WO2019064767A1 - モータ及び電動パワーステアリング装置 - Google Patents
モータ及び電動パワーステアリング装置 Download PDFInfo
- Publication number
- WO2019064767A1 WO2019064767A1 PCT/JP2018/024561 JP2018024561W WO2019064767A1 WO 2019064767 A1 WO2019064767 A1 WO 2019064767A1 JP 2018024561 W JP2018024561 W JP 2018024561W WO 2019064767 A1 WO2019064767 A1 WO 2019064767A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- connector
- heat sink
- substrate
- protrusion
- axial direction
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D5/00—Power-assisted or power-driven steering
- B62D5/04—Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
- B62D5/0409—Electric motor acting on the steering column
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D5/00—Power-assisted or power-driven steering
- B62D5/04—Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
- B62D5/0403—Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by constructional features, e.g. common housing for motor and gear box
- B62D5/0406—Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by constructional features, e.g. common housing for motor and gear box including housing for electronic control unit
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K11/00—Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
- H02K11/30—Structural association with control circuits or drive circuits
- H02K11/33—Drive circuits, e.g. power electronics
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K5/00—Casings; Enclosures; Supports
- H02K5/04—Casings or enclosures characterised by the shape, form or construction thereof
- H02K5/22—Auxiliary parts of casings not covered by groups H02K5/06-H02K5/20, e.g. shaped to form connection boxes or terminal boxes
- H02K5/225—Terminal boxes or connection arrangements
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K9/00—Arrangements for cooling or ventilating
- H02K9/22—Arrangements for cooling or ventilating by solid heat conducting material embedded in, or arranged in contact with, the stator or rotor, e.g. heat bridges
- H02K9/227—Heat sinks
Definitions
- the present invention relates to a motor and an electric power steering apparatus.
- the motor body has a rotor and a stator.
- the control unit has an electronic component and a substrate.
- the motor disclosed in Japanese Patent Laid-Open No. 2013-62996 includes an ECU housing, a control board, a semiconductor module, a heat sink, and a connector.
- the ECU housing is open at one end.
- the control board is disposed at one end of the ECU housing.
- the semiconductor module is electrically connected to the control substrate.
- the heat sink is provided on the inner side of the ECU housing and has a heat receiving surface in contact with the heat radiating surface of the semiconductor module.
- the connector is attached and fixed to the ECU housing.
- the heat sink of Patent Document 1 is housed in an ECU housing. In order to ensure heat dissipation, it is necessary to increase the volume of the heat sink. In this case, since the ECU housing needs to be enlarged, the physique of the motor becomes large.
- An object of the present invention is to provide a motor and an electric power steering device which can suppress the physique while securing heat dissipation in view of the above-mentioned problems.
- One aspect of the motor of the present invention is a rotor including an axially extending shaft, a stator surrounding the radially outer side of the rotor, a housing internally housing the rotor and the stator, and an axially upper side of the stator
- a heat sink a substrate fixed on the axial upper side of the heat sink, a connector disposed radially outward of the housing, and a connector pin housed inside the connector and electrically connected to the substrate .
- the heat sink has a main body portion, and a protrusion which is continuous with the main body portion and extends radially outward of the housing. As viewed from the lower side in the axial direction, the connector, the protrusion, and the substrate overlap in this order.
- the connector pin is located radially outward of the protrusion.
- FIG. 1 is a cross-sectional view of the motor in the first embodiment.
- FIG. 2 is a bottom view of the substrate in the first embodiment.
- FIG. 3 is a plan view of the heat sink in the first embodiment.
- FIG. 4 is a bottom view of the heat sink in the first embodiment.
- FIG. 5a is a plan view schematically showing FIG.
- FIG. 5b is a modification of FIG. 5a.
- FIG. 5c is another variation of FIG. 5a.
- FIG. 6 is a plan view of the coil support member and the heat sink supporting the coil wire in the first embodiment.
- FIG. 7 is a side view of the connector according to the first embodiment.
- FIG. 8 is a perspective view of the connector according to the first embodiment.
- FIG. 9 is a perspective view of the heat sink and the connector according to the first embodiment.
- FIG. 10 is an enlarged cross-sectional view of the vicinity of the protrusion of the heat sink in the first embodiment.
- FIG. 11 is a schematic view of an
- the central axis A of the rotor ie, the axial direction in which the shaft extends, is in the vertical direction
- the substrate side is the upper side
- the bottom side of the housing is the lower side.
- the vertical direction in the present specification is used to specify the positional relationship, and does not limit the actual direction. That is, the downward direction does not necessarily mean the direction of gravity.
- a direction orthogonal to the central axis A of the rotor is a radial direction, and the radial direction is centered on the central axis A.
- the circumference of the central axis A of the rotor is taken as the circumferential direction.
- extending in the axial direction includes a state extending in the axial direction strictly and a state extending in the direction inclined at an angle of less than 45 degrees with respect to the axial direction.
- radially extending as used herein includes strictly radially extending and extending in a direction inclined at an angle of less than 45 degrees with respect to the radial.
- to fit means to fit in a shape that matches.
- the matched shape includes the case where the shape is the same, the case where the shape is similar, and the case where the shape is different.
- the concavo-convex shape in which the shape is matched at least a part of one convex portion is located in the other concave portion.
- the “gap” means a gap intentionally provided. That is, a gap designed to prevent the members from contacting each other is defined as a gap.
- Embodiment 1 Referring to FIGS. 1 to 10, a motor according to an embodiment of the present invention will be described.
- the motor in the first embodiment has a two-system configuration including two sets of U phase, V phase, and W phase.
- the motor 1 includes a housing 10, a flange 20, a cover 30, a rotor 40, bearings 43 and 44, a stator 50, a coil support member 60, a substrate 70 and an electronic component 80.
- a control unit, a heat sink 100, a connector 200, and a connector pin 81 are mainly provided.
- the housing 10 accommodates the rotor 40, the stator 50, and the bearings 43 and 44 inside.
- the housing 10 axially extends and opens upward.
- the housing 10 includes a bottom 14. The bottom 14 closes the housing 10.
- the flange 20 is attached to the outer surface of the housing 10.
- the cover 30 covers at least a part of the upper side in the axial direction of the substrate 70 and the connector 200.
- the rotor 40 includes a shaft 41 and a rotor core 42.
- the shaft 41 has a substantially cylindrical shape centered on a central axis A extending in the axial direction.
- the rotor core 42 is fixed to the shaft 41.
- the rotor core 42 surrounds the radially outer side of the shaft.
- the rotor core 42 rotates with the shaft 41.
- the bearings 43 and 44 rotatably support the shaft 41.
- An axially upper bearing 43 is located axially above the stator 50 and is held by the heat sink 100.
- An axially disposed lower bearing 44 is held by the bottom 14 of the housing 10.
- the stator 50 surrounds the radially outer side of the rotor 40.
- Stator 50 includes a stator core 51, an insulator 52, a coil 53, a bus bar (not shown), and a bus bar holding member 54.
- the stator core 51 has a plurality of core backs and teeth arranged in the circumferential direction.
- the core back has a cylindrical shape concentric with the central axis A.
- the teeth extend radially inward from the inner surface of the core back.
- a plurality of teeth are provided, extend radially from the core back, and are spaced apart circumferentially from each other by slots (slots).
- the insulator 52 covers at least a part of the stator core 51.
- the insulator 52 is formed of an insulator and attached to each tooth.
- the coil 53 excites the stator core 51, and the coil wire C is wound. Specifically, the coil wire C is wound around each tooth via the insulator 52, and the coil 53 is disposed on each tooth. That is, the coil wire C is a concentrated winding. In the present embodiment, the coil wire C is a so-called double-arc winding in which concentrated winding is performed on two different teeth. Coil wire C is positioned radially inward of the radially outer end of bus bar holding member 54.
- the other end of coil wire C in the present embodiment is a lead wire drawn from coil 53.
- each of U phase, V phase and W phase in the first and second systems is configured.
- Six lead wires 53U1, 53U2, 53V1, 53V2, 53W1, 53W2 (see FIG. 6).
- the lead wires 53U1, 53U2, 53V1, 53V2, 53W1, 53W2 drawn out from the stator 50 are inserted into the through holes 65 and the heat sink through holes 110 (see FIG. 3) of the coil support member 60 to be described later. It is electrically connected by a method such as soldering.
- the lead wires 53U1, 53U2, 53V1, 53V2, 53W1, 53W2 are collected by the crossover in a region of 180 degrees or less centered on the shaft.
- the motor 1 in the present embodiment has a two-system configuration having two sets of U-phase, V-phase and W-phase, the number of systems can be designed arbitrarily. That is, the motor 1 may be configured as one system, or three or more systems.
- the bus bar B is a member formed of a conductive material that electrically connects the coil wires derived from the coil 53 to each other.
- the bus bar B in the present embodiment is a neutral point bus bar in star connection.
- the bus bar holding member 54 shown in FIG. 1 holds the bus bar.
- the bus bar holding member 54 is formed of an insulating material.
- the bus bar holding member 54 is fixed to the radially outer side of the insulator 52 or the axially upper side of the core back.
- the bus bar holding member 54 and the bearing 43 overlap in the radial direction.
- the coil support member 60 supports a conductive member such as the coil wire C.
- the coil support member 60 is formed of an insulating material.
- the coil support member 60 is disposed on the axial direction upper side of the stator 50, and the coil wire C is inserted.
- the control unit controls a motor main body having a rotor 40 and a stator 50.
- the control unit includes a substrate 70 and an electronic component 80 mounted on the substrate 70.
- the substrate 70 is disposed on the axial direction upper side of the stator 50 so as to expand in the radial direction, and is fixed to the axial direction upper side of the heat sink 100.
- the electronic component 80 is mounted on at least one of the upper surface and the lower surface of the substrate 70.
- the choke coil 80a can be used as one of the electronic components 80 mounted on the substrate 70.
- the choke coil 80 a is electrically connected to the substrate 70.
- the choke coil 80a removes noise.
- the substrate 70 has a first region S1 in which the power element is mounted and a second region S2 in which the control element is mounted.
- the first area S1 is an area of 180 degrees or more around the central axis A of the shaft 41 when viewed from the upper side in the axial direction.
- the first area S1 and the second area S2 can be defined. Therefore, in the case where the power element and the control element are irregularly scattered on the substrate 70, or when the power element and the control element are disposed separately in the same circumferential direction and radial direction, Absent.
- the first area S1 and the second area S2 are areas defined by angles centered on the shaft 41 (central axis A). For example, even if the power element is biased inward in the radial direction of the substrate 70 in the first region S1, the radially outer side of the substrate 70 is regarded as the first region S1.
- the power element is an element on the circuit connecting the coil wire to the external power supply
- the control element is an element on the circuit connecting the signal line detected by the magnetic sensor to the external control device.
- the power element includes a choke coil 80a, an FET, a capacitor and the like.
- a microcomputer etc. are mentioned as a control element.
- substrate 70 has substrate penetration holes 71 and 72 for letting an electric conduction member pass.
- the conductive member is a member connected to the substrate 70 for distributing power, and is, for example, the connector pin 81 shown in FIG. 1, a coil wire C wound around the stator 50, or the like.
- the coil wire is inserted into the substrate through hole 71, and the connector pin 81 is inserted into the substrate through hole 72.
- the coil wire C and the substrate 70, and the connector pins 81 and the substrate 70 are fixed by solder connection.
- Positioning holes 76 corresponding to the second positioning recesses 176 (see FIG. 3) of the heat sink 100 are formed in the substrate 70 for positioning with the heat sink 100.
- the positioning hole 76 is a round hole, a notch hole or the like.
- fixing holes 77 corresponding to the fixing holes 177 (see FIG. 3) of the heat sink main body 103 are formed in the substrate 70 for fixing to the heat sink 100.
- the fixing hole portion 77 is a round hole, a notch hole or the like.
- the first positioning hole 178 shown in FIG. 3 penetrates the heat sink upper surface 101 and the heat sink lower surface 102.
- a second positioning recess 176 is formed with reference to the first positioning hole 178.
- the first positioning recess 179 is formed with reference to the first positioning hole 178. Thereby, the positions of the first positioning recess 179 and the second positioning recess 176 are determined based on the first positioning hole 178.
- the positions of the connector 200 positioned by the first positioning recess 179 and the substrate 70 positioned by the second positioning recess 176 are determined.
- the connector pins 81 can be easily connected without causing positional deviation between the heat sink 100 and the connector 200.
- connection member is a conductive adhesive, a solder or the like, and in the present embodiment, a solder is used.
- the solder is arranged to be continuous with the upper and lower surfaces of the substrate 70 and the inside of the substrate through hole 71 for passing the conductive member. All of the solder is located axially above the exposed surface 122 (see FIG. 1) of the heat sink 100 described later.
- the heat sink 100 is disposed on the axial direction upper side of the stator 50 and axially opposed to the substrate 70.
- the heat sink 100 has a function of absorbing the heat from the electronic component 80 mounted on the substrate 70 and emitting the heat to the outside, and is formed of a material having a small thermal resistance.
- the heat sink 100 holds the bearing 43, it is also used as a bearing holder.
- the bearing holder and the heat sink are integrated, the number of parts, the number of parts assembled, and the cost associated therewith can be reduced. Further, since the thermal resistance generated when the bearing holder and the heat sink are separated can be suppressed, heat can be easily transmitted to the outside.
- the heat sink 100 has a heat sink upper surface 101 shown in FIG. 3 and a heat sink lower surface 102 shown in FIG.
- the heat sink upper surface 101 faces the substrate 70, and the heat sink lower surface 102 faces the stator 50.
- the heat sink 100 is connected to the heat sink main body 103 and the heat sink main body 103 and extends outward in the radial direction of the housing 10. And 104.
- the heat sink main body portion 103 overlaps the housing 10 accommodating the rotor 40 and the stator 50 when viewed from the upper side in the axial direction.
- the heat sink projecting portion 104 radially protrudes from the heat sink main body portion 103 and covers at least a part of the connector 200 in the longitudinal direction (left and right direction in FIGS. 3 and 4).
- the heat sink protrusion 104 has a first protrusion 104 a and a second protrusion 104 b. As shown in FIG. 10, the connector pin 81 is located radially outward of the first projecting portion 104a. The connector pin 81 is not located radially outside the second protrusion 104 b.
- the shape of the heat sink protrusion portion 104 is a shape in which a plurality of rod members protrude in a plan view as shown in FIG. 5a.
- the first protrusions 104a are disposed between the second protrusions 104b.
- the first protrusion 104 a may extend inward from the radially outer end of the second protrusion 104 b.
- the shape of the heat sink protrusion portion 104 may be a plate-like shape as shown in FIG. 5b or a ring shape as shown in FIG. 5c.
- the first protrusion 104 a and the second protrusion 104 b are integral.
- the first projection 104 a is disposed in the space provided between the connector 200 and the substrate 70 by positioning the connector pin 81 radially outward.
- the connector 200, the first protrusion 104a, and the substrate 70 overlap in this order. That is, the first protrusion 104 a is sandwiched between the substrate 70 and the connector 200.
- This order is the position of the lower end of each member when the members overlap each other. That is, when viewed from the lower side in the axial direction, the lower end of the connector 200, the lower end of the first protrusion 104a, and the lower end of the substrate 70 are located in this order.
- the connector 200, the first projecting portion 104a, the substrate 70, and the choke coil 80a overlap in this order. That is, when viewed from the lower side in the axial direction, the lower end of the connector 200, the lower end of the first protrusion 104a, the lower end of the substrate 70, and the lower end of the choke coil 80a are located in this order.
- the connector 200, the connector pin 81, the first protrusion 104a, and the substrate 70 overlap in this order. That is, when viewed from the lower side in the axial direction, the lower end of the connector 200, the lower end of the connector pin 81, the lower end of the first protrusion 104a, and the lower end of the substrate 70 are located in this order.
- a gap is provided in the axial direction between the first protrusion 104 a and the connector 200.
- the lower surface of the first protrusion 104 a has a step. At least a portion of the lower surface of the first protrusion 104 a is spaced apart from other members. That is, at least a part of the lower surface of the first protrusion 104 a does not contact other members.
- the connector pin 81 is located between the first protrusion 104 a and the connector 200.
- the lower surface of the first protrusion 104 a is located axially above the lower surface of the second protrusion 104 b.
- the lower surface of the first protrusion 104 a is located axially above the lower surface of the heat sink main body 103.
- a plurality of second projections 104b shown in FIGS. 3 and 4 are formed at intervals.
- the second protrusion 104 b is formed from one end and the other end (upper end and lower end in FIG. 5 a) of the radial outer edge (the right end of the heat sink body 103 in FIG. 5 a) of the heat sink main body 103 on the connector 200 side. Stand out.
- the shape of the second projecting portion 104b is a shape projecting in a bar shape in a plan view as shown in FIGS. 3, 4 and 5a, and in the case of being installed only at both ends, It has a substantially U-shape.
- the number of the second protrusions 104b may be one, three or more, and provided at both ends. You do not have to.
- the second protrusion 104 b has a heat sink recess or a heat sink protrusion extending in the axial direction in order to engage with the connector 200 described later. Also, the heat sink recess or the heat sink protrusion extends along the axial direction. In FIGS. 3 and 4, the heat sink recess 105 is formed on the inner side surface of the second protrusion 104 b located at one end and the other end of the connector 200 in the longitudinal direction. The inner side surface of the second protrusion 104 b is a surface facing the connector 200.
- the second protrusion 104 b is an exposed surface 122 (see FIG. 1). That is, a gap is provided between the second protrusion 104 b and the substrate 70. Therefore, in the pre-process of attaching the cover 30, it can be visually observed whether the connector pin 81 is connected to the substrate 70 from the longitudinal direction of the connector 200.
- the second protrusion 104 b of the present embodiment overlaps the connector 200 but does not overlap the substrate 70 when viewed from the lower side in the axial direction.
- the second protrusion 104 b may overlap the substrate 70 as viewed from the lower side in the axial direction.
- the heat sink 100 is formed with a cavity H which passes the conductive member and extends in the axial direction.
- the hollow portion H is a through hole, a notch or the like.
- the hollow portion H for passing the conductive member in the structure shown in FIG. 3 and FIG. 4 and FIG. 5A schematically showing them includes the heat sink main body 103 and the heat sink protrusion 104 And are formed.
- the hollow portion H is formed by the radial outer end edge of the heat sink main body portion 103 on the connector side, the first protruding portion 104 a, and the second protruding portion 104 b.
- the ring-shaped hollow hole forms the cavity H.
- a heat sink through hole 110 which passes the coil wire and extends in the axial direction is formed as the hollow portion H.
- the hollow portion H of the heat sink 100 shown in FIG. 3 and FIG. 4 is the radial outer end face of the heat sink main body 103, the outer end face of the first projecting portion 104a, and the inner end face of the second projecting portion 104b. It is formed.
- the cavity H is a cavity for the conductive member from the connector and a heat sink through hole 110 for the coil wire.
- the heat sink through hole 110 extends in the axial direction while passing a conductive member such as a coil wire. For this reason, the heat sink through hole 110 can position the conductive member. As shown in FIGS. 1 and 6, the heat sink through hole 110 of the present embodiment holds a coil support member 60 for supporting a coil wire.
- a plurality of heat sink through holes 110 are positioned adjacent to each other in the circumferential direction. Specifically, the plurality of heat sink through holes 110U, 110V, 110W are provided at intervals in the circumferential direction. That is, the plurality of heat sink through holes 110U, 110V, 110W are aligned on concentric arcs spaced apart from each other.
- the plurality of heat sink through holes 110U, 110V, 110W are located in a region where the central angle ⁇ about the shaft 41 (central axis A) is within 180 degrees Do. That is, the heat sink through holes 110U, 110V, 110W are collected and arranged on one side.
- the number of slots is 6 or more, the number of phases is 3, and the central angle ⁇ is “(360 Degree / slot number) ⁇ 3 ′ ′ degree or less is preferable.
- phase in the above equation is the number of independent coils of the fixed stator, and a three-phase motor with three phases is a motor with three coils separated at intervals of 120 degrees, and this embodiment In form, it is a three-phase motor of U phase, V phase and W phase.
- slot in the above equation represents the number of grooves between teeth, which is a multiple of three in a three-phase motor. In the present embodiment, since there are 12 slots of three phases, it is preferable that the central angle ⁇ be 90 degrees or less.
- the coil lead wires 53U1, 53U2, 53V1, 53V2, 53W1, 53W2 be also positioned within the central angle ⁇ .
- the coil leader can be positioned within the central angle ⁇ .
- the plurality of heat sink through holes 110U, 110V, 110W are holes separated from one another for each phase of the coil wire. That is, the plurality of heat sink through holes 110U, 110V, 110W are independent of one another and are not connected.
- the lead wires 53U1 and 53U2 which are two U-phase coils are inserted into the heat sink through holes 110U.
- lead wires 53V1 and 53V2 which are two V-phase coils are inserted into the heat sink through holes 110V.
- the heat sink through holes 110U, 110V, 110W face the inside of the first region S1 in the substrate 70 in which the power elements are mounted. For this reason, the heat sink through holes 110U, 110V, and 110W through which the coil wire passes are formed in the first region S1 in which the power elements of the substrate 70 are mounted.
- the heat sink through holes 110U, 110V, and 110W are structured to span the first area S1 where the power element is mounted and the second area S2 where the control element is mounted. It is also good.
- the heat sink through hole may have a structure in which a part of the heat sink through hole is the first area S1 and the remaining part is the second area S2.
- the width of the upper end of the coil support member 60 is smaller than the width of the lower end of the heat sink through hole 110, and the width of the coil support member 60 gradually becomes equal or larger from the axial upper side to the lower side. More specifically, the heat sink through hole 110 has a constant width, and the side surface of the coil support member 60 has a tapered shape that spreads downward.
- the width of the lower end of the heat sink through hole 110 is larger than the width of the upper end of the coil support member 60, and the width of the heat sink through hole 110 is gradually equal to or smaller from the axial lower side to the upper side Part of the More specifically, the heat sink through hole 110 is tapered downward, and a part of the side surface of the coil support member 60 has a constant width.
- the width of the upper end of the heat sink through hole 110 may be larger than the width of the coil support member 60, but the width of the upper end of the heat sink through hole 110 may be smaller than the width of the coil support member 60.
- the gap between the coil support member 60 and the heat sink through hole 110 becomes the same or larger as it goes from the lower side to the upper side, the heat sink through hole 110 from the upper side of the coil support member 60 during assembly of the motor 1. Easy to insert.
- the heat sink 100 has a contact surface 121 and an exposed surface 122.
- the contact surface 121 and the exposed surface 122 are surfaces located on the upper surface of the heat sink 100 shown in FIG.
- the contact surface 121 is in contact with the substrate 70 or the electronic component 80 directly or through the heat dissipation member 123.
- the heat dissipating member 123 is a member having heat dissipating properties such as grease.
- the heat dissipation member 123 is in contact with the heat sink 100 and the substrate 70.
- the exposed surface 122 is exposed without contacting the substrate 70, the electronic component 80, and the heat dissipation member. In other words, the exposed surface 122 is disposed with a gap between the substrate 70 or the electronic component 80. That is, the contact surface 121 directly or indirectly contacts the substrate 70 or the electronic component 80, and the exposed surface 122 directly and indirectly has no member in contact.
- the exposed surface 122 is located on the outer edge side of the hollow portion H (in FIG. 3, the heat sink through hole 110).
- the exposed surface 122 is located radially outward of the heat sink through holes 110.
- the boundary between the contact surface 121 and the exposed surface 122 is located in the circumferential direction.
- the boundary between the contact surface 121 and the exposed surface 122 is an arc of a central angle ⁇ connecting the heat sink through hole 110U located at one end, the heat sink through hole 110W located at the other end, and the central axis A.
- the connection between the substrate 70 or the electronic component 80 and the conductive member can be visually confirmed.
- the connection is confirmed from the upper surface of the substrate 70, it is preferable to check from the lower surface side of the substrate 70 because the connection by the connecting members is unknown up to the inside of the substrate through hole 71 and the lower surface of the substrate 70.
- the exposed surface 122 is located axially lower than the contact surface 121.
- the substrate 70 may be a plate extending flat, and the exposed surface 122 may be located below the contact surface 121.
- the substrate 70 may have a step structure, and the exposed surface 122 and the contact surface 121 may be located on the same plane.
- the contact surface 121 may have a first contact surface in direct contact with the substrate 70 or the electronic component 80 and a second contact surface in contact with the substrate 70 or the electronic component 80 via the heat dissipation member 123.
- the substrate is more than the gap between the substrate 70 or the electronic component 80 and the second contact surface
- the gap between the electronic component 80 and the exposed surface 122 is increased.
- the substrate 70 or the electronic component 80 and the exposed surface are provided from the viewpoint of preventing the gap from becoming thin due to the grease applied to the second contact surface and the connecting member coming around the exposed surface 122 and becoming inconspicuous. It is preferable to make the gap with 122 larger.
- the lower end portion of the connection member is difficult to see when the coil support member 60 is displaced upward, it is preferable to make a gap sufficiently.
- the connecting member As shown in FIG. 1, when the tip of the member supporting the conductive member (in this embodiment, the coil support member 60) is positioned at the same or lower height in the axial direction as the exposed surface, the connecting member The lower end of the can be checked more easily. On the other hand, when the tip of the member supporting the conductive member is located at the same axial position as the exposed surface 122 or on the upper side, the connection member connecting the substrate 70 or the electronic component 80 and the conductive member is the heat sink 100 Can be further prevented.
- the heat sink 100 is formed on the inside region 130, the outside region 140 located radially outward of the inside region 130, and the outside of the outside region 140 in the radial direction. And the outer wall 150.
- the inner region 130 at least partially overlaps the electronic component 80 in the axial direction.
- the axial thickness of the inner region 130 is greater than the axial thickness of the outer region 140.
- the heat sink through holes 110U, 110V, and 110W are located in the area outside the radial direction of the substrate 70, the electronic components are closely packed in the area inside the substrate 70 in the radial direction. Therefore, by increasing the axial thickness of the inner region 130 of the heat sink 100, the heat of the electronic component can be dissipated to the heat sink 100. Furthermore, by reducing the thickness of the outer region 140, a space for housing components can be secured. Therefore, while being able to perform heat dissipation of an electronic component more effectively, the physical size of an axial direction can be suppressed.
- the inner region 130 has an inner side wall portion 131 and a rib 132, as shown in FIG.
- the inner side wall portion 131 and the rib 132 are formed on the heat sink lower surface 102.
- the inner wall portion 131 extends axially downward at the radially inner end.
- the ribs 132 extend radially outward from the inner wall portion 131.
- a plurality of ribs 132 are provided, and the plurality of ribs 132 are arranged at equal intervals in the circumferential direction.
- the plurality of ribs 132 extend radially in a radial direction about the central axis A.
- the rigidity of the inner region 130 of the heat sink 100 can be enhanced by the inner side wall portion 131 and the rib 132, when the heat sink 100 holds the bearing 43, the durability against the stress for supporting the shaft 41 can be improved. .
- the heat capacity of the heat sink 100 can be increased, and heat can be easily conducted radially outward.
- the outer region 140 has the heat sink through holes 110U, 110V, 110W through which the above-described coil wire C is inserted.
- the lower surface of the outer region 140 is located axially above the lower surface of the inner region 130.
- the bus bar holding member 54 is located below the outer region 140 in the axial direction, and overlaps the inner region 130 in the radial direction.
- the bus bar holding member 54 is located below the outer region 140 in the axial direction, and overlaps the inner region 130 in the radial direction.
- a large number of heating elements are disposed at the central portion (radially inside) of the substrate 70. For this reason, the heat dissipation effect is enhanced by increasing the thickness of the inner region 130 located at the center of the heat sink 100 facing the substrate 70.
- the coil wire C drawn from the coil 53 of the stator 50 is connected to the outer side (radial outer side) of the substrate 70, and no heat generating element is disposed.
- the axial height can be suppressed.
- the heat sink 100 can absorb the radiant heat of the bus bar at the time of driving by covering the upper surface and the side surface of the bus bar.
- the outer wall portion 150 surrounds the radially outer side of the bus bar holding member 54.
- the axial thickness of the outer wall 150 is greater than the axial thickness of the inner region 130. At least a portion of the outer wall 150 is exposed to the outside.
- the outer wall portion 150 includes the portion where the axial thickness is the largest in the heat sink 100, so the heat dissipation effect can be further enhanced.
- the heat sink upper surface 101 of the heat sink main body portion 103 is provided with a second positioning recess 176 for positioning with the substrate 70.
- a plurality of second positioning recesses 176 are formed and are circular recesses.
- a positioning member such as a positioning pin is inserted into the second positioning recess 176 of the heat sink 100 and the positioning hole 76 (see FIG. 2) of the substrate 70 for positioning.
- a fixing hole 177 is formed in the heat sink body 103 for fixing to the substrate 70.
- the fixing hole portion 177 is a substrate contact portion that contacts the substrate 70 in the axial direction.
- a plurality of fixing holes 177 are formed and are circular holes. Fixing members such as fixing pins and screws are inserted into the fixing holes 177 of the heat sink 100 and the fixing holes 77 of the substrate (see FIG. 2) to fix the substrate 70 and the heat sink 100.
- the heat sink 100 and the substrate 70 are positioned using the positioning member and fixed by the fixing member. After the substrate 70 and the heat sink 100 are fixed, the positioning member is removed.
- the fixing hole portion 177 protrudes axially upward with respect to the exposed surface 122. That is, in the present embodiment, the fixing hole portion 177 is located at the first contact surface.
- the plurality of heat sink through holes 110 and the fixing holes 177 are provided at intervals in the circumferential direction.
- the two fixing holes 177 are circumferentially spaced apart from the heat sink through holes 110U and 110W located at both ends in the circumferential direction among the plurality of heat sink through holes 110.
- the second protrusion 104 b has a first positioning hole 178 and a first positioning recess 179 or a first positioning for positioning with the connector 200.
- a protrusion (not shown) is formed.
- the first positioning recess is a cutout recess.
- the connector 200 is disposed adjacent to the housing 10 and electrically connects the substrate 70 and the outside of the motor 1.
- the connector 200 according to the present embodiment is a connector pin 81 that is a conductive member that is disposed radially outward of the housing 10, extends downward in the axial direction (is downward), and extends axially downward from the substrate 70. Housed inside.
- the upper surface of the connector 200 is located lower than the heat sink upper surface 101 of the heat sink 100, and when viewed from above in the axial direction, the connector 200 and the substrate 70 overlap.
- the connector 200 includes a connector body portion 210 extending in the axial direction, a connector flange portion 220 extending radially outward from the outer surface of the connector body portion 210, and a connector And a connector protrusion 230 extending axially upward from the top surface of the body portion 210.
- the hollow portion H is formed by the heat sink main body portion 103 and the heat sink protrusion portion 104, at least a part of the connector body portion 210 is positioned in the hollow portion H.
- the connector body portion 210 is formed on the outer side surface and has an axially extending body convex portion 211 or a body concave portion (not shown).
- the body convex portion 211 extends in the axial direction from the connector flange portion 220 to the connector projecting portion 230.
- the connector body portion 210 further includes an axially extending connector convex portion 215 formed in the radially outer end region.
- the connector protrusion 215 is an outer edge including the radially outer connector outer edge 216.
- the “connector outer end edge 216” is the outer end (the end of the connector 200).
- the connector body portion 210 further includes a pocket recess 217 formed on the radially inner side of the connector convex portion 215 with the radial inner surface of the connector convex portion 215.
- the pocket recess 217 stores dust that invades from the outside.
- the connector flange portion 220 is formed at the axial center of the connector body portion 210.
- the central portion is a predetermined range from the center (for example, within 1 ⁇ 3 of the center of the axial height). Thereby, even if the connector 200 receives an external force, the durability can be improved.
- a fitting portion 221 for positioning with the heat sink 100 is formed on the upper surface of the connector flange portion 220.
- the fitting portion 221 fits in each of the first positioning hole 178 and the first positioning recess 179 or the first positioning protrusion (not shown).
- the fitting portion 221 of the present embodiment is a protrusion extending upward.
- the connector protrusion 230 extends upward from the top surface of the connector body 210.
- the connector protrusion 230 may be integrally formed with the connector body 210 or may be a separate member.
- the connector convex portion 215 and the concave portion of the cover 30 are fitted with a gap.
- the connector 200 is substantially rectangular in plan view.
- the connector protrusion 215 and the recess of the cover 30 extend along the longitudinal direction of the connector 200.
- connector protrusion 230 and the step 35 of the cover shown in FIG. 1 are fitted with a gap.
- the radially outer corner of the connector protrusion 230 and the stepped portion of the stepped portion 35 of the cover are fitted to face each other.
- the motor 1 of the present embodiment has a labyrinth structure in which the cover 30 and the connector 200 are fitted with an uneven shape with a gap therebetween. Therefore, the motor can be easily assembled while having a dustproof effect.
- the connector 200 contacts the lower surface of the second protrusion 104b.
- the second protrusion 104 b is disposed on the connector flange 220 such that the flange upper surface 222 of the connector flange 220 and the heat sink lower surface 102 of the second protrusion 104 b are in contact with each other.
- the connector flange 220 contacts each of the lower surfaces of the plurality of second protrusions 104b.
- the body convex portion 211 and the heat sink concave portion 105 are fitted through a gap.
- a body concave portion may be formed instead of the body convex portion 211
- a heat sink convex portion may be formed instead of the heat sink concave portion
- the body concave portion and the heat sink convex portion may be fitted through a gap.
- the body convex portion or body concave portion fitted with a gap between the heat sink concave portion and the heat sink concave portion or the heat sink convex portion extend in the axial direction.
- the first positioning hole 178 (see FIGS. 3 and 4) of the heat sink 100 and the first positioning recess 179 (see FIG. 4) or the first positioning protrusion (not shown)
- the fitting portion 221 of the connector By fitting the fitting portion 221 of the connector, the heat sink 100 and the connector 200 are positioned.
- the positioning of the heat sink 100 and the connector 200 may be engaged with each other, and the shape is not limited.
- the connector 200 of the present embodiment is a rectangular parallelepiped. For this reason, the connector 200 has a longitudinal direction and a short direction when viewed from above.
- the first protrusion 104 a is located on one side in the longitudinal direction of the connector 200 and on the upper side in the height direction.
- the height direction is a direction orthogonal to the longitudinal direction and the short direction. In the present embodiment, the height direction coincides with the axial direction.
- the first protrusion 104 a extends from one end toward the center in the longitudinal direction of the connector 200.
- the first projecting portion 104 a is not provided from the other side to the central portion in the longitudinal direction of the connector 200.
- the first protrusion 104 a is located at the upper end in the height direction of the connector 200.
- the power supply signal circuit unit is disposed on one side where the first protrusion 104 a is located on the upper side.
- the control signal circuit unit is disposed on the other side where the first protrusion 104 a is not located on the upper side.
- the first protrusion 104 a linearly extends radially outward from the area of the heat sink main body 103 in which the power element is disposed.
- the connector pin 81 is accommodated inside the connector 200. For this reason, the connector pin 81 has a connector connection portion 81C connected to the connector 200. Also, the connector pin 81 is connected to the substrate 70. For this reason, the connector pin 81 has a substrate connection portion 81A connected to the substrate 70. In the radial direction, the positions of the substrate connection portion 81A and the connector connection portion 81C are different. In FIG. 10, the board connection portion 81A is located radially outward of the connector connection portion 81C.
- the connector pin 81 includes a first axially extending portion 81 a, a radially extending portion 81 b, and a second axially extending portion 81 c.
- the first axially extending portion 81a, the radially extending portion 81b, and the second axially extending portion 81c are located in order from the upper side in the axial direction.
- the first axially extending portion 81 a extends in the axial direction.
- the first axially extending portion 81a has a substrate connecting portion 81A.
- the first axially extending portion 81 a is located radially outward of the first protrusion 104 a of the heat sink protrusion 104.
- the first axially extending portion 81a is disposed at a gap from the first projecting portion 104a.
- the radially extending portion 81 b is continuous with the first axially extending portion 81 a.
- the radially extending portion 81 b extends in a direction intersecting the axial direction. That is, the radially extending portion 81b extends in a direction different from the direction in which the first axially extending portion 81a extends.
- the direction intersecting the axial direction may be a direction between the axial direction and the radial direction, or may be the radial direction.
- the radially extending portion 81 b of the present embodiment extends in the radial direction orthogonal to the axial direction. That is, it extends radially inward from the lower end of the first axially extending portion 81a.
- the first axially extending portion 81a and the radially extending portion 81b form a substantially L shape.
- the second axially extending portion 81 c is continuous with the radially extending portion 81 b and extends in the axial direction.
- the second axially extending portion 81c has a connector connection portion 81C.
- the radially extending portion 81 b may have a connector connection portion 81C.
- the second axially extending portion 81 c of the present embodiment extends in the same direction as the first axially extending portion 81 a.
- the second axially extending portion 81c and the radially extending portion 81b form a substantially L shape.
- the first axially extending portion 81a, the radially extending portion 81b, and the second axially extending portion 81c are positioned in this order from the radially outer side to the inner side.
- the radially extending portion 81 b extends radially inward from the lower end of the first axially extending portion 81 a.
- the second axially extending portion 81c extends downward from the radially inner end of the radially extending portion 81b.
- the extending direction of the first axially extending portion 81a intersects with the extending direction of the radially extending portion 81b. For this reason, the connector pin 81 has a stress relaxation structure.
- the connector pin 81 may have two connecting portions extending in the intersecting direction as shown in FIG. 10, may have a single connecting portion, or may have three or more.
- the first axially extending portion 81a and the second axially extending portion 81c include structures that extend at an angle of less than 45 degrees from the axial direction. Further, the radially extending portion 81 b includes a structure extending obliquely at less than 45 degrees from the radial direction.
- the connector pins 81 are separately inserted into the connector 200. That is, the connector pin 81 is outsert to the connector 200. Specifically, the connector pins 81 are outsert-molded rather than insert-molded integrally with the connector 200. Therefore, there is a gap between the portion of the connector pin 81 inserted into the connector 200 and the connector 200.
- the connector pin 81 may be insert molded to the connector 200.
- the connector pin 81 is located radially outside the first projection 104 a of the heat sink projection 104.
- the connector pin 81 is also located on the lower side in the radial direction of the first protrusion 104 a.
- the first axially extending portion 81a is located radially outward of the first projecting portion 104a.
- the radially extending portion 81 b is positioned below the first protruding portion 104 a in the radial direction.
- the radially extending portion 81 b overlaps the first projecting portion 104 a.
- the second axially extending portion 81c overlaps the first projecting portion 104a.
- the upper surface of the radially extending portion 81 b is located below the lower surface of the first projecting portion 104 a.
- the first protrusion 104 a overlaps the connector pin 81. Specifically, when viewed from the radial outer side, the first projecting portion 104a and the first axially extending portion 81a overlap.
- the cover 30 and the connector 200 are described as an example of the structure fixed to the heat sink 100.
- the motor may have a structure in which the heat sink and the connector are fixed to the cover. In the latter case, a structure in which the heat sink and the connector are fitted together with a gap therebetween can be easily realized.
- the heat sink 100 serves as a holder for holding the bearing 43 as an example, but the heat sink of the present invention may be separate from the bearing holder.
- the heat sink 100 also functions as a holder for holding the coil wire C and the coil support member 60 inserted into the heat sink through hole 110, but the coil wire and coil of the present invention are described.
- the holder holding the support member may be separate from the heat sink.
- the motor 1 according to the first embodiment of the present invention includes a rotor 40 including a shaft 41 extending in the axial direction, a stator 50 surrounding the radially outer side of the rotor 40, and a housing 10 accommodating the rotor 40 and the stator 50 therein.
- the heat sink 100 is disposed on the axial direction upper side of the stator 50, the substrate 70 fixed on the axial direction upper side of the heat sink 100, the connector 200 disposed on the radial direction outer side of the housing 10, and And the connector pin 81 electrically connected to the substrate 70, wherein the heat sink 100 is connected to the heat sink main body 103 and the heat sink main body 103, and is a first protrusion extending radially outward from the housing 10 104a, and viewed from the lower side in the axial direction, the connector 200, the first protrusion 104a And overlapping in the order of the substrate 70, the radially outer side of the first projecting portion 104a, the connector pin 81 is located.
- the connector pin 81 is located radially outward, and a space for installing the heat sink 100 between the connector 200 and the substrate 70 is provided.
- the first protrusion 104 a of the heat sink 100 By arranging the first protrusion 104 a of the heat sink 100 in this space, the volume of the entire heat sink 100 can be increased, so that the heat dissipation can be ensured.
- this space is provided radially outward of the housing 10, it is not necessary to enlarge the housing 10 in order to increase the volume of the heat sink 100. Therefore, it is possible to realize the motor 1 which suppresses the physique while securing the heat dissipation.
- motor 1 of the first embodiment further includes choke coil 80a electrically connected to substrate 70, and viewed from the lower side in the axial direction, connector 200, first protrusion 104a, substrate 70, and choke coil. Overlap in the order of 80a.
- the choke coil 80 a can be disposed on the substrate 70 on the first protrusion 104 a, and the other electronic component 80 can be disposed on the substrate 70 on the heat sink main body 103. For this reason, a space can be provided between the choke coil 80 a having a relatively large amount of heat generation and the other electronic component 80. Therefore, the heat generated from the electronic component 80 mounted on the substrate 70 can be efficiently dissipated.
- a gap is provided in the axial direction between the first protrusion 104 a and the connector 200.
- connector pin 81 includes substrate connection portion 81A connected to substrate 70, and connector connection portion 81C connected to connector 200, and the substrate connection portion in the axial direction.
- the positions of 81A and connector connection portion 81C are different.
- the connector pin 81 is located radially outward of the first projecting portion 104a, and a first axially extending portion 81a extending in the axial direction, and a first axial extending portion 81a.
- the radially extending portion 81b overlaps the first projecting portion 104a, and the upper surface of the radially extending portion 81b It is located below the lower surface of the 1st projection part 104a.
- connector pin 81 is separately inserted into connector 200.
- the connector 200 is a rectangular parallelepiped, and the first protrusion 104 a is located on one side in the longitudinal direction of the connector 200 and on the upper side in the height direction.
- An efficient circuit design can be performed by classifying the connector into the power supply signal circuit unit and the control signal circuit unit and arranging the power supply signal circuit unit on one side where the projecting portion is located on the upper side.
- Second Embodiment One embodiment of an apparatus including the motor 1 of the first embodiment will be described with reference to FIG. In the second embodiment, an example in which the motor 1 is mounted on an electric power steering apparatus will be described.
- the electric power steering device 2 is mounted on a steering mechanism of a wheel of a car.
- the electric power steering apparatus 2 of the present embodiment is a column type power steering apparatus that directly reduces the steering force by the power of the motor 1.
- the electric power steering apparatus 2 includes a motor 1, a steering shaft 914, and an axle 913.
- the steering shaft 914 transmits an input from the steering 911 to an axle 913 having wheels 912.
- the power of the motor 1 is transmitted to the axle 913 via a ball screw.
- a motor 1 employed in a column-type electric power steering device 2 is provided inside an engine room (not shown).
- the engine room itself can be provided with a waterproof structure, so that the motor itself does not have to be provided with a waterproof structure.
- dust may intrude into the engine room, but since the motor 1 has a dustproof structure, it is possible to suppress the dust from invading into the motor main body.
- the electric power steering apparatus of the present invention is not limited to the column type, and may be a rack type.
- the electric power steering apparatus 2 of the second embodiment includes the motor 1 of the first embodiment. For this reason, the electric power steering apparatus 2 having the same effect as that of the first embodiment can be obtained. That is, since the motor 1 of the first embodiment is provided, it is possible to suppress the physique while securing the heat dissipation of the electric power steering device 2.
- the electric power steering apparatus 2 has been described as an example of the method of using the motor 1 according to the first embodiment, but the method of using the motor 1 is not limited, and can be used widely for pumps, compressors and the like.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Motor Or Generator Frames (AREA)
- Motor Or Generator Cooling System (AREA)
Abstract
放熱性を確保しつつ、体格を抑えるモータ及び電動パワーステアリング装置を提供する。本発明のモータ(1)は、軸方向に延びるシャフト(41)を含むロータ(40)と、ステータ(50)と、ハウジング(10)と、ステータ(50)の軸方向上側に配置されたヒートシンク(100)と、ヒートシンク(100)の軸方向上側に固定された基板(70)と、ハウジング(10)の径方向外側に配置されたコネクタ(200)と、コネクタ(200)の内部に収容されるコネクタピン(81)と、を備える。ヒートシンク(100)は、本体部と、本体部と連なり、かつハウジング(10)よりも径方向外側に延びる突出部と、を有する。軸方向下側から見て、コネクタ(200)、突出部、及び基板(70)の順に重なる。突出部の径方向外側に、コネクタピン(81)が位置する。
Description
本発明は、モータ及び電動パワーステアリング装置に関する。
モータ本体部と、このモータ本体部を制御する制御部とが一体に配置された機電一体型のモータが知られている。モータ本体部は、ロータと、ステータとを有する。制御部は、電子部品と、基板とを有する。
例えば、特開2013-62996号公報(特許文献1)に開示のモータは、ECUハウジングと、制御基板と、半導体モジュールと、ヒートシンクと、コネクタと、を備える。ECUハウジングは、一端側が開口形成される。制御基板は、ECUハウジングの一端側に配置される。半導体モジュールは、制御基板と電気的に接続される。ヒートシンクは、ECUハウジングの内側部に設けられ、半導体モジュールの放熱面と接触する受熱面を有する。コネクタは、ECUハウジングに取り付けられ、固定される。
特許文献1のヒートシンクは、ECUハウジング内に収容される。放熱性を確保するためには、ヒートシンクの体積を大きくする必要がある。この場合、ECUハウジングを大きくする必要が生じるので、モータの体格が大きくなってしまう。
本発明は、上記問題点に鑑み、放熱性を確保しつつ、体格を抑えるモータ及び電動パワーステアリング装置を提供することを目的とする。
本発明のモータの一つの態様は、軸方向に延びるシャフトを含むロータと、ロータの径方向外側を囲むステータと、ロータ及びステータを内部に収容するハウジングと、ステータの軸方向上側に配置されたヒートシンクと、ヒートシンクの軸方向上側に固定された基板と、ハウジングの径方向外側に配置されたコネクタと、コネクタの内部に収容されるとともに、前記基板と電気的に接続されたコネクタピンと、を備える。ヒートシンクは、本体部と、本体部と連なり、かつハウジングよりも径方向外側に延びる突出部と、を有する。軸方向下側から見て、コネクタ、突出部、及び基板の順に重なる。突出部の径方向外側に、コネクタピンが位置する。
本発明の一つの態様によれば、放熱性を確保しつつ、体格を抑えるモータ及び電動パワーステアリング装置を提供することができる。
以下、図面に基づいて本発明の実施の形態を説明する。なお、以下の図面において同一または相当する部分には同一の参照符号を付し、その説明は繰り返さない。
また、以下の説明において、図1に示すように、ロータの中心軸A、つまりシャフトが延びる軸方向を上下方向とし、基板側を上側、とし、ハウジングの底部側を下側とする。ただし、本明細書における上下方向は、位置関係を特定するために用いるためであって、実際の方向を限定するものではない。すなわち、下方向は重力方向を必ずしも意味するものではない。
また、ロータの中心軸Aに直交する方向を径方向とし、径方向は中心軸Aを中心とする。ロータの中心軸Aの軸回りを周方向とする。
また、本明細書において「軸方向に延びる」とは、厳密に軸方向に延びる状態と、軸方向に対して45度未満の範囲で傾いた方向に延びる状態とを含む。同様に、本明細書において「径方向に延びる」とは、厳密に径方向に延びる状態と、径方向に対して45度未満の範囲で傾いた方向に延びる状態とを含む。
また、本明細書において「嵌る(嵌合する)」とは、形状が合ったものを嵌め合わせることを意味する。形状が合ったものは、形状が同じ場合と、形状が相似形の場合と、形状が異なる場合とを含む。形状が合ったものが凹凸形状の場合には、一方の凸部の少なくとも一部が他方の凹部の中に位置する。
また、本明細書において「間隙」とは、意図的に設けた隙間を意味する。つまり、部材同士を接触させないように設計された隙間を間隙とする。
(実施の形態1) 図1~図10を参照して、本発明の一実施の形態であるモータについて説明する。実施の形態1におけるモータは、U相、V相、及びW相の組を2組有する2系統の構成である。
図1に示すように、モータ1は、ハウジング10と、フランジ20と、カバー30と、ロータ40と、ベアリング43,44と、ステータ50と、コイル支持部材60と、基板70及び電子部品80を有する制御部と、ヒートシンク100と、コネクタ200と、コネクタピン81と、を主に備える。
<ハウジング> 図1に示すように、ハウジング10は、ロータ40、ステータ50及びベアリング43,44を内部に収容する。ハウジング10は、軸方向に伸び、上側に開口する。ハウジング10は、底部14を含む。底部14は、ハウジング10を閉口する。
<フランジ> フランジ20は、ハウジング10の外側面に、取り付けられる。
<カバー> カバー30は、基板70及びコネクタ200の軸方向上側を少なくとも一部を覆う。
<ロータ> ロータ40は、シャフト41と、ロータコア42と、を含む。シャフト41は、軸方向に延びる中心軸Aを中心とする略円柱状である。このシャフト41に、ロータコア42は固定される。ロータコア42は、シャフトの径方向外側を囲む。ロータコア42は、シャフト41とともに回転する。
<ベアリング> 図1に示すように、ベアリング43,44は、シャフト41を回転可能に支持する。軸方向上側に配置されるベアリング43は、ステータ50の軸方向上側に位置し、ヒートシンク100に保持される。軸方向下側に配置されるベアリング44は、ハウジング10の底部14に保持される。
<ステータ> [ステータの構成] ステータ50は、ロータ40の径方向外側を囲む。ステータ50は、ステータコア51と、インシュレータ52と、コイル53と、バスバー(図示せず)と、バスバー保持部材54と、を含む。
ステータコア51は、周方向に複数配置されたコアバックとティースとを有する。コアバックは、中心軸Aと同心の筒状である。ティースは、コアバックの内側面から径方向内側に向かって延びる。ティースは、複数設けられ、コアバックから径方向に延び、周方向に空隙(スロット)を隔てて配置される。
インシュレータ52は、ステータコア51の少なくとも一部を覆う。インシュレータ52は、絶縁体で形成され、各ティースに取り付けられる。
コイル53は、ステータコア51を励磁し、コイル線Cが巻回されて構成される。具体的には、コイル線Cは、インシュレータ52を介して各ティースに巻回され、コイル53は、各ティースに配置される。すなわち、コイル線Cは、集中巻である。本実施の形態において、コイル線Cが2つの異なるティースに対してそれぞれ集中巻で巻回される、いわゆる二連弧巻である。コイル線Cは、バスバー保持部材54の径方向外側端部よりも径方向内側に位置する。
コイル線Cの一端部は、バスバーに接続される。コイル線Cの他端部は、後述するコイル支持部材60に挿通され、基板70に接続される。本実施の形態のコイル線Cの他端部は、コイル53から引き出された導線であり、具体的には、第1及び第2の系統におけるU相、V相及びW相のそれぞれを構成する6本の引出線53U1,53U2,53V1,53V2,53W1,53W2(図6参照)である。このステータ50から引き出された引出線53U1,53U2,53V1,53V2,53W1,53W2は、後述するコイル支持部材60の貫通孔65及びヒートシンク貫通孔110(図3参照)内に挿通され、制御部にはんだ付けなどの方法で電気的に接続される。
引出線53U1,53U2,53V1,53V2,53W1,53W2は、渡り線によって、シャフトを中心とした180度以下の領域に集められる。
モータ1の駆動時においては、第1の系統におけるU相、V相及びW相の各層を構成する引出線53U1,53V1,53W1に、それぞれ電流が流され、第2の系統におけるU相、V相及びW相の各相を構成する引出線53U2,53V2,53W2にも、それぞれ電流が流される。この構成により、モータ1の駆動時において、例えばインバータの故障等により一方の系統へのコイルへの通電が停止した場合であっても、他方の系統におけるコイルに通電が可能であるため、モータ1を駆動させることができる。
本実施の形態におけるモータ1は、U相、V相及びW相の組を2組有する2系統の構成としたが、系統数については任意に設計可能である。すなわち、モータ1は、1系統の構成としてもよく、3系統以上としてもよい。
バスバーBは、コイル53から導出されたコイル線を互いに電気的に接続させる導電材料で形成された部材である。本実施の形態におけるバスバーBは、スター結線における中性点用バスバーである。
[バスバー保持部材] 図1に示すバスバー保持部材54は、バスバーを保持する。バスバー保持部材54は、絶縁材料で形成される。バスバー保持部材54は、インシュレータ52の径方向外側またはコアバックの軸方向上側に固定される。バスバー保持部材54と、ベアリング43とは、径方向に重なる。
<コイル支持部材> コイル支持部材60は、コイル線Cなどの導電部材を支持する。コイル支持部材60は、絶縁材料で形成される。コイル支持部材60は、ステータ50の軸方向上側に配置され、コイル線Cが挿通される。
<制御部> 制御部は、ロータ40とステータ50とを有するモータ本体部を制御する。制御部は、基板70と、この基板70に実装される電子部品80と、を含む。基板70は、ステータ50の軸方向上側であって、径方向に広がるように配置され、ヒートシンク100の軸方向上側に固定される。電子部品80は、基板70の上面及び下面の少なくとも一方に実装される。
図10に示すように、基板70に搭載される電子部品80の1つとして、チョークコイル80aを用いることができる。チョークコイル80aは、基板70と電気的に接続される。チョークコイル80aは、ノイズを除去する。
図2に示すように、基板70は、パワー素子が実装される第1領域S1と、制御素子が実装される第2領域S2と、を有する。第1領域S1は、軸方向上側から見た際に、シャフト41の中心軸Aを中心として180度以上の領域である。
ここで、パワー素子と制御素子とが、基板70上において周方向に分かれて配置している際に、第1領域S1と第2領域S2とを定義することができる。したがって、パワー素子と制御素子とが基板70上に
不規則に点在している場合や、パワー素子と制御素子とが同一周方向かつ径方向に分かれて配置されている場合は、この限りではない。
不規則に点在している場合や、パワー素子と制御素子とが同一周方向かつ径方向に分かれて配置されている場合は、この限りではない。
また、第1領域S1及び第2領域S2は、シャフト41(中心軸A)を中心とした角度で定義される領域である。例えば、第1領域S1内において、パワー素子が基板70の径方向内側に偏っている場合であっても、基板70の径方向外側は第1領域S1とみなす。
ここで、パワー素子とは、コイル線から外部電源へと繋ぐ回路上の素子であり、制御素子とは、磁気センサで検出した信号線を外部制御装置へと繋ぐ回路上の素子である。パワー素子としては、チョークコイル80a、FET、コンデンサなどが挙げられる。制御素子としては、マイコンなどが挙げられる。
[基板の構成] 図2に示すように、基板70は、導電部材を通すための基板貫通孔71,72を有する。導電部材は、基板70に接続されて配電する部材であり、例えば、図1に示すコネクタピン81、ステータ50に巻回されたコイル線Cなどである。本実施の形態では、基板貫通孔71には、コイル線が挿通され、基板貫通孔72にはコネクタピン81が挿通される。なお、コイル線Cと基板70、及び、コネクタピン81と基板70とは、はんだ接続によって固定される。
基板70には、ヒートシンク100との位置決めのために、ヒートシンク100の第2位置決め凹部176(図3参照)に対応する位置決め孔部76が形成される。位置決め孔部76は、丸孔、切欠き孔などである。
また、基板70には、ヒートシンク100との固定のために、ヒートシンク本体部103の固定孔部177(図3参照)に対応する固定孔部77が形成される。固定孔部77は、丸孔、切欠き孔などである。
[ヒートシンク及びコネクタとの関係] 図3に示す第1位置決め孔178は、ヒートシンク上面101とヒートシンク下面102とを貫通している。ヒートシンク上面101を加工する際に、第1位置決め孔178を基準として、第2位置決め凹部176が形成される。また、ヒートシンク下面102を加工する際も同様に、第1位置決め孔178を基準として第1位置決め凹部179が形成される。これにより、第1位置決め凹部179と、第2位置決め凹部176とは、第1位置決め孔178を基準に位置が決定される。
したがって、第1位置決め凹部179によって位置が決められたコネクタ200と、第2位置決め凹部176によって位置が決められた基板70とは、位置が決定される。これにより、ヒートシンク100とコネクタ200との間に位置ずれを起こさず、容易にコネクタピン81を接続させることができる。
[導電部材との接続] 基板70または電子部品80と、基板70及びコイル線Cなどの導電部材とは、接続部材によって接続される。接続部材は、導電性接着剤、はんだなどであり、本実施の形態でははんだを用いる。はんだは、基板70の上面及び下面と、導電部材を通すための基板貫通孔71の内部とに連なるように配置される。はんだの全ては、後述するヒートシンク100の露出面122(図1参照)よりも軸方向上側に位置する。
<ヒートシンク> 図1に示すように、ヒートシンク100は、ステータ50の軸方向上側に配置され、基板70と軸方向に対向する。
ヒートシンク100は、基板70に実装された電子部品80からの熱を吸収し、外部に放出する機能を有し、熱抵抗の少ない材料で形成される。
ヒートシンク100は、ベアリング43を保持するので、ベアリングホルダとしても用いられる。本実施の形態では、ベアリングホルダとヒートシンクとは一体であるため、部品点数、組立点数、及びこれらに伴うコストを削減できる。また、ベアリングホルダとヒートシンクとを別体にした際に生じる熱抵抗を抑えることができるため、熱を外部へと伝えやすくすることができる。
ヒートシンク100は、図3に示すヒートシンク上面101と、図4に示すヒートシンク下面102とを有する。ヒートシンク上面101は基板70に対向し、ヒートシンク下面102はステータ50に対向する。
[ヒートシンク本体部及びヒートシンク突出部] 図3及び図4に示すように、ヒートシンク100は、ヒートシンク本体部103と、このヒートシンク本体部103と連なり、かつハウジング10よりも径方向外側に延びるヒートシンク突出部104とを有する。
ヒートシンク本体部103は、軸方向上側から見た際に、ロータ40及びステータ50を収容するハウジング10と重なり合う。ヒートシンク突出部104は、このヒートシンク本体部103から径方向に突出し、コネクタ200の長手方向(図3及び図4における左右方向)の少なくとも一部を覆う。
ヒートシンク突出部104は、第1突出部104aと、第2突出部104bとを有する。図10に示すように、第1突出部104aの径方向外側には、コネクタピン81が位置する。第2突出部104bの径方向外側には、コネクタピン81が位置しない。
ヒートシンク突出部104の形状は、図5aに示すように平面視において複数の棒部材が突出した形状である。図5aの構造では、第1突出部104aは、第2突出部104bの間に配置される。なお、第2突出部104bの径方向外側端部から内側に向けて第1突出部104aが延びてもよい。
また、ヒートシンク突出部104の形状は、図5bに示すように板状に突出した形状や、図5cに示すようにリング形状などであってもよい。図5b及び図5cの構造では、第1突出部104aと第2突出部104bとは、一体である。
[第1突出部] 図10に示すように、第1突出部104aは、コネクタピン81を径方向外側に位置させることにより、コネクタ200と基板70との間に設けたスペースに配置される。
軸方向下側から見て、コネクタ200、第1突出部104a、及び基板70の順に重なる。つまり、第1突出部104aは、基板70とコネクタ200とに挟まれる。この順は、各部材が互いに重なり合う場合には、各部材の下端の位置である。つまり、軸方向下側から見て、コネクタ200の下端、第1突出部104aの下端、及び基板70の下端の順に位置する。
また、軸方向下側から見て、コネクタ200、第1突出部104a、基板70、及びチョークコイル80aの順に重なる。つまり、軸方向下側から見て、コネクタ200の下端、第1突出部104aの下端、基板70の下端、及びチョークコイル80aの下端の順に位置する。
また、軸方向下側から見て、コネクタ200、コネクタピン81、第1突出部104a、及び基板70の順に重なる。つまり、軸方向下側から見て、コネクタ200の下端、コネクタピン81の下端、第1突出部104aの下端、及び基板70の下端の順に位置する。
第1突出部104aとコネクタ200との間には、軸方向に隙間が設けられる。第1突出部104aの下面は、段差を有する。第1突出部104aの下面の少なくとも一部は、他の部材と間隔をあけて配置される。つまり、第1突出部104aの下面の少なくとも一部は、他の部材と接触しない。図10では、第1突出部104aとコネクタ200との間には、コネクタピン81が位置する。
本実施の形態では、第1突出部104aの下面は、第2突出部104bの下面よりも軸方向上側に位置する。第1突出部104aの下面は、ヒートシンク本体部103の下面よりも軸方向上側に位置する。
[第2突出部] 図3及び図4に示す第2突出部104bは、間隔を隔てて複数形成されている。詳細には、第2突出部104bは、ヒートシンク本体部103におけるコネクタ200側の径方向外端縁(図5aではヒートシンク本体部103の右端)の一端及び他端(図5aでは上端及び下端)から突出する。
ここで、第2突出部104bの形状は、図3、図4及び図5aに示すように平面視において棒状に突出した形状であり、両端のみに設置される場合にはヒートシンク本体部103とで略U字形状をなす。なお、第2突出部104bが平面視において棒状に突出した形状である場合には、第2突出部104bは1つであってもよく、3つ以上であってもよく、また両端に設けられていなくてもよい。
第2突出部104bは、後述するコネクタ200と嵌合するために、軸方向に延びるヒートシンク凹部またはヒートシンク凸部を有する。また、ヒートシンク凹部またはヒートシンク凸部は、軸方向に沿って延びる。図3及び図4では、コネクタ200の長手方向の一端及び他端に位置する第2突出部104bの内側面に、ヒートシンク凹部105が形成される。第2突出部104bの内側面は、コネクタ200と対向する面である。
本実施の形態において、第2突出部104bは露出面122(図1参照)である。つまり、第2突出部104bと基板70との間には隙間が設けられる。したがって、カバー30を装着する前工程において、コネクタ200の長手方向からコネクタピン81が基板70に接続されているかを目視することができる。
本実施の形態の第2突出部104bは、軸方向下側から見て、コネクタ200とは重なるが、基板70と重ならない。なお、第2突出部104bは、軸方向下側から見て、基板70と重なってもよい。
[空洞部] ヒートシンク100には、導電部材を通すとともに軸方向に延びる空洞部Hが形成される。空洞部Hは、貫通孔、切り欠き等である。
導電部材がコネクタピン81などである場合、図3、図4及びこれらを模式的に示す図5aに示す構造において導電部材を通すための空洞部Hは、ヒートシンク本体部103と、ヒートシンク突出部104とで形成される。詳細には、空洞部Hは、ヒートシンク本体部103のコネクタ側の径方向外端縁と、第1突出部104aと、第2突出部104bとで形成される。
変形例の図5bに示すヒートシンク突出部104の径方向外端部に切り欠きがある構造では、切り欠きが空洞部Hをなす。別の変形例の図5cに示すヒートシンク突出部104がリング形状である構造では、リング形状をなす中空穴が空洞部Hをなす。
また、導電部材がステータ50からのコイル線である場合、図3及び図4に示すように、空洞部Hとして、コイル線を通すとともに軸方向に延びるヒートシンク貫通孔110が形成される。
このように、図3及び図4に示すヒートシンク100の空洞部Hは、ヒートシンク本体部103の径方向外端面と、第1突出部104aの外端面と、第2突出部104bの内端面とで形成される。そして、空洞部Hは、コネクタからの導電部材のための空洞、及びコイル線のためのヒートシンク貫通孔110である。
[ヒートシンク貫通孔] 図3、図4及び図6に示すように、ヒートシンク貫通孔110は、コイル線などの導電部材を通すとともに軸方向に延びる。このため、ヒートシンク貫通孔110は、導電部材の位置決めができる。本実施の形態のヒートシンク貫通孔110は、図1及び図6に示すように、コイル線を支持するコイル支持部材60を保持する。
ヒートシンク貫通孔110は、周方向に隣り合うように複数位置する。具体的には、複数のヒートシンク貫通孔110U,110V,110Wは、周方向に間隔を隔てて設けられる。つまり、複数のヒートシンク貫通孔110U,110V,110Wは、互いに間隔を隔てて同心円弧上に整列される。
図3に示すように、複数のヒートシンク貫通孔110U,110V,110Wは、軸方向上側から見た際に、シャフト41(中心軸A)を中心とした中心角αが180度以内の領域に位置する。つまり、ヒートシンク貫通孔110U,110V,110Wは片側に集めて配置される。スロット数が6以上であり、相数が3であって、中心角αは、「(360
度/スロット数)×3」度以下であることが好ましい。
度/スロット数)×3」度以下であることが好ましい。
なお、上記式の「相」とは、固定ステータの独立したコイルの数であり、相数が3の3相モータとは120度間隔で独立したコイルが3個あるモータであり、本実施の形態ではU相、V相及びW相の3相モータである。また上記式の「スロット」とは、ティース間の溝の数を表し、3相モータでは3の倍数となる。本実施の形態では、3相の12スロットであるので、中心角αは90度以下であることが好ましい。
また、ヒートシンク貫通孔110U,110V,110Wと同様にコイル引出線53U1,53U2,53V1,53V2,53W1,53W2も中心角α内に位置するように配置することが望ましい。渡り線を用いることにより、コイル引出線を中心角α内に位置させることができる。
図6に示すように、複数のヒートシンク貫通孔110U,110V,110Wのそれぞれには、コイル線のうち同相の複数のコイル線のみが挿通される。複数のヒートシンク貫通孔110U,110V,110Wは、コイル線の相毎に互いに分離した孔である。つまり、複数のヒートシンク貫通孔110U,110V,110Wは、互いに独立しており、つながっていない。詳細には、ヒートシンク貫通孔110Uには、2本のU相コイルである引出線53U1,53U2のみが挿通される。ヒートシンク貫通孔110Vには、2本のV相コイルである引出線53V1,53V2のみが挿通される。ヒートシンク貫通孔110Wには、2本のW相コイルである引出線53W1,53W2のみが挿通される。
軸方向上側から見た際に、ヒートシンク貫通孔110U,110V,110Wは、基板70においてパワー素子が実装された第1領域S1内に対向する。このため、基板70のパワー素子が実装される第1領域S1に、コイル線を通すヒートシンク貫通孔110U,110V,110Wが形成される。
なお、軸方向上側から見た際に、ヒートシンク貫通孔110U,110V,110Wは、パワー素子が実装される第1領域S1と制御素子が実装される第2領域S2にまたがっている構造であってもよい。また、軸方向上側から見た際に、ヒートシンク貫通孔の一部が第1領域S1で、残部が第2領域S2である構造などであってもよい。
[ヒートシンクとコイル支持部材との嵌合] 図1に示すように、ヒートシンク貫通孔110に、コイル支持部材60の少なくとも一部が位置する。コイル支持部材60とヒートシンク貫通孔110との隙間は、図1に示すように、下側に向かうにつれ小さくなるまたは同じである。
具体的には、コイル支持部材60の上端の幅は、ヒートシンク貫通孔110の下端の幅よりも小さく、コイル支持部材60の幅は、軸方向上側から下側に向けて漸次同等または大きくなる。より具体的には、ヒートシンク貫通孔110が一定の幅であり、コイル支持部材60の側面が下側に向けて広がるテーパ状を有する。
また、別の構造として、ヒートシンク貫通孔110の下端の幅は、コイル支持部材60の上端の幅よりも大きく、ヒートシンク貫通孔110の幅は、軸方向下側から上側に向けて漸次同等または小さくなる部分を有する。より具体的には、ヒートシンク貫通孔110が下側に向けて広がるテーパ状であり、コイル支持部材60の側面の一部が一定の幅である。
また、ヒートシンク貫通孔110の上端の幅がコイル支持部材60の幅よりも大きくてもよいが、ヒートシンク貫通孔110の上端の幅がコイル支持材60の幅よりも小さくてもよい。
このように、コイル支持部材60とヒートシンク貫通孔110との隙間が下側から上側に向かうにつれ同じまたは大きくなるので、モータ1の組立ての際に、ヒートシンク貫通孔110をコイル支持部材60の上側から容易に挿入できる。
[露出面及び接触面] 図1に示すように、ヒートシンク100は、接触面121と、露出面122とを有する。接触面121及び露出面122は、図3に示すヒートシンク100の上面に位置する面である。
接触面121は、基板70または電子部品80と、直接または放熱部材123を介して接する。放熱部材123は、グリスなどの放熱性を有する部材である。放熱部材123は、ヒートシンク100及び基板70と接触する。露出面122は、基板70、電子部品80及び放熱部材と接触せずに露出する。言い換えると、露出面122は、基板70または電子部品80と隙間を介して配置される。すなわち、接触面121は、直接的または間接的に、基板70または電子部品80と接触し、露出面122は直接的及び間接的に、接触する部材がない。
図3に示すように、露出面122は、空洞部H(図3では、ヒートシンク貫通孔110)より外縁側に位置する。本実施の形態では、ヒートシンク貫通孔110が周方向に沿って複数設けられるので、露出面122はヒートシンク貫通孔110よりも径方向外側に位置する。接触面121と露出面122との境界は、周方向に位置する。図3では、接触面121と露出面122との境界は、一端に位置するヒートシンク貫通孔110Uと、他端に位置するヒートシンク貫通孔110Wと、中心軸Aとを結んだ中心角αの円弧上に位置する。
露出面122により、基板70及び電子部品80と、ヒートシンク100との間に隙間が形成されるので、基板70または電子部品80と、導電部材との接続を目視で確認することができる。なお、基板70の上面から接続を確認する場合、基板貫通孔71の内部、基板70の下面まで接続部材による接続が不明であるので、基板70の下面側から確認することが好ましい。
図1に示すヒートシンク100においては、露出面122は、接触面121よりも軸方向下側に位置する。基板70が平坦に延びる板状であって、露出面122が接触面121よりも下側に位置してもよい。また、基板70が段差構造を有し、露出面122と接触面121とが同一平面上に位置してもよい。
接触面121は、基板70または電子部品80と直接接する第1接触面と、基板70または電子部品80と放熱部材123を介して接する第2接触面と、を有してもよい。
電子部品80または基板70と、導電部材とを接続する接続部材の下端部(バックフィレット)の形状を確認するために、基板70または電子部品80と、第2接触面との隙間よりも、基板70または電子部品80と、露出面122との隙間を大きくすることが好ましい。また、第2接触面に塗布されるグリスのため隙間が薄くなり、接続部材が露出面122に回り込んでしまって見えづらくなることを防止する観点から、基板70または電子部品80と、露出面122との隙間を大きくすることが好ましい。また、コイル支持部材60が上方向にずれると接続部材の下端部が見えづらくなるため、隙間を十分に空けることが好ましい。
図1に示すように、導電部材を支持する部材(本実施の形態ではコイル支持部材60)の先端が、露出面と軸方向の高さが同じまたは下側に位置する場合には、接続部材の下端部をより容易に確認することができる。一方、導電部材を支持する部材の先端が、露出面122と軸方向の高さが同じまたは上側に位置する場合には、基板70または電子部品80と導電部材とを接続する接続部材がヒートシンク100に導通することをより防止できる。
[内側領域及び外側領域] 図1に示すように、ヒートシンク100は、内側領域130と、この内側領域130よりも径方向外側に位置する外側領域140と、この外側領域140の径方向外側に形成された外側壁部150と、を含む。
内側領域130は、電子部品80と少なくとも一部が軸方向において重なる。内側領域130の軸方向の厚みは、外側領域140の軸方向の厚みよりも大きい。
本実施の形態において、ヒートシンク貫通孔110U,110V,110Wが基板70の径方向外側の領域に位置しているため、基板70の径方向内側の領域には電子部品が密集する。そのため、ヒートシンク100の内側領域130の軸方向の厚みを大きくすることにより、電子部品の熱をヒートシンク100に逃がすことができる。さらに、外側領域140の厚みを薄くすることにより、部品を収容するスペースを確保することができる。よって、電子部品の放熱をより効果的に行うとともに、軸方向の体格を抑えることができる。
内側領域130は、図4に示すように、内側壁部131と、リブ132と、を有する。内側壁部131及びリブ132は、ヒートシンク下面102に形成される。内側壁部131は、径方向内側端部において軸方向下側に延びる。リブ132は、内側壁部131から径方向外側に延びる。リブ132は複数設けられ、複数のリブ132のそれぞれは、周方向に等間隔に配置される。複数のリブ132は、中心軸Aを中心として、径方向に放射状に延びる。内側壁部131及びリブ132によってヒートシンク100の内側領域130の剛性を高めることができるので、ヒートシンク100がベアリング43を保持する場合には、シャフト41を支持するための応力などに対する耐久性を向上できる。また、リブ132を径方向に延ばすことにより、ヒートシンク100の熱容量を増加できるとともに、熱を径方向外側に伝えやすくなる。
外側領域140は、上述したコイル線Cが挿通されるヒートシンク貫通孔110U,110V,110Wを有する。外側領域140の下面は、内側領域130の下面よりも軸方向上側に位置する。
図1に示すように、バスバー保持部材54は、軸方向において外側領域140の下側に位置するとともに、径方向において内側領域130と重なる。換言すると、ヒートシンク100の径方向外側かつ下面において、軸方向上側に凹む凹部が設けられ、この凹部にバスバーBが収容される。
本実施の形態では、基板70の中心部(径方向内側)に発熱素子(FETなどの比較的発熱量が大きい素子)が多く配置される。このため、基板70と対向するヒートシンク100の中心部に位置する内側領域130の厚みを大きくすることにより、放熱効果を高める。
一方、基板70の外側(径方向外側)には、ステータ50のコイル53から引き出されたコイル線Cが接続され、発熱素子は配置されない。この外側領域140の厚みを小さくして、バスバー保持部材54を配置することにより、軸方向の高さを抑えることができる。さらに、バスバーの上面及び側面をヒートシンク100が覆うことにより、駆動時において、バスバーの輻射熱をヒートシンク100で吸収できる。
外側壁部150は、バスバー保持部材54の径方向外側を囲む。外側壁部150の軸方向の厚みは、内側領域130の軸方向の厚みよりも大きい。外側壁部150の少なくとも一部は、外部に露出する。外側壁部150は、ヒートシンク100において軸方向の厚みが最も大きい箇所を含むので、より放熱効果を高めることができる。
[基板との位置決め及び固定] 図3に示すように、ヒートシンク本体部103のヒートシンク上面101には、基板70との位置決めのために、第2位置決め凹部176が形成される。第2位置決め凹部176は、複数形成され、円形凹部である。ヒートシンク100の第2位置決め凹部176と基板70の位置決め孔部76(図2参照)とに、位置決めピンなどの位置決め部材を差し込んで、位置決めをする。
ヒートシンク本体部103には、基板70との固定のために、固定孔部177が形成される。この固定孔部177は、基板70と軸方向に当接する基板当接部である。固定孔部177は、複数形成され、円形孔部である。ヒートシンク100の固定孔部177と基板の固定孔部77(図2参照)とに、固定ピンやねじなどの固定部材を差し込んで、基板70とヒートシンク100とを固定する。
上述の通り、ヒートシンク100と基板70とは、位置決
め部材を用いて位置が決められ、固定部材によって固定される。基板70とヒートシンク100とが固定された後に、位置決め部材は取り除かれる。
め部材を用いて位置が決められ、固定部材によって固定される。基板70とヒートシンク100とが固定された後に、位置決め部材は取り除かれる。
なお、ヒートシンク100と基板70とは当接されるため、固定孔部177は、露出面122に対して軸方向上側に突出する。つまり、本実施の形態において固定孔部177は第1接触面に位置する。
図3に示すように複数のヒートシンク貫通孔110と固定孔部177とは、周方向に間隔を隔てて設けられる。2つの固定孔部177は、複数のヒートシンク貫通孔110のうち周方向両端に位置するヒートシンク貫通孔110U,110Wと、周方向に間隔を隔てて設けられる。
[コネクタとの位置決めのための構成] 図4に示すように、第2突出部104bには、コネクタ200との位置決めのために、第1位置決め孔178と、第1位置決め凹部179または第1位置決め凸部(図示せず)が形成される。第1位置決め凹部は、切欠き凹部である。
<コネクタ> 図1に示すように、コネクタ200は、ハウジング10と隣り合うように配置され、基板70とモータ1外部とを電気的に接続する。本実施の形態のコネクタ200は、ハウジング10の径方向外側に配置され、軸方向下側に向かって延び(下向きであり)、基板70から軸方向下側に延びる導電部材であるコネクタピン81を内部に収容する。
コネクタ200の上面は、ヒートシンク100のヒートシンク上面101よりも下方に位置し、軸方向上側から見た際に、コネクタ200と基板70とは、重なり合う。
[コネクタの構成] 図7及び図8に示すように、コネクタ200は、軸方向に延びるコネクタ胴体部210と、このコネクタ胴体部210の外側面から径方向外側に延びるコネクタフランジ部220と、コネクタ胴体部210の上面から軸方向上側に延びるコネクタ突出部230と、を有する。
図9に示すように、ヒートシンク本体部103とヒートシンク突出部104とで空洞部Hを形成する場合には、空洞部Hにコネクタ胴体部210の少なくとも一部が位置する。
コネクタ胴体部210は、外側面に形成されるとともに、軸方向に延びる胴体凸部211または胴体凹部(図示せず)を有する。胴体凸部211は、コネクタフランジ部220からコネクタ突出部230まで軸方向に延びる。
図8などに示すように、コネクタ胴体部210は、径方向外端領域に形成され、軸方向に延びるコネクタ凸部215をさらに有する。コネクタ凸部215は、径方向外側のコネクタ外端縁216を含む外縁部である。なお、「コネクタ外端縁216」とは、外端(コネクタ200の端)である。
コネクタ胴体部210は、コネクタ凸部215の径方向内側において、コネクタ凸部215の径方向内側の面とで形成されるポケット凹部217をさらに有する。ポケット凹部217は、外部から侵入する埃を貯める。
コネクタフランジ部220は、コネクタ胴体部210の軸方向の中央部に形成される。なお、中央部とは、中心から所定範囲(例えば軸方向高さの中心から1/3以内)である。これにより、コネクタ200に外力を受けたとしても耐久性を上げることができる。
図7及び図8に示すように、コネクタフランジ部220の上面には、ヒートシンク100との位置決めするための嵌合部221が形成される。嵌合部221は、第1位置決め孔178と、第1位置決め凹部179または第1位置決め凸部(図示せず)とのそれぞれに嵌合する。本実施の形態の嵌合部221は、上側に延びる突起部である。
コネクタ突出部230は、コネクタ胴体部210の上面から上側に延びる。コネクタ突出部230は、コネクタ胴体部210と一体成形されてもよく、別部材であってもよい。
[カバーとコネクタとの嵌合] コネクタ凸部215と、カバー30の凹部とは、間隙を介して嵌る。コネクタ200は、平面視において略長方形である。コネクタ凸部215と、カバー30の凹部とは、コネクタ200の長手方向に沿って延びる。
また、コネクタ突出部230と、図1に示すカバーの段差部35とは、間隙を介して嵌る。コネクタ突出部230の径方向外側の角部とカバーの段差部35の段差部分とが対向して嵌る。
本実施の形態のモータ1は、カバー30とコネクタ200とを互いの凹凸形状で間隙を介して嵌り合うラビリンス構造を有する。このため、防塵効果を有するとともに、モータを容易に組み立てることができる。
[コネクタとヒートシンクとの接触] 図9に示すように、コネクタ200は、第2突出部104bの下面に接触する。具体的には、コネクタフランジ部220のフランジ上面222と、第2突出部104bのヒートシンク下面102とが接触するように、コネクタフランジ部220上に第2突出部104bが配置される。図3に示すように、第2突出部104bが間隔を隔てて複数形成される場合には、コネクタフランジ部220は、複数の第2突出部104bの下面のそれぞれと接触する。
[コネクタとヒートシンクとの嵌合] 胴体凸部211と、ヒートシンク凹部105とは、間隙を介して嵌る。なお、胴体凸部211の代わりに胴体凹部を形成し、ヒートシンク凹部の代わりにヒートシンク凸部を形成し、胴体凹部とヒートシンク凸部とが間隙を介して嵌るように構成されてもよい。このように、コネクタ200とヒートシンク100とが間隙を介して互いの凹凸形状により嵌合されると、組立てが容易である。
互いに間隙を介して嵌る胴体凸部または胴体凹部と、ヒートシンク凹部またはヒートシンク凸部とは、軸方向に沿って延びる。
[コネクタとヒートシンクとの位置決め] ヒートシンク100の第1位置決め孔178(図3及び図4参照)と、第1位置決め凹部179(図4参照)または第1位置決め凸部(図示せず)とに、コネクタの嵌合部221を嵌合することによって、ヒートシンク100とコネクタ200とを位置決めする。本実施の形態では、コネクタフランジ部220の上面に設けた嵌合部221としての突起部と、第2突出部104bの第1位置決め孔178としての丸孔及び第1位置決め凹部179としての切り欠き凹部とが嵌合する。
なお、ヒートシンク100とコネクタ200との位置決めは、互いに嵌合すればよく、形状は限定されない。
[コネクタと第1突出部との配置] 図8及び図9に示すように、本実施の形態のコネクタ200は直方体である。このため、コネクタ200は、上方から見た際に、長手方向と短手方向とを有する。
図9に示すように、第1突出部104aは、コネクタ200の長手方向の一方側、かつ、高さ方向上側に位置する。なお、高さ方向とは、長手方向と短手方向に直交する方向である。本実施の形態においては、高さ方向は、軸方向と一致する。具体的には、第1突出部104aは、コネクタ200の長手方向において一方端から中央部に向けて延びる。コネクタ200の長手方向において他方側から中央部までには、第1突出部104aは設けられていない。また、第1突出部104aは、コネクタ200の高さ方向上端部に位置する。
コネクタ内において、第1突出部104aが上側に位置する一方側に、電源信号回路部を配置する。コネクタ内において、第1突出部104aが上側に位置しない他方側に、制御信号回路部を配置する。第1突出部104aは、ヒートシンク本体部103においてパワー素子が配置される領域から径方向外側に直線状に延びる。
<コネクタピン> 図10に示すように、コネクタピン81は、コネクタ200の内部に収容される。このため、コネクタピン81は、コネクタ200と接続されるコネクタ接続部81Cを有する。また、コネクタピン81は、基板70と接続される。このため、コネクタピン81は、基板70と接続される基板接続部81Aを有する。径方向において、基板接続部81Aと、コネクタ接続部81Cとの位置が異なる。図10では、基板接続部81Aは、コネクタ接続部81Cよりも径方向外側に位置する。
コネクタピン81は、第1軸方向延伸部81aと、径方向延伸部81bと、第2軸方向延伸部81cと、を含む。軸方向上側から順に、第1軸方向延伸部81a、径方向延伸部81b、及び第2軸方向延伸部81cが位置する。
第1軸方向延伸部81aは、軸方向に延びる。第1軸方向延伸部81aは、基板接続部81Aを有する。第1軸方向延伸部81aは、ヒートシンク突出部104の第1突出部104aの径方向外側に位置する。第1軸方向延伸部81aは、第1突出部104aと隙間を隔てて配置される。
径方向延伸部81bは、第1軸方向延伸部81aと連なる。径方向延伸部81bは、軸方向と交わる方向に延びる。つまり、径方向延伸部81bは、第1軸方向延伸部81aの延びる方向と異なる方向に延びる。軸方向と交わる方向は、軸方向と径方向との間の方向であってもよく、径方向であってもよい。本実施の形態の径方向延伸部81bは、軸方向と直交する径方向に延びる。つまり、第1軸方向延伸部81aの下端から径方向内側に延びる。第1軸方向延伸部81aと径方向延伸部81bとで、略L字状をなす。
第2軸方向延伸部81cは、径方向延伸部81bと連なり、軸方向に延びる。第2軸方向延伸部81cは、コネクタ接続部81Cを有する。なお、径方向延伸部81bが、コネクタ接続部81Cを有してもよい。本実施の形態の第2軸方向延伸部81cは、第1軸方向延伸部81aと同じ方向に延びる。第2軸方向延伸部81cと径方向延伸部81bとで、略L字状をなす。
図10に示す構造では、径方向外側から内側に向かって、第1軸方向延伸部81a、径方向延伸部81b、及び第2軸方向延伸部81cの順に位置する。詳細には、第1軸方向延伸部81aの下端から径方向内側に向かって径方向延伸部81bが延びる。径方向延伸部81bの径方向内側端から下方に第2軸方向延伸部81cが延びる。
コネクタピン81において、第1軸方向延伸部81aの延びる方向と、径方向延伸部81bの延びる方向とは交わる。このため、コネクタピン81は、応力緩和構造を有する。コネクタピン81は、交わる方向に延びる連結部分を図10に示すように2つ有してもよく、単数有してもよく、3つ以上有してもよい。
なお、第1軸方向延伸部81a及び第2軸方向延伸部81cは、軸方向から45度未満に傾斜して延びる構造を含む。また、径方向延伸部81bは、径方向から45度未満に傾斜して延びる構造を含む。
コネクタピン81は、コネクタ200に別体で挿入される。つまり、コネクタピン81は、コネクタ200にアウトサートされる。具体的には、コネクタピン81は、コネクタ200に一体成形されたインサート成形ではなく、アウトサート成形される。このため、コネクタピン81においてコネクタ200に挿入された部分と、コネクタ200とは、隙間がある。なお、コネクタピン81は、コネクタ200にインサート成形されてもよい。
[第1突出部との配置] 図10に示すように、ヒートシンク突出部104の第1突出部104aの径方向外側に、コネクタピン81が位置する。本実施の形態では、第1突出部104aの径方向下側にも、コネクタピン81が位置する。詳細には、第1突出部104aの径方向外側に、第1軸方向延伸部81aが位置する。第1突出部104aの径方向下側に、径方向延伸部81bが位置する。
具体的には、軸方向下側から見て、径方向延伸部81bは、第1突出部104aと重なる。本実施の形態では、軸方向下側から見て、第2軸方向延伸部81cは、第1突出部104aと重なる。
軸方向下側から見て、径方向延伸部81bの上面は第1突出部104aの下面よりも下方に位置する。
径方向外側から
見て、第1突出部104aは、コネクタピン81と重なる。詳細には、径方向外側から見て、第1突出部104aと第1軸方向延伸部81aとは、重なる。
見て、第1突出部104aは、コネクタピン81と重なる。詳細には、径方向外側から見て、第1突出部104aと第1軸方向延伸部81aとは、重なる。
<変形例> [カバーを基準とした固定] 上述したように、本実施の形態では、カバー30とコネクタ200とが、ヒートシンク100に固定される構造を例に挙げて説明したが、本発明のモータは、ヒートシンクとコネクタとが、カバーに固定される構造であってもよい。後者の場合、ヒートシンクとコネクタとが間隙を介して嵌る構造を採用することで容易に組み立てる構造を実現できる。
[ヒートシンクの機能] 本実施の形態では、ヒートシンク100がベアリング43を保持するホルダを兼ねる構成を例に挙げて説明したが、本発明のヒートシンクは、ベアリングホルダと別体であってもよい。
また、本実施の形態では、ヒートシンク100がヒートシンク貫通孔110に挿通されるコイル線C及びコイル支持部材60を保持するホルダを兼ねる構成を例に挙げて説明したが、本発明のコイル線及びコイル支持部材を保持するホルダは、ヒートシンクと別体であってもよい。
<効果> 続いて、実施の形態1の効果について説明する。本発明の実施の形態1におけるモータ1は、軸方向に延びるシャフト41を含むロータ40と、ロータ40の径方向外側を囲むステータ50と、ロータ40及びステータ50を内部に収容するハウジング10と、ステータ50の軸方向上側に配置されたヒートシンク100と、ヒートシンク100の軸方向上側に固定された基板70と、ハウジング10の径方向外側に配置されたコネクタ200と、コネクタ200の内部に収容されるとともに、基板70と電気的に接続されたコネクタピン81と、を備え、ヒートシンク100は、ヒートシンク本体部103と、ヒートシンク本体部103と連なり、かつハウジング10よりも径方向外側に延びる第1突出部104aと、を有し、軸方向下側から見て、コネクタ200、第1突出部104a、及び基板70の順に重なり、第1突出部104aの径方向外側に、コネクタピン81が位置する。
本実施の形態1のモータ1によれば、コネクタピン81を径方向外側に位置させて、コネクタ200と基板70との間にヒートシンク100を設置するためのスペースを設ける。このスペースに、ヒートシンク100の第1突出部104aを配置することで、ヒートシンク100全体の体積を大きくできるので、放熱性を確保できる。また、このスペースは、ハウジング10の径方向外側に設けられるので、ヒートシンク100の体積を大きくするために、ハウジング10を大きくする必要がない。したがって、放熱性を確保しつつ、体格を抑えるモータ1を実現できる。
実施の形態1のモータ1において好ましくは、基板70と電気的に接続されたチョークコイル80aをさらに備え、軸方向下側から見て、コネクタ200、第1突出部104a、基板70、及びチョークコイル80aの順に重なる。
これにより、チョークコイル80aを第1突出部104a上の基板70に配置し、他の電子部品80をヒートシンク本体部103上の基板70に配置することができる。このため、発熱量が相対的に大きいチョークコイル80aと、他の電子部品80との間に間隔を設けることができる。したがって、基板70に実装される電子部品80から発生する熱を効率的に逃がすことができる。
実施の形態1のモータ1において好ましくは、第1突出部104aとコネクタ200との間には、軸方向に隙間が設けられる。
第1突出部104aとコネクタ200との間に隙間があるので、第1突出部104aの下面と他の部材とが接触しない構造が実現可能である。このため、第1突出部104aの放熱効果を高めることができる。
実施の形態1のモータ1において好ましくは、コネクタピン81は、基板70と接続される基板接続部81Aと、コネクタ200と接続されるコネクタ接続部81Cと、を含み、軸方向において、基板接続部81Aと、コネクタ接続部81Cとの位置が異なる。
これにより、外部へのコネクタ200の接続による外力、熱衝撃などの応力が、はんだ部などの基板との接続部に加わることを緩和できる。また、この構成により、第1突出部104aを配置するスペースを容易に設けることができる。
実施の形態1のモータ1において好ましくは、コネクタピン81は、第1突出部104aの径方向外側に位置するとともに、軸方向に延びる第1軸方向延伸部81aと、第1軸方向延伸部81aの下端から径方向内側に延びる径方向延伸部81bと、を含み、軸方向下側から見て、径方向延伸部81bは、第1突出部104aと重なるとともに、径方向延伸部81bの上面は第1突出部104aの下面よりも下方に位置する。
これにより、第1軸方向延伸部81aの径方向内側、及び径方向延伸部81bの軸方向上側に第1突出部104aが位置するので、コネクタピン81の熱を効率的に逃がすことができる。
実施の形態1のモータ1において好ましくは、コネクタピン81は、コネクタ200に別体で挿入される。
これにより、コネクタピン81を第1突出部104aの径方向外側に配置する構造を容易に実現できる。
実施の形態1のモータ1において好ましくは、コネクタ200は直方体であって、第1突出部104aは、コネクタ200の長手方向の一方側、かつ高さ方向上側に位置する。
コネクタを電源信号回路部と制御信号回路部とに分類し、上側に突出部が位置する一方側に電源信号回路部を配置することによって、効率的な回路設計を行うことができる。
(実施の形態2) 図11を参照して、実施の形態1のモータ1を備える装置の一実施の形態について説明する。実施の形態2においては、モータ1を電動パワーステアリング装置に搭載した例について説明する。
電動パワーステアリング装置2は、自動車の車輪の操舵機構に搭載される。本実施の形態の電動パワーステアリング装置2は、モータ1の動力により操舵力を直接的に軽減するコラム式のパワーステアリング装置である。電動パワーステアリング装置2は、モータ1と、操舵軸914と、車軸913と、を備える。
操舵軸914は、ステアリング911からの入力を、車輪912を有する車軸913に伝える。モータ1の動力は、ボールねじを介して、車軸913に伝えられる。コラム式の電動パワーステアリング装置2に採用されるモータ1は、エンジンルーム(図示せず)の内部に設けられる。コラム式のパワーステアリング装置の場合、エンジンルーム自体に防水構造を設けることができるため、モータ自体に防水構造を設ける必要がない。一方で、エンジンルーム内に埃が侵入することがあるが、モータ1は防塵構造を有しているので、モータ本体への埃の侵入を抑制できる。なお、本発明の電動パワーステアリング装置は、コラム式に限定されず、ラック式などであってもよい。
実施の形態2の電動パワーステアリング装置2は、実施の形態1のモータ1を備える。このため、実施の形態1と同様の効果を奏する電動パワーステアリング装置2が得られる。すなわち、実施の形態1のモータ1を備えるので、電動パワーステアリング装置2の放熱性を確保しつつ、体格を抑えることができる。
なお、ここでは、実施の形態1のモータ1の使用方法の一例として電動パワーステアリング装置2を挙げたが、モータ1の使用方法は限定されず、ポンプ、コンプレッサなど広範囲に使用可能である。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した実施の形態ではなくて請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
1 モータ、2 電動パワーステアリング装置、10 ハウジング、14 底部、20 フランジ、30 カバー、35 段差部、40 ロータ、41 シャフト、42 ロータコア、43,44 ベアリング、50 ステータ、51 ステータコア、52 インシュレータ、53 コイル、53U1,53U2,53V1,53V2,53W1,53W2 引出線、54 バスバー保持部材、60 コイル支持部材、70 基板、71,72 基板貫通孔、76 位置決め孔部、77 固定孔部、80 電子部品、80a チョークコイル、81 コネクタピン、81A 基板接続部、 81C コネクタ接続部、81a 第1軸方向延伸部、81b 径方向延伸部、81c 第2軸方向延伸部、100 ヒートシンク、101 ヒートシンク上面、102 ヒートシンク下面、103 ヒートシンク本体部、104 ヒートシンク突出部、104a 第1突出部、104b 第2突出部、105 ヒートシンク凹部、110,110U,110V,110W ヒートシンク貫通孔、121 接触面、122 露出面、123 放熱部材、130 内側領域、131 内側壁部、132 リブ、140 外側領域、150 外側壁部、176 第2位置決め凹部、177 固定孔部、178 第1位置決め孔、179 第1位置決め凹部、200 コネクタ、210 コネクタ胴体部、211 胴体凸部、215 コネクタ凸部、216 コネクタ外端縁、217 ポケット凹部、218 段差部、219 凹部、220 コネクタフランジ部、221 嵌合部、222 フランジ上面、230 コネクタ突出部、911 ステアリング、912,913 車輪、914 操舵軸、A 中心軸、C コイル線、H 空洞部、S1 第1領域、S2 第2領域、α 中心角。
Claims (8)
- 軸方向に延びるシャフトを含むロータと、
前記ロータの径方向外側を囲むステータと、
前記ロータ及び前記ステータを内部に収容するハウジングと、
前記ステータの軸方向上側に配置されたヒートシンクと、
前記ヒートシンクの軸方向上側に固定された基板と、
前記ハウジングの径方向外側に配置されたコネクタと、
前記コネクタの内部に収容されるとともに、前記基板と電気的に接続されたコネクタピンと、
を備え、
前記ヒートシンクは、
本体部と、
前記本体部と連なり、かつ前記ハウジングよりも径方向外側に延びる突出部と、
を有し、
軸方向下側から見て、前記コネクタ、前記突出部、及び前記基板の順に重なり、
前記突出部の径方向外側に、前記コネクタピンが位置する、モータ。 - 前記基板と電気的に接続されたチョークコイルをさらに備え、
軸方向下側から見て、前記コネクタ、前記突出部、前記基板、及び前記チョークコイルの順に重なる、請求項1に記載のモータ。 - 前記突出部と前記コネクタとの間には、軸方向に隙間が設けられる、請求項1または2に記載のモータ。
- 前記コネクタピンは、
前記基板と接続される基板接続部と、
前記コネクタと接続されるコネクタ接続部と、
を含み、
径方向において、前記基板接続部と、前記コネクタ接続部との位置が異なる、請求項1から3のいずれか1項に記載のモータ。 - 前記コネクタピンは、
前記突出部の径方向外側に位置するとともに、軸方向に延びる軸方向延伸部と、
前記軸方向延伸部の下端から径方向内側に延びる径方向延伸部と、
を含み、
軸方向下側から見て、前記径方向延伸部は、前記突出部と重なるとともに、前記径方向延伸部の上面は前記突出部の下面よりも下方に位置する、請求項4に記載のモータ。 - 前記コネクタピンは、前記コネクタに別体で挿入される、請求項1から5のいずれか1項に記載のモータ。
- 前記コネクタは直方体であって、
前記突出部は、前記コネクタの長手方向の一方側、かつ高さ方向上側に位置する、請求項1から6のいずれか1項に記載のモータ。 - 請求項1から7のいずれか1項に記載のモータを備える、電動パワーステアリング装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/637,781 US11634168B2 (en) | 2017-09-28 | 2018-06-28 | Motor including connector and connector pin and electric power steering device including same |
DE112018005466.7T DE112018005466T5 (de) | 2017-09-28 | 2018-06-28 | Motor und elektrische servolenkvorrichtung |
JP2019544278A JPWO2019064767A1 (ja) | 2017-09-28 | 2018-06-28 | モータ及び電動パワーステアリング装置 |
CN201880052514.8A CN111033978B (zh) | 2017-09-28 | 2018-06-28 | 马达和电动助力转向装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-188422 | 2017-09-28 | ||
JP2017188422 | 2017-09-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019064767A1 true WO2019064767A1 (ja) | 2019-04-04 |
Family
ID=65903688
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/024561 WO2019064767A1 (ja) | 2017-09-28 | 2018-06-28 | モータ及び電動パワーステアリング装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11634168B2 (ja) |
JP (1) | JPWO2019064767A1 (ja) |
CN (1) | CN111033978B (ja) |
DE (1) | DE112018005466T5 (ja) |
WO (1) | WO2019064767A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022230456A1 (ja) * | 2021-04-30 | 2022-11-03 | 株式会社不二工機 | 電動弁 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020188934A1 (ja) * | 2019-03-19 | 2020-09-24 | 日立オートモティブシステムズ株式会社 | 電子制御装置及び電子制御装置の組立方法 |
JP7259488B2 (ja) * | 2019-03-29 | 2023-04-18 | 日本電産株式会社 | モータ |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013247729A (ja) * | 2012-05-24 | 2013-12-09 | Mitsubishi Electric Corp | 制御装置、及び制御装置一体型回転電機 |
JP2016036244A (ja) * | 2014-07-31 | 2016-03-17 | 株式会社デンソー | 駆動装置、および、これを用いた電動パワーステアリング装置 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5410194B2 (ja) * | 2009-08-07 | 2014-02-05 | 株式会社デンソー | 駆動回路内蔵型モータ |
JP5566356B2 (ja) | 2011-09-15 | 2014-08-06 | 日立オートモティブシステムズ株式会社 | モータ駆動装置 |
JP5769033B2 (ja) * | 2012-11-30 | 2015-08-26 | 株式会社デンソー | 駆動装置 |
JP5907152B2 (ja) * | 2013-11-29 | 2016-04-20 | 株式会社デンソー | 駆動装置 |
JP6160575B2 (ja) | 2014-07-31 | 2017-07-12 | 株式会社デンソー | 駆動装置、および、これを用いた電動パワーステアリング装置 |
CN110754030B (zh) * | 2017-06-01 | 2021-04-02 | 日本精工株式会社 | 电动驱动装置和电动助力转向装置 |
DE112018005481T5 (de) * | 2017-09-28 | 2020-10-08 | Nidec Corporation | Motor und elektrische servolenkvorrichtung |
-
2018
- 2018-06-28 DE DE112018005466.7T patent/DE112018005466T5/de active Pending
- 2018-06-28 CN CN201880052514.8A patent/CN111033978B/zh active Active
- 2018-06-28 JP JP2019544278A patent/JPWO2019064767A1/ja not_active Ceased
- 2018-06-28 WO PCT/JP2018/024561 patent/WO2019064767A1/ja active Application Filing
- 2018-06-28 US US16/637,781 patent/US11634168B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013247729A (ja) * | 2012-05-24 | 2013-12-09 | Mitsubishi Electric Corp | 制御装置、及び制御装置一体型回転電機 |
JP2016036244A (ja) * | 2014-07-31 | 2016-03-17 | 株式会社デンソー | 駆動装置、および、これを用いた電動パワーステアリング装置 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022230456A1 (ja) * | 2021-04-30 | 2022-11-03 | 株式会社不二工機 | 電動弁 |
JPWO2022230456A1 (ja) * | 2021-04-30 | 2022-11-03 | ||
JP7383328B2 (ja) | 2021-04-30 | 2023-11-20 | 株式会社不二工機 | 電動弁 |
Also Published As
Publication number | Publication date |
---|---|
US20200172154A1 (en) | 2020-06-04 |
DE112018005466T5 (de) | 2020-07-02 |
CN111033978A (zh) | 2020-04-17 |
CN111033978B (zh) | 2022-11-29 |
JPWO2019064767A1 (ja) | 2020-10-22 |
US11634168B2 (en) | 2023-04-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109983669B (zh) | 马达和电动助力转向装置 | |
JP7230801B2 (ja) | モータ及び電動パワーステアリング装置 | |
WO2018029894A1 (ja) | モータ及び電動パワーステアリング装置 | |
JP7124699B2 (ja) | モータ及び電動パワーステアリング装置 | |
JPWO2019155917A1 (ja) | モータ及び電動パワーステアリング装置 | |
WO2019064767A1 (ja) | モータ及び電動パワーステアリング装置 | |
WO2019064765A1 (ja) | モータ及び電動パワーステアリング装置 | |
CN110622396A (zh) | 马达和电动助力转向装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18863640 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019544278 Country of ref document: JP Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18863640 Country of ref document: EP Kind code of ref document: A1 |