WO2019064769A1 - 液剤塗布システム - Google Patents

液剤塗布システム Download PDF

Info

Publication number
WO2019064769A1
WO2019064769A1 PCT/JP2018/024631 JP2018024631W WO2019064769A1 WO 2019064769 A1 WO2019064769 A1 WO 2019064769A1 JP 2018024631 W JP2018024631 W JP 2018024631W WO 2019064769 A1 WO2019064769 A1 WO 2019064769A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid agent
unit
head
sound
liquid
Prior art date
Application number
PCT/JP2018/024631
Other languages
English (en)
French (fr)
Inventor
鵬摶 李
中谷 政次
賢司 前田
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Publication of WO2019064769A1 publication Critical patent/WO2019064769A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
    • B05C11/10Storage, supply or control of liquid or other fluent material; Recovery of excess liquid or other fluent material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/02Analysing fluids
    • G01N29/036Analysing fluids by measuring frequency or resonance of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/14Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object using acoustic emission techniques

Definitions

  • the present invention relates to a liquid application system.
  • a piezoelectric element that performs energy conversion from electrical energy to mechanical energy by the piezoelectric effect is excellent in responsiveness, and therefore, it is a liquid agent application device that ejects a liquid agent onto the surface of an object in a wide range of fields such as semiconductors, printing, and chemicals. It is used by
  • the liquid agent application apparatus generally includes a head constituted by a liquid agent storage unit having a nozzle in which a discharge port is formed, a diaphragm that changes a volume in the liquid agent storage unit, and a piezoelectric element that applies pressure vibration to the diaphragm. .
  • the pressurized vibration of the piezoelectric element is less likely to be transmitted to the liquid agent, and the liquid agent discharge from the nozzle becomes unstable.
  • Patent Document 1 it is determined whether air bubbles are mixed in the liquid agent in the liquid agent storage part based on the strength of the reflection of the ultrasonic wave output from the ultrasonic transducer fixed in the liquid agent storage part into the liquid agent storage part. It has been proposed to determine.
  • the present invention has been made in view of the above-described circumstances, and an object thereof is to provide a liquid agent application system capable of stabilizing liquid agent discharge.
  • the liquid agent application system includes a head, a sound collection unit, and a bubble detection unit.
  • the head has a liquid agent reservoir including a nozzle in which a discharge port is formed, a diaphragm that changes a volume in the liquid agent reservoir, and a piezoelectric element that vibrates the diaphragm under pressure.
  • the sound collecting unit collects driving sound of the head.
  • the air bubble detection unit detects that air bubbles are mixed in the liquid agent storage unit.
  • the air bubble detection unit detects that air bubbles are mixed in the liquid agent storage unit based on the driving sound.
  • liquid agent application system capable of stabilizing liquid agent discharge.
  • FIG. 1 is a schematic view showing the configuration of the liquid agent application system 100 according to the embodiment.
  • the liquid agent application system 100 includes a liquid agent application device 10, a bubble detection device 20, and a liquid agent supply device 30.
  • the air bubble detection device 20 is disposed at a position away from the liquid agent application device 10.
  • the liquid agent supply device 30 is connected to the liquid agent application device 10 via the liquid agent supply pipe 31.
  • the liquid agent application device 10 includes a liquid agent reservoir 11, a diaphragm 12, a piezoelectric element 13, a fixing member 14, and a controller 15.
  • the liquid agent reservoir 11, the diaphragm 12, the piezoelectric element 13, and the fixing member 14 constitute a head 16.
  • the liquid agent storage unit 11 has a housing 11 a and a nozzle 11 b.
  • the housing 11a is formed in a hollow shape.
  • the housing 11a is formed in a cylindrical shape, but is not limited thereto.
  • the housing 11a can be made of, for example, an alloy material, a ceramic material, and a synthetic resin material.
  • a pressure chamber 11c is formed inside the housing 11a.
  • a liquid agent is stored in the pressure chamber 11c.
  • the liquid include solder, thermosetting resin, ink, and coating liquid for forming a functional thin film (alignment film, resist, color filter, organic electroluminescence, etc.), but is not limited thereto. .
  • the side wall of the housing 11a is formed with a liquid agent supply port 11d and a liquid agent outlet 11f.
  • the liquid agent supplied from the liquid agent supply device 30 via the liquid agent supply pipe 31 passes through the liquid agent supply port 11 d and is replenished into the pressure chamber 11 c. Excess liquid agent in the pressure chamber 11c is discharged to the liquid agent discharge pipe 32 from the liquid agent outlet 11f.
  • the nozzle 11b is formed in a plate shape.
  • the nozzle 11b is arranged to close an opening at one end of the housing 11a.
  • the discharge port 11e is formed in the nozzle 11b.
  • the liquid agent in the pressure chamber 11c is discharged as droplets from the discharge port 11e to the outside.
  • Diaphragm 12 The diaphragm 12 is disposed to close the other end opening of the housing 11a.
  • the diaphragm 12 elastically vibrates when pressure vibration is applied from a piezoelectric element 13 described later. Thereby, the diaphragm 12 changes the volume of the pressure chamber 11 c formed in the liquid agent reservoir 11.
  • the diaphragm 12 When the diaphragm 12 is convexly curved toward the inside of the pressure chamber 11c, the volume of the pressure chamber 11c is reduced. Thus, the liquid agent is discharged from the discharge port 11e. Thereafter, when the diaphragm 12 returns to a steady state by its own elasticity, the volume of the pressure chamber 11 c also returns. At this time, the liquid agent is replenished from the liquid agent supply port 11 d to the pressure chamber 11 c.
  • the constituent material of the diaphragm 12 is not particularly limited, and, for example, an alloy material, a ceramic material, and a synthetic resin material can be used.
  • Piezoelectric Element 13 The piezoelectric element 13 is disposed on the diaphragm 12.
  • the first end 13 p of the piezoelectric element 13 is a fixed end fixed to the fixing member 14.
  • Solder paste, an underfill material, an epoxy resin, etc. can be used for fixation of the 1st end 13p.
  • the second end 13 q of the piezoelectric element 13 is a free end in contact with the diaphragm 12. However, the second end 13 q may be fixed (connected) to the diaphragm 12.
  • the piezoelectric element 13 has a plurality of piezoelectric members 13a, a plurality of internal electrodes 13b, and a pair of side electrodes 13c and 13c.
  • the piezoelectric members 13a and the internal electrodes 13b are alternately stacked.
  • Each piezoelectric body 13a is made of, for example, a piezoelectric ceramic such as lead zirconate titanate (PZT).
  • Each internal electrode 13 b is electrically connected to one of the pair of side electrodes 13 c and 13 c. That is, the internal electrode 13b electrically connected to one side electrode 13c is electrically insulated from the other side electrode 13c.
  • Such a structure is generally referred to as a partial electrode structure.
  • the piezoelectric element 13 only needs to include at least one piezoelectric body and a pair of electrodes, and various known piezoelectric elements can be used as the piezoelectric element 13.
  • the piezoelectric element 13 expands and contracts in response to a drive voltage signal (i.e., a drive pulse) applied from a control unit 15 described later. Specifically, when a drive voltage signal is applied from the control unit 15 to the pair of side electrodes 13c, 13c, each piezoelectric body 13a expands and contracts. With the expansion and contraction operation of the piezoelectric element 13, pressure vibration is applied to the diaphragm 12.
  • a drive voltage signal i.e., a drive pulse
  • the fixing member 14 is a member for fixing the first end 13 p of the piezoelectric element 13.
  • the fixing member 14 is disposed on the liquid agent reservoir 11.
  • the fixing member 14 only needs to be able to fix the first end 13 p of the piezoelectric element 13, and may be separated from the liquid agent reservoir 11.
  • the shape of the fixing member 14 is not limited to the shape of FIG. 1 and can be appropriately changed in consideration of the arrangement relationship with the peripheral members.
  • Control unit 15 is a microprocessor such as a central processing unit (CPU) or a digital signal processor (DSP), or an arithmetic device such as an application specific integrated circuit (ASIC) and a power MOSFET (metal-oxide-). It is realized by a power amplifier configured by a semiconductor field-effect transistor or the like.
  • CPU central processing unit
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • MOSFET metal-oxide-
  • the controller 15 generates a drive voltage signal for expanding and contracting the piezoelectric element 13.
  • the control unit 15 sends the generated drive voltage signal to the power amplifier to amplify the power, and applies this to the pair of side electrodes 13 c and 13 c of the piezoelectric element 13 to expand and contract the piezoelectric element 13.
  • the air bubble detection device 20 detects that air bubbles (air) are mixed in the liquid agent storage portion 11 (specifically, the pressure chamber 11 c) based on the driving noise of the head 16.
  • FIG. 2A is a graph showing an example of the waveform of the drive sound of the head 16 when no air bubbles are mixed in the liquid agent storage portion 11.
  • FIG. 2B is a graph showing an example of the waveform of the driving sound of the head 16 when air bubbles are mixed in the liquid agent storage portion 11.
  • the air bubble detection device 20 detects that air bubbles are mixed in the liquid agent storage unit 11 using the dissimilarity between FIGS. 2A and 2B.
  • FIGS. 2A and 2B an example of a configuration for detecting that air bubbles are mixed in the liquid agent storage unit 11 will be described.
  • the air bubble detection device 20 includes a sound collection unit 21, a storage unit 22, an analysis unit 23, an air bubble detection unit 24, and a maintenance unit 25.
  • the sound collecting unit 21 is separated from the head 16 and is not in contact with or fixed to the head 16. That is, the sound collecting unit 21 is attached to a member different from the head 16. Therefore, the head 16 can be miniaturized as compared with the case where the sound collecting unit 21 is connected to the head 16.
  • the distance between the sound collection unit 21 and the head 16 may be appropriately set according to the sound collection sensitivity of the sound collection unit 21.
  • the sound collecting unit 21 may be directly fixed to the head 16 as long as the sound collecting unit 21 is disposed at a position where the driving sound of the head 16 can be collected. Further, the sound collection unit 21 may be provided so as to be able to move forward and backward with respect to the head 16 and be configured to approach the head 16 only at the time of detection.
  • the sound collecting unit 21 collects driving sound of the head 16.
  • the driving sound of the head 16 mainly includes the sound generated when the liquid agent is discharged from the nozzle 11 b and the sound generated by the vibration of the diaphragm 12, but sounds other than these may be mixed.
  • the sound collecting unit 21 converts the collected driving sound of the head 16 into an analog signal, and outputs the analog signal to the analyzing unit 23.
  • the sound collection unit 21 a well-known microphone or sound sensor can be used. It is preferable that the sound collection unit 21 have high directivity so that the drive sound of the head 16 can be collected with high accuracy. This directivity can be realized, for example, by parabola.
  • the storage unit 22 stores reference sound data according to the information on the liquid agent stored in the liquid agent storage unit 11.
  • the reference sound data is data representing a driving sound generated from the head 16 when no air bubble is mixed in the liquid agent reservoir 11.
  • FIG. 3A is a graph showing an example of reference sound data.
  • the reference sound data shown in FIG. 3A is a frequency spectrum obtained by FFT (Fast Fourier Transform) analysis of the drive sound waveform (see FIG. 2A) of the head 16 when no bubbles are mixed in the liquid agent reservoir 11 It corresponds to As the reference sound data, a frequency spectrum obtained by FFT analysis of the waveform of the actual driving sound collected when no bubbles are mixed in the liquid agent reservoir 11 may be used, or such a frequency spectrum may be used. You may use the data which simulated and programmed.
  • FFT Fast Fourier Transform
  • the driving noise of the head 16 changes in accordance with the liquid agent stored in the liquid agent storage unit 11. Specifically, the driving noise of the head 16 changes depending on the type of liquid agent, the concentration of the liquid agent, the viscosity of the liquid agent, the temperature of the liquid agent, and the like. Therefore, it is preferable that the reference sound data be set according to the information on the liquid agent.
  • the information on the liquid agent is at least one information selected from information indicating the type of liquid agent, information indicating the concentration of the liquid agent, information indicating the viscosity of the liquid agent, and information indicating the temperature of the liquid agent.
  • FIG. 3B is an example of analysis data.
  • FIG. 3B exemplifies a frequency spectrum obtained by FFT analysis of the waveform (see FIG. 2B) of the drive sound of the head 16 when air bubbles are mixed in the liquid agent reservoir 11.
  • analysis data indicating a feature appearing in the drive sound of the head 16 is acquired by the analysis unit 23 using the FFT analysis.
  • the analysis unit 23 outputs the acquired analysis data to the air bubble detection unit 24.
  • the bubble detection unit 24 acquires the reference sound data stored in the storage unit 22 and the analysis data acquired by the analysis unit 23.
  • the air bubble detection unit 24 detects that air bubbles are mixed in the liquid agent storage unit 11 based on the comparison result of the reference sound data and the analysis data.
  • the bubble detection unit 24 compares the reference sound data (see, for example, FIG. 3A) and the analysis data (see, for example, FIG. 3B) to evaluate the similarity between the two.
  • the similarity between the reference sound data and the analysis data can be evaluated, for example, by comparing the position, the shape, the intensity, or the like of the peak indicating the sound of the characteristic frequency in the driving sound of the head 16.
  • the air bubble detection unit 24 detects that air bubbles are mixed in the liquid agent storage unit 11, the air bubble detection unit 24 notifies the maintenance unit 25 to that effect.
  • the maintenance unit 25 forcibly supplies the liquid agent into the liquid agent storage unit 11 from the liquid agent supply device 30 when the air bubble detection unit 24 detects that the air bubbles are mixed in the liquid agent storage unit 11.
  • the air bubbles mixed in the liquid agent storage portion 11 can be discharged from at least one of the liquid agent discharge port 11 f and the discharge port 11 e.
  • Liquid agent supply device 30 The liquid agent supply device 30 has a container filled with the liquid agent, and a pump for applying pressure to the liquid agent.
  • the liquid agent supply device 30 applies pressure to the liquid agent in the container by the pump, thereby the liquid agent storage unit 11. Supply the solution to
  • the air bubble detection unit 24 detects that air bubbles are mixed in the liquid agent storage unit 11 based on the driving noise of the head 16. Therefore, since it is not necessary to vibrate the liquid agent in order to detect the mixture of air bubbles, the liquid agent discharge can be stabilized.
  • the air bubble detection unit 24 detects air bubble mixing based on the comparison result between the reference sound data according to the information on the liquid agent and the analysis data acquired by FFT analysis of the driving sound. Do. Therefore, since comparison can be made using analysis data indicating features that appear in the drive sound of the head 16, the presence or absence of bubble mixing can be determined with high accuracy.
  • the maintenance unit 25 forcibly supplies the liquid agent from the liquid agent supply device 30 into the liquid agent storage unit 11 when the air bubble detection unit 24 detects the mixture of air bubbles. Therefore, the bubbles can be discharged quickly and easily.
  • the sound collection unit 21 according to the present embodiment is separated from the head 16. Therefore, since the bubble mixing can be detected without contact with the head 16, the head 16 can be freely miniaturized.
  • the air bubble detection unit 24 detects air bubble mixing based on the comparison result between the reference sound data and the analysis data, but the invention is not limited to this.
  • the bubble detection unit 24 does not use the reference sound data, and the peak intensity of a specific frequency that appears in the analysis data when no bubbles are mixed, the peak of the specific frequency that appears in the analysis data when the bubbles are mixed Air bubbles can be detected based on the intensity or the shape of the entire drive sound waveform of the head 16 or the like.
  • analysis part 23 decided to acquire analysis data by carrying out FFT analysis, it is not restricted to this.
  • the analysis unit 23 may acquire analysis data using a method such as wavelet analysis or inverse filter method.
  • liquid agent application device 11 liquid agent storage part 11a housing 11b nozzle 11c pressure chamber 11d liquid agent supply port 11e discharge port 12 diaphragm 13 piezoelectric element 14 fixing member 15 control part 16 head 20 bubble detection apparatus 21 sound collection part 22 memory part 23 analysis part 24 Air bubble detection unit 25 Maintenance unit 100 Liquid agent application system

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Ink Jet (AREA)

Abstract

【課題】液剤吐出を安定化可能な液剤塗布システムを提供する。【解決手段】液剤塗布システム100は、ヘッド16と、集音部21と、気泡検知部24とを備える。ヘッド16は、液剤貯留部11と、液剤貯留部11内の容積を変化させるダイヤフラム12と、ダイヤフラム12を加圧振動させる圧電素子13とを有する。集音部21は、ヘッド16の駆動音を収集する。気泡検知部24は、ヘッド16の駆動音に基づいて、液剤貯留部11内に気泡が混入したことを検知する。

Description

液剤塗布システム
本発明は、液剤塗布システムに関する。
圧電効果によって電気エネルギから機械エネルギへのエネルギ変換を行う圧電素子は、応答性に優れているため、半導体、印刷、化学薬品などの広い分野において、液剤を対象物の表面に吐出する液剤塗布装置に利用されている。 
液剤塗布装置は、一般的に、吐出口が形成されたノズルを有する液剤貯留部と、液剤貯留部内の容積を変化させるダイヤフラムと、ダイヤフラムを加圧振動させる圧電素子とによって構成されるヘッドを備える。 
ここで、液剤貯留部内に貯留された液剤に気泡が混入すると、圧電素子の加圧振動が液剤に伝達されにくくなるため、ノズルからの液剤吐出が不安定になる。 
そこで、特許文献1では、液剤貯留部に固定された超音波トランスデューサから液剤貯留部内に出力される超音波の反射の強弱に基づいて、液剤貯留部内の液剤に気泡が混入しているか否かを判定することが提案されている。
特開2011-31176号公報
しかしながら、特許文献1の手法では、超音波トランスデューサから出力される超音波によって液剤自体が振動するため、液剤吐出を安定化するにも限界がある。 
本発明は、上述の状況を鑑みてなされたものであり、液剤吐出を安定化可能な液剤塗布システムの提供を目的とする。
本発明の一つの態様に係る液剤塗布システムは、ヘッドと、集音部と、気泡検知部とを備える。ヘッドは、吐出口が形成されたノズルを含む液剤貯留部と、液剤貯留部内の容積を変化させるダイヤフラムと、ダイヤフラムを加圧振動させる圧電素子とを有する。集音部は、ヘッドの駆動音を収集する。気泡検知部は、液剤貯留部内に気泡が混入したことを検知する。気泡検知部は、駆動音に基づいて、液剤貯留部内に気泡が混入したことを検知する。
本発明の一つの態様によれば、液剤吐出を安定化可能な液剤塗布システムを提供することができる。
液剤塗布システムの構成を示す模式図である。 ヘッドの駆動音波形の一例を示すグラフである。 ヘッドの駆動音波形の一例を示すグラフである。 基準音データの一例を示すグラフである。 ヘッドの駆動音波形をFFT分析して得られる周波数スペクトルを示すグラフである。
以下、図面を参照しながら、本発明の一実施形態に係る液剤塗布システムについて説明する。ただし、本発明の範囲は、以下の実施の形態に限定されるものではなく、本発明の技術的思想の範囲内で任意に変更可能である。また、以下の図面においては、各構成をわかりやすくするために、各構造における縮尺および数等を、実際の構造における縮尺および数等と異ならせる場合がある。 
(液剤塗布システム100の構成) 図1は、実施形態に係る液剤塗布システム100の構成を示す模式図である。 
液剤塗布システム100は、液剤塗布装置10、気泡検知装置20、及び液剤供給装置30を備える。気泡検知装置20は、液剤塗布装置10から離れた位置に配置される。液剤供給装置30は、液剤塗布装置10に液剤供給管31を介して接続される。 
1.液剤塗布装置10 液剤塗布装置10は、液剤貯留部11、ダイヤフラム12、圧電素子13、固定部材14及び制御部15を備える。液剤貯留部11、ダイヤフラム12、圧電素子13、及び固定部材14は、ヘッド16を構成している。 
(1)液剤貯留部11 液剤貯留部11は、ハウジング11a及びノズル11bを有する。 
ハウジング11aは、中空状に形成される。本実施形態において、ハウジング11aは筒状に形成されているが、これに限られるものではない。ハウジング11aは、例えば合金材料、セラミックス材料、及び合成樹脂材料などによって構成することができる。 
ハウジング11aの内部には、圧力室11cが形成される。圧力室11cには、液剤が貯留される。液剤としては、半田、熱硬化性樹脂、インク、機能性薄膜(配向膜、レジスト、カラーフィルタ、有機エレクトロルミネッセンスなど)を形成するための塗布液などが挙げられるが、これに限られるものではない。 
ハウジング11aの側壁には、液剤供給口11dと液剤排出口11fとが形成される。液剤供給装置30から液剤供給管31を介して供給される液剤は、液剤供給口11dを通過して圧力室11c内に補充される。圧力室11c内の余分な液剤は、液剤排出口11fから液剤排出管32に排出される。 
ノズル11bは、板状に形成される。ノズル11bは、ハウジング11aの一端開口を塞ぐように配置される。ノズル11bには、吐出口11eが形成される。圧力室11c内の液剤は、吐出口11eから液滴となって外部に吐出される。 
(2)ダイヤフラム12 ダイヤフラム12は、ハウジング11aの他端開口を塞ぐように配置される。ダイヤフラム12は、後述する圧電素子13から加圧振動が加えられると弾性的に振動する。これにより、ダイヤフラム12は、液剤貯留部11内に形成された圧力室11cの容積を変化させる。 
ダイヤフラム12が圧力室11cの内部に向かって凸状に湾曲すると、圧力室11cの容積は小さくなる。これにより、吐出口11eから液剤が吐出される。その後、ダイヤフラム12が自身の弾性によって定常状態に復帰すると、圧力室11cの容積も元に戻る。この際、液剤供給口11dから圧力室11cに液剤が補充される。 
ダイヤフラム12の構成材料は特に制限されないが、例えば合金材料、セラミックス材料、及び合成樹脂材料などを用いることができる。 
(3)圧電素子13 圧電素子13は、ダイヤフラム12上に配置される。圧電素子13の第1端部13pは、固定部材14に固定された固定端となっている。第1端部13pの固定には、半田ペースト、アンダーフィル材、及びエポキシ樹脂などを用いることができる。圧電素子13の第2端部13qは、ダイヤフラム12に接触する自由端となっている。ただし、第2端部13qは、ダイヤフラム12に固定(接続)されていてもよい。 
圧電素子13は、複数の圧電体13a、複数の内部電極13b、及び一対の側面電極13c,13cを有する。各圧電体13aと各内部電極13bは、交互に積層されている。各圧電体13aは、例えばジルコン酸チタン酸鉛(PZT)などの圧電セラミックスによって構成される。各内部電極13bは、一対の側面電極13c,13cのうちいずれか一方と電気的に接続される。すなわち、一方の側面電極13cと電気的に接続された内部電極13bは、他方の側面電極13cから電気的に絶縁されている。このような構造は、一般に部分電極構造と称される。ただし、圧電素子13は、1つの圧電体と一対の電極とを少なくとも備えていればよく、圧電素子13としては周知の種々の圧電素子を用いることができる。 
圧電素子13は、後述する制御部15から印加される駆動電圧信号(すなわち、駆動パルス)に応じて伸縮する。具体的には、制御部15から一対の側面電極13c,13cに駆動電圧信号が印加されると、各圧電体13aが伸縮する。この圧電素子13の伸縮動作に伴って、ダイヤフラム12に加圧振動が加えられる。 
(4)固定部材14 固定部材14は、圧電素子13の第1端部13pを固定する部材である。固定部材14は、液剤貯留部11上に配置される。ただし、固定部材14は、圧電素子13の第1端部13pを固定できればよく、液剤貯留部11から離れていてもよい。また、固定部材14の形状は、図1の形状に限られるものではなく、周辺部材との配置関係を考慮して適宜変更可能である。 
(5)制御部15 制御部15は、CPU(Central Processing Unit)やDSP(Digital Signal Processor)等のマイクロプロセッサー、又は、ASIC(Application Specific Integrated Circuit)等の演算装置とパワーMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)等で構成された電力増幅器とによって実現される。 
制御部15は、圧電素子13を伸縮させるための駆動電圧信号を生成する。制御部15は、生成した駆動電圧信号を電力増幅器に送って電力を増幅し、これを圧電素子13の一対の側面電極13c,13cそれぞれに印加することによって、圧電素子13を伸縮させる。 
2.気泡検知装置20 気泡検知装置20は、ヘッド16の駆動音に基づいて、液剤貯留部11(具体的には、圧力室11c)内に気泡(空気)が混入したことを検知する。図2Aは、液剤貯留部11内に気泡が混入していない場合におけるヘッド16の駆動音の波形の一例を示すグラフである。図2Bは、液剤貯留部11内に気泡が混入している場合におけるヘッド16の駆動音の波形の一例を示すグラフである。気泡検知装置20は、図2Aと図2Bとの非類似性を利用して、液剤貯留部11内に気泡が混入したことを検知する。以下、液剤貯留部11内に気泡が混入したことを検知するための構成の一例について説明する。 
気泡検知装置20は、集音部21、記憶部22、分析部23、気泡検知部24、及びメンテナンス部25を備える。 
集音部21は、ヘッド16から離れており、ヘッド16に接触又は固定されていない。すなわち、集音部21は、ヘッド16とは別の部材に取り付けられている。そのため、集音部21がヘッド16に接続される場合に比べて、ヘッド16を小型化することができる。集音部21とヘッド16との間隔は、集音部21の集音感度に応じて適宜設定すればよい。ただし、集音部21は、ヘッド16の駆動音を収集できる位置に配置されていればよく、ヘッド16に直接的に固定されていてもよい。また、集音部21は、ヘッド16に対して進退可能に設けられ、検知時にのみヘッド16に接近するように構成されていてもよい。 
集音部21は、ヘッド16の駆動音を収集する。ヘッド16の駆動音には、ノズル11bから液剤が吐出する際に生じる音と、ダイヤフラム12の振動によって生じる音とが主に含まれるが、これら以外の音が混じっていてもよい。集音部21は、収集したヘッド16の駆動音をアナログ信号に変換して、アナログ信号を分析部23に出力する。 
集音部21としては、周知のマイクロホンや音センサを用いることができる。集音部21は、ヘッド16の駆動音を精度良く集音できるよう高い指向性を有していることが好ましい。この指向性は、例えばパラボラなどによって実現することができる。 
記憶部22は、液剤貯留部11に貯留された液剤に関する情報に応じた基準音データを記憶する。基準音データは、液剤貯留部11内に気泡が混入していない場合にヘッド16から発生する駆動音を示すデータである。図3Aは、基準音データの一例を示すグラフである。図3Aに示される基準音データは、液剤貯留部11内に気泡が混入していない場合におけるヘッド16の駆動音の波形(図2A参照)をFFT(高速フーリエ変換)分析して得られる周波数スペクトルに相当する。基準音データとしては、液剤貯留部11内に気泡が混入していないときに収集された実際の駆動音の波形をFFT分析して得られる周波数スペクトルを用いてもよいし、このような周波数スペクトルを模擬的にプログラムしたデータを用いてもよい。 
ここで、ヘッド16の駆動音は、液剤貯留部11に貯留された液剤に応じて変化する。具体的には、ヘッド16の駆動音は、液剤の種類、液剤の濃度、液剤の粘度、或いは、液剤の温度などによって変化する。そのため、基準音データ
は、液剤に関する情報に応じて設定されていることが好ましい。液剤に関する情報とは、液剤の種類を示す情報、液剤の濃度を示す情報、液剤の粘度を示す情報、及び液剤の温度を示す情報から選択される少なくとも1つの情報である。 
分析部23には、ヘッド16の駆動音を示すアナログ信号が集音部21から入力される。分析部23は、入力されたアナログ信号を所定のサンプリング周波数のデジタル信号に変換した後、このデジタル信号をFFT分析することによって分析データを取得する。図3Bは、分析データの一例である。図3Bには、液剤貯留部11内に気泡が混入している場合におけるヘッド16の駆動音の波形(図2B参照)をFFT分析して得られる周波数スペクトルが例示されている。 
このように、分析部23がFFT分析を用いることによって、ヘッド16の駆動音に現れる特徴を示す分析データが取得される。分析部23は、取得した分析データを気泡検知部24に出力する。 
気泡検知部24は、記憶部22が記憶している基準音データと、分析部23が取得した分析データとを取得する。気泡検知部24は、基準音データと分析データとの比較結果に基づいて、液剤貯留部11内に気泡が混入したことを検知する。 
気泡検知部24は、基準音データ(例えば、図3A参照)と分析データ(例えば、図3B参照)とを比較して、両者の類似性を評価する。基準音データと分析データとの類似性は、例えば、ヘッド16の駆動音において特徴的な周波数の音を示すピークの位置、形状、或いは強度などを比較することによって評価することができる。 
気泡検知部24は、液剤貯留部11内に気泡が混入したことを検知した場合、メンテナンス部25にその旨を通知する。 
メンテナンス部25は、気泡検知部24が液剤貯留部11内に気泡が混入したことを検知した場合、液剤供給装置30から液剤貯留部11内に液剤を強制的に供給させる。これによって、液剤貯留部11内に混入した気泡を液剤排出口11f及び吐出口11eの少なくとも一方から排出することができる。 
3.液剤供給装置30 液剤供給装置30は、液剤が充填されている容器と、液剤に圧力を印加するためのポンプとを有する。液剤供給装置30は、気泡検知部24が液剤貯留部11内に気泡が混入したことをメンテナンス部25から通知されると、ポンプによって容器内の液剤に圧力を印加することによって、液剤貯留部11に液剤を供給する。 
(特徴) (1)本実施形態に係る気泡検知部24は、ヘッド16の駆動音に基づいて、液剤貯留部11内に気泡が混入したことを検知する。従って、気泡の混入を検知するために液剤を振動させる必要がないので、液剤吐出を安定化させることができる。 
(2)本実施形態に係る気泡検知部24は、液剤に関する情報に応じた基準音データと、駆動音をFFT分析することによって取得された分析データとの比較結果に基づいて気泡の混入を検知する。従って、ヘッド16の駆動音に現れる特徴を示す分析データを用いて比較できるので、気泡混入の有無を精度良く判定することができる。 
(3)本実施形態に係るメンテナンス部25は、気泡検知部24が気泡の混入を検知した場合、液剤供給装置30から液剤貯留部11内に液剤を強制的に供給させる。従って、迅速かつ簡便に気泡を排出させることができる。 
(4)本実施形態に係る集音部21は、ヘッド16から離れている。従って、ヘッド16に対して非接触で気泡混入を検知できるため、ヘッド16を自由に小型化することができる。 
(他の実施形態) 本発明は上記の実施形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなる。 
上記実施形態において、気泡検知部24は、基準音データと分析データとの比較結果に基づいて気泡の混入を検知することとしたが、これに限られるものではない。例えば、気泡検知部24は、基準音データを用いずに、気泡が混入していないときの分析データに表れる特定の周波数のピーク強度、気泡が混入したときの分析データに表れる特定の周波数のピーク強度、或いは、ヘッド16の駆動音の波形全体の形状などに基づいて、気泡の混入を検知することができる。 
上記実施形態において、分析部23は、FFT分析することによって分析データを取得することとしたが、これに限られるものではない。例えば、分析部23は、ウェーブレット解析や、逆フィルタ法などの手法を用いて分析データを取得してもよい。
10   液剤塗布装置11   液剤貯留部11a  ハウジング11b  ノズル11c  圧力室11d  液剤供給口11e  吐出口12   ダイヤフラム13   圧電素子14   固定部材15   制御部16   ヘッド20   気泡検知装置21   集音部22   記憶部23   分析部24   気泡検知部25   メンテナンス部100  液剤塗布システム 

Claims (4)

  1. 吐出口が形成されたノズルを含む液剤貯留部と、前記液剤貯留部内の容積を変化させるダイヤフラムと、前記ダイヤフラムを加圧振動させる圧電素子とを有するヘッドと、 前記ヘッドの駆動音を収集する集音部と、 前記液剤貯留部内に気泡が混入したことを検知する気泡検知部と、を備え、 前記気泡検知部は、前記駆動音に基づいて、前記液剤貯留部内に気泡が混入したことを検知する液剤塗布システム。
  2. 前記液剤貯留部に貯留される液剤に関する情報に応じた基準音データを記憶する記憶部と、 前記駆動音をFFT分析することによって分析データを取得する分析部と、を備え、 前記気泡検知部は、前記基準音データと前記分析データとの比較結果に基づいて、前記液剤貯留部内に気泡が混入したことを検知する、請求項1に記載の液剤塗布システム。
  3. 前記液剤貯留部内に液剤を強制的に供給する液剤供給装置と、 前記気泡検知部が前記液剤貯留部内に気泡が混入したことを検知した場合、前記液剤供給装置から前記液剤貯留部内に液剤を強制的に供給させるメンテナンス部と、をさらに備える請求項1又は2に記載の液剤塗布システム。
  4. 前記集音部は、前記ヘッドから離れている、請求項1乃至3のいずれかに記載の液剤塗布システム。
PCT/JP2018/024631 2017-09-28 2018-06-28 液剤塗布システム WO2019064769A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017188852 2017-09-28
JP2017-188852 2017-09-28

Publications (1)

Publication Number Publication Date
WO2019064769A1 true WO2019064769A1 (ja) 2019-04-04

Family

ID=65902789

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/024631 WO2019064769A1 (ja) 2017-09-28 2018-06-28 液剤塗布システム

Country Status (1)

Country Link
WO (1) WO2019064769A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021110712A (ja) * 2020-01-16 2021-08-02 トヨタ自動車株式会社 着磁ヨークの破損診断装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10253444A (ja) * 1997-03-14 1998-09-25 Tokyo Gas Co Ltd 異常音の検出方法及びその検出値を用いた機械の異常判定方法、並びに、振動波の類似度検出方法及びその検出値を用いた音声認識方法
JP2006051700A (ja) * 2004-08-12 2006-02-23 Fuji Xerox Co Ltd インクジェット記録装置及びインクジェット記録方法
JP2012137468A (ja) * 2010-12-09 2012-07-19 Toshiba Corp 異物検出装置、異物検出方法、液滴吐出装置、および液滴吐出方法
JP2015054015A (ja) * 2013-09-11 2015-03-23 セイコーエプソン株式会社 医療機器
JP2015120109A (ja) * 2013-12-24 2015-07-02 ダイハツ工業株式会社 接着剤の吐出切れ検出装置
JP2015155149A (ja) * 2014-02-20 2015-08-27 株式会社リコー インク吐出式印刷装置、ヘッド状態検出方法及びヘッド状態検出プログラム
US20170078792A1 (en) * 2015-09-16 2017-03-16 Océ-Technologies B.V. Method for removing electric crosstalk
JP2017149077A (ja) * 2016-02-26 2017-08-31 セイコーエプソン株式会社 ヘッドユニット

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10253444A (ja) * 1997-03-14 1998-09-25 Tokyo Gas Co Ltd 異常音の検出方法及びその検出値を用いた機械の異常判定方法、並びに、振動波の類似度検出方法及びその検出値を用いた音声認識方法
JP2006051700A (ja) * 2004-08-12 2006-02-23 Fuji Xerox Co Ltd インクジェット記録装置及びインクジェット記録方法
JP2012137468A (ja) * 2010-12-09 2012-07-19 Toshiba Corp 異物検出装置、異物検出方法、液滴吐出装置、および液滴吐出方法
JP2015054015A (ja) * 2013-09-11 2015-03-23 セイコーエプソン株式会社 医療機器
JP2015120109A (ja) * 2013-12-24 2015-07-02 ダイハツ工業株式会社 接着剤の吐出切れ検出装置
JP2015155149A (ja) * 2014-02-20 2015-08-27 株式会社リコー インク吐出式印刷装置、ヘッド状態検出方法及びヘッド状態検出プログラム
US20170078792A1 (en) * 2015-09-16 2017-03-16 Océ-Technologies B.V. Method for removing electric crosstalk
JP2017149077A (ja) * 2016-02-26 2017-08-31 セイコーエプソン株式会社 ヘッドユニット

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SATO, TSUYOSHI: "Bubble Detection Technology for Piezo-Driven Inkjet Heads to Improve Reliability of Inkjet Process", TOSHIBA REVIEW, vol. 66, no. 7, 1 July 2011 (2011-07-01), pages 50 - 53 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021110712A (ja) * 2020-01-16 2021-08-02 トヨタ自動車株式会社 着磁ヨークの破損診断装置
JP7299173B2 (ja) 2020-01-16 2023-06-27 トヨタ自動車株式会社 着磁ヨークの破損診断装置

Similar Documents

Publication Publication Date Title
CN209968843U (zh) 用于在传播介质中发射超声声波的设备和电子系统
Eccardt et al. Micromachined transducers for ultrasound applications
JP2011124891A (ja) 静電容量型電気機械変換装置の制御装置、及び静電容量型電気機械変換装置の制御方法
Wang et al. Highly sensitive piezoelectric micromachined ultrasonic transducer operated in air
US4558995A (en) Pump for supplying head of ink jet printer with ink under pressure
WO2019064769A1 (ja) 液剤塗布システム
US8667846B2 (en) Method of operating an ultrasonic transmitter and receiver
Passoni et al. Real-time control of the resonance frequency of a piezoelectric micromachined ultrasonic transducer for airborne applications
US20160047780A1 (en) Methods of operating ultrasonic transducers, and ultrasonic devices
US9586233B2 (en) Capacitive micromachined ultrasound transducers with pressurized cavities
JP6922651B2 (ja) 超音波デバイス、及び超音波測定装置
US7669478B2 (en) Ultrasonic driving device with multi-frequency scanning
US20200282726A1 (en) Liquid agent application device
WO2019064782A1 (ja) 液剤塗布装置
JP2018044914A (ja) 圧電特性評価方法
JP2012217012A (ja) 電子機器
WO2019064770A1 (ja) 液剤塗布装置
JP7431610B2 (ja) 発電機構
JPH09318432A (ja) 接触センサ
US11398808B2 (en) Method for generating high order harmonic frequencies and MEMS resonator
JP2021014789A (ja) 液剤塗布装置
JPS633240A (ja) 粘度センサ
JP2010101280A (ja) 駆動回路内蔵圧電ポンプ及び駆動回路
JP2021038981A (ja) 容量検出型超音波トランスデューサを使用した計測方法
JPH06300725A (ja) キャビテーション状態測定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18862438

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18862438

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP