WO2019066244A1 - 전지 셀 표면 냉각을 위한 불균일 유로를 구비한 쿨링 자켓 및 이를 포함하는 배터리 모듈 - Google Patents

전지 셀 표면 냉각을 위한 불균일 유로를 구비한 쿨링 자켓 및 이를 포함하는 배터리 모듈 Download PDF

Info

Publication number
WO2019066244A1
WO2019066244A1 PCT/KR2018/009118 KR2018009118W WO2019066244A1 WO 2019066244 A1 WO2019066244 A1 WO 2019066244A1 KR 2018009118 W KR2018009118 W KR 2018009118W WO 2019066244 A1 WO2019066244 A1 WO 2019066244A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
manifold channel
plate
cooling plate
battery cell
Prior art date
Application number
PCT/KR2018/009118
Other languages
English (en)
French (fr)
Inventor
차훈
손상일
최용석
류상우
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201880014732.2A priority Critical patent/CN110366796A/zh
Priority to US16/489,041 priority patent/US11217836B2/en
Priority to JP2019547086A priority patent/JP7027641B2/ja
Priority to EP18861668.4A priority patent/EP3598567A4/en
Publication of WO2019066244A1 publication Critical patent/WO2019066244A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/617Types of temperature control for achieving uniformity or desired distribution of temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • H01M10/6555Rods or plates arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • H01M10/6557Solid parts with flow channel passages or pipes for heat exchange arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/211Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for pouch cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a cooling jacket for cooling a surface of a battery cell, and more particularly, to a cooling jacket optimized for cooling a battery cell having a non-uniform heating pattern according to a region, Module.
  • the secondary battery cell can be repeatedly charged and discharged by the electrochemical reaction between the components including the positive and negative current collectors, the separator, the active material, and the electrolyte. Since the battery modules are manufactured in such a manner that these battery cells are closely packed in a narrow space, it is important to easily discharge the heat generated in each battery cell. Since the charging or discharging process of the battery cell is performed by the electrochemical reaction, if the heat of the battery module generated in the charging and discharging process can not be effectively removed, the heat accumulation occurs and consequently the deterioration of the battery module is promoted. Fire or explosion may occur.
  • a battery pack having a high output capacity and a battery pack to which the battery module is mounted is necessarily provided with a cooling device for cooling battery cells built therein.
  • indirect cooling method there are two types of cooling apparatuses, indirect cooling method and indirect cooling method.
  • indirect cooling method the structure is simple but the cooling performance is somewhat lower and the energy density of the battery module is low.
  • the cooling performance is better than the air-cooling method, but there is a problem in that it is not sufficient to satisfy the cooling performance required for the battery module / pack in the high-temperature heat condition due to the heat transfer path and the like.
  • the perimeter cooling plate includes a thermally conductive sheet-like plate 3 made of a material such as aluminum or an aluminum alloy, and a cooling tube 4 forming a cooling-water flow path at the edge of the sheet- The cooling water is supplied to the cooling tube 4 in a state where the battery cell 1 is in contact with the one surface to absorb the heat of the battery cell 1.
  • These perimeter cooling plates have better cooling performance than conventional cooling plates.
  • the portion adjacent to the electrode lead has the greatest heat generation as compared with other portions. Therefore, the heat generation pattern of the battery cell shows a somewhat different but uneven heat generation pattern in which the temperature becomes higher as the electrode lead is closer to the electrode lead.
  • the design of the perimeter cooling plate does not consider the uneven heat generation pattern in the battery cell as described above, and the temperature variation in the battery cell is still large even if the perimeter cooling plate is used. Therefore, it is necessary to design a new cooling plate which can cool the high-temperature portion of the battery cell more effectively.
  • a cooling jacket for cooling a battery cell includes a cooling plate having a plate shape and a plurality of cooling channels provided inside the cooling plate, A cooling water supply manifold channel and a cooling water discharge manifold channel which are disposed on both sides of the cooling plate and extend outward from the inside of the cooling plate so that one end thereof is exposed to the outside; And non-uniform cooling channels spaced a predetermined distance apart from each other and having opposite ends connected across the cooling plate to the cooling water supply manifold channel and the discharge manifold channel.
  • the width of the cooling channels located inside the first low temperature part of the cooling plate to be in contact with the electrode lead withdrawing part of the battery cell among the nonuniform cooling channels is larger than the width of the cooling channels located at the other part of the cooling plate .
  • the width of the uneven cooling channel can be gradually increased from the second low temperature portion of the cooling plate to the first low temperature portion of the cooling plate.
  • the plurality of cooling channels may be embedded in the cooling plate in the form of a tubular body.
  • the cooling plate may include an edge portion formed on both sides of the cooling plate so as to be thicker than other regions along the longitudinal direction of the cooling plate.
  • the plurality of cooling channels may be formed integrally with the cooling plate.
  • a flexible connection tube coupled to the cooling water supply manifold channel and the opening of the cooling water discharge manifold channel.
  • the non-uniform cooling channels may be disposed to cross the cooling water supply manifold channel and the cooling water discharge manifold channel.
  • Both ends of the non-uniform cooling channels can take a rounded shape.
  • a battery pack comprising: a battery cell closely disposed on an upper surface and a lower surface of the cooling jacket; And a stacking frame which supports the cooling jacket and the battery cells and is stacked together so as to be stacked in one direction, and the stacking frames are assembled together to form cooling water supply and discharge pipes along the stacking direction
  • the cooling water supply manifold channel and one end of the cooling water discharge manifold channel may be connected to the cooling water supply and discharge pipe, respectively.
  • the high temperature portion in the battery cell can be effectively cooled as the flow rate of the cooling water increases. As a result, the temperature variation within the battery cell can be significantly reduced.
  • the heat transfer path can be reduced and reduced compared with the conventional perimeter type cooling plate, and the thermal conductivity can be remarkably improved.
  • a battery module having high safety and life characteristics due to high cooling performance can be provided by including the above-described cooling jacket.
  • FIG. 1 is a view schematically showing a cooling structure of a perimeter cooling plate according to a conventional technique.
  • FIG. 2 is a perspective view of a cooling jacket according to an embodiment of the present invention.
  • FIG. 3 is a perspective view schematically showing the internal construction of the cooling jacket of FIG. 2;
  • FIG. 4 is a perspective view showing a state where battery cells are arranged in the cooling jacket of FIG.
  • FIG 5 is a view illustrating a plurality of cooling channels according to an embodiment of the present invention.
  • FIG. 6 is a view illustrating a connection portion of a non-uniform cooling channel according to another embodiment of the present invention.
  • FIG. 7 is a view illustrating a portion of a plurality of cooling channels according to another embodiment of the present invention.
  • FIG. 8 is a perspective view schematically showing a configuration of a battery module according to an embodiment of the present invention.
  • FIG. 2 is a perspective view of a cooling jacket according to an embodiment of the present invention
  • FIG. 3 is a perspective view schematically illustrating an internal configuration of the cooling jacket of FIG. 2
  • FIG. 4 is a state in which battery cells are arranged in the cooling jacket of FIG. FIG.
  • a cooling jacket 10 for cooling a battery cell 20 includes a cooling plate 100 in the form of a plate, a plurality of cooling channels 100 provided in the cooling plate 100, (200).
  • the battery cell 20 may be a pouch type secondary battery.
  • the cooling jacket 10 according to the present invention has a shorter heat transfer path than the perimeter type cooling plate according to the related art and has excellent cooling performance and can reduce a temperature deviation in the battery cell 20, 20 can be further extended.
  • the cooling plate 100 may be provided in the form of a sheet-like plate.
  • the metal material may be aluminum or aluminum alloy having high thermal conductivity and light weight among metals.
  • the metal material is not limited to these, and plastic material such as polyethylene (PolyEthylene) having low thermal conductivity may be applied.
  • Ceramic materials such as aluminum nitride and silicon carbide other than metals having a very high thermal conductivity such as copper, gold and silver are also possible.
  • the cooling plate 100 may include a wide and flat plate surface 110 and edge portions 120 formed on both sides of the plate surface 110 to be thicker than the plate surface 110.
  • the battery cell 20 may be placed on the cooling plate 100 so that one surface of the battery cell 20 abuts against the plate surface 110 of the cooling plate 100. [ For example, one battery cell 20 can be closely disposed on the upper and lower surfaces of the cooling plate 100, and the heat exchange between the cooling plate 100 and the battery cell 20 can be performed in this state.
  • the edge portion 120 of the cooling plate 100 may extend from one end to the other along the longitudinal or longitudinal direction (Y-axis direction) of the cooling plate 100.
  • the interval between the both edge portions 120 can be predetermined by the width of the battery cell 20 to be cooled.
  • the battery cell 20 is positioned between the two edge portions 120, and the left and right flow can be blocked by the edge portion 120.
  • the edge portion 120 may be provided in a bar shape, for example, to support the plate surface of the cooling plate 100, which is manufactured in a thin shape, and to reinforce the mechanical strength.
  • the cooling water supply manifold channel 210 and the cooling water discharge manifold channel 220 may be located inside the edge portion 120. Since the edge portion 120 of the cooling plate 100 is formed thicker than the plate surface, it is possible to house the cooling water supply manifold channel 210 and the cooling water discharge manifold channel 220 having a relatively large diameter Do.
  • the cooling water supply manifold channel 210 and the cooling water discharge manifold channel 220 serve as passages for supplying and discharging cooling water to the inside and the outside of the cooling plate 100.
  • the plurality of cooling channels 200 may include the cooling water supply manifold channel 210, the cooling water discharge manifold channel 220, and the uneven cooling channels 230 .
  • the plurality of cooling channels 200 can be embedded in the cooling plate 100 in the form of a tubular body through which cooling water can flow.
  • the cooling water supply manifold channel 210 and the cooling water discharge manifold channel 220 may be located inside the edge portion 120 of the cooling plate 100 as described above and the non- May be located inside the plate surface 110 of the cooling plate.
  • the cooling water supply and discharge manifold channel 220 may extend along the longitudinal direction of the cooling plate 100 in the form of a cylindrical pipe, and the non-uniform cooling channels 230 may be embedded in the plate surface 110 of the cooling plate
  • the cooling plate 100 can be extended in the lateral direction of the cooling plate 100 in a thin and flat pipe shape.
  • the nonuniform cooling channels 230 are basically large in width in terms of thickness, and each width can be formed non-uniformly.
  • One end 210a of the cooling water supply manifold channel and one end 220a of the cooling water discharge manifold channel may extend outward from the inside of the cooling plate 100.
  • One end (210a, 220a) of the cooling water supply and discharge manifold channel extended to the outside can be connected to an external piping such as a cooling water supply pipe or a cooling water discharge pipe.
  • the cooling water supply and discharge manifold channel 220 may include a plurality of connection ports through which uneven cooling channels 230 can be connected on the path.
  • the non-uniform cooling channels 230 are spaced apart from each other by a predetermined distance and cross the plate surface 110 of the cooling plate in the lateral direction (X axis direction), and both ends thereof are connected to the cooling water supply manifold channel 210 and the discharge manifold channel 220, respectively.
  • the cooling water flows outside the cooling jacket 10 through the cooling water supply manifold channel 210, flows along the edge portion 120 of the cooling plate 100, and is branched into the uneven cooling channels 230 The entire surface of the cooling plate 100 can be cooled rapidly.
  • the cooling water having passed through the uneven cooling channels 230 may be discharged to the outside of the cooling jacket 10 along the cooling water discharge manifold channel 220 again.
  • non-uniform cooling channels 230 of the present embodiment may be formed to have a non-uniform width depending on the position in which they are disposed.
  • the unidirectional battery cell 20 has two electrode leads 21 oriented in the same direction and a portion where the electrode leads 21 are placed in the first low temperature portion 100a of the cooling plate .
  • the first low-temperature portion 100a of the cooling plate is brought into contact with the electrode lead 21 of the battery cell 20,
  • the second low temperature part 100b of the cooling plate 100 is a conceptual definition of a central area of the cooling plate 100.
  • This embodiment assumes the unidirectional battery cell 20 in which the positive electrode lead and the negative electrode lead are adjacent to each other and assumes a position where the electrode lead 21 is placed And the uneven cooling channels 230 are designed in consideration of the uneven cooling channels 230. That is, when a cooling jacket is manufactured by assuming a bidirectional battery cell in which the positive electrode lead and the negative electrode lead are distant from each other in the opposite directions, the first low temperature portion 100a may be positioned at two positions corresponding to the positions of the positive electrode lead and the negative electrode lead.
  • the non-uniform cooling channels 230 may be designed.
  • the non-uniform cooling channels 230 in the first low temperature portion 100a are formed to be larger than the widths of the non-uniform cooling channels 230 in the other portions.
  • the nonuniform cooling channels 230 are gradually expanded in width from the second low temperature portion 100b to the first low temperature portion 100a of the cooling plate 100 and gradually changed in width from the second low temperature portion 100b toward the cooling water inlet and outlet .
  • the widths of the first outermost first nonuniform cooling channel 230a, second, third, and fourth nonuniform cooling channels 230b, 230c, and 230d may be gradually widened.
  • the width of the nonuniform cooling channels 230 after the fifth unidirectional battery cell 20 is substantially uniform, considering that the unheated battery cell 20 is relatively far from the electrode leads 21.
  • the cooling plate 100 When the widths of the uneven cooling channels 230 in the cooling plate 100 are gradually increased from one end of the cooling plate 100 to the other end of the cooling plate 100, The outermost uneven cooling channel 230a has the largest heat capacity. Therefore, the cooling plate 100 has a relatively larger heat capacity than the first low-temperature portion 100a and the second low-temperature portion 100b.
  • the heat generation of the battery cell 20 has been described above as the heat generation amount of the battery cell 20 is the closest to the electrode lead 21. Therefore, the first low temperature portion 100a of the cooling plate having the largest heat capacity faces the adjacent portion of the electrode lead 21 of the battery cell 20 so that the temperature of the adjacent portion of the electrode lead 21 can be lowered to a different level have.
  • the non-uniform cooling channels 230 of the present invention are configured to be able to supply a differential flow rate corresponding to the heat generation pattern in the battery cell 20, thereby reducing the temperature variation in the battery cell 20.
  • the cooling jacket 10 of the present invention can improve the heat transfer path compared to the conventional perimeter cooling plate in which a plurality of cooling channels 200 are embedded in the cooling plate 100, .
  • the cross-sectional area of the entire flow path is larger than that of the perimeter cooling plate, even if the flow rate is slowed when the flow rate per module is 1LPM (Litter per Minute)
  • the cooling water can be circulated even when the cooling water circulation pump of low output is used.
  • FIG. 6 is a view illustrating a connection portion of a non-uniform cooling channel according to another embodiment of the present invention.
  • the cooling jacket 10 according to another embodiment of the present invention is configured such that both ends forming the connection portion 231 of the uneven cooling channels 230 are rounded, And may be configured to be connected to the channels 210 and 220.
  • the non-uniform cooling channel 230 may be configured to have a straight line section and a curved line section.
  • a curved line section between the straight line of the cooling water supply manifold channel 210 and the straight line section of the non-uniform cooling channel 230, eddy formation is alleviated at the branch point where the cooling water flow is changed as compared with the above embodiment, Can be reduced.
  • the cooling water flow in the cooling channel smoothes and the flow velocity can be prevented from lowering.
  • FIG. 7 is a view illustrating a portion of a plurality of cooling channels according to another embodiment of the present invention.
  • a plurality of cooling channels 200 and a cooling plate 100 may be integrally formed. That is, unlike the above-described embodiment in which a plurality of cooling channels 200 are manufactured as separate components and then embedded in the cooling plate 100, the cooling jacket of the present embodiment is provided with a plurality of cooling channels 200 are formed integrally with each other.
  • the cooling jacket is provided with a connection tube 210a which can be coupled to the opening 210b of the cooling water supply manifold channel and the opening 220b of the cooling water discharge manifold channel to facilitate connection with the external cooling water supply / (240).
  • the connection tube 240 may be formed of a deformable flexible material. When the connection tube 240 is used, the cooling jacket 10 can be more easily connected to the external cooling water supply and discharge pipe.
  • FIG. 8 is a perspective view schematically showing a configuration of a battery module according to an embodiment of the present invention.
  • the battery module according to the present invention includes the above-described cooling jacket 10, a battery cell 20 disposed in close contact with the upper and lower surfaces of the cooling jacket 10, And a stacking frame 30 that supports the cells 20 and is assembled with each other and stacked in one direction.
  • the stacking frame 30 is a means for stacking the battery cells 20 and is configured to prevent the flow of the battery cells 20 by holding the battery cells 20 and to stack the battery cells 20 to guide assembly of the battery cells 20 .
  • the stacking frame 30 can be assembled together, for example, in a snap-fit manner.
  • the stacking frames 30 may be provided with pipe-forming holes 31 and 32 on one side thereof, and may be provided so that the pipe-forming holes 31 and 32 form cooling water supply and discharge pipes along the stacking direction have. In such a case, there is no need to separately add piping parts for supplying and discharging cooling water, and the cost can be reduced and the configuration of the battery module can be made compact.
  • one end of the cooling water supply manifold channel 210 and one end of the cooling water discharge manifold channel 220 may be directly connected to the cooling water supply and discharge pipe, respectively. Accordingly, the battery module can circulate the cooling water through the cooling water supply and discharge pipe formed by assembling the stacking frames, and the cooling jackets 10 are connected to the cooling water supply and discharge pipe to cool the battery cells 20 .
  • the battery module may further include various devices (not shown) such as a battery management system (BMS), a current sensor, a fuse, and the like for controlling charge and discharge of the battery cells 20.
  • BMS battery management system
  • Such a battery module may be used as an energy source for an electric vehicle, a hybrid car or a power storage device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

본 발명에 따른 전지 셀 냉각용 쿨링 자켓은 판재 형태의 쿨링 플레이트와 상기 쿨링 플레이트의 내부에 마련되는 복수의 냉각 채널들을 구비하고 전지 셀의 일면에 밀착 배치되어 전지 셀의 열을 흡수하는 쿨링 자켓으로서, 상기 복수의 냉각 채널들은, 상기 쿨링 플레이트의 양쪽 사이드에 하나씩 배치되며 일단이 외부로 노출되게 상기 쿨링 플레이트 내부에서 외부로 연장되는 냉각수 공급 매니폴드 채널과 냉각수 배출 매니폴드 채널; 및 상호 간 소정 간격 이격 배치되고 상기 쿨링 플레이트를 가로질러 양단부가 상기 냉각수 공급 매니폴드 채널과 배출 매니폴드 채널에 연결되며, 폭이 불균일하게 형성된 불균일 냉각 채널들을 포함할 수 있다.

Description

전지 셀 표면 냉각을 위한 불균일 유로를 구비한 쿨링 자켓 및 이를 포함하는 배터리 모듈
본 발명은 전지 셀 표면 냉각을 위한 쿨링 자켓에 관한 것으로서, 보다 구체적으로는, 발열량이 가장 큰 전극 리드 부분 때문에 영역에 따라 불균일한 발열 양상을 보이는 전지 셀 냉각에 최적화된 쿨링 자켓 및 이를 포함하는 배터리 모듈에 관한 것이다.
본 출원은 2017년 09월 29일자로 출원된 한국 특허출원 번호 제10-2017-0127474호에 대한 우선권주장출원으로서, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 인용에 의해 본 출원에 원용된다.
이차전지 전지 셀은 양극 및 음극 집전체, 세퍼레이터, 활물질, 전해액 등을 포함하여 구성 요소들 간의 전기 화학적 반응에 의하여 반복적인 충방전이 가능하다. 배터리 모듈은 이러한 전지 셀들이 좁은 공간에 밀집되는 형태로 제조되기 때문에, 각 전지 셀에서 발생하는 열을 용이하게 방출하는 것이 중요하다. 전지 셀의 충전 또는 방전의 과정은 전기 화학적 반응에 의하여 이루어지므로, 충방전 과정에서 발생한 배터리 모듈의 열이 효과적으로 제거되지 못하면, 열축적이 일어나고 결과적으로 배터리 모듈의 열화가 촉진되고, 경우에 따라서는 발화 또는 폭발이 일어날 수 있다.
따라서, 고출력 대용량의 배터리 모듈 및 그것이 장착된 배터리 팩에는 그것에 내장되어 있는 배터리 셀들을 냉각시키는 냉각장치가 반드시 필요하다.
일반적으로 냉각장치에는 간접 공냉 방식 또는 간접 수냉 방식, 두 가지를 들 수 있는데, 간접 공냉 방식의 경우 구조가 간단하나 냉각성능이 다소 떨어지며 배터리 모듈의 에너지 밀도가 낮다는 단점이 있다.
간접 수냉 방식의 경우, 공냉 방식에 비해 냉각 성능이 우수하나 열전달 경로 등의 문제로 고발열 조건의 배터리 모듈/팩에 요구되는 냉각 성능을 충족시키기에 부족한 면이 있다.
도 1은 종래 기술에 따른 퍼리미터(perimeter) 냉각판을 사용한 전지 셀(1) 냉각 방식을 도시한 도면이다. 도 1을 참조하면, 퍼리미터 냉각판은 알루미늄 내지 알루니늄 합금 등의 소재로 제작된 열전도성 시트형 판재(3)와, 시트형 판재의 가장자리에 냉각수 유로를 형성하는 냉각 튜브(4)를 포함하며, 일면에 전지 셀(1)을 접촉시킨 상태에서 냉각 튜브(4)에 냉각수를 공급하여 전지 셀(1)의 열을 흡수할 수 있게 구성되어 있다. 이러한 퍼리미터 냉각판은 기존의 일반적인 냉각판에 비해 냉각 성능이 우수한 편에 속한다.
한편, 전지 셀의 전극 리드(2)는 외부 장치 또는 다른 전지 셀들과 전기적으로 연결되는 단자 역할을 하는 구성이기 때문에, 전극 리드 인접 부분이 다른 부분에 비해 발열이 가장 심하다. 따라서 전지 셀의 발열 양상을 살펴보면, 다소 차이는 있으나 전극 리드에 가까울수록 온도가 높아지는 불균등 발열 양상을 보인다.
그런데 퍼리미터 냉각판은 상술한 바와 같이 전지 셀 내 불균등 발열 양상을 전혀 고려하지 않은 설계여서 이를 사용하더라도 전지 셀 내 온도 편차가 여전히 크게 나타나고 있다. 따라서 전지 셀 내 고온부를 보다 효과적으로 냉각시킬 수 있는 새로운 냉각판 설계가 필요한 실정이다.
따라서, 본 발명은 상기와 같은 문제점을 해결하기 위해 창안된 것으로서, 전지 셀의 불균등 발열 양상에 따른 온도 편차를 줄일 수 있는 전지 셀 냉각용 쿨링 자켓 및 이를 포함하는 배터리 모듈을 제공하는 것이다.
본 발명의 다른 목적 및 장점들은 하기의 설명에 의해서 이해될 수 있으며, 본 발명의 실시예에 의해 보다 분명하게 알게 될 것이다. 또한, 본 발명의 목적 및 장점들은 특허 청구 범위에 나타낸 수단 및 그 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.
본 발명에 따른 전지 셀 냉각용 쿨링 자켓은, 판재 형태의 쿨링 플레이트와 상기 쿨링 플레이트의 내부에 마련되는 복수의 냉각 채널들을 구비하고 전지 셀의 일면에 밀착 배치되어 전지 셀의 열을 흡수하는 쿨링 자켓으로서, 상기 복수의 냉각 채널들은, 상기 쿨링 플레이트의 양쪽 사이드에 하나씩 배치되며 일단이 외부로 노출되게 상기 쿨링 플레이트 내부에서 외부로 연장되는 냉각수 공급 매니폴드 채널과 냉각수 배출 매니폴드 채널; 및 상호 간 소정 간격 이격 배치되고 상기 쿨링 플레이트를 가로질러 양단부가 상기 냉각수 공급 매니폴드 채널과 배출 매니폴드 채널에 연결되며, 폭이 불균일하게 형성된 불균일 냉각 채널들을 포함할 수 있다.
상기 불균일 냉각 채널들 중, 상기 전지 셀의 전극 리드 인출 부분과 접촉하게 될 상기 쿨링 플레이트의 제1저온부 내부에 위치하는 냉각 채널들의 폭은 상기 쿨링 플레이트의 다른 부분에 위치하는 냉각 채널들의 폭보다 클 수 있다.
상기 쿨링 플레이트의 제2저온부에서 상기 쿨링 플레이트의 제1저온부로 갈수록 상기 불균일 냉각 채널의 폭이 단계적으로 확장될 수 있다.
상기 복수의 냉각 채널들은 관상체로 형태로서 상기 쿨링 플레이트 내부에 매입될 수 있다.
상기 쿨링 플레이트는 상기 쿨링 플레이트의 길이 방향을 따라 양쪽 사이드에 다른 영역보다 두껍게 형성된 에지부를 포함할 수 있다.
상기 복수의 냉각 채널들은 상기 쿨링 플레이트에 일체로 형성될 수 있다.
상기 냉각수 공급 매니폴드 채널과 상기 냉각수 배출 매니폴드 채널의 개구에 결합되는 가요성의 연결튜브를 더 포함할 수 있다.
상기 불균일 냉각 채널들은 상기 냉각수 공급 매니폴드 채널과 상기 냉각수 배출 매니폴드 채널에 대해 교차하게 배치될 수 있다.
상기 불균일 냉각 채널들의 양단부는, 라운드진 형태를 취할 수 있다.
본 발명의 다른 양태에 따르면, 상술한 쿨링 자켓의 상면 및 하면에 밀착 배치되는 전지셀; 및 상기 쿨링 자켓과 전지셀을 지지하며, 상호 간 조립되어 일 방향으로 적층 가능하게 마련되는 적층용 프레임들을 포함하며, 상기 적층용 프레임은 상호 간 조립되어 적층 방향을 따라 냉각수 공급 및 배출관을 형성하는 배관 형성홀을 구비하며, 상기 냉각수 공급 매니폴드 채널과 상기 냉각수 배출 매니폴드 채널의 일단들은 각각 상기 냉각수 공급 및 배출관에 연결되게 구성된 배터리 모듈이 제공될 수 있다.
본 발명의 일 측면에 따르면, 전극 리드에 인접할수록 쿨링 자켓의 냉각 채널 폭이 확장되어 냉각수 유량이 늘어남에 따라 전지 셀 내 고온부를 효과적으로 냉각시킬 수 있다. 이에 따라 전지 셀 내 온도 편차를 현저히 감소시킬 수 있다.
또한, 쿨링 자켓 내부에 복수의 냉각 채널을 구성함으로써 종래의 퍼리미터 방식의 냉각판 대비 열전달 경로가 감소하여 줄어들어 열전도율이 현저히 향상될 수 있다.
본 발명의 또 다른 측면에 따르면, 상술한 쿨링 자켓을 포함함으로써 높은 냉각 성능에 의해 안전성과 수명 특성이 우수한 배터리 모듈이 제공될 수 있다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 후술할 발명의 상세한 설명과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니된다.
도 1은 종래의 기술에 따른 퍼리미터 냉각판의 냉각 구성을 개략적으로 도시한 도면이다.
도 2는 본 발명의 일 실시예에 따른 쿨링 자켓의 사시도이다.
도 3은 도 2의 쿨링 자켓의 내부 구성을 개략적으로 도시한 사시도이다.
도 4는 도 2의 쿨링 자켓에 전지 셀을 배치한 상태를 도시한 사시도이다.
도 5는 본 발명의 일 실시예에 따른 복수의 냉각 채널을 도시한 도면이다.
도 6은 본 발명의 다른 실시예에 따른 불균일 냉각 채널의 연결부를 도시한 도면이다.
도 7은 본 발명의 또 다른 실시예에 따른 복수의 냉각 채널의 일 부분을 도시한 도면이다.
도 8은 본 발명의 일 실시예에 따른 배터리 모듈 구성을 개략적으로 도시한 사시도이다.
본 발명은 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명함으로써 더욱 명백해 질 것이다. 여기서 설명되는 실시예는 발명의 이해를 돕기 위하여 예시적으로 나타낸 것이며, 본 발명은 여기서 설명되는 실시예와 다르게 다양하게 변형되어 실시될 수 있음이 이해되어야 할 것이다. 또한, 발명의 이해를 돕기 위하여, 첨부된 도면은 실제 축척대로 도시된 것이 아니라 일부 구성요소의 치수가 과장되게 도시될 수 있다.
즉, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
또한, 본 발명을 설명함에 있어 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.
도 2 는 본 발명의 일 실시예에 따른 쿨링 자켓의 사시도, 도 3은 도 2의 쿨링 자켓의 내부 구성을 개략적으로 도시한 사시도, 도 4는 도 2의 쿨링 자켓에 전지 셀을 배치한 상태를 도시한 사시도이다.
이들 도면들을 참조하면, 본 발명의 일 실시예에 따른 전지 셀(20) 냉각용 쿨링 자켓(10)은 판재 형태의 쿨링 플레이트(100)와, 쿨링 플레이트(100) 내부에 마련되는 복수의 냉각 채널(200)들을 포함할 수 있다. 여기서 상기 전지 셀(20)은 파우치형 이차전지일 수 있다.
자세히 후술하겠지만 본 발명의 쿨링 자켓(10)은, 종래 기술에 따른 퍼리미터 방식의 냉각판과 비교할 때 열전달 경로가 짧아 냉각 성능이 우수하며 전지 셀(20) 내 온도 편차를 감소시킬 수 있어 전지 셀(20)의 수명을 보다 연장시킬 수 있다.
구체적으로 쿨링 자켓(10)을 구성을 살펴보면, 우선 쿨링 플레이트(100)는 시트형 판재 형태로 마련될 수 있다. 상기 금속 소재는 금속 중에서도 열전도성이 높고 경량인 알루미늄 또는 알루미늄 합금이 사용될 수 있지만, 이들만으로 한정되는 것은 아니며 열 전도도가 낮은 폴리에틸렌(PolyEthylene)과 같은 플라스틱 소재를 적용하여도 무방하다. 구리, 금, 은과 같은 열 전도도가 매우 높은 금속 소재나 금속이외의 질화알루미늄, 탄화규소와 같은 세라믹 물질도 가능하다.
쿨링 플레이트(100)는 넓고 평평한 판면(110)과 판면(110) 양쪽 사이드에 판면(110)보다 두껍게 형성되는 에지부(120)를 포함할 수 있다. 쿨링 플레이트(100)의 판면(110)에 전지 셀(20)의 일면이 맞닿게 전지 셀(20)이 쿨링 플레이트(100)에 놓일 수 있다. 예컨대, 쿨링 플레이트(100)의 상면과 하면에 하나씩의 전지 셀(20)이 밀착 배치될 수 있고, 이 상태에서 쿨링 플레이트(100)와 전지 셀(20)의 열 교환이 이루어질 수 있다.
쿨링 플레이트(100)의 에지부(120)는 쿨링 플레이트(100)의 길이 방향 또는 세로 방향(Y축 방향)을 따라 일단에서 타단까지 연장된 형태로 마련될 수 있다. 양쪽 에지부(120) 사이의 간격은 냉각 대상 전지 셀(20)의 폭에 의해 미리 결정될 수 있다. 이 경우 전지 셀(20)은 양쪽 에지부(120) 사이에 위치되는데, 에지부(120)에 의해 좌우 유동이 저지될 수 있고 쿨링 플레이트(100) 상에 배치할 때 위치가 틀어지지 않고 바르게 가이드될 수 있다.
에지부(120)는 도 2와 같이, 예컨대 바(bar) 형태로 마련되어 박형으로 제작되는 쿨링 플레이트(100)의 판면을 지지하고 기계적 강도를 보강하는 역할을 할 수 있다.
또한, 후술하겠으나, 에지부(120)의 내부에는 냉각수 공급 매니폴드 채널(210)과 냉각수 배출 매니폴드 채널(220)이 위치할 수 있다. 쿨링 플레이트(100)의 에지부(120)는 판면보다 두께가 크게 형성되기 때문에 직경이 상대적으로 크게 형성된 냉각수 공급 매니폴드 채널(210)과 냉각수 배출 매니폴드 채널(220)을 내부에 수용하는 것이 가능하다.
이들 냉각수 공급 매니폴드 채널(210)과 냉각수 배출 매니폴드 채널(220)은 쿨링 플레이트(100) 내외부로 냉각수를 공급 및 배출시키는 통로 역할을 하는 구성으로 쿨링 플레이트(100)에 원활한 유량 공급을 위해서는 그 직경이 클수록 좋다.
복수의 냉각 채널(200)은, 도 3과 도 5를 같이 참조하면, 상기 냉각수 공급 매니폴드 채널(210), 냉각수 배출 매니폴드 채널(220), 그리고 불균일 냉각 채널(230)들을 포함할 수 있다. 이들 복수의 냉각 채널(200)들은 냉각수가 유동할 수 있는 관상체로 형태로서 쿨링 플레이트(100) 내부에 매입될 수 있다.
보다 구체적으로, 상기 냉각수 공급 매니폴드 채널(210)과 냉각수 배출 매니폴드 채널(220)은 상술한 바와 같이 쿨링 플레이트(100)의 에지부(120) 내부에 위치할 수 있고, 불균일 냉각 채널(230)들은 쿨링 플레이트의 판면(110) 내부에 위치할 수 있다.
예컨대, 냉각수 공급 및 배출 매니폴드 채널(220)은 원통형 파이프 형태로 쿨링 플레이트(100)의 세로 방향을 따라 연장 배치될 수 있으며, 불균일 냉각 채널(230)들은 쿨링 플레이트의 판면(110)에 매입될 수 있도록 박형으로 얇고 납짝한 파이프 형태로 쿨링 플레이트(100)의 가로 방향을 따라 연장 배치될 수 있다. 자세히 후술하겠지만 불균일 냉각 채널(230)들은 두께 대비 폭이 기본적으로 크게 형성되되 각각의 폭은 불균일하게 형성될 수 있다.
냉각수 공급 매니폴드 채널의 일단(210a)과 냉각수 배출 매니폴드 채널의 일단(220a)은 쿨링 플레이트(100) 내부에서 외부로 연장될 수 있다. 외부로 연장된 상기 냉각수 공급 및 배출 매니폴드 채널의 일단(210a,220a)은 냉각수 공급관 또는 냉각수 배출관과 같은 외부 배관에 연결될 수 있다. 그리고 도면의 편의상 자세히 도시하지 않았으나, 냉각수 공급 및 배출 매니폴드 채널(220)은 경로 상에 불균일 냉각 채널(230)들이 접속할 수 있는 다수의 접속구들을 구비할 수 있다.
불균일 냉각 채널(230)들은 상호 간 소정 간격 이격 배치되고 쿨링 플레이트의 판면(110)을 가로방향(X축 방향)으로 가로지르며, 양단부가 각각 냉각수 공급 매니폴드 채널(210)과 배출 매니폴드 채널(220)의 접속구에 연결될 수 있다.
이러한 구성에 의하면, 냉각수가 쿨링 자켓(10) 외부에서 냉각수 공급 매니폴드 채널(210)을 통해 유입되어 쿨링 플레이트(100)의 에지부(120)를 따라 흐르면서 불균일 냉각 채널(230)들로 분기되어 쿨링 플레이트(100)의 판면을 전체적으로 빠르게 냉각시킬 수 있다. 그리고 불균일 냉각 채널(230)들을 통과한 냉각수는 다시 냉각수 배출 매니폴드 채널(220)을 따라 쿨링 자켓(10) 외부로 배출될 수 있다.
한편, 본 실시예의 불균일 냉각 채널(230)들은 각각 배치되는 위치에 따라 폭이 불균일하게 형성될 수 있다.
예컨대, 단방향 전지 셀(20)은, 도 4에 도시한 바와 같이, 2개의 전극 리드(21)가 같은 방향을 향하고 전극 리드(21)가 위치한 부분이 쿨링 플레이트의 제1저온부(100a)에 놓일 수 있다. 여기서, 도 3 및 도 4에 표시한 바와 같이 쿨링 플레이트의 제1저온부(100a)는 전지 셀(20)을 쿨링 자켓(10)에 놓았을 때 전지 셀(20)의 전극 리드(21) 인출 부분과 접촉하게 되는 영역을 의미하며, 쿨링 플레이트(100) 제2저온부(100b)는 쿨링 플레이트(100)의 중앙 영역을 의미하는 것으로 개념적으로 정의한 것이다.
본 실시예는 쿨링 플레이트(100)에서 제1저온부(100a)가 한 곳인데, 이는 양극 리드와 음극 전극 리드가 서로 이웃하는 단방향 전지 셀(20)을 상정하고 그 전극 리드(21)가 놓이는 위치를 고려하여 불균일 냉각 채널(230)들을 설계한 데서 비롯된 것이다. 즉, 양극 리드와 음극 리드가 서로 반대 방향으로 멀리 떨어져 있는 양방향 전지셀을 상정하여 쿨링 자켓을 제작할 경우, 제1 저온부(100a)가 상기 양극 리드와 음극 리드가 놓이는 위치에 맞게 2곳이 될 수 있게 불균일 냉각 채널(230)들이 설계될 수 있을 것이다.
도 5를 참조하여 구체적으로 본 실시예를 살펴보면, 제1저온부(100a) 내부의 불균일 냉각 채널(230)들은 폭이 다른 부분의 불균일 냉각 채널(230)들의 폭보다 크게 형성된다. 불균일 냉각 채널(230)들은 쿨링 플레이트(100)의 제2저온부(100b)에서 제1저온부(100a)로 갈수록 폭이 단계적으로 확장되고 제2저온부(100b)에서 냉각수 유입구와 유출구 쪽으로는 폭 변화가 크지 않게 형성된다.
이를테면, 가장 최외곽의 첫번째 불균일 냉각 채널(230a), 그 다음의 2번째, 3번째, 4번째 불균일 냉각 채널(230b,230c,230d)들의 폭이 단계적으로 넓게 형성될 수 있다. 그리고 단방향 전지 셀(20)은 전극 리드(21)에서 멀수록 발열양이 상대적으로 적은 것을 고려하여, 5번째 이후의 불균일 냉각 채널(230)들의 폭은 거의 균일하게 형성될 수 있다.
상기와 같이 쿨링 플레이트(100)의 일단에서 타단까지, 쿨링 플레이트(100) 내부의 불균일 냉각 채널(230)들 간의 폭이 단계적으로 확장되면, 각 불균일 냉각 채널(230)들의 단면적당 흐를 수 있는 냉각수의 유량이 단계적으로 증가하여 최외측의 불균일 냉각 채널(230a)이 가장 큰 열용량을 가지게 된다. 그러므로 쿨링 플레이트(100)는 제1저온부(100a)가 제2저온부(100b)보다 상대적으로 더 큰 열용량을 갖는다 하겠다.
전지 셀(20)의 발열 양상은 전극 리드(21) 부근에 가까울수록 발열량이 가장 큰 것을 앞서도 살펴본 바 있다. 따라서 이러한 전지 셀(20)의 전극 리드(21) 인접 부분에 열용량이 가장 큰 쿨링 플레이트의 제1저온부(100a)가 대면하도록 하여 상기 전극 리드(21) 인접 부분의 온도를 다른 부분 수준으로 낮출 수 있다.
이와 같이, 본 발명의 불균일 냉각 채널(230)들은 전지 셀(20) 내 발열 양상에 대응하여 차등적 유량 공급이 가능하게 구성됨으로서 전지 셀(20) 내 온도 편차를 줄일 수 있다. 또한, 본 발명의 쿨링 자켓(10)은 쿨링 플레이트(100) 내부에 복수의 냉각 채널(200)을 매입한 방식으로 종래 기술에 따른 퍼리미터 냉각판에 비해 열전달 경로가 개선될 수 있어 우수한 냉각 성능을 제공할 수 있다.
또한, 본 발명의 복수의 냉각 채널(200) 구성에 의하면, 전체 유로의 단면적이 퍼리미터 냉각판에 비해 크므로, 모듈당 유량 1LPM(Litter per Minute) 조건일 때 유속이 느려지더라도 종래 퍼리미터 냉각판 대비 냉각수 차압이 감소하여 저출력의 냉각수 순환 펌프를 사용하더라도 냉각수를 순환시킬 수 있는 이점이 있다.
이어서, 본 발명의 다른 실시예들에 따른 쿨링 자켓(10) 구성에 대해 간략히 설명하기로 한다. 동일한 부재 번호는 동일한 부재를 나타내며, 동일한 부재에 대한 중복된 설명은 생략하기로 하고 전술한 실시예와의 차이점을 위주로 설명하기로 한다.
도 6은 본 발명의 다른 실시예에 따른 불균일 냉각 채널의 연결부를 도시한 도면이다.
도 6을 참조하면, 본 발명의 다른 실시예에 따른 쿨링 자켓(10)은, 불균일 냉각 채널(230)들의 연결부(231)를 형성하는 양단부가 라운드진 형태를 취하며, 냉각수 공급 및 배출 매니폴드 채널(210,220)에 연결되게 구성될 수 있다.
예컨대, 불균일 냉각 채널(230)은 직선 라인 구간과 곡선 라인 구간을 갖도록 구성할 수 있다. 냉각수 공급 매니폴드 채널(210)의 직선 라인과 불균일 냉각 채널(230)의 직선 라인 구간 사이에 곡선 라인 구간을 마련함으로써 전술한 실시예에 비해 냉각수 흐름이 변경되는 분기 지점에서 와류 형성이 완화되고 마찰력이 줄어들 수 있다. 결과적으로 냉각 채널 내의 냉각수 흐름이 원활해져 유속 저하를 막을 수 있다.
도 7은 본 발명의 또 다른 실시예에 따른 복수의 냉각 채널의 일 부분을 도시한 도면이다.
본 발명의 또 다른 실시예에 따르면, 복수의 냉각 채널(200)들과 쿨링 플레이트(100)가 일체로 형성될 수 있다. 즉, 본 실시예의 쿨링 자켓은, 복수의 냉각 채널(200)들을 별개 구성품으로 제작한 후 쿨링 플레이트(100) 내부에 매입한 전술한 실시예와 달리, 쿨링 플레이트(100)에 복수의 냉각 채널(200)에 해당하는 유로 공간을 내부에 일체로 형성한 것이다.
이러한 본 실시예에 따른, 쿨링 자켓은 외부 냉각수 공급 및 배출관과의 연결을 쉽게 하기 위해 냉각수 공급 매니폴드 채널의 개구(210b)와 냉각수 배출 매니폴드 채널의 개구(220b)에 결합될 수 있는 연결튜브(240)를 더 포함할 수 있다. 연결튜브(240)는 형태가 변형 가능한 가요성 소재로 마련될 수 있다. 이러한 연결튜브(240)를 사용할 경우 쿨링 자켓(10)을 외부의 냉각수 공급 및 배출관에 보다 용이하게 연결할 수 있다.
도 8은 본 발명의 일 실시예에 따른 배터리 모듈 구성을 개략적으로 도시한 사시도이다.
도 8을 참조하면, 본 발명에 따른 배터리 모듈은 상술한 쿨링 자켓(10)과, 상기 쿨링 자켓(10)의 상면 및 하면에 밀착 배치되는 전지 셀(20) 및 상기 쿨링 자켓(10)과 전지 셀(20)을 지지하며, 상호 간 조립되어 일 방향으로 적층 가능하게 마련되는 적층용 프레임(30)을 포함할 수 있다.
적층용 프레임(30)은 전지 셀(20)들을 적층하기 위한 수단으로서, 전지 셀(20)들을 홀딩함으로써 그 유동을 방지시키고, 상호간 적층 가능하도록 구성되어 전지 셀(20)들의 조립을 가이드하는 역할을 한다.
적층용 프레임(30)은 예컨대 스냅-핏(snap-fit) 방식으로 상호 간 조립될 수 있다. 또한, 적층용 프레임(30)들은 각각 일측에 배관 형성홀(31,32)을 구비하여 상호간 조립되면서, 배관 형성홀(31,32)들이 적층 방향을 따라 냉각수 공급 및 배출관을 형성하도록 마련될 수 있다. 이와 같은 경우, 냉각수 공급 및 배출용 배관 부품을 별도로 추가할 필요가 없어져 비용 절감 및 배터리 모듈의 구성이 컴팩트해질 수 있다.
전술한 쿨링 자켓(10)에서 냉각수 공급 매니폴드 채널(210)과 상기 냉각수 배출 매니폴드 채널(220)의 일단들은 각각 상기 냉각수 공급 및 배출관에 수직으로 직결될 수 있다. 따라서 배터리 모듈은 적층용 프레임들의 조립으로 형성된 냉각수 공급 및 배출관을 통해 냉각수를 순환시킬 수 있고 쿨링 자켓(10)들은 상기 냉각수 공급 및 배출관에 연결되어 냉각수를 공급 받음으로써 전지 셀(20)들을 냉각시킬 수 있다.
한편, 배터리 모듈은 전지 셀(20)들의 충방전을 제어하기 위한 각종 장치(미도시), 예컨대 BMS(Battery Management System), 전류 센서, 퓨즈 등을 더 포함할 수 있다. 이러한 배터리 모듈은 전기 자동차나 하이브리드 자동차 또는 전력 저장장치의 에너지원으로 사용될 수도 있다.
이상과 같이, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.
한편, 본 명세서에서 상, 하, 좌, 우와 같은 방향을 나타내는 용어가 사용되었으나, 이러한 용어들은 설명의 편의를 위한 것일 뿐, 대상이 되는 사물의 위치나 관측자의 위치 등에 따라 달라질 수 있음은 본 발명의 당업자에게 자명하다.

Claims (10)

  1. 판재 형태의 쿨링 플레이트와 상기 쿨링 플레이트의 내부에 마련되는 복수의 냉각 채널들을 구비하고 전지 셀의 일면에 밀착 배치되어 전지 셀의 열을 흡수하는 쿨링 자켓으로서,
    상기 복수의 냉각 채널들은,
    상기 쿨링 플레이트의 양쪽 사이드에 하나씩 배치되며 일단이 외부로 노출되게 상기 쿨링 플레이트 내부에서 외부로 연장되는 냉각수 공급 매니폴드 채널과 냉각수 배출 매니폴드 채널; 및
    상호 간 소정 간격 이격 배치되고 상기 쿨링 플레이트를 가로질러 양단부가 상기 냉각수 공급 매니폴드 채널과 배출 매니폴드 채널에 연결되며, 폭이 불균일하게 형성된 불균일 냉각 채널들을 포함하는 것을 특징으로 하는 쿨링 자켓.
  2. 제1항에 있어서,
    상기 불균일 냉각 채널들 중, 상기 전지 셀의 전극 리드 인출 부분과 접촉하게 될 상기 쿨링 플레이트의 제1저온부 내부에 위치하는 냉각 채널들의 폭은 상기 쿨링 플레이트의 다른 부분에 위치하는 냉각 채널들의 폭보다 큰 것을 특징으로 하는 쿨링 자켓.
  3. 제2항에 있어서,
    상기 쿨링 플레이트의 제2저온부에서 상기 쿨링 플레이트의 제1저온부로 갈수록 상기 불균일 냉각 채널의 폭이 단계적으로 확장되는 것을 특징으로 하는 쿨링 자켓.
  4. 제1항에 있어서
    상기 복수의 냉각 채널들은 관상체로 형태로서 상기 쿨링 플레이트 내부에 매입된 것을 특징으로 하는 쿨링 자켓.
  5. 제1항에 있어서,
    상기 쿨링 플레이트는 상기 쿨링 플레이트의 길이 방향을 따라 양쪽 사이드에 다른 영역보다 두껍게 형성된 에지부를 포함하는 것을 특징으로 하는 쿨링 자켓.
  6. 제1항에 있어서,
    상기 복수의 냉각 채널들은 상기 쿨링 플레이트에 일체로 형성되는 것을 특징으로 하는 쿨링 자켓.
  7. 제6항에 있어서,
    상기 냉각수 공급 매니폴드 채널과 상기 냉각수 배출 매니폴드 채널의 개구에 결합되는 가요성의 연결튜브를 더 포함하는 것을 특징으로 하는 쿨링 자켓.
  8. 제1항에 있어서,
    상기 불균일 냉각 채널들은 상기 냉각수 공급 매니폴드 채널과 상기 냉각수 배출 매니폴드 채널에 대해 교차하게 배치되는 것을 특징으로 하는 쿨링 자켓.
  9. 제1항에 있어서,
    상기 불균일 냉각 채널들의 양단부는, 라운드진 형태를 취하는 것을 특징으로 하는 쿨링 자켓.
  10. 제1항 내지 제9항 중 어느 하나의 쿨링 자켓의 상면 및 하면에 밀착 배치되는 전지셀; 및
    상기 쿨링 자켓과 전지셀을 지지하며, 상호 간 조립되어 일 방향으로 적층 가능하게 마련되는 적층용 프레임들을 포함하며,
    상기 적층용 프레임은 상호 간 조립되어 적층 방향을 따라 냉각수 공급 및 배출관을 형성하는 배관 형성홀을 구비하며, 상기 냉각수 공급 매니폴드 채널과 상기 냉각수 배출 매니폴드 채널의 일단들은 각각 상기 냉각수 공급 및 배출관에 연결되는 것을 특징으로 하는 배터리 모듈.
PCT/KR2018/009118 2017-09-29 2018-08-09 전지 셀 표면 냉각을 위한 불균일 유로를 구비한 쿨링 자켓 및 이를 포함하는 배터리 모듈 WO2019066244A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880014732.2A CN110366796A (zh) 2017-09-29 2018-08-09 用于冷却电池单体表面的具有非均匀流动路径的冷却套和包括所述冷却套的电池模块
US16/489,041 US11217836B2 (en) 2017-09-29 2018-08-09 Cooling jacket having nonuniform flow paths, for cooling battery cell surface, and battery module including same
JP2019547086A JP7027641B2 (ja) 2017-09-29 2018-08-09 電池セルの表面を冷却するための不均一流路を備えたクーリングジャケット及びそれを含むバッテリーモジュール
EP18861668.4A EP3598567A4 (en) 2017-09-29 2018-08-09 COOLING COAT WITH UNIFORMED FLOW PATHS FOR COOLING BATTERY CELL SURFACES AND BATTERY MODULE THEREFOR

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170127474A KR102274518B1 (ko) 2017-09-29 2017-09-29 전지 셀 표면 냉각을 위한 불균일 유로를 구비한 쿨링 자켓 및 이를 포함하는 배터리 모듈
KR10-2017-0127474 2017-09-29

Publications (1)

Publication Number Publication Date
WO2019066244A1 true WO2019066244A1 (ko) 2019-04-04

Family

ID=65901603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/009118 WO2019066244A1 (ko) 2017-09-29 2018-08-09 전지 셀 표면 냉각을 위한 불균일 유로를 구비한 쿨링 자켓 및 이를 포함하는 배터리 모듈

Country Status (6)

Country Link
US (1) US11217836B2 (ko)
EP (1) EP3598567A4 (ko)
JP (1) JP7027641B2 (ko)
KR (1) KR102274518B1 (ko)
CN (1) CN110366796A (ko)
WO (1) WO2019066244A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021051839A (ja) * 2019-09-22 2021-04-01 アイシン軽金属株式会社 車両のバッテリケース用冷却器
CN114175361A (zh) * 2019-07-30 2022-03-11 索格菲空气冷却公司 电池冷却模块和装置以及相应的电池

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020046431A2 (en) * 2018-05-03 2020-03-05 Lawrence Livermore National Security, Llc Compact temperature control system and method for energy modules
US10874037B1 (en) * 2019-09-23 2020-12-22 Ford Global Technologies, Llc Power-module assembly with cooling arrangement
JP7365620B2 (ja) * 2020-03-31 2023-10-20 パナソニックIpマネジメント株式会社 車両および温度調整システム
JP7022935B2 (ja) * 2020-03-27 2022-02-21 パナソニックIpマネジメント株式会社 車両及び熱交換プレート
CN113707969A (zh) * 2020-05-08 2021-11-26 恒大新能源技术(深圳)有限公司 液冷板、电池包及流量控制方法
KR20210147657A (ko) * 2020-05-29 2021-12-07 주식회사 엘지에너지솔루션 히트싱크
US11502349B2 (en) 2020-08-31 2022-11-15 Borgwarner, Inc. Cooling manifold assembly
CN112190274B (zh) * 2020-09-09 2023-04-25 武汉中科医疗科技工业技术研究院有限公司 成像设备、分液冷却装置及其布局方法
KR102481835B1 (ko) * 2020-12-23 2022-12-26 고려대학교 산학협력단 배터리 셀 냉각 구조
CN112713333A (zh) * 2020-12-31 2021-04-27 武汉理工大学 一种锂离子方形电池冷却板结构及其冷却方法
CN113206315B (zh) * 2021-03-25 2022-12-30 华为数字能源技术有限公司 一种电池模组
KR102434267B1 (ko) 2021-07-05 2022-08-19 전지혜 배터리 커버자켓 및 상기 커버자켓을 포함한 배터리 안전시스템
KR20230028039A (ko) 2021-08-20 2023-02-28 현대모비스 주식회사 전기자동차용 배터리 냉각 장치
KR20230148697A (ko) 2022-04-18 2023-10-25 현대모비스 주식회사 전기자동차용 배터리 냉각 장치 및 제조방법, 전기자동차용 배터리 냉각 장치의 냉각수 입출구 직경비 결정 방법
KR102649109B1 (ko) 2021-08-26 2024-03-20 전지혜 냉각 및 소화기능을 갖는 배터리팩 장치
CN113747761B (zh) * 2021-09-02 2022-10-25 华南理工大学 一种非等距并行通道双出口液冷板

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120012303A (ko) * 2010-07-30 2012-02-09 삼성전자주식회사 균일한 온도분포를 갖는 연료전지 스택 및 그 구동방법
KR20150140121A (ko) * 2014-06-05 2015-12-15 주식회사 엘지화학 이차 전지용 프레임 및 이를 포함하는 배터리 모듈
KR20160026029A (ko) * 2014-08-29 2016-03-09 에스케이이노베이션 주식회사 리튬 이차전지의 가요성 케이스에 부착되기 위한 라벨, 이 라벨이 부착된 리튬 이차전지 및 이 리튬 이차전지를 포함하는 전지 모듈
KR20160030724A (ko) * 2014-09-11 2016-03-21 현대모비스 주식회사 수냉식 배터리모듈 및 이를 이용한 수냉식 배터리 냉각장치
KR20160117955A (ko) * 2015-04-01 2016-10-11 주식회사 엘지화학 냉각 튜브가 형성된 냉각부재를 포함하는 전지모듈
KR20170127474A (ko) 2015-03-30 2017-11-21 제이엑스금속주식회사 전자파 실드재

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100637504B1 (ko) * 2004-08-30 2006-10-20 삼성에스디아이 주식회사 연료 전지 시스템 및 그 스택
JP2006073461A (ja) * 2004-09-06 2006-03-16 Toyota Motor Corp 組電池
KR100745738B1 (ko) 2006-07-10 2007-08-02 삼성에스디아이 주식회사 유로가 개선된 냉각판
JP2008293811A (ja) * 2007-05-25 2008-12-04 Toyota Motor Corp 燃料電池用のガス供給部材と燃料電池
JP5142605B2 (ja) 2007-06-28 2013-02-13 三洋電機株式会社 車両用の電源装置
JP5121395B2 (ja) * 2007-10-31 2013-01-16 三洋電機株式会社 電池パック及び電池パック用セパレータ
US7851080B2 (en) * 2008-04-09 2010-12-14 Gm Global Technology Operations, Inc. Battery cooling plate design with discrete channels
KR200464432Y1 (ko) * 2009-07-31 2013-01-02 주식회사 이아이지 단위 전지의 온도 제어에 효율적인 방열 플레이트를 포함하는 이차전지 모듈
US8039139B2 (en) * 2009-11-03 2011-10-18 Delphi Technologies, Inc. Prismatic-cell battery pack with integral coolant passages
KR101397456B1 (ko) * 2010-08-19 2014-05-26 주식회사 엘지화학 냉각성능이 향상된 전지모듈 어셈블리 및 이를 포함하는 전지팩
JP2012190674A (ja) 2011-03-11 2012-10-04 Sanyo Electric Co Ltd バッテリー装置
AT511887B1 (de) * 2011-09-12 2016-05-15 Avl List Gmbh Wiederaufladbare batterie
US8835039B2 (en) * 2011-10-21 2014-09-16 Avl Powertrain Engineering, Inc. Battery cooling plate and cooling system
JP2013089577A (ja) * 2011-10-21 2013-05-13 Nifco Inc バッテリ用熱交換器
EP2608309A1 (de) * 2011-12-21 2013-06-26 Fortu Intellectual Property AG Batteriemodul mit Batteriemodulgehäuse und Batteriezellen
KR20130078520A (ko) 2011-12-30 2013-07-10 대한칼소닉주식회사 전기 자동차의 이차전지용 방열판
US9437903B2 (en) 2012-01-31 2016-09-06 Johnson Controls Technology Company Method for cooling a lithium-ion battery pack
EP2823525B1 (en) * 2012-03-09 2015-11-18 Nissan Motor Co., Ltd. Seal plate and fuel cell stack using the same
US9196935B2 (en) 2013-03-12 2015-11-24 Gm Global Technology Operations, Llc Micro-channel cooling fin design based on an equivalent temperature gradient
US8999548B2 (en) * 2013-03-13 2015-04-07 GM Global Technology Operations LLC Liquid-cooled battery module
DE102013005475A1 (de) * 2013-03-27 2014-10-02 Li-Tec Battery Gmbh Batterie mit einer Temperiereinrichtung
KR101692790B1 (ko) * 2013-07-31 2017-01-04 주식회사 엘지화학 냉매 유로를 포함하는 전지모듈 어셈블리
KR101833526B1 (ko) 2014-05-29 2018-02-28 주식회사 엘지화학 수냉식 냉각구조를 포함하는 전지모듈
KR20160046474A (ko) 2014-10-21 2016-04-29 주식회사 피앤이솔루션 수냉식 배터리모듈 및 이의 제조방법
CN104852105B (zh) * 2014-11-13 2017-06-30 科力远混合动力技术有限公司 混合动力汽车用动力电池包散热装置
KR102058688B1 (ko) * 2015-07-31 2019-12-23 주식회사 엘지화학 간접 냉각 방식의 배터리 모듈
KR20170022371A (ko) * 2015-08-20 2017-03-02 삼성에스디아이 주식회사 이차 전지 모듈
US10006722B2 (en) * 2015-10-29 2018-06-26 Dana Canada Corporation Structural support element in heat exchangers
KR102202417B1 (ko) * 2016-02-22 2021-01-12 주식회사 엘지화학 카트리지 및 이를 포함하는 배터리 모듈, 배터리 팩

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120012303A (ko) * 2010-07-30 2012-02-09 삼성전자주식회사 균일한 온도분포를 갖는 연료전지 스택 및 그 구동방법
KR20150140121A (ko) * 2014-06-05 2015-12-15 주식회사 엘지화학 이차 전지용 프레임 및 이를 포함하는 배터리 모듈
KR20160026029A (ko) * 2014-08-29 2016-03-09 에스케이이노베이션 주식회사 리튬 이차전지의 가요성 케이스에 부착되기 위한 라벨, 이 라벨이 부착된 리튬 이차전지 및 이 리튬 이차전지를 포함하는 전지 모듈
KR20160030724A (ko) * 2014-09-11 2016-03-21 현대모비스 주식회사 수냉식 배터리모듈 및 이를 이용한 수냉식 배터리 냉각장치
KR20170127474A (ko) 2015-03-30 2017-11-21 제이엑스금속주식회사 전자파 실드재
KR20160117955A (ko) * 2015-04-01 2016-10-11 주식회사 엘지화학 냉각 튜브가 형성된 냉각부재를 포함하는 전지모듈

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3598567A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114175361A (zh) * 2019-07-30 2022-03-11 索格菲空气冷却公司 电池冷却模块和装置以及相应的电池
JP2021051839A (ja) * 2019-09-22 2021-04-01 アイシン軽金属株式会社 車両のバッテリケース用冷却器
JP7423232B2 (ja) 2019-09-22 2024-01-29 アイシン軽金属株式会社 車両のバッテリケース用冷却器

Also Published As

Publication number Publication date
CN110366796A (zh) 2019-10-22
KR102274518B1 (ko) 2021-07-06
EP3598567A4 (en) 2020-06-17
EP3598567A1 (en) 2020-01-22
JP2020510965A (ja) 2020-04-09
US20200006820A1 (en) 2020-01-02
KR20190037785A (ko) 2019-04-08
US11217836B2 (en) 2022-01-04
JP7027641B2 (ja) 2022-03-02

Similar Documents

Publication Publication Date Title
WO2019066244A1 (ko) 전지 셀 표면 냉각을 위한 불균일 유로를 구비한 쿨링 자켓 및 이를 포함하는 배터리 모듈
WO2012023753A2 (ko) 콤팩트한 구조와 우수한 방열 특성의 전지모듈 및 그것을 포함하는 중대형 전지팩
WO2011083968A2 (ko) 냉각 효율성이 향상된 중대형 전지팩
WO2018186616A1 (ko) 크래쉬 빔과 배수 구조를 갖는 배터리 팩
WO2011145831A2 (ko) 신규한 구조의 냉각부재와 이를 포함하는 전지모듈
WO2016171345A1 (ko) 배터리 셀 냉각장치 및 이를 포함하는 배터리 모듈
WO2011145830A2 (ko) 콤팩트하고 안정성이 우수한 냉각부재와 이를 포함하는 전지모듈
WO2012115351A2 (ko) 냉각 효율성이 향상된 냉각부재와 이를 포함하는 전지모듈
WO2016089030A1 (ko) 전지팩
WO2010126243A2 (ko) 냉각 매니폴드와 그것의 제조방법
WO2017217633A1 (ko) 배터리 모듈 및 이를 포함하는 배터리 팩, 자동차
WO2011068320A2 (ko) 우수한 냉각 효율성과 콤팩트한 구조의 전지모듈 및 중대형 전지팩
WO2017043889A1 (ko) 냉각 성능이 개선된 배터리 모듈
WO2013048060A2 (ko) 신규한 냉각구조를 가진 전지팩
WO2012102496A2 (ko) 조립 생산성이 향상된 냉각부재와 이를 포함하는 전지모듈
WO2017086664A1 (ko) 히트싱크 및 이를 포함하는 배터리 모듈
WO2011149234A2 (ko) 전기 자동차용 배터리 팩과, 조립체 및, 이를 이용한 온도제어 시스템
WO2010071370A2 (en) Battery module having cooling means, and middle or large-sized battery pack containing the same
WO2013133636A1 (ko) 신규한 공냉식 구조의 전지팩
WO2017146379A1 (ko) 배터리 모듈 및 이를 포함하는 배터리 팩, 자동차
WO2015130057A1 (ko) 전지모듈
WO2017150802A1 (ko) 배터리 모듈 및 이를 포함하는 배터리 팩, 자동차
WO2018080182A1 (ko) 전지 모듈
WO2020060048A1 (ko) 전지 모듈
WO2022149926A1 (ko) 배터리 모듈, 이를 포함하는 배터리 팩 및 자동차

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18861668

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019547086

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018861668

Country of ref document: EP

Effective date: 20191014

NENP Non-entry into the national phase

Ref country code: DE