる空気とを熱交換させ、
     前記絞り機構は、前記加熱器から導出された冷媒を減圧膨張させ、
     前記室外熱交換器には、前記絞り機構にて減圧膨張した冷媒が流入し、
     前記受液器は、前記室外熱交換器から導出された低圧冷媒を気相冷媒と液相冷媒とに分離させ、
     前記圧縮機には、気相冷媒が導かれ、
     前記第2運転モードでは、
     前記加熱器は、前記圧縮機が吐出した高圧冷媒と前記車室へ導かれる空気とを熱交換させ、
     前記絞り機構は、前記加熱器から導出された冷媒を減圧膨張させ、
     前記室外熱交換器には、前記絞り機構にて減圧膨張した中間圧冷媒が流入し、
     前記受液器は、前記室外熱交換器から導出された冷媒を気相冷媒と液相冷媒に分離させ、
     前記膨張弁は、前記受液器から導かれる液相冷媒を減圧膨張させ、
     前記蒸発器は、前記膨張弁にて減圧膨張した低圧冷媒と前記車室へ導かれる空気とを熱交換させて冷媒を蒸発させ、
     前記圧縮機には、気相冷媒が導かれる、
    空調装置。
  10.  請求項1から9のいずれか一つに記載の空調装置であって、
     前記第1運転モードと前記第2運転モードとは、前記蒸発器を通過した空気の温度が予め設定された適正範囲内にて変動するように交互に切り換えられる、
    空調装置。
  11.  請求項1から10のいずれか一つに記載の空調装置であって、
     前記第1運転モードと前記第2運転モードとは、5秒から70秒の周期で交互に切り換えられる、
    空調装置。
  12.  請求項1から10のいずれか一つに記載の空調装置であって、
     前記第1運転モードと前記第2運転モードとは、12秒から55秒の周期で交互に切り換えられる、
    空調装置。
  13.  請求項1から10のいずれか一つに記載の空調装置であって、
     前記第1運転モードと前記第2運転モードとは、15秒から50秒の周期で交互に切り換えられる、
    空調装置。
  14.  請求項1から10のいずれか一つに記載の空調装置であって、
     前記第2運転モードにて、前記蒸発器の温度が第1設定温度以下である場合に、前記第1運転モードに切り換えられ、前記第1運転モードにて、前記蒸発器の温度が前記第1設定温度と比較して高く設定される第2設定温度以上である場合に前記第2運転モードに切り換えられる、
    空調装置。
  15.  請求項14に記載の空調装置であって、
     前記絞り機構が冷媒の流れを絞らない状態で、前記蒸発器にて冷媒を蒸発させると共に前記受液器への液相冷媒の貯留を促進する第3運転モードを更に有し、
     前記第2運転モードにて、前記蒸発器の温度が前記第1設定温度より低くならない状態が継続した場合には、前記第3運転モードに切り換えられる、
    空調装置。
  16.  請求項15に記載の空調装置であって、
     前記蒸発器の温度を検出する蒸発器温度検出器を更に備え、
     前記第2運転モードにて、前記蒸発器温度検出器が検出した温度が前記第1設定温度と剥離している場合に、前記第3運転モードに切り換えられる、
    空調装置。
  17.  請求項15に記載の空調装置であって、
     前記蒸発器の温度を検出する蒸発器温度検出器を更に備え、
     前記第2運転モードにて、前記蒸発器温度検出器が検出した温度が前記第1設定温度と剥離している時間が設定時間以上となった場合に、前記第3運転モードに切り換えられる、
    空調装置。
  18.  請求項1から17のいずれか一つに記載の空調装置であって、
     前記絞り機構が冷媒の流れを絞らない状態で、前記蒸発器にて冷媒を蒸発させると共に前記受液器への液相冷媒の貯留を促進する第3運転モードを更に有し、
     前記第1運転モードから前記第3運転モードに切り換える際には、前記第2運転モードを経由する、
    空調装置。
  19.  請求項15から18のいずれか一つに記載の空調装置であって、
     暖房運転時に前記膨張弁及び前記蒸発器をバイパスするように冷媒の流路を切り換える第1流路切換弁と、
     冷房運転時に前記絞り機構をバイパスするように冷媒の流路を切り換える第2流路切換弁と、
    を更に備え、
     前記第3運転モードでは、前記第1流路切換弁は、冷媒が前記膨張弁及び前記蒸発器を通過するように切り換えられ、前記第2流路切換弁は、冷媒が前記絞り機構をバイパスするように切り換えられる、
    空調装置。
  20.  請求項15から19のいずれか一つに記載の空調装置であって、
     前記第3運転モードでは、
     前記加熱器は、前記圧縮機が吐出した高圧冷媒が通過し、
     前記室外熱交換器には、前記加熱器を通過した高圧冷媒が流入し、
     前記受液器は、前記室外熱交換器から導出された冷媒を気相冷媒と液相冷媒に分離させて液相冷媒を貯留し、
     前記膨張弁は、前記受液器から導かれる液相冷媒を減圧膨張させ、
     前記蒸発器は、前記膨張弁にて減圧膨張した低圧冷媒と前記車室へ導かれる空気とを熱交換させて冷媒を蒸発させ、
     前記圧縮機には、気相冷媒が導かれる、
    空調装置。
  21.  請求項1から20のいずれか一つに記載の空調装置であって、
     前記室外熱交換器に着霜が発生したことを判定する着霜判定部を更に備え、
     前記着霜判定部が前記室外熱交換器に着霜が発生したと判定した場合に、前記第1運転モードから前記第2運転モードに切り換えられる、
    空調装置。
  22.  請求項21に記載の空調装置であって、
     前記着霜判定部が前記室外熱交換器に着霜が発生したと判定したときに、前記車室外の空気を取り入れて空調に用いる外気導入モードである場合には、前記車室外の空気に前記車室内の空気を混ぜて空調に用いる半内気モードに切り換えられる、
    空調装置。
PCT/JP2018/034283 2017-10-02 2018-09-14 空調装置 WO2019069666A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/651,771 US11267315B2 (en) 2017-10-02 2018-09-14 Air-conditioning device
EP18863956.1A EP3693197A4 (en) 2017-10-02 2018-09-14 AIR CONDITIONING DEVICE
CN201880062778.1A CN111163957B (zh) 2017-10-02 2018-09-14 空调装置

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2017193009 2017-10-02
JP2017-193009 2017-10-02
JP2017221741 2017-11-17
JP2017-221741 2017-11-17
JP2018-043559 2018-03-09
JP2018043559A JP6496434B1 (ja) 2017-10-02 2018-03-09 空調装置

Publications (1)

Publication Number Publication Date
WO2019069666A1 true WO2019069666A1 (ja) 2019-04-11

Family

ID=65995374

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/034283 WO2019069666A1 (ja) 2017-10-02 2018-09-14 空調装置

Country Status (2)

Country Link
US (1) US11267315B2 (ja)
WO (1) WO2019069666A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110285613A (zh) * 2019-06-28 2019-09-27 合肥美的电冰箱有限公司 水气分离装置、制冷设备及分离空气中水蒸气的方法
EP3982059A4 (en) * 2019-09-30 2022-08-17 Hangzhou Sanhua Research Institute Co., Ltd. HEAT MANAGEMENT SYSTEM

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11267315B2 (en) * 2017-10-02 2022-03-08 Marelli Cabin Comfort Japan Corporation Air-conditioning device
JP6676682B2 (ja) * 2018-03-09 2020-04-08 マレリ株式会社 空調装置
US20230106953A1 (en) * 2021-10-06 2023-04-06 LGL France S.A.S. Proper deicing end detection and defrost cycle optimization

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05319077A (ja) * 1991-04-26 1993-12-03 Nippondenso Co Ltd 自動車用空調装置
JPH0699729A (ja) * 1992-09-18 1994-04-12 Nippondenso Co Ltd 車両用ヒートポンプ式空調装置
JPH10297270A (ja) * 1997-02-28 1998-11-10 Denso Corp 車両用空調装置
JP2000161809A (ja) * 1998-09-24 2000-06-16 Denso Corp 冷凍サイクル装置
JP2001050572A (ja) * 1999-08-06 2001-02-23 Calsonic Kansei Corp 自動車用空気調和装置
JP2004155344A (ja) * 2002-11-07 2004-06-03 Mitsubishi Heavy Ind Ltd 車両用ヒートポンプ式空調装置
WO2011155204A1 (ja) * 2010-06-10 2011-12-15 株式会社デンソー ヒートポンプサイクル
JP2012020599A (ja) * 2010-07-12 2012-02-02 Tgk Co Ltd 複合弁および車両用冷暖房装置
JP2012030734A (ja) * 2010-08-02 2012-02-16 Tgk Co Ltd 車両用冷暖房装置
JP2013148229A (ja) * 2012-01-17 2013-08-01 Calsonic Kansei Corp 気液分離器及び車両用空気調和装置
JP2013535372A (ja) 2010-08-05 2013-09-12 ヴァレオ システム テルミク 冷媒を受け入れるための装置を備える空調ループ
JP2014009868A (ja) * 2012-06-28 2014-01-20 Denso Corp ヒートポンプサイクル
JP2014094671A (ja) * 2012-11-09 2014-05-22 Sanden Corp 車両用空気調和装置
WO2017022487A1 (ja) * 2015-08-03 2017-02-09 株式会社デンソー 冷凍サイクル装置
US20170057320A1 (en) * 2014-05-19 2017-03-02 Hanon Systems Outdoor heat exchanger
JP2017171284A (ja) * 2016-03-18 2017-09-28 株式会社デンソー 気液分離/受液装置、およびヒートポンプシステム
JP2017193009A (ja) 2016-04-20 2017-10-26 Ntn株式会社 作動装置および双腕型作動装置
JP2017221741A (ja) 2017-08-28 2017-12-21 キヤノン株式会社 画像生成装置、画像生成方法およびプログラム
JP2018043559A (ja) 2016-09-12 2018-03-22 頼博 熊澤 前後両方向に進むことができるフィンを装着するボード

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4465903B2 (ja) * 2000-04-28 2010-05-26 株式会社デンソー 車両用空調装置
US8419512B2 (en) * 2006-10-10 2013-04-16 Hdt Tactical Systems, Inc. Vehicle cabin heating cooling and ventilation system
JP2011005982A (ja) * 2009-06-26 2011-01-13 Denso Corp 車両用空調装置
JP5446524B2 (ja) * 2009-07-08 2014-03-19 株式会社デンソー 車両用空調装置
US9925877B2 (en) * 2011-01-21 2018-03-27 Sanden Holdings Corporation Vehicle air conditioning apparatus
CN103328238B (zh) * 2011-01-21 2015-11-25 三电有限公司 车辆用空气调节装置
CN103502030B (zh) * 2011-02-10 2016-06-29 三电有限公司 车辆用空气调节装置
CN105020920A (zh) * 2011-03-03 2015-11-04 三电有限公司 车辆用空气调节装置
JP5510367B2 (ja) * 2011-03-08 2014-06-04 株式会社デンソー 車両用空調装置
JP2012201216A (ja) * 2011-03-25 2012-10-22 Denso Corp 車両用空調装置
JP5533816B2 (ja) * 2011-08-08 2014-06-25 株式会社デンソー 車両用空調装置
JP5516537B2 (ja) * 2011-09-19 2014-06-11 株式会社デンソー 車両用空調装置
US8869545B2 (en) * 2012-05-22 2014-10-28 Nordyne Llc Defrosting a heat exchanger in a heat pump by diverting warm refrigerant to an exhaust header
JP6031931B2 (ja) * 2012-10-03 2016-11-24 株式会社デンソー 冷凍サイクル装置
CN104121724B (zh) * 2013-04-27 2018-10-26 浙江三花汽车零部件有限公司 一种空调系统及一种热交换器
JP6083339B2 (ja) * 2013-07-09 2017-02-22 株式会社デンソー 車両用空調装置
JP6192434B2 (ja) 2013-08-23 2017-09-06 サンデンホールディングス株式会社 車両用空気調和装置
US10317112B2 (en) * 2014-04-04 2019-06-11 Johnson Controls Technology Company Heat pump system with multiple operating modes
KR101591188B1 (ko) * 2014-07-07 2016-02-18 엘지전자 주식회사 축열식 공조장치 및 그 제어방법
US11067317B2 (en) * 2015-01-20 2021-07-20 Ralph Feria Heat source optimization system
JP6795725B2 (ja) * 2016-02-29 2020-12-02 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
JP2017165139A (ja) 2016-03-14 2017-09-21 カルソニックカンセイ株式会社 空調装置
US10907845B2 (en) * 2016-04-13 2021-02-02 Trane International Inc. Multi-functional heat pump apparatus
GB2563776C (en) * 2016-05-16 2020-12-02 Mitsubishi Electric Corp Air conditioning apparatus
JP2018071829A (ja) * 2016-10-25 2018-05-10 株式会社デンソー ヒートポンプサイクル装置
JP2018091536A (ja) * 2016-12-01 2018-06-14 株式会社デンソー 冷凍サイクル装置
JP6711258B2 (ja) * 2016-12-16 2020-06-17 株式会社デンソー 冷凍サイクル装置
JP2018122635A (ja) * 2017-01-30 2018-08-09 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
EP3598037B1 (en) * 2017-03-13 2024-02-21 Mitsubishi Electric Corporation Refrigeration cycle device
US11137164B2 (en) * 2017-05-15 2021-10-05 Carrier Corporation Control systems and methods for heat pump systems
KR102419898B1 (ko) * 2017-06-26 2022-07-12 엘지전자 주식회사 가스 히트 펌프 시스템
ES2899040T3 (es) * 2017-08-10 2022-03-09 Mitsubishi Electric Corp Dispositivo de ciclo de refrigeración
EP3680565B1 (en) * 2017-09-07 2021-11-10 Mitsubishi Electric Corporation Air conditioning device
US11267315B2 (en) * 2017-10-02 2022-03-08 Marelli Cabin Comfort Japan Corporation Air-conditioning device
CN111164360B (zh) * 2017-10-05 2021-12-14 三菱电机株式会社 空气调节装置
AU2017436890B2 (en) * 2017-10-27 2021-12-09 Mitsubishi Electric Corporation Refrigeration cycle device
JP6620390B2 (ja) * 2017-12-21 2019-12-18 本田技研工業株式会社 電動車両

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05319077A (ja) * 1991-04-26 1993-12-03 Nippondenso Co Ltd 自動車用空調装置
JPH0699729A (ja) * 1992-09-18 1994-04-12 Nippondenso Co Ltd 車両用ヒートポンプ式空調装置
JPH10297270A (ja) * 1997-02-28 1998-11-10 Denso Corp 車両用空調装置
JP2000161809A (ja) * 1998-09-24 2000-06-16 Denso Corp 冷凍サイクル装置
JP2001050572A (ja) * 1999-08-06 2001-02-23 Calsonic Kansei Corp 自動車用空気調和装置
JP2004155344A (ja) * 2002-11-07 2004-06-03 Mitsubishi Heavy Ind Ltd 車両用ヒートポンプ式空調装置
WO2011155204A1 (ja) * 2010-06-10 2011-12-15 株式会社デンソー ヒートポンプサイクル
JP2012020599A (ja) * 2010-07-12 2012-02-02 Tgk Co Ltd 複合弁および車両用冷暖房装置
JP2012030734A (ja) * 2010-08-02 2012-02-16 Tgk Co Ltd 車両用冷暖房装置
JP2013535372A (ja) 2010-08-05 2013-09-12 ヴァレオ システム テルミク 冷媒を受け入れるための装置を備える空調ループ
JP2013148229A (ja) * 2012-01-17 2013-08-01 Calsonic Kansei Corp 気液分離器及び車両用空気調和装置
JP2014009868A (ja) * 2012-06-28 2014-01-20 Denso Corp ヒートポンプサイクル
JP2014094671A (ja) * 2012-11-09 2014-05-22 Sanden Corp 車両用空気調和装置
US20170057320A1 (en) * 2014-05-19 2017-03-02 Hanon Systems Outdoor heat exchanger
WO2017022487A1 (ja) * 2015-08-03 2017-02-09 株式会社デンソー 冷凍サイクル装置
JP2017171284A (ja) * 2016-03-18 2017-09-28 株式会社デンソー 気液分離/受液装置、およびヒートポンプシステム
JP2017193009A (ja) 2016-04-20 2017-10-26 Ntn株式会社 作動装置および双腕型作動装置
JP2018043559A (ja) 2016-09-12 2018-03-22 頼博 熊澤 前後両方向に進むことができるフィンを装着するボード
JP2017221741A (ja) 2017-08-28 2017-12-21 キヤノン株式会社 画像生成装置、画像生成方法およびプログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3693197A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110285613A (zh) * 2019-06-28 2019-09-27 合肥美的电冰箱有限公司 水气分离装置、制冷设备及分离空气中水蒸气的方法
EP3982059A4 (en) * 2019-09-30 2022-08-17 Hangzhou Sanhua Research Institute Co., Ltd. HEAT MANAGEMENT SYSTEM

Also Published As

Publication number Publication date
US11267315B2 (en) 2022-03-08
US20200254846A1 (en) 2020-08-13

Similar Documents

Publication Publication Date Title
US9250005B2 (en) Air conditioner for vehicle with heat pump cycle
JP6332560B2 (ja) 車両用空調装置
WO2019069666A1 (ja) 空調装置
JP5287578B2 (ja) 車両用空調装置
JP5920133B2 (ja) 車両用空調装置
WO2019235414A1 (ja) 車両用冷凍サイクル装置
JP6332193B2 (ja) 車両用空調装置
JP7275621B2 (ja) 冷凍サイクル装置
JP2012250708A (ja) 車両用空調装置
WO2017159495A1 (ja) 空調装置
JP2004224107A (ja) 車両用空調装置
WO2020050038A1 (ja) 冷凍サイクル装置
JP5316264B2 (ja) 車両用空調装置
US10589597B2 (en) Vehicle air conditioner with auxiliary heat exchanger
WO2020050039A1 (ja) 冷凍サイクル装置
JP6496434B1 (ja) 空調装置
CN111819096B (zh) 空调装置
JP6544287B2 (ja) 空調装置
JP2019188852A (ja) 空調装置
JP7405028B2 (ja) 冷凍サイクル装置
WO2023248868A1 (ja) ヒートポンプサイクル装置
JP6897185B2 (ja) 空調装置
KR101418855B1 (ko) 차량용 히트 펌프 시스템
WO2023053746A1 (ja) 冷凍サイクル装置
JP2013049429A (ja) 車両用空調装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18863956

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018863956

Country of ref document: EP

Effective date: 20200504