WO2019066204A1 - 폴리이미드 전구체 용액 및 이를 이용하여 제조된 폴리이미드 필름 - Google Patents

폴리이미드 전구체 용액 및 이를 이용하여 제조된 폴리이미드 필름 Download PDF

Info

Publication number
WO2019066204A1
WO2019066204A1 PCT/KR2018/007271 KR2018007271W WO2019066204A1 WO 2019066204 A1 WO2019066204 A1 WO 2019066204A1 KR 2018007271 W KR2018007271 W KR 2018007271W WO 2019066204 A1 WO2019066204 A1 WO 2019066204A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
polyimide precursor
integer
polyimide
precursor solution
Prior art date
Application number
PCT/KR2018/007271
Other languages
English (en)
French (fr)
Inventor
윤철민
박진영
신보라
김경준
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180063124A external-priority patent/KR102117151B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US16/617,379 priority Critical patent/US11479643B2/en
Priority to EP18863468.7A priority patent/EP3578590A4/en
Priority to JP2019542175A priority patent/JP6849173B2/ja
Priority to CN201880021171.9A priority patent/CN110461910B/zh
Publication of WO2019066204A1 publication Critical patent/WO2019066204A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1039Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors comprising halogen-containing substituents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1057Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain
    • C08G73/1064Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • C08G73/1071Wholly aromatic polyimides containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers

Definitions

  • the present invention relates to a polyimide precursor solution having a high solid content and a low viscosity, and a polyimide prepared using the same.
  • Polyimide (PI) is a polymer having a relatively low crystallinity or mostly amorphous structure. It is easy to synthesize, can form a thin film, and does not need a crosslinking agent for curing.
  • polyimide is a polymeric material that has transparency and rigid chain structure and has excellent heat resistance, chemical resistance, mechanical properties, electrical properties and dimensional stability. It is used in automotive, aerospace, flexible circuit boards, LCD Liquid crystal alignment films, bonding and coating agents, and the like.
  • a flexible device is manufactured by applying a polyimide precursor solution onto a carrier substrate, curing the film to form a film, completing the device through a subsequent process, and then removing the completed device from the carrier substrate.
  • the storage stability at room temperature of the polyimide precursor solution is particularly important. If the storage stability of the polyimide precursor solution is poor and the process viscosity is changed, the coating and curing process of the polyimide precursor solution becomes unstable.
  • Polyimic acid which is a polyimide precursor, is known to have poor storage stability because the carboxylic acid that promotes hydrolysis is adjacent to an amide bond.
  • a flexible device involving a high-temperature process is required to have high heat resistance.
  • the process temperature may approach 500 ° C.
  • even a polyimide having excellent heat resistance tends to undergo thermal decomposition.
  • a film substrate for example, a bottom emission type organic EL or the like
  • transparency of the film substrate is required.
  • it is required to have a high light transmittance in a wavelength region of 400 nm or less, which is a visible light region.
  • the retardation film or the polarizing plate for example, liquid crystal displays, touch panels, and the like are required to have high transparency.
  • the imidized polyimide resin since the imidized polyimide resin has a low solubility, it is difficult to prepare the polyimide resin in a solution state, and its use for coating may be restricted. However, if the solubility is to be improved, the heat resistance can be reduced, and if the heat resistance is further improved, the light transmittance is lowered.
  • a problem to be solved by the present invention is to provide a polyimide precursor solution having a high solid content and a low viscosity.
  • Another object of the present invention is to provide a polyimide film produced using the polyimide precursor solution.
  • Another object of the present invention is to provide a flexible display device comprising the polyimide film.
  • the viscosity when the solids content of the polyimide precursor solution containing the organic solvent is 10 to 25% by weight, the viscosity may be 7000 cP or less.
  • the organic solvent may comprise dimethylpropionamide (DMPA) or diethylpropionamide (DEPA).
  • DMPA dimethylpropionamide
  • DEPA diethylpropionamide
  • the polyimide precursor contained in the polyimide precursor solution may be a polyamic acid having a repeating structure of formula (1).
  • X is a tetravalent organic group selected from the group consisting of aromatic, alicyclic, and aliphatic tetravalent organic groups derived from a tetracarboxylic dianhydride,
  • Y comprises a divalent organic group selected from the group consisting of aromatic, alicyclic and aliphatic divalent organic groups derived from diamines.
  • X is one divalent organic group selected from the group consisting of the following formulas (2a) to (2g).
  • R 31 to R 42 each independently represent an alkyl group having 1 to 10 carbon atoms (for example, methyl, ethyl, propyl, isopropyl, t-butyl, pentyl or hexyl)
  • a fluoroalkyl group for example, a fluoromethyl group, a perfluoroethyl group, a trifluoromethyl group, etc.
  • a 1 is from 0 to 2 integer
  • b 1 is in the range of 0 to 4 integer
  • c 1 is from 0 to 8 constant
  • d 1 and e 1 are each independently from 0 to 3 an integer
  • f 1 and g 1 respectively Independently, an integer of 0 to 4
  • h 1 and j 1 each independently represent an integer of 0 to 3
  • i 1 represents an integer of 0 to 4
  • k 1 and l 1 each independently represent an integer of 0 to 4
  • a 1, A 2, A 3 represents a single bond
  • Y is a divalent organic group selected from the group consisting of the following formulas (4a) to (4d).
  • L 1 represents a single bond, -O-, -CO-, -S-, -SO 2 -, -C (CH 3 ) 2 -, -C (CF 3 ) 2 -, -CONH-, -COO-, - (CH 2) n 1 -, -O (CH 2) n 2 O-, -OCH 2 -C (CH 3) 2 -CH 2 O- , or -COO (CH 2) n 3 OCO- , N 1 , n 2 and n 3 are each an integer of 1 to 10,
  • L 2 and L 3 may be the same or different and each represents a single bond, -O-, -CO-, -S-, -SO 2 -, -C (CH 3 ) 2 -, -C (CF 3 ) 2 -, -CONH-, -COO-, - (CH 2 ) n 1 -, -O (CH 2 ) n 2 O-, -OCH 2 -C (CH 3 ) 2 -CH 2 O- Or -COO (CH 2 ) n 3 OCO-, n 1 , n 2 and n 3 are each an integer of 1 to 10,
  • L 4, L 5 and L 6 may be the same or different from each other, and respectively a single bond, -O-, -CO-, -S-, -SO 2 -, -C (CH 3) 2 - , -C (CF 3) 2 - , -CONH-, -COO-, - (CH 2) n 1 -, -O (CH 2) n 2 O-, -OCH 2 -C (CH 3) 2 -CH 2 O- or -COO (CH 2 ) n 3 OCO-, n 1 , n 2 and n 3 are each an integer of 1 to 10,
  • the at least one hydrogen atom contained in the aromatic rings of the general formulas (4a) to (4d) is an alkyl group having 1 to 10 carbon atoms (e.g., a methyl group, an ethyl group, a propyl group, an isopropyl group, a t-butyl group, a pentyl group, Or a fluoroalkyl group having 1 to 10 carbon atoms (for example, a fluoromethyl group, a perfluoroethyl group, a trifluoromethyl group, etc.).
  • an alkyl group having 1 to 10 carbon atoms e.g., a methyl group, an ethyl group, a propyl group, an isopropyl group, a t-butyl group, a pentyl group, Or a fluoroalkyl group having 1 to 10 carbon atoms (for example, a fluoromethyl group, a perfluoroethyl group
  • the polyimide precursor may further comprise a structure of the following formula (6) in the molecular structure.
  • the transmittance of the polyimide film may be 75% or more in the range of 380 to 780 nm wavelength.
  • the haze of the polyimide film may be 1 or less.
  • the pyrolysis temperature of the polyimide film may be 400 ° C or higher.
  • the polyimide film may have an elongation of 10% or more, a tensile strength of 30 MPa or more, and a tensile modulus of 1 GPa or more.
  • the polyimide film may have a CTE of -20 to 90 ppm / ° C.
  • the present invention also provides a flexible display device comprising the polyimide film.
  • the present invention relates to a polyimide precursor having a distribution coefficient (Log P) of positive and a density of 1 g / cm < 3 > Or less, the interaction between polyamic acid, which is a polyimide precursor, and an organic solvent can be relaxed to lower the viscosity of the polyimide precursor solution, and thus a polyimide precursor solution having a high solid content and a low viscosity can be obtained.
  • the difference in polarity is reduced due to the amphiphilic characteristic of the amide type solvent in which LogP is positive, so that the phase separation phenomenon between the polyamic acid and the organic solvent can be suppressed.
  • FIGS. 1 and 2 show the results of SEM observation of the cross-section of the films of Comparative Example 1 and Example 1 by FIB (focused ion beam) treatment.
  • " substituted " means that at least one hydrogen atom contained in the compound or organic group is substituted with a halogen atom, an alkyl group having 1 to 10 carbon atoms, a halogenated alkyl group, a cycloalkyl group having 3 to 30 carbon atoms, an aryl group having 6 to 30 carbon atoms, Substituted with a substituent selected from the group consisting of an alkoxy group having 1 to 10 carbon atoms, a carboxylic acid group, an aldehyde group, an epoxy group, a cyano group, a nitro group, an amino group, a sulfonic acid group and derivatives thereof.
  • the polyimide film is one of the materials attracting attention as a flexible display substrate, and the manufacturing process of the polyimide film substrate is as follows. First, a polyamic acid solution as a polyimide precursor solution is coated on a carrier substrate and thermally cured to form a polyimide film on the carrier substrate. Thereafter, a process necessary for device manufacture is performed on the polyimide film, and then the polyimide film is peeled from the carrier substrate to obtain a flexible display. The most important part of this process is the process of forming a polyimide film on a carrier substrate. When the polyamic acid solution is coated on the carrier substrate, it should be coated with low surface roughness without bubbles.
  • the polyamic acid has a high polarity, and the polarity of a commonly used solvent (for example, N-methylpyrrolidone) is relatively high, and the polyamic acid solution has a higher viscosity than the solid component due to the interaction between the solvent and the polyamic acid. This makes it very difficult to control the bubbles generated during coating.
  • the water absorption rate is high, when the coating is left standing after the coating, moisture is absorbed to cause solution whitening, and when the coating layer in which whitish tack is formed is thermally cured, high surface roughness is obtained, resulting in defects in the display process. Therefore, in order to lower the viscosity of the solution to improve the processability, the solids content can not but be lowered. However, when the solid content is lowered, the specific gravity of the solvent is relatively increased, so that a large amount of solvent evaporates during thermal curing, resulting in a coating failure.
  • the present invention provides a polyimide precursor solution comprising a polyimide precursor and an amide-based organic solvent having a positive logarithm (Log P) and a density of 1 g / cm 3 or less.
  • the LogP can be calculated using the ACD / LogP module of the ACD / Percepta platform of ACD / Labs.
  • the ACD / LogP module can be calculated using the 2D structure of the molecules using the Quantitative Structure-Property Relationship (QSPR) Based algorithm.
  • QSPR Quantitative Structure-Property Relationship
  • the density of the organic solvent can be measured can be less than 1g / cm 3, a density of 1 g / cm 3 or more when having a value, the higher the relative viscosity can reduce the process efficiency with a standard measuring method of ASTM D1475.
  • the present invention can reduce the polarity difference between the polyamic acid and the organic solvent due to the amphiphilic property of the amide-based solvent having the positive logarithm (Log P), and can suppress the phase separation phenomenon between the polyamic acid and the organic solvent have.
  • the present invention is characterized in that an amide organic solvent having a positive LogP value and a density of 1 g / cm 3 or less is used as a polymerization solvent for preparing a polyimide precursor and further contained in a polyimide precursor solution,
  • the viscosity can be lowered.
  • the viscosity of the polyimide precursor solution according to the present invention may be 7,000 cP or less, preferably 6,000 cP or less, and more preferably 5,000 cP or less at the solid content level.
  • the present invention can produce a polyimide precursor solution having a low viscosity even under the condition of high solid content by using an amide-based solvent having a positive Log P value and a density of 1 g / cm 3 or less. As a result, The coating defects due to the formation of bubbles can be reduced.
  • amide-based organic solvent may be a variety of solvents, especially dimethyl-propionamide (DMPA) or diethyl propionamide (DEPA) is preferred.
  • DMPA dimethyl-propionamide
  • DEPA diethyl propionamide
  • the distribution coefficient value is a positive number, it means that the polarity of the solvent is hydrophobic.
  • the polyimide precursor solution is prepared using a specific solvent having a positive distribution coefficient, The formation of a salt by an acid and water or a polar organic solvent can be suppressed, and as a result, the haze can be improved. Therefore, the polyimide-based film according to the present invention can have high heat resistance and mechanical properties together with excellent transparency.
  • the polyimide precursor solution containing a polar solvent having a negative logarithm of Log P may have a scattered coating around the region where the foreign matter exists due to the polarity of the foreign matter when the polarized micro- Cracks or thickness variations may occur.
  • a hydrophobic solvent having an affinity for Log P when used, coating cracking, thickness change and the like can be reduced or suppressed even when a foreign substance having polarity is introduced.
  • the polyimide precursor may be prepared by polymerizing a tetracarboxylic dianhydride and a diamine, and may include a polyamic acid having a repeating structure of the formula (1).
  • X is a tetravalent organic group selected from the group consisting of aromatic, alicyclic, and aliphatic tetravalent organic groups derived from a tetracarboxylic dianhydride,
  • Y comprises a divalent organic group selected from the group consisting of aromatic, alicyclic and aliphatic divalent organic groups derived from diamines.
  • the X may be one quaternary organic group selected from the group consisting of the following formulas (2a) to (2g).
  • R 31 to R 42 each independently represent an alkyl group having 1 to 10 carbon atoms (for example, methyl, ethyl, propyl, isopropyl, t-butyl, pentyl or hexyl)
  • a fluoroalkyl group for example, a fluoromethyl group, a perfluoroethyl group, a trifluoromethyl group, etc.
  • a 1 is from 0 to 2 integer
  • b 1 is in the range of 0 to 4 integer
  • c 1 is from 0 to 8 constant
  • d 1 and e 1 are each independently from 0 to 3 an integer
  • f 1 and g 1 respectively Independently, an integer of 0 to 4
  • h 1 and j 1 each independently represent an integer of 0 to 3
  • i 1 represents an integer of 0 to 4
  • k 1 and l 1 each independently represent an integer of 0 to 4
  • a 1, A 2, A 3 represents a single bond
  • X may be selected from the group consisting of the tetravalent organic groups represented by the following formulas (3a) to (3s).
  • the aromatic tetravalent organic group represented by any one of the above formulas (3a) to (3s) is a compound wherein at least one hydrogen atom present in the tetravalent organic group is an alkyl group having 1 to 10 carbon atoms (e.g., a methyl group, an ethyl group, a propyl group, an isopropyl group, , A pentyl group and a hexyl group) or a fluoroalkyl group having 1 to 10 carbon atoms (for example, a fluoromethyl group, a perfluoroethyl group, a trifluoromethyl group, etc.), a hydroxyl group, a sulfonic acid group and a carboxylic acid group Lt; / RTI > group.
  • an alkyl group having 1 to 10 carbon atoms e.g., a methyl group, an ethyl group, a propyl group, an isopropyl
  • Y 2 is to have one or two selected from the group consisting of Formula 4a to 4d can be an organic group.
  • L 1 represents a single bond, -O-, -CO-, -S-, -SO 2 -, -C (CH 3 ) 2 -, -C (CF 3 ) 2 -, -CONH-, -COO-, - (CH 2) n 1 -, -O (CH 2) n 2 O-, -OCH 2 -C (CH 3) 2 -CH 2 O- , or -COO (CH 2) n 3 OCO- And n 1 , n 2 and n 3 are integers of 1 to 10, respectively.
  • L 2 and L 3 may be the same or different and each represents a single bond, -O-, -CO-, -S-, -SO 2 -, -C (CH 3 ) 2 -, -C (CF 3 ) 2 -, -CONH-, -COO-, - (CH 2 ) n 1 -, -O (CH 2 ) n 2 O-, -OCH 2 -C (CH 3 ) 2 -CH 2 O- Or -COO (CH 2 ) n 3 OCO-, and n 1 , n 2 and n 3 are integers of 1 to 10, respectively.
  • L 4, L 5 and L 6 may be the same or different from each other, and respectively a single bond, -O-, -CO-, -S-, -SO 2 -, -C (CH 3) 2 - , -C (CF 3) 2 - , -CONH-, -COO-, - (CH 2) n 1 -, -O (CH 2) n 2 O-, -OCH 2 -C (CH 3) 2 -CH 2 O- or -COO (CH 2 ) n 3 OCO-, and n 1 , n 2 and n 3 are integers of 1 to 10, respectively.
  • Y may be selected from the group consisting of divalent organic groups represented by the following formulas (5a) to (5p).
  • At least one hydrogen atom in the divalent group of the general formulas (5a) to (5p) is an alkyl group having 1 to 10 carbon atoms (e.g., a methyl group, an ethyl group, a propyl group, an isopropyl group, a t-butyl group, a pentyl group, (For example, a phenyl group, a naphthalenyl group and the like) having 6 to 12 carbon atoms, a fluoroalkyl group having 1 to 10 carbon atoms such as a fluoromethyl group, a perfluoroethyl group and a trifluoromethyl group, A sulfonic acid group, and a carboxylic acid group.
  • alkyl group having 1 to 10 carbon atoms e.g., a methyl group, an ethyl group, a propyl group, an isopropyl group, a t-butyl group, a pent
  • polyimide precursor may further include the following structure within the structure,
  • the siloxane structure of Formula 6 may be formed by further including a diamine of Formula 7 as a polymerization component.
  • the diamine compound having the structure of Formula 7 has a molecular weight of 4000 g / mol or more, 4200 g / mol or 4400 g / mol, or 6000 g / mol or less, or 5,500 g / .
  • the molecular weight means the weight average molecular weight, and the molecular weight can be calculated by calculating the amine equivalent using NMR analysis or acid-base titration.
  • the reaction of the tetracarboxylic dianhydride and the diamine can be carried out by a usual polyimide precursor polymerization method such as solution polymerization. Specifically, after the diamine is dissolved in an organic solvent, the tetracarboxylic acid may be subjected to a polymerization reaction by adding an anhydride. The reaction can be carried out under an inert gas or a nitrogen stream and can be carried out under anhydrous conditions.
  • the polymerization reaction may be carried out at a temperature of -20 ⁇ to 60 ⁇ , preferably 0 to 45 ⁇ . If the reaction temperature is too high, the reactivity may become high and the molecular weight may become large, and the viscosity of the precursor composition may increase, which may be unfavorable in the process.
  • the molecular weight of the polymerized polyamic acid may be 50,000 to 200,000 g / mol, or 60,000 to 150,000 g / mol.
  • the polyimide precursor obtained as a result of the polymerization reaction is imidized to prepare a transparent polyimide film.
  • the imidization process may be a chemical imidization or thermal imidization process.
  • the polyimide precursor solution is coated on a substrate and then heat-treated to imidize the polyamic acid.
  • the polyimide precursor solution may be in the form of a solution in which the polyimide precursor is dissolved in an organic solvent.
  • the solution may be the reaction solution to be obtained, or the reaction solution may be diluted with another solvent.
  • the polyimide precursor is obtained as a solid powder, it may be a solution prepared by dissolving the polyimide precursor in an organic solvent.
  • a method for producing a film with a polyimide precursor solution according to the present invention comprises:
  • the substrate may be glass, metal substrate, plastic substrate, or the like without any particular limitation.
  • the polyimide precursor is excellent in thermal and chemical stability during the imidation and curing process, A glass substrate that can be easily separated without damage to the subsequently formed polyimide-based film may be desirable.
  • the coating method include a spin coating method, a bar coating method, a roll coating method, an air-knife method, a gravure method, a reverse roll method, a kiss roll method, a doctor blade method, A spray method, a dipping method, a brushing method, or the like may be used. Of these, it is more preferable to carry out the continuous process and to perform the casting method which can increase the imidization rate of the polyimide.
  • the polyimide precursor solution may also be applied over the substrate to a thickness range such that the final polyimide film has a thickness suitable for the display substrate.
  • the thickness is 10 to 30 mu m.
  • a drying process to remove the solvent present in the polyimide precursor solution prior to the curing process may optionally be further performed.
  • the drying process may be carried out according to a conventional method, specifically at a temperature of 140 ° C or lower, or 80 ° C to 140 ° C. If the drying temperature is lower than 80 ⁇ , the drying process becomes longer. If the drying temperature is higher than 140 ⁇ , the imidization rapidly proceeds to make it difficult to form a polyimide film having a uniform thickness.
  • the polyimide precursor solution is applied to a substrate and heat-treated on an IR oven, a hot air oven or a hot plate.
  • the heat treatment temperature may be in the range of 300 to 500 ° C, preferably 320 to 480 ° C, Or may be performed in a multi-step heating process.
  • the heat treatment process may be conducted for 20 to 70 minutes, preferably 20 to 60 minutes.
  • the organic solvent contained in the polyimide precursor solution of the present invention may be used is the same as the organic solvent used in the synthesis reaction, the organic solvent is the LogP is positive, and a density of 1g / cm 3 or less amide-based organic
  • a solvent such as dimethyl propionamide (DMPA) or diethyl propionamide (DEPA).
  • the polyimide-based film may have a haze of 1 or less, preferably 0.9 or less, or 0.7 or less, more preferably 0.5 or less, and the transparency is improved. At this time, the thickness of the polyimide film may be 8 to 15 ⁇ , preferably 10 to 12 ⁇ .
  • the transmittance for light having a wavelength of 380 to 760 nm in a film thickness range of 5 to 30 ⁇ ⁇ may be 70% or more.
  • the polyimide film according to the present invention can be manufactured by heating and cooling at a temperature ranging from 100 ° C to 450 ° C in a range of n +
  • the thermal expansion coefficient after one run may have a value of -20 to 90 ppm / ⁇ ⁇ , and the thermal decomposition temperature Td_1% at which the weight is reduced by 1% may be 400 ⁇ ⁇ or more or 500 ⁇ ⁇ or more.
  • the polyimide-based film has a tensile modulus of at least about 1 GPa or at least 3 GPa, a tensile strength of at least about 30 MPa, at least about 100 MPa, or at least about 150 MPa, and a maximum elongation elongation of about 15%, or about 10% or more.
  • the polyimide-based film can be applied to display substrates and devices.
  • the device may be any solar cell having a flexible substrate (e.g., a flexible solar cell), organic light emitting diode (OLED) lighting (e.g., flexible OLED lighting) Device, or an organic electroluminescent device having a flexible substrate, an electrophoretic device, or an LCD device.
  • OLED organic light emitting diode
  • LCD liquid crystal display
  • the viscosity of the polyimide precursor solution was measured at 25 ⁇ with a Brookfield rotational viscometer.
  • the weight average molecular weight of the polyamic acid was measured using Gel Permeation Chromatography (GPC) and eluent (THF: DMF 50:50 by volume)
  • a polyimide precursor solution was prepared in the same manner as in Example 1 except that the tetracarboxylic acid dianhydride and diamine shown in Table 2 were used.
  • the viscosity of the polyimide precursor solution and the molecular weight of the polyamic acid were measured in Table 2 Respectively.
  • TAHQ hydroquinone bis (trimellitate anhydride)
  • a polyimide precursor solution was prepared in the same manner as in Example 11, except that the tetracarboxylic acid dianhydride and diamine shown in Table 3 were used.
  • the viscosity of the polyimide precursor solution and the molecular weight of the polyamic acid were measured in the same manner as in Example 11, Respectively.
  • a polyimide precursor solution was prepared in the same manner as in Comparative Example 1, except that the tetracarboxylic acid dianhydride and diamine shown in Table 4 were used.
  • the viscosity of the polyimide precursor solution and the molecular weight of the polyamic acid were measured in Table 4 Respectively.
  • a polyimide precursor solution was prepared in the same manner as in Comparative Example 11, except that the tetracarboxylic acid dianhydride and diamine shown in Table 5 were used.
  • the viscosity of the polyimide precursor solution and the molecular weight of the polyamic acid were measured in Table 5 Respectively.
  • the polyimide precursor solution containing the organic solvent according to the present invention has a low viscosity even under the condition of high solid content.
  • the polyimide precursor solution of the comparative example is a polar solvent having a negative distribution coefficient, and the viscosity thereof is formed to be higher than the viscosity of the embodiment at the same solid concentration. This is because the defoaming effect of the bubbles in the solution during the production of the polyimide film is Which means that pores can be generated due to defective defoaming in the film after coating.
  • Figs. 1 and 2 show the results of SEM observation of the film cross sections of Comparative Example 1 and Example 1 treated with FIB. It can be seen that micro-sized pores exist in the cross-section of the film of Comparative Example 1 in which the defoaming effect is lowered due to the relatively high viscosity of the polyimide precursor solution, while pores are not present in the cross-section of the film of Example 1.
  • the polyimide precursor solutions prepared in Examples 1, 2, 5, 9 and 10 were spin-coated onto glass substrates.
  • the glass substrate coated with the polyimide precursor solution was placed in an oven and heated at a rate of 2 DEG C / min.
  • the glass substrate was cured at 80 DEG C for 15 minutes, at 150 DEG C for 30 minutes, at 220 DEG C for 30 minutes, and at 380 DEG C for 1 hour The process was carried out. After completion of the curing process, the glass substrate was immersed in water to remove the film formed on the glass substrate, and then dried in an oven at 100 DEG C to prepare a polyimide film.
  • the CTE, thermal decomposition temperature, elongation, tensile strength, tensile modulus and transmittance of the prepared film were measured by the following methods, and the results are shown in Table 6.
  • the film was pulled up at a rate of 5 ° C / min in a temperature range of 100 ° C to 400 ° C, and then cooled at a rate of 4 ° C / min in a temperature range of 400 ° C to 100 ° C.
  • the rate of thermal expansion change when cooling at the speed was measured by TMA (Q400, TA company).
  • the pyrolysis temperature was measured by the method of ISO 11359.
  • Zwick's UTM was used to measure the mechanical properties (tensile modulus, tensile strength, elongation) of the film.
  • the film was cut to a width of 5 mm or more and a length of 60 mm or more, and the distance between the grips was set to 40 mm, and the sample was pulled at a speed of 20 mm / min.
  • the transmittance was measured by a transmittance meter (model name HR-100, manufactured by Murakami Color Research Laboratory) according to JIS K 7105.
  • Example 1 Example 2
  • Example 5 Example 9
  • Example 10 PMDA_TFMB BPAF_TFMB 6FDA_TFMB BPDA_PDA
  • BPDA_TFMB Solid concentration wt.% 12 12 12 12 12 12
  • Viscosity cP 5010 3200 5100 6800 6700 Molecular Weight Mw 101,000 70,500 78,000 100,000 107,000 thickness ⁇ m 10
  • 10 10 10 CTE 100 ⁇ 450 o C1 st cooling
  • ppm / ° C -17 75 @ ⁇ 350 ° C 70 ⁇ 300 ° C 3.3 20 @ ⁇ 300 ° C Td_1% °C 535 530 501 565 546 Elongation % 23 15 20 15.4 20
  • Tensile modulus Gpa 7.5 3.2 3.5 9.3

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

본 발명은 폴리이미드 전구체의 제조에 있어서 분배계수(LogP)가 양수이면서 밀도가 1 g/cm3 이하인 아마이드계 유기용매를 사용함으로써 폴리이미드 전구체인 폴리아믹산과 유기용매간의 상호작용을 완화시켜 폴리이미드 전구체 용액의 점도를 저하시킬 수 있어 고 고형분 저 점도의 폴리이미드 전구체 용액을 얻을 수 있다.

Description

폴리이미드 전구체 용액 및 이를 이용하여 제조된 폴리이미드 필름
본 출원은 2017.09.29. 출원된 한국특허출원 10-2017-0127716호 및 2018.06.01. 출원된 한국 특허출원 10-2018-0063124호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 고 고형분 저점도를 갖는 폴리이미드 전구체 용액 및 이를 이용하여 제조된 폴리이미드에 관한 것이다.
폴리이미드(polyimide, PI)는 비교적 결정화도가 낮거나 대부분 비결정성 구조를 갖는 고분자로서, 합성이 용이하고 박막형 필름을 만들 수 있으며 경화를 위한 가교기가 필요하지 않은 장점이 있다. 그 뿐만 아니라 폴리이미드는 투명성과 함께, 강직한 사슬구조에 의해 뛰어난 내열성과 내화학성, 우수한 기계적 물성, 전기적 특성 및 치수안정성을 갖고 있는 고분자 재료이어서, 자동차, 항공 우주분야, 유연성 회로기판, LCD용 액정 배향막, 접착 및 코팅제 등의 전기, 전자재료로 널리 사용되고 있다.
일반적으로 플렉서블 디바이스는 반송 기판 상에 폴리이미드 전구체 용액을 도포한 후 경화하여 필름을 제막하고, 후속의 공정을 통해 디바이스를 완성시킨 후 반송 기판으로부터 완성된 디바이스를 탈착시키는 방법에 의해 제조된다.
따라서, 폴리이미드 전구체 용액의 상온 저장안정성이 특히 중요한데, 폴리이미드 전구체 용액의 저장안정성이 불량하여 공정 점도가 변화하게 되면, 폴리이미드 전구체 용액의 도포 및 경화 공정이 불안정하게 된다. 그런데, 폴리이미드 전구체인 폴리아믹산은 가수분해를 촉진시키는 카르복실산이 아마이드 결합에 인접해 있기 때문에 저장안정성이 불량한 것으로 알려져 있다.
한편, 고온 공정을 수반하는 플렉서블 디바이스는 고온에서의 내열성이 요구되는데, 특히 LTPS(low temperature polysilicon) 공정을 사용하는 OLED(organic light emitting diode) 디바이스의 경우 공정온도가 500℃에 근접하기도 한다. 그러나 이러한 온도에서는 내열성이 우수한 폴리이미드라 하더라도 열분해가 되기 쉽다.
또한, 표시 소자로부터 발산되는 광이 필름 기판을 통하여 출사되도록 하는 경우(예를 들면, 보텀 이미션(bottom emission)형 유기 EL 등), 필름 기판의 투명성이 요구된다. 특히, 가시광 영역인 400nm 이하의 파장 영역에서의 광투과율이 높은 것이 요구된다. 또한, 위상차 필름이나 편광판을 광이 통과하는 경우, 예를 들면 액정 디스플레이, 터치 패널 등은 높은 투명성이 요구된다.
한편, 이미드화가 진행된 폴리이미드 수지는 용해도가 낮아지기 때문에, 용액 상태로 제조하기 어려워 코팅용으로의 사용이 제한될 수 있다. 하지만 용해도를 향상시키려고 하면 내열성이 감소할 수 있고, 다시 내열성을 개선하려고 하면 광투과도가 낮아진다는 문제점이 있다.
따라서, 플렉서블 디바이스 제조를 위해서는 폴리이미드 전구체 용액의 가수분해가 감소되어 우수한 내화학성 및 저장안정성을 나타낼 수 있고, 기계적 특성을 유지하면서 내열성 및 투명성을 동시에 향상시킬 수 있는 폴리이미드 전구체 용액이 필요하다.
본 발명이 해결하고자 하는 과제는 고 고형분 저 점도를 갖는 폴리이미드 전구체 용액을 제공하는 것이다.
본 발명이 해결하고자 하는 다른 과제는 상기 폴리이미드 전구체 용액을 이용하여 제조된 폴리이미드 필름을 제공하는 것이다.
본 발명이 해결하고자 하는 또 다른 과제는 상기 폴리이미드 필름을 포함하는 플렉서블 디스플레이 소자를 제공하는 것이다.
본 발명의 과제를 해결하기 위해,
폴리이미드 전구체와, 분배계수(Log P)가 양수이고 밀도가 1g/cm3 이하인 아마이드계 유기용매를 포함하는 폴리이미드 전구체 용액을 제공한다.
일 실시예에 따르면, 상기 유기용매를 포함하는 폴리이미드 전구체 용액의 고형분 함량이 10~25 중량% 일 때 점도가 7000 cP 이하일 수 있다.
일 실시예에 따르면, 상기 유기용매가 디메틸프로피온아마이드(DMPA) 또는 디에틸프로피온아마이드(DEPA) 를 포함하는 것일 수 있다.
일 실시예에 따르면, 상기 폴리이미드 전구체 용액에 포함된 폴리이미드 전구체는 화학식 1의 반복구조를 갖는 폴리아믹산일 수 있다.
[화학식 1]
Figure PCTKR2018007271-appb-I000001
상기 화학식 1에서,
X는 테트라카르복실산 이무수물로부터 유도된 방향족, 지환족, 및 지방족 4가 유기기로 이루어진 군에서 선택된 4가 유기기이며,
Y는 디아민으로부터 유도된 방향족, 지환족 및 지방족 2가 유기기로 이루어진 군에서 선택된 2가 유기기를 포함한다.
일 실시예에 따르면, 상기 X 는 하기 화학식 2a 내지 2g로 이루어진 군에서 선택된 하나의 4가 유기기이다.
[화학식 2a]
Figure PCTKR2018007271-appb-I000002
[화학식 2b]
Figure PCTKR2018007271-appb-I000003
[화학식 2c]
Figure PCTKR2018007271-appb-I000004
[화학식 2d]
Figure PCTKR2018007271-appb-I000005
[화학식 2e]
Figure PCTKR2018007271-appb-I000006
[화학식 2f]
Figure PCTKR2018007271-appb-I000007
[화학식 2g]
Figure PCTKR2018007271-appb-I000008
상기 화학식 2a 내지 2g에서,
상기 R31 내지 R42는 각각 독립적으로 탄소수 1 내지 10의 알킬기(예를 들면, 메틸기, 에틸기, 프로필기, 이소프로필기, t-부틸기, 펜틸기, 헥실기 등) 또는 탄소수 1 내지 10의 플루오로알킬기(예를 들면, 플루오로메틸기, 퍼플루오로에틸기, 트리플루오로메틸기 등)일 수 있고,
상기 a1은 0 내지 2의 정수, b1은 0 내지 4의 정수, c1은 0 내지 8의 정수, d1 및 e1은 각각 독립적으로 0 내지 3의 정수, f1 및 g1은 각각 독립적으로 0 내지 4의 정수, h1 및 j1은 각각 독립적으로 0 내지 3의 정수, i1은 0 내지 4의 정수, k1 및 l1은 각각 독립적으로 0 내지 4의 정수이며,
상기 A1, A2, A3는 각각 독립적으로 단일결합, -O-, -CR46R47-, -C(=O)-, -C(=O)O-, -C(=O)NH-, -S-, -SO2-, 페닐렌기 및 이들의 조합으로 이루어진 군에서 선택되는 것일 수 있으며, 이때 상기 R46 및 R47은 각각 독립적으로 수소원자, 탄소수 1 내지 10의 알킬기(예를 들면, 메틸기, 에틸기, 프로필기, 이소프로필기, t-부틸기, 펜틸기, 헥실기 등) 및 탄소수 1 내지 10의 플루오로알킬기(예를 들면, 플루오로메틸기, 플루오로에틸기, 트리플루오로메틸기 등)로 이루어진 군으로부터 선택되는 것이다.
일 실시예에 따르면, 상기 Y는 하기 화학식 4a 내지 4d로 이루어진 군에서 선택된 하나의 2가 유기기이다.
[화학식4a]
Figure PCTKR2018007271-appb-I000009
[화학식4b]
Figure PCTKR2018007271-appb-I000010
상기 화학식 4b에서, L1 은 단일결합, -O-, -CO-, -S-, -SO2-, -C(CH3)2-, -C(CF3)2-, -CONH-, -COO-, -(CH2)n1-, -O(CH2)n2O-, -OCH2-C(CH3)2-CH2O- 또는 -COO(CH2)n3OCO-이고, 상기 n1, n2 및 n3는 각각 1 내지 10의 정수이고,
[화학식4c]
Figure PCTKR2018007271-appb-I000011
상기 화학식 4c에서, L2 및 L3는 서로 같거나 다를 수 있으며, 각각 단일결합, -O-, -CO-, -S-, -SO2-, -C(CH3)2-, -C(CF3)2-, -CONH-, -COO-, -(CH2)n1-, -O(CH2)n2O-, -OCH2-C(CH3)2-CH2O- 또는 -COO(CH2)n3OCO-이고, 상기 n1, n2 및 n3는 각각 1 내지 10의 정수이고,
[화학식4d]
Figure PCTKR2018007271-appb-I000012
상기 화학식 4d에서, L4, L5 및 L6는 서로 같거나 다를 수 있으며, 각각 단일결합, -O-, -CO-, -S-, -SO2-, -C(CH3)2-, -C(CF3)2-, -CONH-, -COO-, -(CH2)n1-, -O(CH2)n2O-, -OCH2-C(CH3)2-CH2O- 또는 -COO(CH2)n3OCO-이고, 상기 n1, n2 및 n3는 각각 1 내지 10의 정수이고,
상기 화학식 4a 내지 4d의 방향족 고리에 포함된 하나 이상의 수소 원자는 탄소수 1 내지 10의 알킬기(예를 들면, 메틸기, 에틸기, 프로필기, 이소프로필기, t-부틸기, 펜틸기, 헥실기 등) 또는 탄소수 1 내지 10의 플루오로알킬기(예를 들면, 플루오로메틸기, 퍼플루오로에틸기, 트리플루오로메틸기 등)으로 치환 또는 비치환될 수 있다.
일 실시예에 따르면, 상기 폴리이미드 전구체가 분자 구조내에 하기 화학식 6의 구조를 더 포함하는 것일 수 있다.
[화학식 6]
Figure PCTKR2018007271-appb-I000013
상기 식에서, p 및 q는 몰분율로서 p+q=100 일 때 p는 70~90, q는 10~30 임.
본 발명의 다른 과제를 해결하기 위해, 상기 폴리이미드 전구체 용액으로부터 제조된 폴리이미드 필름을 제공한다.
일 실시예에 따르면, 상기 폴리이미드 필름의 투과도가 380~780nm 파장의 범위에서 75% 이상일 수 있다.
일 실시예에 따르면, 상기 폴리이미드 필름의 헤이즈가 1 이하일 수 있다.
일 실시예에 따르면, 상기 폴리이미드 필름의 열분해온도가 400 ℃ 이상일 수 있다.
일 실시예에 따르면, 상기 폴리이미드 필름의 연신율이 10% 이상이고, 인장강도가 30 MPa 이상이며, 인장 모듈러스가 1 GPa 이상일 수 있다.
일 실시예에 따르면, 상기 폴리이미드 필름의 CTE가 -20~90 ppm/℃일 수 있다.
또한, 본 발명은, 상기 폴리이미드 필름을 포함하는 플렉서블 디스플레이 소자를 제공한다.
본 발명은 폴리이미드 전구체의 제조에 있어서 분배계수(LogP)가 양수이면서 밀도가 1g/cm3 이하인 아마이드계 유기용매를 사용함으로써 폴리이미드 전구체인 폴리아믹산과 유기용매간의 상호작용을 완화시켜 폴리이미드 전구체 용액의 점도를 저하시킬 수 있어 고 고형분 저 점도의 폴리이미드 전구체 용액을 얻을 수 있다. 또한 본 발명에 의하면, LogP가 양수인 아마이드계 용매의 양친성(amphiphilic) 특성으로 인해 극성의 차이가 감소되므로 폴리아믹산과 유기용매간의 상분리 현상을 억제할 수 있다.
도 1과 도 2는 비교예 1과 실시예 1의 필름 단면을 FIB(focused ion beam)에 의해 처리하여 SEM으로 관찰한 결과이다.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.
본 명세서에서 모든 화합물 또는 유기기는 특별한 언급이 없는 한 치환되거나 비치환된 것일 수 있다. 여기서, '치환된'이란 화합물 또는 유기기에 포함된 적어도 하나의 수소 원자가 할로겐 원자, 탄소수 1 내지 10의 알킬기, 할로겐화알킬기, 탄소수 3 내지 30의 사이클로알킬기, 탄소수 6 내지 30의 아릴기, 하이드록시기, 탄소수 1 내지 10의 알콕시기, 카르복실산기, 알데히드기, 에폭시기, 시아노기, 니트로기, 아미노기, 술폰산기 및 이들의 유도체로 이루어진 군에서 선택되는 치환기로 대체된 것을 의미한다.
폴리이미드 필름은 플렉서블 디스플레이 기판 용도로 주목 받는 재료 중 하나이며, 폴리이미드 필름 기판의 제조 공정은 다음과 같다. 먼저, 폴리이미드 전구체 용액인 폴리아믹산 용액을 캐리어 기판 상에 코팅하고 열 경화하는 과정을 거쳐 캐리어 기판 상에 폴리이미드 필름을 형성한다. 이후 폴리이미드 필름 상에 디바이스 제조에 필요한 공정을 진행한 다음 캐리어 기판으로부터 폴리이미드 필름을 박리하여 플렉서블 디스플레이를 얻을 수 있다. 이러한 과정에서 가장 중요한 부분은 캐리어 기판에 폴리이미드 필름을 형성시키는 과정이다. 캐리어 기판에 폴리아믹산 용액을 코팅 할 때 기포가 발생하지 않으면서 무라 없이 낮은 표면조도로 코팅을 해야 한다. 하지만, 폴리아믹산은 극성이 높은데 일반적으로 사용되는 용매(예를 들면,N-메틸피롤리돈)의 극성도 비교적 높아 용매와 폴리아믹산의 상호작용으로 인해 폴리아믹산 용액은 고형분 대비 높은 점도를 갖는다. 이로 인해 코팅시 발생하는 기포를 제어하는 것이 상당히 어렵다. 또한 수분 흡수율이 높아 코팅 후 방치 시 수분을 흡수하여 용액 백탁 현상이 발생하는데, 백탁이 발생한 코팅층을 열경화 하면 높은 표면조도를 가지게 되어 디스플레이 공정시 불량이 발생하게 된다. 따라서, 공정성 향상을 위해 용액의 점도를 낮추기 위해서는 고형분 함량을 낮출 수 밖에 없다. 하지만, 고형분 함량이 낮아지면 상대적으로 용매의 비중이 높아져 열 경화시 많은 양의 용매가 증발하게 되어 코팅 불량이 발생할 수 있다는 문제점이 있다.
상기와 같은 종래의 문제를 해결하기 위해 본 발명은, 폴리이미드 전구체와, 분배계수(Log P)가 양수이고 밀도가 1g/cm3 이하인 아마이드계 유기용매를 포함하는 폴리이미드 전구체 용액을 제공한다.
상기 분배계수(Log P)는 ACD/Labs 사의 ACD/Percepta platform의 ACD/LogP module을 사용하여 계산될 수 있으며, ACD/LogP module은 분자의 2D 구조를 이용하여 QSPR(Quantitative Structure-Property Relationship) 방법론 기반의 알고리즘을 이용한다.
유기용매의 밀도는 ASTM D1475의 표준측정방법으로 측정하여 1g/cm3 이하일 수 있으며, 밀도가 1 g/cm3 이상의 값을 갖는 경우에는 상대점도가 높아질 수 있어 공정 효율성이 감소할 수 있다.
본 발명은, 분배계수(Log P)가 양수인 아마이드계 용매의 양친성(amphiphilic) 특성으로 인해 폴리아믹산과 유기 용매간의 극성 차이를 감소시킬 수 있어, 폴리아믹산과 유기용매간의 상분리 현상을 억제할 수 있다.
본 발명은 LogP가 양수이고 밀도가 1g/cm3 이하인 아마이드계 유기용매를 폴리이미드 전구체를 제조하기 위한 중합 용매로 사용하고, 또한 폴리이미드 전구체 용액에 포함시킴으로써, 10~25 중량%의 고 고형분 조건에서도 점도를 낮출 수 있다. 구체적으로 상기 고형분 함량 조건에서 본 발명에 따른 폴리이미드 전구체 용액의 점도는 7,000 cP 이하, 바람직하게는 6,000 cP 이하, 보다 바람직하게는 5,000 cP 이하의 점도를 갖는 것일 수 있다.
폴리이미드 전구체 용액의 점도가 높을 경우 폴리이미드 필름 가공시 탈포의 효율성이 저하됨으로써, 공정상의 효율이 저하될 뿐만 아니라, 필름내 기포발생으로 표면조도가 좋지 않아 전기적, 광학적, 기계적 특성이 저하될 수 있다. 이에 본 발명은 Log P가 양수이고 밀도가 1g/cm3 이하인 아마이드계 용매를 사용함으로써, 고 고형분의 조건에서도 점도가 낮은 폴리이미드 전구체 용액을 제조할 수 있으며, 이로 인해 고 고형분의 조건에서도 탈포 효율성이 우수하여 기포 발생에 의한 코팅 불량을 저하시킬 수 있다.
상기 LogP가 양수이고, 용매의 밀도가 1g/cm3 이하인 아마이드계 유기용매로는 다양한 용매가 있을 수 있으나, 특히 디메틸프로피온아마이드(DMPA) 또는 디에틸프로피온아마이드(DEPA)가 바람직하다. 그 이유는 비교적 극성이 낮으면서 비점이 낮기 때문에 코팅성이 우수하고 낮은 온도에서도 용매의 휘발성이 좋아 필름제막 후 필름 내 잔류하는 용매량이 낮기 때문이다.
한편, 폴리아믹산이 물과 만나 염(salt)을 형성하면서 백탁이 발생하고 그 정도가 심해지면 응집현상이 발생할 수 있다. 이러한 상태로 경화를 하게 되면 표면이 거친 필름이 만들어진다. 즉, 폴리이미드계 용액 코팅의 헤이즈가 심한 경우에는 코팅성이 좋지 않아 경화 후 표면 거침 현상이 발생할 수 있는데 이러한 백탁 현상 개선은 경화 후 표면 특성 향상에 기여할 수 있다.
상기 분배계수 값이 양수인 경우에는 용매의 극성이 소수성임을 의미하는데, 본 발명자들의 연구에 따르면 분배계수 값이 양수인 특정 용매를 사용하여 폴리이미드 전구체 용액을 제조하는 경우 물과의 친화력이 낮기 때문에 폴리아믹산과 물 또는 극성 유기용매에 의한 염의 형성이 억제될 수 있으며, 그 결과 헤이즈가 개선될 수 있다. 따라서, 본 발명에 따른 폴리이미드계 필름은 우수한 투명도와 함께 높은 내열성과 기계적 특성을 가질 수 있다.
한편, 폴리이미드 전구체 용액을 유리기판에 코팅하는 공정에 있어서, 경화시 또는 코팅액 방치 조건에서 코팅층의 수축으로 인한 용액의 말림현상(dewetting)이 발생할 수 있다. 이러한 코팅 용액의 액말림 현상은 필름의 두께의 편차를 발생시켜 필름의 내굴곡성 부족으로 필름이 끊어지거나 컷팅시 모서리가 부스러지는 문제를 초래하므로 공정상의 작업성이 나빠 수율을 저하시킬 수 있다. 본 발명에 따라 분배계수 값이 양수인 아마이드계 용매를 사용하게 되면 폴리이미드 전구체 용액의 말림현상이 개선될 수 있다.
또한, Log P가 음수인 극성의 용매를 포함하는 폴리이미드 전구체 용액은 기판 상에 도포된 상태에서 극성 미세 이물질이 유입되는 경우, 상기 이물질이 갖는 극성에 의해 이물질이 존재하는 부위 주변으로 산발적인 코팅 균열 또는 두께 변화가 일어날 수 있다. 반면, Log P가 양수인 소수성의 용매를 사용하는 경우에는 극성을 갖는 미세 이물질이 유입되는 경우에도 코팅 균열이나 두께 변화 등이 감소 또는 억제될 수 있다.
일 실시예에 따르면, 상기 폴리이미드 전구체는 테트라카르복실산 이무수물 및 디아민을 중합시켜 제조되는 것일 수 있으며, 화학식 1의 반복구조를 갖는 폴리아믹산을 포함하는 것일 수 있다.
[화학식 1]
Figure PCTKR2018007271-appb-I000014
상기 화학식 1에서,
X는 테트라카르복실산 이무수물로부터 유도된 방향족, 지환족, 및 지방족 4가 유기기로 이루어진 군에서 선택된 4가 유기기이며,
Y는 디아민으로부터 유도된 방향족, 지환족 및 지방족 2가 유기기로 이루어진 군에서 선택된 2가 유기기를 포함한다.
상기 X 는 하기 화학식 2a 내지 2g로 이루어진 군에서 선택된 하나의 4가 유기기일 수 있다.
[화학식 2a]
Figure PCTKR2018007271-appb-I000015
Figure PCTKR2018007271-appb-I000016
[화학식 2b]
Figure PCTKR2018007271-appb-I000017
[화학식 2c]
Figure PCTKR2018007271-appb-I000018
[화학식 2d]
Figure PCTKR2018007271-appb-I000019
[화학식 2e]
Figure PCTKR2018007271-appb-I000020
[화학식 2f]
Figure PCTKR2018007271-appb-I000021
[화학식 2g]
Figure PCTKR2018007271-appb-I000022
상기 화학식 2a 내지 2g에서,
상기 R31 내지 R42는 각각 독립적으로 탄소수 1 내지 10의 알킬기(예를 들면, 메틸기, 에틸기, 프로필기, 이소프로필기, t-부틸기, 펜틸기, 헥실기 등) 또는 탄소수 1 내지 10의 플루오로알킬기(예를 들면, 플루오로메틸기, 퍼플루오로에틸기, 트리플루오로메틸기 등)일 수 있고,
상기 a1은 0 내지 2의 정수, b1은 0 내지 4의 정수, c1은 0 내지 8의 정수, d1 및 e1은 각각 독립적으로 0 내지 3의 정수, f1 및 g1은 각각 독립적으로 0 내지 4의 정수, h1 및 j1은 각각 독립적으로 0 내지 3의 정수, i1은 0 내지 4의 정수, k1 및 l1은 각각 독립적으로 0 내지 4의 정수이며,
상기 A1, A2, A3는 각각 독립적으로 단일결합, -O-, -CR46R47-, -C(=O)-, -C(=O)O-, -C(=O)NH-, -S-, -SO2-, 페닐렌기 및 이들의 조합으로 이루어진 군에서 선택되는 것일 수 있으며, 이때 상기 R46 및 R47은 각각 독립적으로 수소원자, 탄소수 1 내지 10의 알킬기(예를 들면, 메틸기, 에틸기, 프로필기, 이소프로필기, t-부틸기, 펜틸기, 헥실기 등) 및 탄소수 1 내지 10의 플루오로알킬기(예를 들면, 플루오로메틸기, 플루오로에틸기, 트리플루오로메틸기 등)로 이루어진 군으로부터 선택되는 것일 수 있다.
예를 들면, 상기 X 는 하기 화학식 3a 내지 3s의 4가 유기기로 이루어진 군에서 선택되는 것일 수 있다.
Figure PCTKR2018007271-appb-I000023
또, 상기 화학식 3a 내지 3s의 방향족 4가 유기기는 4가 유기기 내에 존재하는 1 이상의 수소 원자가 탄소수 1 내지 10의 알킬기(예를 들면, 메틸기, 에틸기, 프로필기, 이소프로필기, t-부틸기, 펜틸기, 헥실기 등) 또는 탄소수 1 내지 10의 플루오로알킬기(예를 들면, 플루오로메틸기, 퍼플루오로에틸기, 트리플루오로메틸기 등), 히드록실기, 술폰산기 및 카르복실산기로 이루어진 군에서 선택되는 치환기로 치환될 수도 있다.
상기 Y2는 하기 화학식 4a 내지 4d로 이루어진 군에서 선택된 하나의 2가 유기기일 수 있다.
[화학식4a]
Figure PCTKR2018007271-appb-I000024
[화학식4b]
Figure PCTKR2018007271-appb-I000025
상기 화학식 4b에서, L1 은 단일결합, -O-, -CO-, -S-, -SO2-, -C(CH3)2-, -C(CF3)2-, -CONH-, -COO-, -(CH2)n1-, -O(CH2)n2O-, -OCH2-C(CH3)2-CH2O- 또는 -COO(CH2)n3OCO-이고, 상기 n1, n2 및 n3는 각각 1 내지 10의 정수이다.
[화학식4c]
Figure PCTKR2018007271-appb-I000026
상기 화학식 4c에서, L2 및 L3는 서로 같거나 다를 수 있으며, 각각 단일결합, -O-, -CO-, -S-, -SO2-, -C(CH3)2-, -C(CF3)2-, -CONH-, -COO-, -(CH2)n1-, -O(CH2)n2O-, -OCH2-C(CH3)2-CH2O- 또는 -COO(CH2)n3OCO-이고, 상기 n1, n2 및 n3는 각각 1 내지 10의 정수이다.
[화학식4d]
Figure PCTKR2018007271-appb-I000027
상기 화학식 4d에서, L4, L5 및 L6는 서로 같거나 다를 수 있으며, 각각 단일결합, -O-, -CO-, -S-, -SO2-, -C(CH3)2-, -C(CF3)2-, -CONH-, -COO-, -(CH2)n1-, -O(CH2)n2O-, -OCH2-C(CH3)2-CH2O- 또는 -COO(CH2)n3OCO-이고, 상기 n1, n2 및 n3는 각각 1 내지 10의 정수이다.
예를 들면, 상기 Y는 하기 화학식 5a 내지 5p의 2가 유기기로 이루어진 군에서 선택되는 것일 수 있다.
Figure PCTKR2018007271-appb-I000028
상기 화학식 5a 내지 5p의 2가 작용기내 1 이상의 수소 원자는 탄소수 1 내지 10의 알킬기(예를 들면, 메틸기, 에틸기, 프로필기, 이소프로필기, t-부틸기, 펜틸기, 헥실기 등), 탄소수 1 내지 10의 플루오로알킬기(예를 들면, 플루오로메틸기, 퍼플루오로에틸기, 트리플루오로메틸기 등), 탄소수 6 내지 12의 아릴기(예를 들면, 페닐기, 나프탈레닐기 등), 히드록실기, 술폰산기 및 카르복실산기로 이루어진 군에서 선택되는 치환기로 치환될 수도 있다.
또한, 상기 폴리이미드 전구체는 구조내에 하기 구조를 더 포함할 수 있으며,
[화학식 6]
Figure PCTKR2018007271-appb-I000029
상기 식에서, p 및 q는 몰분율로서 p+q=100 일 때 p는 70~90, q는 10~30 임.
예를 들어, 상기 화학식 6의 실록산 구조는 하기 화학식 7의 디아민을 중합성분으로 더 포함함으로써 형성되는 것일 수 있다.
[화학식 7]
Figure PCTKR2018007271-appb-I000030
일 실시예에 따르면, 상기 화학식 7의 구조를 갖는 디아민 화합물의 분자량이 4000 g/mol 이상 또는 4200 g/mol 이상 또는 4400g/mol 이상, 또는 6000g/mol 이하 또는 5500g/mol 이하 또는 5000g/mol 이하일 수 있다. 여기서 분자량은 중량평균 분자량을 의미하며, 분자량 계산은 NMR분석 또는 산염기 적정법을 사용하여 아민 당량을 계산하는 방식을 사용할 수 있다.
상기 테트라카르복실산 이무수물과 디아민의 반응은 용액 중합 등 통상의 폴리이미드 전구체 중합 방법으로 실시할 수 있다. 구체적으로는, 디아민을 유기 용매에 용해시킨 후, 테트라카르복실 산이무수물을 첨가하여 중합 반응시킬 수 있다. 상기 반응은 비활성 기체 또는 질소 기류 하에 실시될 수 있으며, 무수 조건에서 실행될 수 있다.
또한, 상기 중합반응시 온도는 -20℃ 내지 60℃, 바람직하게는 0 내지 45℃에서 실시될 수 있다. 반응온도가 너무 높을 경우 반응성이 높아져 분자량이 커질 수 있으며, 전구체 조성물의 점도가 상승함으로써 공정상 불리할 수 있다.
또한, 상기 중합된 폴리아믹산의 분자량은 50,000 내지 200,000g/mol, 혹은 60,000 내지 150,000g/mol의 중량평균 분자량을 갖는 것일 수 있다.
이어서 상기 중합반응의 결과로 수득된 폴리이미드 전구체를 이미드화 시킴으로써, 투명 폴리이미드 필름을 제조할 수 있다. 이때, 상기 이미드화 공정은 화학 이미드화 또는 열 이미드화 방법이 있을 수 있으며, 바람직하게는 상기 폴리이미드 전구체 용액을 기판상에 도포한 후 열처리하는 방법으로 폴리아믹산을 이미드화 할 수 있다.
상기 폴리이미드 전구체 용액은 유기용매 중에 폴리이미드 전구체가 용해된 용액의 형태일 수 있다. 예를 들어 폴리이미드 전구체를 유기용매 중에서 합성한 경우에는, 용액은 얻어지는 반응용액 그 자체이어도 되고, 또 이 반응 용액을 다른 용매로 희석한 것이어도 된다. 또, 폴리이미드 전구체를 고형 분말로서 얻은 경우에는, 이것을 유기 용매에 용해시켜 용액으로 제조한 것이어도 된다.
본 발명에 따른 폴리이미드 전구체 용액으로 필름을 제조하는 방법은,
상기 폴리이미드 전구체 용액을 기판상에 도포하는 단계;
상기 도포된 폴리이미드 전구체 용액을 열처리하는 단계를 포함한다.
이때, 상기 기판으로는 유리, 금속기판 또는 플라스틱 기판 등이 특별한 제한 없이 사용될 수 있으며, 이 중에서도 폴리이미드 전구체에 대한 이미드화 및 경화공정 중 열 및 화학적 안정성이 우수하고, 별도의 이형제 처리 없이도, 경화 후 형성된 폴리이미드계 필름에 대해 손상 없이 용이하게 분리될 수 있는 유리 기판이 바람직할 수 있다.
또, 상기 도포 공정은 통상의 도포 방법에 따라 실시될 수 있으며, 구체적으로는 스핀코팅법, 바코팅법, 롤코팅법, 에어-나이프법, 그라비아법, 리버스 롤법, 키스 롤법, 닥터 블레이드법, 스프레이법, 침지법 또는 솔질법 등이 이용될 수 있다. 이중에서도 연속 공정이 가능하며, 폴리이미드의 이미드화율을 증가시킬 수 있는 캐스팅법에 의해 실시되는 것이 보다 바람직할 수 있다.
또, 상기 폴리이미드 전구체 용액은 최종 제조되는 폴리이미드 필름이 디스플레이 기판용으로 적합한 두께를 갖도록 하는 두께 범위로 기판 위에 도포될 수 있다.
구체적으로는 10 내지 30㎛의 두께가 되도록 하는 양으로 도포될 수 있다. 상기 폴리이미드 전구체 용액 도포 후, 경화 공정에 앞서 폴리이미드 전구체 용액 내에 존재하는 용매를 제거하기 위한 건조공정이 선택적으로 더 실시될 수 있다.
상기 건조공정은 통상의 방법에 따라 실시될 수 있으며, 구체적으로 140℃ 이하, 혹은 80℃ 내지 140℃의 온도에서 실시될 수 있다. 건조 공정의 실시 온도가 80℃ 미만이면 건조 공정이 길어지고, 140℃를 초과할 경우 이미드화가 급격히 진행되어 균일한 두께의 폴리이미드 필름 형성이 어렵다.
상기 폴리이미드 전구체 용액을 기판에 도포하고, IR오븐, 열풍오븐이나 핫플레이트 위에서 열처리되며, 이때, 상기 열처리 온도는 300 내지 500℃, 바람직하게는 320 내지 480℃ 범위일 수 있으며, 상기 온도범위 내에서 다단계 가열처리로 진행될 수도 있다. 상기 열처리 공정은 20분 내지 70분 동안 진행될 수 있으며, 바람직하게는 20분 내지 60분 동안 진행될 수 있다.
본 발명의 폴리이미드 전구체 용액에 함유되는 상기 유기용매는, 상기 합성 반응시 사용되는 유기용매와 동일한 것이 사용될 수 있으며, 상기 유기용매는 상기 LogP가 양수이고, 밀도가 1g/cm3 이하인 아마이드계 유기용매, 예를 들면, 디메틸프로피온아마이드(DMPA) 또는 디에틸프로피온아마이드(DEPA)을 포함할 수 있다.
또, 상기 폴리이미드계 필름은 헤이즈(Haze)가 1 이하, 바람직하게는 0.9 이하, 또는 0.7 이하, 보다 바람직하게는 0.5 이하일 수 있어, 투명성이 개선된다. 이때, 상기 폴리이미드 필름의 두께는 8 내지 15㎛일 수 있으며, 바람직하게는 10 내지 12㎛일 수 있다.
또한, 5 내지 30㎛의 필름 두께 범위에서 380 내지 760nm 파장의 빛에 대한 투과도가 70% 이상일 수 있다.
또한, 본 발명에 따른 폴리이미드 필름은 온도변화에 따른 내열특성이 우수할 수 있으며, 예를 들면, 본 발명에 따른 폴리미이드 필름은 100℃ 내지 450℃ 온도범위에서 가열 및 냉각 공정을 n+1회 거친 후의 열팽창계수가 -20 내지 90 ppm/℃ 의 값을 가질 수 있고, 중량이 1% 감소하는 열분해온도인 Td_1%가 400 ℃ 이상 또는 500℃ 이상일 수 있다.
또, 상기 폴리이미드계 필름은 인장 모듈러스(tensile modulus)가 약 1 GPa 이상 또는 3 GPa 이상 이고, 인장강도(tensile strength)가 약 30 MPa 이상 또는 약 100 MPa 이상 또는 약 150MPa 이상이며, 그리고 최대 연신율(elongation)이 약 15%, 혹은 약 10% 이상인 우수한 기계적 특성을 가질 수 있다.
이에 따라 상기 폴리이미드계 필름은 디스플레이 기판 및 소자에 적용될 수 있다. 구체적으로는 상기 소자는 가요성 기판을 갖는 임의의 태양전지(예를 들어, 플렉서블 태양전지), 유기발광다이오드(OLED) 조명(예를 들어, 플렉서블 OLED 조명), 가요성 기판을 갖는 임의의 반도체 소자, 또는 가요성 기판을 갖는 유기전계 발광소자, 전기 영동 소자 또는 LCD 소자 등의 플렉서블 디스플레이 소자일 수 있다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
본 발명의 실시예 및 비교예에 사용된 용매는 표 1과 같다.
DMPA DEPA DMAc NMP
비점(bp) (oC) 175 194 166 202
인화점(oC) 65.8±9.65 73.6±9.65 63.8±9.6 86.1±0.0
Pka -0.41±0.70 -0.41±0.70 -0.41±0.70 -0.41±0.20
밀도(g/cm3) 0.876±0.06 0.870±0.06 0.880±0.06 1.029±0.06
Log P 0.256±0.249 1.275±0.249 -0.253±0.249 -0.637±0.349
증기압(Torr) 1.12 0.444 1.81 0.299
상기 표 1에서, 영문 약어는 아래와 같은 의미이다:
DMPA: Dimethylpropionamide
DEPA: Diethylpropionamide
DMAc: Dimethylacetamide
NMP: 1-Methyl-2-pyrrolidone
폴리이미드 전구체 용액의 점도는 브룩필드 회전 점도계(Brookfield rotational viscometer)로 25℃에서 측정하였다.
폴리아믹산의 중량평균 분자량은 GPC(Gel Permeation Chromatography)와 용리액(THF:DMF 50:50 부피비)을 사용하여 측정하였다
<실시예 1>
질소 기류가 흐르는 반응기 내에 DMPA 279g을 채운 후, 반응기의 온도를 25℃로 유지한 상태에서 TFMB(2,2`-bis(trifluoromethyl)-4,4`-biphenyl diamine) 29g(0.091mol)을 용해시켰다. 상기 TFMB 용액에 PMDA(Pyromellitic Dianhydride) 20g(0.091mol)을 동일한 온도에서 첨가하여 일정시간 용해하며 교반하였다. 상기 반응으로부터 제조된 폴리이미드 전구체 용액의 고형분 농도가 12 중량%가 되도록 DMPA를 첨가하였다. 결과적으로 제조된 폴리이미드 전구체 용액의 점도는 5,010cP 였으며, 폴리이미드 전구체, 즉 중합된 폴리아믹산의 중량평균 분자량은 101,000 g/mol 이었다.
<실시예 2 내지 10>
하기 표 2에 기재된 테트라카르복실산 이무수물 및 디아민을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 폴리이미드 전구체 용액을 제조하였으며, 상기 폴리이미드 전구체 용액의 점도 및 폴리아믹산의 분자량을 표 2에 나타내었다.
실시예No. 이무수물 디아민 용매 고형분 농도 (wt%) 점도(cP) Mw
1 PMDA TFMB DMPA 12 5010 101,000
2 BPAF TFMB DMPA 12 3200 70,500
3 ODPA TFMB DMPA 12 4600 97,100
4 TBIS-BAN TFMB DMPA 12 3900 93,000
5 6FDA TFMB DMPA 12 5100 78,000
6 PMDA-HS TFMB DMPA 12 4500 79,000
7 TAHQ TFMB DMPA 12 4800 101,000
8 DSDA TFMB DMPA 12 3600 89,000
9 BPDA PDA DMPA 12 6800 100,000
10 BPDA TFMB DMPA 12 6700 107000
상기 표 2에서, 영문 약어는 아래와 같은 의미이다:
PMDA: pyromellitic anhydride
BPFA: 9,9'-bis(3,4-dicaroxyphenyl)fluorene dianhydride
ODPA: 4,4'-oxydiphthalic anhydride
TBIS-BAN:(N,N'-(9H-Fluoren-9-ylidene di-4,1-phenylene)bis[1,3-dihydro-1,3-dioxo-5-isobenzofurancarboxamide]
6FDA: 4,4'-(Hexafluoroisopropylidene)diphthalic anhydride
PMDA-HS: 1R,2S,4S,5R-cyclohexanetetracarboxylic dianhydride
TAHQ: hydroquinone bis(trimellitate anhydride)
DSDA: 3,3',4,4'-Diphenylsulfonetetracarboxylic dianhydride
TFMB: 2,2'-bis(trifluoromethyl)benzidine
PDA: para-phenylenediamine
BPDA: 3,3',4,4′'-Biphenyltetracarboxylic dianhydride
<실시예 11>
질소 기류가 흐르는 반응기 내에 DEPA 279g을 채운 후, 반응기의 온도를 25℃로 유지한 상태에서 TFMB(2,2`-bis(trifluoromethyl)-4,4`-biphenyl diamine) 29g(0.091mol)을 용해시켰다. 상기 TFMB 용액에 PMDA(Pyromellitic Dianhydride) 20g(0.091mol)을 동일한 온도에서 첨가하여 일정 시간 용해하며 교반하였다. 상기 반응으로부터 제조된 폴리이미드 전구체 용액의 고형분 농도가 12 중량%가 되도록 DMPA를 첨가하였다. 결과적으로 제조된 폴리이미드 전구체 용액의 점도는 4300 cP 였으며, 중합된 폴리아믹산의 중량평균 분자량은 99,000g/mol 이었다.
<실시예 12 내지 20>
하기 표 3에 기재된 테트라카르복실산 이무수물 및 디아민을 사용한 것을 제외하고는 실시예 11과 동일한 방법으로 폴리이미드 전구체 용액을 제조하였으며, 상기 폴리이미드 전구체 용액의 점도 및 폴리아믹산의 분자량을 표 3에 나타내었다.
실시예No 이무수물 디아민 용매 고형분 농도(wt%) 점도(cP) Mw
11 PMDA TFMB DEPA 12 4300 99,000
12 BPAF TFMB DEPA 12 2900 72,000
13 ODPA TFMB DEPA 12 3250 95,000
14 TBIS-BAN TFMB DEPA 12 3020 91,200
15 6FDA TFMB DEPA 12 4600 77,000
16 PMDA-HS TFMB DEPA 12 3810 73,000
17 TAHQ TFMB DEPA 12 4200 98,900
18 DSDA TFMB DEPA 12 3050 81,000
19 BPDA PDA DEPA 12 4800 107,000
20 BPDA TFMB DEPA 12 4600 108,000
<비교예 1>
질소 기류가 흐르는 반응기 내에 DMAc 279g을 채운 후, 반응기의 온도를 25℃로 유지한 상태에서 TFMB(2,2`-bis(trifluoromethyl)-4,4`-biphenyl diamine) 29g(0.091mol)을 용해시켰다. 상기 TFMB 용액에 PMDA(Pyromellitic Dianhydride) 20g(0.091mol)을 동일한 온도에서 첨가하여 일정 시간 용해하며 교반하였다. 상기 반응으로부터 제조된 폴리이미드 전구체 용액의 고형분 농도가 12 중량%가 되도록 DMAc를 첨가하였다. 결과적으로 제조된 폴리이미드 전구체 용액의 점도는 12,000cP 였으며, 중합된 폴리아믹산의 중량평균 분자량은 100,400 g/mol 이었다.
<비교예 2 내지 10>
하기 표 4에 기재된 테트라카르복실산 이무수물 및 디아민을 사용한 것을 제외하고는 비교예 1과 동일한 방법으로 폴리이미드 전구체 용액을 제조하였으며, 상기 폴리이미드 전구체 용액의 점도 및 폴리아믹산의 분자량을 표 4에 나타내었다.
비교예No. 이무수물 디아민 용매 고형분 농도(wt%) 점도(cP) Mw
1 PMDA TFMB DMAc 12 12,000 100,400
2 BPAF TFMB DMAc 12 10,600 90,500
3 ODPA TFMB DMAc 12 8,100 96,500
4 TBIS-BAN TFMB DMAc 12 8,200 94,500
5 6FDA TFMB DMAc 12 8,900 98,000
6 PMDA-HS TFMB DMAc 12 7,100 76,500
7 TAHQ TFMB DMAc 12 8,600 100,000
8 DSDA TFMB DMAc 12 7,300 91,000
9 BPDA PDA DMAc 12 10,090 102,000
10 BPDA TFMB DMAc 12 16,000 996,000
<비교예 11>
질소 기류가 흐르는 반응기 내에 NMP 279g을 채운 후, 반응기의 온도를 25℃로 유지한 상태에서 TFMB(2,2`-bis(trifluoromethyl)-4,4`-biphenyl diamine) 29g(0.091mol)을 용해시켰다. 상기 TFMB 용액에 PMDA(Pyromellitic Dianhydride) 20g(0.091mol)을 동일한 온도에서 첨가하여 일정시간 용해하며 교반하였다. 상기 반응으로부터 제조된 폴리이미드 전구체 용액의 고형분 농도가 12 중량%가 되도록 NMP를 첨가하였다. 결과적으로 제조된 폴리이미드 전구체 용액의 점도는 16,000 cP 였으며, 중합된 폴리아믹산의 분자량은 109,000 g/mol 이었다.
<비교예 12 내지 20>
하기 표 5에 기재된 테트라카르복실산 이무수물 및 디아민을 사용한 것을 제외하고는 비교예 11과 동일한 방법으로 폴리이미드 전구체 용액을 제조하였으며, 상기 폴리이미드 전구체 용액의 점도 및 폴리아믹산의 분자량을 표 5에 나타내었다.
비교예 No. 이무수물 디아민 용매 고형분 농도 (wt%) 점도(cP) Mw
11 PMDA TFMB NMP 12 16,000 109,000
12 BPAF TFMB NMP 12 7,300 87,000
13 ODPA TFMB NMP 12 9,800 102,000
14 TBIS-BAN TFMB NMP 12 8,900 99,000
15 6FDA TFMB NMP 12 8,300 82,000
16 PMDA-HS TFMB NMP 12 8,200 80,500
17 TAHQ TFMB NMP 12 9,700 103,000
18 DSDA TFMB NMP 12 8,900 93,000
19 PMDA PDA NMP 12 15,000 108,000
20 BPDA TFMB NMP 12 19,500 110,000
상기 실시예 1 내지 20 및 비교예 1 내지 20의 결과로부터 알 수 있듯이 본 발명에 따른 유기용매를 포함하는 폴리이미드 전구체 용액은 고 고형분의 농도 조건에서도 점도가 낮게 형성되는 것을 알 수 있다. 반면, 비교예의 폴리이미드 전구체 용액은 분배계수가 음수인 극성 용매들로서 그 점도가 동일 고형분 농도에서 실시예의 점도에 비해 높게 형성되는 것을 알 수 있으며, 이는 폴리이미드 필름 제조시 용액 내 기포의 탈포 효과가 저하되어 코팅 후 필름내 탈포 불량에 의한 pore가 발생할 수 있음을 의미한다.
<실험예 1>
도 1과 도 2는 비교예 1과 실시예 1의 필름 단면을 FIB에 의해 처리하여 SEM으로 관찰한 결과이다. 폴리이미드 전구체 용액의 점도가 상대적으로 높아 탈포 효과가 저하된 비교예1의 필름 단면에는 마이크로 사이즈의 pore가 존재하는 반면, 실시예1의 필름 단면에는 pore가 없는 것을 알 수 있다.
<실험예 2>
실시예 1, 2, 5, 9 및 10에서 제조된 폴리이미드 전구체 용액을 유리 기판에 스핀코팅하였다. 폴리이미드 전구체 용액이 도포된 유리 기판을 오븐에 넣고 2℃/min의 속도로 가열하였으며, 80℃에서 15분, 150℃에서 30분, 220℃에서 30분, 380℃에서 1시간을 유지하여 경화 공정을 진행하였다. 경화 공정 완료 후에, 유리 기판을 물에 담가 유리 기판 위에 형성된 필름을 떼어낸 다음 오븐에서 100℃로 건조하여 폴리이미드 필름을 제조하였다.
제조한 필름에 대하여 하기와 같은 방법으로 CTE, 열분해온도, 연신율, 인장강도, 인장모듈러스 및 투과도를 측정하고 그 결과를 표 6에 나타내었다.
<CTE 측정>
필름을 5 x 20 mm 크기로 잘라 시료를 준비한 뒤 악세서리를 이용하여 시료를 로딩한다. 실제 측정되는 필름의 길이는 16mm로 동일하게 하였다. 필름을 당기는 힘을 0.02N으로 설정하고 100℃ 내지 400℃ 온도 범위에서 5℃/min 의 승온 속도로 1차 승온공정을 진행한 후, 400℃ 내지 100℃의 온도 범위에서 4℃/min 의 냉각 속도로 냉각(cooling)될 때의 열팽창 변화 양상을 TMA(TA 사의 Q400)로 측정하였다.
<열분해온도 Td_1%측정>
열분해온도는 ISO 11359의 방법으로 측정하였다.
<연신율, 인장강도, 인장모듈러스의 측정>
필름의 기계적 물성(인장 모듈러스, 인장강도, 연신율)을 측정하기 위해 Zwick사의 UTM을 사용하였다. 필름을 가로 5mm, 세로 60mm 이상으로 자른 후 그립 간의 간격은 40mm로 설정하여 20mm/min의 속도로 샘플을 당기면서 측정하였다.
<투과도 측정>
투과도는 JIS K 7105에 의거하여 투과율계(모델명 HR-100, Murakami Color Research Laboratory 제조)로 측정하였다.
  단위 실시예 1 실시예 2 실시예 5 실시예 9 실시예 10
PMDA_TFMB BPAF_TFMB 6FDA_TFMB BPDA_PDA BPDA_TFMB
고형분 농도 wt.% 12 12 12 12 12
점도 cP 5010 3200 5100 6800 6700
분자량 Mw 101,000 70,500 78,000 100,000 107,000
두께 10 10 10 10 10
CTE (100~450oC1st cooling) ppm/℃ -17 75 @~350℃ 70 @ ~300℃ 3.3 20 @ ~300℃
Td_1% 535 530 501 565 546
연신율 % 23 15 20 15.4 20
인장강도 Mpa 290 150 190 343.3 230
인장모듈러스 Gpa 7.5 3.2 3.5 9.3 4.6
투과도(Tavar. 380~780nm) % 80 88 88 79 89
표 6의 결과로부터 본 발명에 따르면 열분해온도가 400℃ 이상, 심지어 500℃ 이상으로서 내열성이 매우 우수할 뿐만 아니라, 기계적 물성 및 투과도 또한 우수한 폴리이미드 필름을 얻을 수 있음을 알 수 있다.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.

Claims (14)

  1. 폴리이미드 전구체와, 25℃ 분배계수(Log P)가 양수이고 밀도가 1g/cm3 이하인 아마이드계 유기용매를 포함하는 폴리이미드 전구체 용액.
  2. 제1항에 있어서,
    상기 유기용매를 포함하는 폴리이미드 전구체 용액의 고형분 함량이 10 내지 25 중량% 일 때 점도가 7000 cP 이하인 폴리이미드 전구체 용액.
  3. 제1항에 있어서,
    상기 유기용매가 디메틸프로피온아마이드(DMPA) 또는 디에틸프로피온아마이드(DEPA)를 포함하는 것인 폴리이미드 전구체 용액.
  4. 제1항에 있어서,
    상기 폴리이미드 전구체는 화학식 1의 반복구조를 갖는 폴리아믹산을 포함하는 것인 폴리이미드 전구체 용액:
    [화학식 1]
    Figure PCTKR2018007271-appb-I000031
    X는 테트라카르복실산 이무수물로부터 유도된 방향족, 지환족, 및 지방족 4가 유기기로 이루어진 군에서 선택된 4가 유기기이며,
    Y는 디아민으로부터 유도된 방향족, 지환족 및 지방족 2가 유기기로 이루어진 군에서 선택된 2가 유기기를 포함한다.
  5. 제4항에 있어서,
    상기 X가 하기 화학식 2a 내지 2g로 이루어진 군에서 선택된 하나의 4가 유기기인 폴리이미드 전구체 용액:
    [화학식 2a]
    Figure PCTKR2018007271-appb-I000032
    [화학식 2b]
    Figure PCTKR2018007271-appb-I000033
    [화학식 2c]
    Figure PCTKR2018007271-appb-I000034
    [화학식 2d]
    Figure PCTKR2018007271-appb-I000035
    [화학식 2e]
    Figure PCTKR2018007271-appb-I000036
    [화학식 2f]
    Figure PCTKR2018007271-appb-I000037
    [화학식 2g]
    Figure PCTKR2018007271-appb-I000038
    상기 화학식 2a 내지 2g에서,
    상기 R31 내지 R42는 각각 독립적으로 탄소수 1 내지 10의 알킬기 또는 탄소수 1 내지 10의 플루오로알킬기이고,
    상기 a1은 0 내지 2의 정수, b1은 0 내지 4의 정수, c1은 0 내지 8의 정수, d1 및 e1은 각각 독립적으로 0 내지 3의 정수, f1 및 g1은 각각 독립적으로 0 내지 4의 정수, h1 및 j1은 각각 독립적으로 0 내지 3의 정수, i1은 0 내지 4의 정수, k1 및 l1은 각각 독립적으로 0 내지 4의 정수이며,
    상기 A1, A2, A3는 각각 독립적으로 단일결합, -O-, -CR46R47-, -C(=O)-, -C(=O)O-, -C(=O)NH-, -S-, -SO2-, 페닐렌기 및 이들의 조합으로 이루어진 군에서 선택되며, 이때 R46 및 R47은 각각 독립적으로 수소원자, 탄소수 1 내지 10의 알킬기 및 탄소수 1 내지 10의 플루오로알킬기로 이루어진 군으로부터 선택되는 것이다.
  6. 제4항에 있어서,
    상기 Y는 하기 화학식 4a 내지 4d로 이루어진 군에서 선택된 2가 유기기인 폴리이미드 전구체 용액:
    [화학식4a]
    Figure PCTKR2018007271-appb-I000039
    [화학식4b]
    Figure PCTKR2018007271-appb-I000040
    상기 화학식4b에서, L1 은 단일결합, -O-, -CO-, -S-, -SO2-, -C(CH3)2-, -C(CF3)2-, -CONH-, -COO-, -(CH2)n1-, -O(CH2)n2O-, -OCH2-C(CH3)2-CH2O- 또는 -COO(CH2)n3OCO-이고, 상기 n1, n2 및 n3는 각각 1 내지 10의 정수이고,
    [화학식4c]
    Figure PCTKR2018007271-appb-I000041
    상기 화학식4c에서, L2 및 L3는 서로 같거나 다를 수 있으며, 각각 독립적으로 단일결합, -O-, -CO-, -S-, -SO2-, -C(CH3)2-, -C(CF3)2-, -CONH-, -COO-, -(CH2)n1-, -O(CH2)n2O-, -OCH2-C(CH3)2-CH2O- 또는 -COO(CH2)n3OCO-이고, 상기 n1, n2 및 n3는 각각 1 내지 10의 정수이고,
    [화학식4d]
    Figure PCTKR2018007271-appb-I000042
    상기 화학식4d에서, L4, L5 및 L6는 서로 같거나 다를 수 있으며, 각각 독립적으로 단일결합, -O-, -CO-, -S-, -SO2-, -C(CH3)2-, -C(CF3)2-, -CONH-, -COO-, -(CH2)n1-, -O(CH2)n2O-, -OCH2-C(CH3)2-CH2O- 또는 -COO(CH2)n3OCO-이고, 상기 n1, n2 및 n3는 각각 1 내지 10의 정수이고,
    상기 화학식 4a 내지 4d의 방향족 고리에 포함된 하나 이상의 수소 원자는 탄소수 1 내지 10의 알킬기 또는 탄소수 1 내지 10의 플루오로알킬기로부터 선택되는 치환기로 치환 또는 비치환될 수 있다.
  7. 제1항에 있어서,
    상기 폴리이미드 전구체가 분자 구조내에 하기 화학식 6의 구조를 더 포함하는 것인 폴리이미드 전구체 용액:
    [화학식 6]
    Figure PCTKR2018007271-appb-I000043
    상기 식에서, p 및 q는 몰분율로서 p+q=100 일 때 p는 70~90, q는 10~30 이다.
  8. 제1항에 따른 폴리이미드 전구체 용액을 경화시켜 얻은 폴리이미드 필름.
  9. 제8항에 있어서,
    상기 폴리이미드 필름의 투과도가 380~780nm 파장의 범위에서 75% 이상인 것인 폴리이미드 필름.
  10. 제8항에 있어서,
    상기 폴리이미드 필름의 헤이즈가 1 이하인 폴리이미드 필름.
  11. 제8항에 있어서,
    상기 폴리이미드 필름의 열분해온도가 400℃ 이상인 폴리이미드 필름.
  12. 제8항에 있어서,
    상기 폴리이미드 필름의 연신율이 10% 이상이고, 인장강도가 30MPa 이상이며, 인장 모듈러스가 1 GPa 이상인 폴리이미드 필름.
  13. 제8항에 있어서,
    상기 폴리이미드 필름의 CTE가 -20 내지 90 ppm/℃인 폴리이미드 필름.
  14. 제8항에 따른 폴리이미드 필름을 포함하는 플렉서블 디스플레이 소자.
PCT/KR2018/007271 2017-09-29 2018-06-27 폴리이미드 전구체 용액 및 이를 이용하여 제조된 폴리이미드 필름 WO2019066204A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/617,379 US11479643B2 (en) 2017-09-29 2018-06-27 Polyimide precursor solution and polyimide film produced using same
EP18863468.7A EP3578590A4 (en) 2017-09-29 2018-06-27 POLYIMIDE PRECURSOR SOLUTION AND POLYIMIDE FILM PRODUCED THEREFROM
JP2019542175A JP6849173B2 (ja) 2017-09-29 2018-06-27 ポリイミド前駆体溶液及びそれを用いて製造されたポリイミドフィルム
CN201880021171.9A CN110461910B (zh) 2017-09-29 2018-06-27 聚酰亚胺前体溶液和使用其生产的聚酰亚胺膜

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2017-0127716 2017-09-29
KR20170127716 2017-09-29
KR1020180063124A KR102117151B1 (ko) 2017-09-29 2018-06-01 폴리이미드 전구체 용액 및 이를 이용하여 제조된 폴리이미드 필름
KR10-2018-0063124 2018-06-01

Publications (1)

Publication Number Publication Date
WO2019066204A1 true WO2019066204A1 (ko) 2019-04-04

Family

ID=65902076

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/007271 WO2019066204A1 (ko) 2017-09-29 2018-06-27 폴리이미드 전구체 용액 및 이를 이용하여 제조된 폴리이미드 필름

Country Status (1)

Country Link
WO (1) WO2019066204A1 (ko)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160067413A (ko) * 2014-12-04 2016-06-14 주식회사 엘지화학 폴리이미드계 용액 및 이를 이용하여 제조된 폴리이미드계 필름
KR20160097685A (ko) * 2015-02-09 2016-08-18 주식회사 엘지화학 폴리이미드계 필름 형성용 조성물 및 이를 이용하여 제조된 폴리이미드계 필름
KR20160108252A (ko) * 2015-03-05 2016-09-19 주식회사 엘지화학 광전소자의 플렉시블 기판용 폴리이미드 필름용 조성물
KR20170057458A (ko) * 2014-12-24 2017-05-24 유니티카 가부시끼가이샤 다공질 폴리이미드 필름 및 그의 제조 방법
KR20170079896A (ko) * 2015-12-31 2017-07-10 주식회사 동진쎄미켐 폴리이미드고분자 조성물, 이의 제조 방법 및 이를 이용한 폴리이미드 필름의 제조 방법
KR20170127716A (ko) 2016-05-12 2017-11-22 엘지디스플레이 주식회사 표시 장치 및 그 구동 방법
KR20180063124A (ko) 2015-10-14 2018-06-11 신에쯔 한도타이 가부시키가이샤 단결정 제조장치 및 융액면 위치의 제어방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160067413A (ko) * 2014-12-04 2016-06-14 주식회사 엘지화학 폴리이미드계 용액 및 이를 이용하여 제조된 폴리이미드계 필름
KR20170057458A (ko) * 2014-12-24 2017-05-24 유니티카 가부시끼가이샤 다공질 폴리이미드 필름 및 그의 제조 방법
KR20160097685A (ko) * 2015-02-09 2016-08-18 주식회사 엘지화학 폴리이미드계 필름 형성용 조성물 및 이를 이용하여 제조된 폴리이미드계 필름
KR20160108252A (ko) * 2015-03-05 2016-09-19 주식회사 엘지화학 광전소자의 플렉시블 기판용 폴리이미드 필름용 조성물
KR20180063124A (ko) 2015-10-14 2018-06-11 신에쯔 한도타이 가부시키가이샤 단결정 제조장치 및 융액면 위치의 제어방법
KR20170079896A (ko) * 2015-12-31 2017-07-10 주식회사 동진쎄미켐 폴리이미드고분자 조성물, 이의 제조 방법 및 이를 이용한 폴리이미드 필름의 제조 방법
KR20170127716A (ko) 2016-05-12 2017-11-22 엘지디스플레이 주식회사 표시 장치 및 그 구동 방법

Similar Documents

Publication Publication Date Title
WO2017209413A1 (ko) 고강도 투명 폴리아미드이미드 및 이의 제조방법
WO2019054612A1 (ko) 폴리이미드 전구체 조성물 및 이를 이용한 폴리이미드 필름
WO2017111299A1 (ko) 접착력이 향상된 폴리아믹산 조성물 및 이를 포함하는 폴리이미드 필름
WO2015183056A1 (ko) 폴리이미드계 용액 및 이를 이용하여 제조된 폴리이미드계 필름
WO2018056573A1 (ko) 폴리이미드 전구체 용액 및 이의 제조방법
KR102117151B1 (ko) 폴리이미드 전구체 용액 및 이를 이용하여 제조된 폴리이미드 필름
WO2019054616A1 (ko) 폴리이미드 공중합체 및 이를 이용한 폴리이미드 필름
WO2017188630A1 (ko) 고강도 투명 폴리아미드이미드 및 이의 제조방법
WO2017179877A1 (ko) 무색 투명한 폴리아마이드-이미드 필름 및 이의 제조방법
WO2019103274A1 (ko) 디스플레이 기판용 폴리이미드 필름
WO2017209414A1 (ko) 고강도 투명 폴리아미드이미드 및 이의 제조방법
WO2016140559A1 (ko) 광전소자의 플렉시블 기판용 폴리이미드 필름용 조성물
WO2018117551A1 (ko) 투명 폴리이미드 필름
WO2018080222A2 (ko) 폴리이미드 필름 형성용 조성물 및 이를 이용하여 제조된 폴리이미드 필름
WO2017204462A1 (ko) 폴리아미드이미드, 이의 제조방법 및 이를 이용한 폴리아미드이미드 필름
WO2020091432A1 (ko) 폴리이미드 필름의 접착성을 향상시키기 위한 폴리이미드 전구체 조성물 및 이로부터 제조되는 폴리이미드 필름
WO2019160218A1 (ko) 저장 안정성이 향상된 폴리아믹산 조성물, 이를 이용한 폴리이미드 필름의 제조방법 및 이로 제조된 폴리이미드 필름
WO2020138645A1 (ko) 폴리아믹산 조성물, 및 이를 이용한 투명 폴리이미드 필름
WO2020141713A1 (ko) 신규한 디카르보닐 화합물을 포함하는 폴리아믹산 조성물의 제조방법, 폴리아믹산 조성물, 이를 이용한 폴리아미드-이미드 필름의 제조방법 및 그 제조방법을 통해 제조된 폴리아미드-이미드 필름.
WO2020159174A1 (ko) 폴리이미드계 수지 필름 및 이를 이용한 디스플레이 장치용 기판, 및 광학 장치
WO2018021747A1 (ko) 폴리이미드 전구체 용액 및 이의 제조방법
WO2018143588A1 (ko) 가요성 기판 제조용 적층체 및 이를 이용한 가요성 기판의 제조방법
WO2020209625A1 (ko) 폴리아미드-이미드 블록 공중합체, 이의 제조방법 및 이를 포함하는 폴리아미드-이미드 필름
WO2020055182A1 (ko) 플렉서블 디스플레이 제조용 적층체 및 이를 이용한 플렉서블 디스플레이 제조 방법
WO2019066204A1 (ko) 폴리이미드 전구체 용액 및 이를 이용하여 제조된 폴리이미드 필름

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18863468

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019542175

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018863468

Country of ref document: EP

Effective date: 20190904

NENP Non-entry into the national phase

Ref country code: DE