WO2019064535A1 - 保護膜、フォースセンサ及び感光性フィルム - Google Patents

保護膜、フォースセンサ及び感光性フィルム Download PDF

Info

Publication number
WO2019064535A1
WO2019064535A1 PCT/JP2017/035612 JP2017035612W WO2019064535A1 WO 2019064535 A1 WO2019064535 A1 WO 2019064535A1 JP 2017035612 W JP2017035612 W JP 2017035612W WO 2019064535 A1 WO2019064535 A1 WO 2019064535A1
Authority
WO
WIPO (PCT)
Prior art keywords
protective film
meth
electrode
film
group
Prior art date
Application number
PCT/JP2017/035612
Other languages
English (en)
French (fr)
Inventor
友洋 鮎ヶ瀬
向 郁夫
吉田 英樹
攻治 安部
征志 南
匠 渡邊
真 柳田
香澄 中村
博幸 青山
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to PCT/JP2017/035612 priority Critical patent/WO2019064535A1/ja
Publication of WO2019064535A1 publication Critical patent/WO2019064535A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means

Definitions

  • the present invention relates to a protective film, a force sensor and a photosensitive film.
  • Liquid crystal display elements or organic EL display elements for large electronic devices such as personal computers and televisions, small electronic devices such as car navigations, mobile phones, electronic dictionaries, and OA / FA devices Is used.
  • the electrode used for a force sensor Although copper, silver, etc. are mentioned as a material of the electrode used for a force sensor, The copper nickel alloy is examined from a viewpoint of resistance value and a linear expansion coefficient (for example, refer following patent document 2). In addition, an insulating protective film is provided on the electrode of the force sensor from the viewpoint of corrosion prevention.
  • the present invention aims at providing a protective film which can fully control exfoliation from an electrode containing a copper nickel alloy, a force sensor provided with the protective film concerned, and a photosensitive film.
  • the present invention is a protective film provided on a substrate having an electrode containing a copper-nickel alloy and covering a part or all of the electrode, wherein the crosslink density of the protective film is Provided is a protective film which is 5.0 mol / m 3 or more.
  • the inventors of the present invention conducted intensive studies on the cause of peeling of the protective film from the electrode surface containing a copper-nickel alloy when using an adhesive such as OCA, and as a result, the acid component contained in the adhesive such as OCA protected It was found that when the acid component permeates through the film to reach the electrode surface and the adhesion between the protective film and the electrode surface is reduced, peeling of the protective film occurs. And as a result of repeating earnestly examining about the method of preventing the acid component derived from adhesives, such as OCA, penetrating a protective film, as a result of making the crosslinking density of a protective film 5.0 mol / m ⁇ 3 > or more, it is an acid.
  • the transmission of the components can be suppressed. That is, according to the protective film of the present invention, when the crosslink density is 5.0 mol / m 3 or more, the permeation of the acid component derived from the adhesive such as OCA can be sufficiently suppressed, and the copper-nickel alloy Peeling of the protective film from the contained electrode can be sufficiently suppressed.
  • the protective film is prepared by dropping 0.02 ml of an aqueous solution of 0.02 M acetic acid on a hot plate at 80 ° C., placing the protective film 50 mm long, 50 mm wide and 8 ⁇ m thick on the aqueous acetic acid solution.
  • the acid permeation time is 0.5 hours or more, when the time until at least a part of the blue litmus paper turns to red when the blue litmus paper is placed is the acid permeation time. Is preferred. According to this protective film, the permeation of the acid component can be sufficiently suppressed, and the peeling of the protective film from the electrode containing the copper-nickel alloy can be sufficiently suppressed.
  • the protective film preferably contains a compound having a pentaerythritol skeleton. According to such a protective film, a crosslinked structure having a high crosslinking density and in which the acid component is not easily transmitted can be formed, and the permeation of the acid component can be sufficiently suppressed, and the protective film from the electrode containing a copper nickel alloy Can be sufficiently suppressed. In addition, the protective film can sufficiently reduce the moisture permeability, and can improve the corrosion inhibition of the electrode including the copper-nickel alloy.
  • the said protective film consists of hardened
  • a crosslinked structure having a high crosslinking density and in which the acid component is not easily transmitted can be formed, and the permeation of the acid component can be sufficiently suppressed, and the protective film from the electrode containing a copper nickel alloy Can be sufficiently suppressed.
  • the protective film can sufficiently reduce the moisture permeability, and can improve the corrosion inhibition of the electrode including the copper-nickel alloy.
  • the reaction rate of the reactive functional group is preferably 60 to 70%. According to such a protective film, a crosslinked structure having a high crosslinking density and in which the acid component is not easily transmitted can be formed, and the permeation of the acid component can be sufficiently suppressed, and the protective film from the electrode containing a copper nickel alloy Can be sufficiently suppressed.
  • the base material having the electrode containing the copper-nickel alloy can be one in which the area ratio of the electrode in the entire area of one of the main surfaces is 10% or more. As the area ratio of the electrode is larger, peeling between the protective film and the electrode is more likely to occur, so the effect of the present invention in which excellent adhesion between the protective film and the electrode is obtained can be obtained more effectively.
  • the base material etc. which comprise a force sensor are mentioned as a base material with a large area ratio of an electrode, this invention is useful as a method of forming a protective film on the base material of such a use.
  • a base material having an electrode containing the copper-nickel alloy can constitute a force sensor.
  • the present invention is useful as a method of forming a protective film on a substrate constituting a force sensor.
  • the present invention also provides a force sensor comprising a substrate having an electrode containing a copper-nickel alloy, and the protective film of the present invention provided on the substrate and covering a part or all of the electrode. . According to this force sensor, even in the case of bonding to another member using an adhesive such as OCA, peeling of the protective film from the electrode containing the copper-nickel alloy can be sufficiently suppressed.
  • the base material having the electrode containing the copper-nickel alloy can be one in which the area ratio of the electrode in the entire area of one of the main surfaces is 10% or more.
  • the present invention is further a photosensitive film comprising a support film and a photosensitive resin layer provided on the support film, wherein the photosensitive resin layer has a thickness of 40 ⁇ m.
  • a photosensitive film is provided, which is a layer which has a total exposure of 580 mJ / cm 2 and a crosslinking density of 5.0 mol / m 3 or more after heating at 140 ° C. for 30 minutes. According to this photosensitive film, it is possible to form a protective film capable of sufficiently suppressing the peeling from the electrode containing the copper-nickel alloy.
  • a protective film capable of sufficiently suppressing peeling from an electrode containing a copper-nickel alloy, a force sensor provided with the protective film, and a photosensitive film.
  • (meth) acrylic acid means acrylic acid or methacrylic acid
  • (meth) acrylate means acrylate or a methacrylate corresponding thereto.
  • a or B may contain either A or B, and may contain both.
  • the terms “layer” and “film” include the structure of a shape formed in part in addition to the structure of a shape formed on the entire surface when observed as a plan view. Be done.
  • the term “process” is not limited to an independent process, but may be used in this term if the intended function of the process is achieved even if it can not be clearly distinguished from other processes. included.
  • a numerical range indicated by using “to” indicates a range including numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • each component in the composition is the total of the plurality of substances present in the composition unless a plurality of substances corresponding to each component are present in the composition. Means quantity.
  • an exemplary material may be used independently and may be used in combination of 2 or more type.
  • the upper limit or the lower limit of the numerical range of one step may be replaced with the upper limit or the lower limit of the numerical range of another step.
  • the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the example.
  • the protective film of the present embodiment is a protective film provided on a substrate having an electrode containing a copper-nickel alloy and covering a part or all of the electrode, and having a crosslinking density of 5.0 mol / m 3 or more. It is a protective film.
  • the crosslink density is 5.0 mol / m 3 or more, the protective film can sufficiently suppress the permeation of the acid component, and the peeling of the protective film from the electrode including the copper-nickel alloy can be sufficiently suppressed. it can.
  • Crosslinking density of the protective film the more fully suppressing the peeling of the protective film from the electrode containing copper nickel alloy, more preferably 7.0 mol / m 3 or more, at 8.0 mol / m 3 or more It is further preferred that On the other hand, the crosslink density of the protective film is preferably 15.0 mol / m 3 or less from the viewpoint of flexibility.
  • the crosslink density of the protective film is determined by the following equation.
  • the crosslink density can be calculated using the value of the storage elastic modulus at the measurement temperature of 175 ° C. ⁇ 0.5 ° C.
  • the crosslink density of the protective film can be controlled by the composition of the photosensitive resin composition described later used to form the protective film, in particular, the type and content of the photopolymerizable compound, the type of the binder polymer, and the like. Further, the crosslink density of the protective film can be adjusted according to the manufacturing conditions at the time of manufacturing the protective film, in particular, the processing conditions such as exposure and heating.
  • the acid permeation time of the protective film is preferably 0.5 hours or more, more preferably 1.0 hour or more, and preferably 2.0 hours or more in the protective film having a thickness of 8 ⁇ m. More preferable. Peeling of the protective film from the electrode containing a copper-nickel alloy can be more fully suppressed because an acid permeation time is more than the said lower limit.
  • the acid permeation time of the protective film can be measured by the following method.
  • 0.02 ml of an aqueous solution of 0.02 M acetic acid is dropped on a hot plate at 80 ° C., the above protective film of 50 mm long, 50 mm wide and 8 ⁇ m thick is placed on the above aqueous acetic acid solution, and blue litmus paper is placed on the above protective film.
  • the time taken for at least a portion of the blue litmus paper to turn red when placed is taken as the acid permeation time.
  • the protective film preferably has a reaction rate of 60 to 70% of the reactive functional group.
  • the reaction rate is in the above range, the protective film can have a crosslinked structure having a high crosslinking density and hardly transmitting the acid component, and can sufficiently suppress the permeation of the acid component, and copper Peeling of the protective film from the electrode containing a nickel alloy can be sufficiently suppressed.
  • the reaction rate can be measured by the following method.
  • the reaction rate measured by the above method from the protective film before and after curing becomes the above range It can be said that it is preferable that it is made as such. Moreover, it can be said that it is preferable to produce a protective film so that the reaction rate measured by the said method may become the said range from the protective film before and behind hardening.
  • the protective film can be formed by curing a photosensitive resin layer of the following transfer photosensitive film.
  • the above protective film is applied directly on a substrate having an electrode containing a copper-nickel alloy and cured, with the photosensitive resin composition used when preparing the photosensitive resin layer of the transfer type photosensitive film described below.
  • the transfer type photosensitive film and the photosensitive resin composition will be described.
  • the transfer type photosensitive film of this embodiment comprises a support film and a photosensitive resin layer provided on the support film.
  • the transfer type photosensitive film may further include a protective film provided on the photosensitive resin layer.
  • a protective film having a protective function of an electrode containing a copper-nickel alloy provided in a sensing area of a force sensor can be easily formed.
  • a polymer film can be used as a support film.
  • Examples of the material of the polymer film include polyethylene terephthalate, polycarbonate, polyethylene, polypropylene, polyether sulfone, cycloolefin polymer and the like.
  • the thickness of the support film is preferably 5 to 100 ⁇ m, and preferably 10 to 70 ⁇ m from the viewpoint of securing the covering property and suppressing the decrease in resolution when the actinic radiation is irradiated through the support film.
  • the thickness is more preferably 15 to 40 ⁇ m, and still more preferably 15 to 35 ⁇ m.
  • the photosensitive resin layer comprises a binder polymer (hereinafter, also referred to as component (A)), a photopolymerizable compound (hereinafter, also referred to as component (B)), and a photopolymerization initiator (hereinafter also referred to as component (C)). It is preferable to form from the photosensitive resin composition containing and.
  • the component (A) is preferably a copolymer containing a structural unit derived from (meth) acrylic acid and (meth) acrylic acid alkyl ester.
  • the said copolymer may contain the other monomer which can be copolymerized with the said (meth) acrylic acid and (meth) acrylic acid alkyl ester in a structural unit.
  • Specific examples of the other monomer include (meth) acrylic acid glycidyl ester, (meth) acrylic acid benzyl ester, styrene, and (meth) acrylic acid cyclohexyl ester.
  • (meth) acrylic acid alkyl ester (meth) acrylic acid methyl ester, (meth) acrylic acid ethyl ester, (meth) acrylic acid butyl ester, (meth) acrylic acid 2-ethylhexyl ester, (meth) acrylic acid The hydroxyl ethyl ester etc. are mentioned.
  • (meth) acrylic acid (meth) acrylic acid glycidyl ester, (meth) acrylic acid benzyl ester, styrene, from the viewpoints of alkali developability (in particular, developability with inorganic alkaline aqueous solution), patterning properties, and transparency.
  • the binder polymer may be isocyanate ethyl (meth) in hydroxyethyl (meth) acrylate or hydroxybutyl (meth) acrylate of a copolymer containing at least hydroxyethyl (meth) acrylate or hydroxybutyl (meth) acrylate as the structural unit. It may be obtained by addition reaction of acrylate or glycidyl (meth) acrylate.
  • a group having a branched structure and / or an alicyclic structure in the side chain a group having an acidic group in the side chain, and ethylenic unsaturation in the side chain
  • a binder polymer containing a group having a group can be used.
  • a group having a branched structure and / or an alicyclic structure in the side chain can be introduced by a monomer containing a group having a branched structure in the side chain or a monomer containing a group having an alicyclic structure in the side chain.
  • the group having an acidic group in the side chain can be introduced by a monomer containing a group having an acidic group in the side chain.
  • the monomer containing a group having a branched structure in the side chain are, for example, i-propyl (meth) acrylate, i-butyl (meth) acrylate, s-butyl (meth) acrylate, (meth) acrylic T-Butyl acid, i-amyl (meth) acrylate, t-amyl (meth) acrylate, sec-iso-amyl (meth) acrylate, 2-octyl (meth) acrylate, 3- (meth) acrylate
  • Examples include octyl and t-octyl (meth) acrylate.
  • i-propyl (meth) acrylate, i-butyl (meth) acrylate and t-butyl methacrylate are preferable, and i-propyl methacrylate and t-butyl methacrylate are more preferable.
  • the monomer containing a group having an alicyclic structure in the side chain include (meth) acrylates having an alicyclic hydrocarbon group having 5 to 20 carbon atoms, for example. More specific examples include, for example, (meth) acrylic acid (bicyclo [2.2.1] heptyl-2), (meth) acrylic acid-1-adamantyl, (meth) acrylic acid-2-adamantyl, (meth) acrylic acid ) 3-Methyl-1-adamantyl acrylate, 3,5-dimethyl-1-adamantyl (meth) acrylate, 3-ethyladamantyl (meth) acrylate, 3-methyl-5 (meth) acrylate -Ethyl-1-adamantyl, (meth) acrylic acid-3,5,8-triethyl-1-adamantyl, (meth) acrylic acid-3,5-dimethyl-8-ethyl-1-adamantyl, (meth) acrylic acid 2-Methyl
  • (meth) acrylic esters (meth) acrylic acid cyclohexyl, (meth) acrylic acid (nor) bornyl, (meth) acrylic acid isobornyl, (meth) acrylic acid-1-adamantyl, (meth) acrylic acid- 2-adamantyl, phenethyl (meth) acrylate, 1-menthyl (meth) acrylate, and dicyclopentanyl (meth) acrylate are preferred, and cyclohexyl (meth) acrylate, (nor) bornyl (meth) acrylate, Particularly preferred is isobornyl methacrylate, 2-adamantyl (meth) acrylate.
  • the component (A) contains a group having a branched structure and / or an alicyclic structure in a side chain, good adhesion to a substrate can be obtained. Further, the moisture permeability of the protective film can be reduced by having a group having an alicyclic structure in the side chain.
  • the monomer containing the group which has an acidic group in a side chain it can select suitably from well-known things, For example, (meth) acrylic acid, vinyl benzoic acid, maleic acid, maleic acid monoalkyl ester , Fumaric acid, itaconic acid, crotonic acid, cinnamic acid, sorbic acid, ⁇ -cyanocinnamic acid, acrylic acid dimer, addition reaction product of monomer having hydroxyl group and cyclic acid anhydride, ⁇ -carboxy-polycaprolactone mono (meth And the like. As these, those produced appropriately may be used, or commercially available products may be used.
  • the component (A) contains a group having an acidic group in the side chain, patterning by alkali development can be enabled.
  • the linkage between the ethylenically unsaturated group and the monomer is not particularly limited as long as it is a divalent linking group such as an ester group, an amide group or a carbamoyl group.
  • the method of introducing an ethylenically unsaturated group into the side chain can be appropriately selected from known methods, for example, a method of adding (meth) acrylate having an epoxy group to a group having an acidic group, a hydroxy group
  • a method of adding (meth) acrylate which has an isocyanate group to the group which it has, the method of adding the (meth) acrylate which has a hydroxyl group to the group which has an isocyanate group, etc. are mentioned.
  • the method of adding a (meth) acrylate having an epoxy group to a repeating unit having an acidic group is preferable in terms of the ease of production and low cost.
  • the component (A) contains a group having an ethylenically unsaturated group in the side chain, good adhesion to the substrate can be obtained. In addition, the moisture permeability of the protective film can be reduced. Furthermore, when the component (A) contains a group having an ethylenically unsaturated group in the side chain, the crosslink density of the protective film can be improved, and sufficient peeling of the protective film from the electrode containing the copper-nickel alloy can be achieved. Can be suppressed.
  • the proportion of monomers constituting a group having a branched structure and / or an alicyclic structure in a side chain is preferably 10 to 70 mol%, and 15 to 65 mol. % Is more preferable, and 20 to 60 mol% is more preferable. Further, based on the total amount of monomers constituting component (A), the proportion of monomers constituting a group having an acidic group in the side chain is preferably 5 to 70 mol%, and is 10 to 60 mol%. Is more preferable, and 20 to 50 mol% is more preferable.
  • the proportion of monomers constituting a group having an ethylenically unsaturated group in the side chain is preferably 5 to 70 mol%, and 10 to 60 mol% Is more preferably 20 to 50% by mole.
  • the weight average molecular weight of the component (A) is preferably 10,000 to 200,000, more preferably 15,000 to 150,000, and 30,000 to 150,000, from the viewpoint of resolution. Some are more preferable, 30,000 to 100,000 are particularly preferable, and 40,000 to 100,000 are very preferable.
  • a weight average molecular weight can be measured by the gel permeation chromatography method described in the Example of this specification.
  • the acid value of the component (A) is preferably 75 mg KOH / g or more from the viewpoint of easily forming a cured film (protective film) having a desired shape by alkali development. Further, from the viewpoint of achieving both controllability of the protective film shape and rust resistance of the protective film, the acid value of the component (A) is preferably 75 to 200 mg KOH / g, and 75 to 150 mg KOH / g. And more preferably 75 to 120 mg KOH / g. In addition, an acid value can be measured by the method described in the Example of this specification.
  • the hydroxyl value of the component (A) is preferably 50 mg KOH / g or less, and more preferably 45 mg KOH / g or less, from the viewpoint of further improving the corrosion resistance of the protective film.
  • the photosensitive resin layer may further contain binder polymers other than the (A) binder polymer mentioned above.
  • a photopolymerizable compound having an ethylenically unsaturated group can be used as the component (B).
  • the photopolymerizable compound having an ethylenically unsaturated group includes a monofunctional vinyl monomer, a bifunctional vinyl monomer, or a polyfunctional vinyl monomer having at least three polymerizable ethylenically unsaturated groups.
  • the component (B) is preferably pentaerythritol tetra (meth) acrylate or the like.
  • the component (B) may contain a compound having a tricyclo skeleton such as (meth) acrylic acid tricycloalkyl ester.
  • the bifunctional vinyl monomer having two polymerizable ethylenic unsaturated groups in the molecule includes a compound having a tricyclodecane skeleton or a tricyclodecene skeleton from the viewpoint of reducing the moisture permeability of the protective film. It is also good. From the viewpoint of corrosion inhibition of an electrode containing a copper-nickel alloy, the compound having a tricyclodecane skeleton or a tricyclodecene skeleton may also contain a di (meth) acrylate compound represented by the following general formula (B-1) Good.
  • R 31 and R 32 each independently represent a hydrogen atom or a methyl group
  • X represents a divalent group having a tricyclodecane skeleton or a tricyclodecene skeleton
  • R 33 and R 34 each independently represent an alkylene group having 1 to 4 carbon atoms
  • n and m each independently represent an integer of 0 to 2
  • p and q each independently represent an integer of 0 or more.
  • P + q 0-10.
  • R 33 and R 34 are preferably ethylene group or propylene group, and more preferably ethylene group.
  • the propylene group may be any of n-isopropylene group and isopropylene group.
  • the divalent group having a tricyclodecane skeleton or a tricyclodecene skeleton contained in X has a bulky structure, so that the protective film can be reduced. It is possible to realize moisture permeability and to improve corrosion inhibition of an electrode containing a copper-nickel alloy.
  • the “tricyclodecane skeleton” and the “tricyclodecene skeleton” in the present specification respectively mean the following structures (each bond is an arbitrary position).
  • a compound having a tricyclodecane skeleton or a tricyclodecene skeleton a compound having a tricyclodecane skeleton such as tricyclodecane dimethanol di (meth) acrylate is preferable from the viewpoint of the low moisture permeability of the resulting protective film.
  • These are available as DCP and A-DCP (both from Shin-Nakamura Chemical Co., Ltd.).
  • the ratio of the compound having a tricyclodecane skeleton or a tricyclodecene skeleton in the component (B) is from the viewpoint of reducing the moisture permeability to the total amount of 100 parts by mass of the photopolymerizable compound contained in the photosensitive resin composition. 50 parts by mass or more, 70 parts by mass or more, or 80 parts by mass or more.
  • polyethylene glycol di (meth) acrylate examples include di (meth) acrylate, polypropylene glycol di (meth) acrylate, 2,2-bis (4- (meth) acryloxypolyethoxypolypropoxyphenyl) propane, and bisphenol A diglycidyl ether di (meth) acrylate.
  • polyfunctional vinyl monomer having at least three polymerizable ethylenic unsaturated groups conventionally known ones can be used without particular limitation.
  • a (meth) acrylate compound having a skeleton derived from trimethylolpropane such as trimethylolpropane tri (meth) acrylate
  • pentaerythritol such as pentaerythritol tri (meth) acrylate and pentaerythritol tetra (meth) acrylate (Meth) acrylate compound
  • having a skeleton derived from pentaerythritol such as pentaerythritol tri (meth) acrylate and pentaerythr
  • the above-mentioned polyfunctional vinyl monomer is a (meth) acrylate compound having a skeleton derived from pentaerythritol or a (meth) acrylate having a skeleton derived from dipentaerythritol from the viewpoint of further improving the crosslink density of the protective film obtained. It is more preferable to include a compound, a (meth) acrylate compound having a skeleton derived from trimethylolpropane, a (meth) acrylate compound having a skeleton derived from ditrimethylolpropane, or a (meth) acrylate compound having a skeleton derived from cyanuric acid. It is particularly preferable to include a (meth) acrylate compound having a skeleton derived from pentaerythritol.
  • a (meth) acrylate compound having a skeleton derived from ⁇ will be described by way of an example of a (meth) acrylate compound having a skeleton derived from ditrimethylolpropane.
  • the (meth) acrylate having a skeleton derived from ditrimethylolpropane means an esterified product of ditrimethylolpropane and (meth) acrylic acid, and the esterified product also includes a compound modified with an alkyleneoxy group. Ru.
  • the above-mentioned esterified product preferably has the maximum number of ester bonds of 4 in one molecule, but compounds having 1 to 3 ester bonds may be mixed.
  • the proportion of the compound having a pentaerythritol skeleton in the component (B) further improves the crosslinking density of the resulting protective film, and from the viewpoint of sufficiently suppressing the peeling of the protective film from the electrode containing the copper-nickel alloy, Part is preferably 50 parts by mass or more, more preferably 70 parts by mass or more, or 80 parts by mass or more based on 100 parts by mass of the total amount of photopolymerizable compounds contained in the functional resin composition Is more preferred.
  • the component (B) is tetrafunctional among polyfunctional vinyl monomers. It is preferred to include a vinyl monomer. In the case of a difunctional or trifunctional vinyl monomer, the crosslinking point is relatively small, and in the case of a pentafunctional or higher vinyl monomer, it is bulky and tends to be difficult to react. Is suitable.
  • the proportion of the polyfunctional vinyl monomer is preferably 30 parts by mass or more in the total amount of 100 parts by mass of the photopolymerizable compound contained in the photosensitive resin composition, and 50 parts by mass It is more preferably part or more, further preferably 75 parts by mass or more.
  • the content of the component (A) and the component (B) is preferably 35 to 85 parts by mass of the component (A) with respect to 100 parts by mass of the total amount of the components (A) and (B).
  • the amount is more preferably 80 parts by mass, further preferably 50 to 70 parts by mass, and particularly preferably 50 to 65 parts by mass.
  • the component (A) is preferably 35 parts by mass or more, and 40 parts by mass or more with respect to 100 parts by mass of the total amount of the components (A) and (B). And more preferably 50 parts by mass or more.
  • the component (A) is preferably 85 parts by mass or less, and 80 parts by mass or less based on 100 parts by mass of the total amount of the components (A) and (B) in terms of increasing the crosslinking density of the protective film. Is more preferable, 70 parts by mass or less is more preferable, and 65 parts by mass or less is particularly preferable.
  • Component (C) preferably contains an oxime ester compound and / or a phosphine oxide compound in that a protective film is formed with sufficient resolution even on a substrate at a thickness of 10 ⁇ m or less.
  • phosphine oxide compounds include 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide and the like.
  • the oxime ester compound is preferably a compound represented by the following general formula (1), a compound represented by the following general formula (2), or a compound represented by the following general formula (3).
  • R 11 and R 12 each independently represent an alkyl group having 1 to 12 carbon atoms, a cycloalkyl group having 4 to 10 carbon atoms, a phenyl group or a tolyl group, and has 1 to 8 carbon atoms It is preferably an alkyl group, a cycloalkyl group having 4 to 6 carbon atoms, a phenyl group or a tolyl group, an alkyl group having 1 to 4 carbon atoms, a cycloalkyl group having 4 to 6 carbon atoms, a phenyl group or a tolyl group More preferably, it is a methyl group, a cyclopentyl group, a phenyl group or a tolyl group.
  • R 13 represents —H, —OH, —COOH, —O (CH 2 ) OH, —O (CH 2 ) 2 OH, —COO (CH 2 ) OH or —COO (CH 2 ) 2 OH; H, -O (CH 2) OH , -O (CH 2) 2 OH, -COO (CH 2) OH, or -COO (CH 2) is preferably from 2 OH, -H, -O (CH 2 ) 2 OH, or -COO (CH 2) and more preferably 2 OH.
  • R 14 's each independently represent an alkyl group having 1 to 6 carbon atoms, and is preferably a propyl group.
  • R 15 represents NO 2 or ArCO (wherein Ar represents an aryl group), and Ar is preferably a tolyl group.
  • R 16 and R 17 each independently represent an alkyl group having 1 to 12 carbon atoms, a phenyl group or a tolyl group, and preferably a methyl group, a phenyl group or a tolyl group.
  • R 18 represents an alkyl group having 1 to 6 carbon atoms, and is preferably an ethyl group.
  • R 19 is an organic group having an acetal bond, and is preferably a substituent corresponding to R 19 possessed by the compound shown in Formula (3-1) described later.
  • R 20 and R 21 each independently represent an alkyl group having 1 to 12 carbon atoms, a phenyl group or a tolyl group, preferably a methyl group, a phenyl group or a tolyl group, and more preferably a methyl group .
  • R 22 represents a hydrogen atom or an alkyl group.
  • Examples of the compound represented by the above general formula (1) include a compound represented by the following formula (1-1) and a compound represented by the following formula (1-2).
  • the compound represented by the following formula (1-1) is available as IRGACURE OXE 01 (manufactured by BASF Japan Ltd., product name).
  • the compound represented by following formula (2-1) is mentioned, for example.
  • the compound represented by the following formula (2-1) is available as DFI-091 (manufactured by Daitoke Mix Co., Ltd., product name).
  • the compound represented by following formula (3-1) is mentioned, for example.
  • the compound represented by the following formula (3-1) is available as Adeka Optomer N-1919 (manufactured by ADEKA Co., Ltd., product name).
  • oxime ester compounds a compound represented by the following formula (4) and a compound represented by the following formula (5) can be used.
  • the compound represented by the above formula (1-1) is extremely preferable.
  • whether or not the compound represented by the above formula (1-1) is contained in the protective film is that heptanonitrile and benzoic acid are detected when the thermal decomposition gas chromatography mass analysis of the protective film is performed. It can be judged by using it as an indicator.
  • the protective film has not been subjected to a high temperature heating step, it is found that the compound represented by the above formula (1-1) is contained in the protective film by detecting heptanonitrile and benzoic acid.
  • the detection peak area of benzoic acid in pyrolysis gas chromatography mass spectrometry of the protective film is detected in the range of 1 to 10% with respect to the detection peak area of heptanonitrile.
  • thermal decomposition gas chromatograph mass spectrometry of the protective film it is preferable to perform gas chromatograph mass spectrometry on the gas generated by heating the measurement sample at 140 ° C.
  • the heating time of the measurement sample may be in the range of 1 to 60 minutes, preferably 30 minutes.
  • An example of measurement conditions of pyrolysis gas chromatography mass spectrometry is shown below.
  • Measuring device GC / MS QP-2010 (product name made by Shimadzu Corporation) Column: HP-5MS (manufactured by Agilent Technologies, product name) Oven Temp: After heating at 40 ° C for 5 minutes, temperature is increased to 300 ° C at a rate of 15 ° C / min Carrier gas: Helium, 1.0 mL / min Interface temperature: 280 ° C Ion source temperature: 250 ° C Sample injection volume: 0.1 mL
  • the content of the component (C) is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the total amount of the components (A) and (B) from the viewpoint of excellent photosensitivity and resolution.
  • the amount is more preferably 5 parts by mass, still more preferably 1 to 3 parts by mass, and particularly preferably 1 to 2 parts by mass.
  • the photosensitive resin composition according to the present embodiment is a triazole compound having a mercapto group, a tetrazole compound having a mercapto group, a thiadiazole compound having a mercapto group, and an amino group, from the viewpoint of further improving the corrosion resistance of the protective film. It is preferable to further contain at least one compound selected from the group consisting of a triazole compound and a tetrazole compound having an amino group (hereinafter also referred to as component (D)).
  • triazole compounds having a mercapto group include 3-mercapto-triazole (manufactured by Wako Pure Chemical Industries, Ltd., product name: 3MT).
  • examples of the thiadiazole compound having a mercapto group include 2-amino-5-mercapto-1,3,4-thiadiazole (manufactured by Wako Pure Chemical Industries, Ltd., product name: ATT).
  • triazole compound having an amino group a compound in which an amino group is substituted to benzotriazole, 1H-benzotriazole-1-acetonitrile, benzotriazole-5-carboxylic acid, 1H-benzotriazole-1-methanol, carboxybenzotriazole or the like
  • examples thereof include compounds in which an amino group is substituted on a triazole compound containing a mercapto group such as 3-mercaptotriazole and 5-mercaptotriazole.
  • Examples of the above tetrazole compounds having an amino group include 5-amino-1H-tetrazole, 1-methyl-5-amino-tetrazole, 1-methyl-5-mercapto-1H-tetrazole, 1-carboxymethyl-5-amino-tetrazole Etc.
  • These tetrazole compounds may be water-soluble salts thereof. Specific examples thereof include alkali metal salts such as sodium, potassium and lithium of 1-methyl-5-amino-tetrazole.
  • the photosensitive resin composition contains the component (D)
  • its content is preferably 0.05 to 5.0 parts by mass with respect to 100 parts by mass of the total amount of the components (A) and (B),
  • the amount is more preferably 0.1 to 2.0 parts by mass, still more preferably 0.2 to 1.0 parts by mass, and particularly preferably 0.3 to 0.8 parts by mass.
  • the photosensitive resin composition according to the present embodiment has a phosphate ester containing an ethylenically unsaturated bond (hereinafter also referred to as component (E)) from the viewpoint of adhesion to an electrode containing a copper-nickel alloy and prevention of the development residue. It is preferable to contain.
  • component (E) phosphate esters containing an ethylenically unsaturated bond are treated as the component (E) rather than the component (B).
  • the adhesion to an electrode containing a copper-nickel alloy and the developability are maintained at a high level while sufficiently securing the corrosion resistance of the protective film to be formed.
  • Phosmer series Phosmer-M, Phosmer-CL, Phosmer-PE, Phosmer-MH, Phosmer-PP, etc.
  • KAYAMER series PM-21 manufactured by Nippon Kayaku Co., Ltd.
  • PM-2 and the like are preferred.
  • the thickness of the photosensitive resin layer is 15 ⁇ m or less in terms of thickness after drying in order to sufficiently exhibit the effect as a protective film and to sufficiently embed the steps on the surface of the substrate having an electrode containing a copper-nickel alloy.
  • the thickness is preferably 2 to 10 ⁇ m, more preferably 3 to 8 ⁇ m.
  • it is preferable that the thickness of the photosensitive resin layer after hardening is also in the said range.
  • the transfer type photosensitive film of the present embodiment may be provided with other layers appropriately selected.
  • a refractive index adjustment layer can be provided for the purpose of suppressing a bone appearance phenomenon in the electrode.
  • the resin layer containing metal oxide particles, such as a zirconium oxide is mentioned, for example.
  • the transfer type photosensitive film may have one of these layers alone, or may have two or more of these layers. In addition, two or more layers of the same type may be included.
  • a polymer film can be used as a protective film.
  • the material of the polymer film include polyethylene, polypropylene, polyethylene terephthalate, polycarbonate, polyethylene-vinyl acetate copolymer and the like.
  • the protective film may be a laminated film in which polymer films made of different materials are laminated, and may be, for example, a laminated film in which a polyethylene-vinyl acetate copolymer film and a polyethylene film are laminated.
  • the thickness of the protective film is preferably 5 to 100 ⁇ m, but it is preferably 70 ⁇ m or less, more preferably 60 ⁇ m or less, and 50 ⁇ m or less from the viewpoint of storing the transfer type photosensitive film in a roll shape for storage. It is more preferable that the thickness be 40 ⁇ m or less.
  • the photosensitive resin layer of the transfer type photosensitive film can be formed, for example, by preparing a coating solution containing a photosensitive resin composition, and coating and drying this on a support film.
  • the transfer type photosensitive film provided with a protective film can be formed by sticking a protective film on the photosensitive resin layer formed on the base material.
  • a coating liquid can be obtained by melt
  • the solvent used as the coating solution is not particularly limited, and known solvents can be used. Specifically, acetone, methyl ethyl ketone, methyl isobutyl ketone, toluene, methanol, ethanol, propanol, butanol, methylene glycol, ethylene glycol, propylene glycol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, diethylene glycol dimethyl ether, diethylene glycol ethyl methyl ether And diethylene glycol diethyl ether, propylene glycol monomethyl ether, ethylene glycol monobutyl ether acetate, diethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate, chloroform, methylene chloride and the like.
  • Coating methods include doctor blade coating method, Mayer bar coating method, roll coating method, screen coating method, spinner coating method, inkjet coating method, spray coating method, dip coating method, gravure coating method, curtain coating method, die coating method Etc.
  • the drying conditions are not particularly limited, but the drying temperature is preferably 60 to 130 ° C., and the drying time is preferably 0.5 to 30 minutes.
  • the viscosity of the photosensitive resin layer prevents the resin composition from exuding from the end face of the transfer type photosensitive film and cuts the transfer type photosensitive film It is preferably 15 to 100 mPa ⁇ s at 30 ° C., more preferably 20 to 90 mPa ⁇ s, and more preferably 25 to 80 mPa, at 30 ° C. in view of preventing adhesion of fragments of the resin composition to the substrate during the process. More preferably, it is s.
  • FIGS. 1A and 1B are schematic top views showing an embodiment of a force sensor having a protective film
  • FIG. 2 is a schematic sectional view showing an embodiment of a force sensor having a protective film. is there. 2 is a cross-sectional view of the force sensor shown in FIG. 1 taken along the line II-II.
  • (b) of FIG. 1 is an enlarged view of the region A of (a) of FIG.
  • the force sensor 100 has a base film 2 and a base 10 having an electrode 4 including a copper-nickel alloy formed on one main surface F1 of the base film 2.
  • a protective film 30 provided on the substrate 10 and covering a part or all of the electrode 4.
  • the electrode 4 is composed of a main body 4a, a wiring portion 4b, a lead wiring portion 4c, and an external connection terminal portion 4d.
  • the main body 4a and the wiring portion 4b are of a resistance type that detects the strength of pressure
  • the strain sensing unit 5 is formed.
  • a plurality of strain sensing portions 5 are formed on one main surface F1 of the base film 2 such that the longitudinal direction is the same.
  • the lead-out wiring portion 4c corresponding to each strain sensing portion 5 extends from the wiring portion 4b to the outer edge portion of the base film 2, and the external connection terminal portion 4d is formed.
  • a piezoelectric signal corresponding to the pressure detected by the strain sensing unit 5 is taken out via the external connection terminal 4d.
  • the force sensor 100 configured as described above is a very thin plate-like structure, and for example, when mounted on a display device, the force sensor 100 is mounted such that the electrode 4 side of the substrate 1 is on the display surface side.
  • the base film 2 a film having an insulating property is used, and preferably, a film having flexibility is used.
  • the material of the base film 2 is polyester such as polyethylene terephthalate (PET), polyimideamide (AI), polyphenylene sulfide (PPS), polyetheretherketone (PEEK), polyimide (PI), polytetrafluoroethylene (PTFE) Etc.
  • the thickness of the substrate film 2 is not particularly limited, but is usually 1 to 300 ⁇ m, preferably 1 to 100 ⁇ m, from the viewpoint of the sensitivity to the applied pressure and the strength of the substrate film itself.
  • the strain sensing unit 5 detects the strength of the pressed pressure by utilizing the fact that the cross-sectional area and the length increase or decrease due to the stretching or compression of the metal constituting the main body 4 a and the resistance value accordingly increases or decreases. be able to.
  • the main body 4 a is a single resistor connected by a connecting portion in which a plurality of strip portions disposed in parallel at regular intervals extend in the width direction between the end portions. It is. That is, the main body 4a has a zigzag shape in which one strip is folded back a plurality of times at regular intervals. Both ends of the main body portion 4a are connected to the lead-out wiring portion 4c via the wiring portion 4b.
  • the main body portion 4a preferably has a small width of each of the strip portions so as to easily detect a change in resistance value
  • the wiring portion 4b preferably has a large width so as to decrease the resistance value. Further, both ends of the main body 4a may be directly connected to the lead wiring 4c without providing the wiring 4b.
  • the strain sensing unit 5 is not limited to the above-described structure, and any known structure capable of detecting the strength of the pressure applied can be used without particular limitation.
  • the electrode 4 composed of the main body 4a, the wiring part 4b, the lead wiring part 4c, and the external connection terminal 4d contains a copper nickel alloy as a material.
  • the electrode portions 4a, 4b, 4c, and 4d may be formed of the same material, or may be formed of different materials. That is, all of the electrode portions 4a, 4b, 4c, and 4d may be formed of a copper-nickel alloy, or only a part may be formed of a copper-nickel alloy.
  • the electrode portions 4a, 4b, 4c and 4d may each contain a copper-nickel alloy and another material.
  • the electrode 4 is usually opaque.
  • Materials other than copper-nickel alloy that can be used for the electrode 4 include platinum, aluminum, nickel, tungsten, iron, gold, silver, copper, palladium, chromium, nickel-chromium alloy, copper-manganese alloy, iron-chromium alloy, etc.
  • the electrode 4 contains a copper-nickel alloy
  • a good resistance value and a good linear expansion coefficient can be obtained, and a good corrosion resistance can be obtained.
  • the proportion of the copper-nickel alloy contained in the electrode 4 is preferably 30% by mass or more, and more preferably 50% by mass or more, based on the total amount of the electrode 4.
  • the thickness of the electrode 4 is not particularly limited, but is usually 0.01 to 100 ⁇ m, preferably 0.01 to 10 ⁇ m from the viewpoint of the sensitivity to the applied pressure and the strength of the electrode itself.
  • the electrode portions 4a, 4b, 4c and 4d may have the same or different thicknesses.
  • the lead-out wiring portion 4c and the external connection terminal portion 4d may be a laminated body including two or more layers.
  • the area ratio of the electrode 4 to the entire area of one of the main surfaces is 10% or more is preferable, 30% or more is more preferable, and 40% or more is more preferable.
  • the area ratio of the electrode 4 is larger, the sensitivity to the pressure applied is improved, and the detectable area is also larger.
  • the effect of this invention of suppressing peeling of the protective film 30 from the surface of the electrode 4 is exhibited more effectively, so that the area ratio of the electrode 4 is large.
  • the protective film 30 may cover the whole of the electrode 4 or may cover a part of the electrode 4.
  • the protective film 30 covers all of the main body 4a, the wiring portion 4b, and the lead-out wiring portion 4c, and covers a part of the external connection terminal 4d.
  • the portion of the external connection terminal 4 d not covered by the protective film 30 may be protected by a protective member other than the protective film 30.
  • the protective film 30 preferably covers at least the whole of the main body 4 a and the wiring part 4 b, and covers all of the main body 4 a, the wiring part 4 b and the lead wiring part 4 c Is more preferable.
  • the protective film 30 may cover the whole of one main surface F1 of the base film 2 or may cover a part thereof.
  • the photosensitive resin layer and the support film are laminated by pressure bonding from the photosensitive resin layer side to the surface of the substrate 10 on which the electrode 4 is provided.
  • the pressure bonding means include a pressure bonding roll.
  • the pressure roll may be provided with a heating means so as to be capable of heat pressure bonding.
  • the heating temperature in the case of thermocompression bonding is 10 to 160 from the viewpoint of the adhesion between the photosensitive resin layer and the substrate 10 and from the viewpoint of making the components of the photosensitive resin layer less likely to be thermally cured or thermally decomposed. It is preferable that the temperature be in ° C., more preferably in the range of 20 to 150 ° C., and still more preferably in the range of 30 to 150 ° C.
  • the compression pressure at the time of heat and pressure bonding is 50 to 1 ⁇ 10 5 N / in. It is preferable to set m, more preferably 2.5 ⁇ 10 2 to 5 ⁇ 10 4 N / m, and still more preferably 5 ⁇ 10 2 to 4 ⁇ 10 4 N / m.
  • the preheating treatment of the substrate 10 is not necessarily required, but from the viewpoint of further improving the adhesion between the photosensitive resin layer and the substrate 10, the substrate 10 May be preheated.
  • the treatment temperature at this time is preferably 30 to 150 ° C.
  • an actinic ray is applied in a pattern to a predetermined portion of the photosensitive resin layer after transfer through a photomask (exposure step).
  • the actinic ray is irradiated, if the support film on the photosensitive resin layer is transparent, the actinic ray can be irradiated as it is, and if it is opaque, it is removed and then the actinic ray is irradiated.
  • a known actinic light source can be used as a light source of actinic rays.
  • a light source of actinic light for example, a gas laser such as a carbon arc lamp, a mercury vapor arc lamp, a high pressure mercury lamp, an ultra high pressure mercury lamp, a xenon lamp, an argon laser etc., a solid laser such as a YAG laser, A device that effectively emits ultraviolet light such as a laser or visible light is used.
  • a gas laser such as a carbon arc lamp, a mercury vapor arc lamp, a high pressure mercury lamp, an ultra high pressure mercury lamp, a xenon lamp, an argon laser etc.
  • a solid laser such as a YAG laser
  • the irradiation dose of actinic radiation is 1 ⁇ 10 2 to 1 ⁇ 10 4 J / m 2 and may be accompanied by heating upon irradiation.
  • the irradiation amount of this actinic ray is 1 ⁇ 10 2 J / m 2 or more, it becomes possible to sufficiently advance photocuring of the photosensitive resin layer, and if it is 1 ⁇ 10 4 J / m 2 or less There is a tendency to be able to suppress that the photosensitive resin layer is discolored.
  • the unexposed area of the photosensitive resin layer after the actinic ray irradiation is removed with a developer to form a protective film 30 covering a part or all of the electrode 4 of the substrate 10.
  • the development process is performed after removing the support film.
  • the developing step can be carried out using a known developing solution such as an aqueous alkali solution, an aqueous developing solution, an organic solvent and the like by a known method such as spraying, showering, swing immersion, brushing, scrubbing and the like.
  • spray development is preferably performed using an aqueous alkali solution from the viewpoint of environment and safety.
  • the development temperature and time can be adjusted within a conventionally known range.
  • an additional exposure step of further irradiating an actinic ray may be performed.
  • the irradiation dose of actinic rays in the additional exposure step is preferably 1 ⁇ 10 2 to 1 ⁇ 10 4 J / m 2 , more preferably 1 ⁇ 10 2 to 5 ⁇ 10 3 J / m 2. And more preferably 1 ⁇ 10 2 to 2 ⁇ 10 3 J / m 2 .
  • heating may be accompanied upon irradiation with actinic rays.
  • the irradiation dose of actinic light in the additional exposure step is preferably larger than the irradiation dose of actinic light in the exposure step before the development step. While being able to improve the crosslinking density of the protective film 30 more as the irradiation amount of actinic light is more than the said lower limit, the adhesiveness of the protective film 30 and the base material 10 can be improved more. There is a tendency that the protective film 30 can be prevented from discoloring when the irradiation amount of the actinic light is equal to or less than the upper limit value.
  • Annealing step of heating and annealing the protective film 30 from the viewpoint of improving the adhesion with the substrate 10 (the electrode 4 and the substrate film 2) while improving the crosslink density of the protective film 30 after the additional exposure process You may
  • the heating temperature in the annealing step is preferably 50 to 200 ° C., more preferably 50 to 170 ° C., and still more preferably 80 to 150 ° C.
  • the heating time in the annealing step is preferably 0.1 to 2 hours, more preferably 0.1 to 1.5 hours, and still more preferably 0.1 to 1 hour. While the crosslinking density of the protective film 30 can be improved more as heating temperature and heating time are more than the said lower limit, the adhesiveness of the protective film 30 and the base material 10 can be improved more. When the heating temperature and the heating time are equal to or less than the above upper limit value, there is a tendency that the protective film 30 can be prevented from being discolored.
  • the force sensor 100 in which the protective film 30 is formed on the substrate 10 can be obtained.
  • this invention is not limited to the said embodiment, A various deformation
  • the force sensor is not limited to the case where the electrode 4 and the protective film 30 are provided only on one main surface F1 of the base film 2 as shown in FIG. 1 and FIG.
  • the electrode 6 and the protective film 40 may be provided on the other main surface F2 of the base film 2 as well.
  • the strain sensing portion formed on the main surface F2 of the base film 2 has a length direction orthogonal to the length direction of the strain sensing portion 5 formed on the main surface F1.
  • the configurations of the electrode 6 and the protective film 40 are the same as the configurations of the electrode 4 and the protective film 30.
  • the strain sensing portions are provided on both main surfaces of the base film 2 and the directions of the strain sensing portions are changed between the main surface F1 and the main surface F2, whereby strain in a plurality of directions is accurately detected. be able to.
  • the protective film and the force sensor according to the present embodiment can be applied to various electronic components.
  • the electronic component include a touch panel, a liquid crystal display, organic electroluminescence, electronic paper and the like.
  • composition example A3 In the reaction vessel, 85.7 parts by mass of 1-methoxy-2-propanol (manufactured by Daicel Chemical Industries, Ltd.) was added in advance, and the temperature was raised to 80.degree. On the other hand, 50 parts by mass of cyclohexyl methacrylate, 30 parts by mass of methyl methacrylate, 20 parts by mass of methacrylic acid, and 10 parts by mass of azo polymerization initiator (V-601, manufactured by Wako Pure Chemical Industries, Ltd.) are mixed and mixed A solution was obtained. The mixed solution was dropped into the above reaction vessel at 80 ° C. under a nitrogen gas atmosphere over 2 hours. After dropping, the mixture was allowed to react for 4 hours to obtain an acrylic resin solution.
  • V-601 manufactured by Wako Pure Chemical Industries, Ltd.
  • the weight average molecular weight and the acid value of the binder polymer are measured by the following method.
  • the weight average molecular weight (Mw) was measured by gel permeation chromatography (GPC) and was derived by conversion using a standard polystyrene calibration curve. The measurement conditions of GPC are shown below.
  • the acid value was measured as follows. First, the solution of the binder polymer was heated at 130 ° C. for 1 hour to remove volatiles to obtain solid content. Then, 1 g of the solid content polymer was precisely weighed, and then 30 g of acetone was added to the polymer to dissolve it uniformly. Then, an appropriate amount of phenolphthalein as an indicator was added to the solution, and titration was performed using a 0.1 N aqueous KOH solution. And the acid value was computed by following Formula.
  • Acid value 0.1 x Vf x 56.1 / (Wp x I / 100)
  • Vf indicates the titration volume (mL) of the aqueous KOH solution
  • Wp indicates the measured mass (g) of the polymer solution
  • I indicates the proportion (% by mass) of the nonvolatile component in the measured polymer solution.
  • Example 1 to 6 and Comparative Examples 1 to 4 [Preparation of coating liquid for photosensitive resin layer formation]
  • the component shown in Table 2 was mix
  • the compounding quantity of (A) component shows the compounding quantity of solid content.
  • the coating solution was adjusted to a solid content of 20 to 30% by mass using methyl ethyl ketone as a solvent.
  • A-TMMT Pentaerythritol tetraacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., product name)
  • T-1420 Ditrimethylolpropane tetraacrylate (manufactured by Nippon Kayaku Co., Ltd., product name)
  • A-DCP tricyclodecane dimethanol diacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., product name)
  • TMPTA trimethylolpropane triacrylate (manufactured by Nippon Kayaku Co., Ltd., product name)
  • DPHA dipentaerythritol hexaacrylate (manufactured by Nippon Kayaku Co., Ltd., product name)
  • AD8032 Octamethylcyclotetrasiloxane (manufactured by Toray Dow Corning Co., Ltd., product name “ADDITIVE 8032”
  • a 16 ⁇ m thick polyethylene terephthalate film (product name: FB40, manufactured by Toray Industries, Inc.) is used as a support film, and the coating solution for forming a photosensitive resin layer prepared above is uniformly coated on the support film using a comma coater. The resultant was dried for 3 minutes with a hot-air convection dryer at 100 ° C. to remove the solvent, to form a photosensitive resin layer having a thickness of 8 ⁇ m.
  • a 30 ⁇ m thick polypropylene film (product name: E-201F) manufactured as a protective film is used, and a laminator (product name: manufactured by Hitachi Chemical Co., Ltd.) is formed on the photosensitive resin layer prepared above.
  • the transfer type photosensitive film in which a support film, a photosensitive resin layer and a protective film were laminated in this order was produced by laminating at 23 ° C. using HLM-3000 type).
  • the photosensitive resin layer of the peeled sample was laminated under the same conditions as described above. In this procedure, the photosensitive resin layer was laminated to 40 ⁇ m. After lamination, light is irradiated at an exposure dose of 80 mJ / cm 2 (initial exposure) from one of the support film sides using an exposure machine with an ultra-high pressure mercury lamp (product name: EXM-1201 manufactured by Oak Manufacturing Co., Ltd.) , Peeling the support film. Next, light was irradiated from the exposed photosensitive resin layer side at an exposure amount of 500 mJ / cm 2 using an exposure apparatus (manufactured by Oak Corporation, product name: EXM-1201) having an extra-high pressure mercury lamp (additional exposure ).
  • an exposure apparatus manufactured by Oak Corporation, product name: EXM-1201
  • the sample after the additional exposure was heated at 140 ° C. for 30 minutes using a box-type drier (manufactured by Mitsubishi Electric Corporation, model number: NV50-CA) (annealing treatment). Finally, the sample was cut to a predetermined size, and the other support film was peeled off to form a protective film with a thickness of 40 ⁇ m.
  • a box-type drier manufactured by Mitsubishi Electric Corporation, model number: NV50-CA
  • the crosslink density of the protective film is determined by the following equation.
  • the reaction rate of the protective film was measured by the following method. While peeling off the protective film of the transfer type photosensitive film, the photosensitive resin layer is made to face the substrate (product name: A4300 # 125, manufactured by Toyobo Co., Ltd.), and a laminator (manufactured by Hitachi Chemical Co., Ltd., product name: HLM- It laminated
  • the base material After lamination, the base material is cooled, and when the temperature of the base material reaches 23 ° C., using an exposure machine (product name: EXM-1201 manufactured by Oak Manufacturing Co., Ltd.) having an ultrahigh pressure mercury lamp from the support film side Light was irradiated at an exposure amount of 80 mJ / cm 2 (initial exposure), and the support film was peeled off. Next, light was irradiated at an exposure amount of 500 mJ / cm 2 (additional exposure) using an exposure apparatus (manufactured by Oak Corporation, product name: EXM-1201) having an extra-high pressure mercury lamp from the exposed photosensitive resin layer side . Then, it was heated at 140 ° C. for 30 minutes using a box type drier (manufactured by Mitsubishi Electric Corporation, model number: NV50-CA) (annealing treatment). Thus, a protective film having a thickness of 8 ⁇ m was formed on the substrate.
  • an exposure machine product name: EXM-1201
  • the photosensitive resin layer of the transfer type photosensitive film produced above is subjected to initial exposure, additional exposure and annealing treatment under the same method and conditions as the method for producing the protective film (thickness 40 ⁇ m) to obtain a predetermined size.
  • the other support film was peeled off, and a 50 mm long, 50 mm wide, 8 ⁇ m thick protective film was prepared as a sample for measuring the acid permeation time.
  • the base material After lamination, the base material is cooled, and when the temperature of the base material reaches 23 ° C., an exposure machine having an ultra-high pressure mercury lamp from the support film side to the photosensitive resin layer (product name: manufactured by Oak Corporation) Light was irradiated (initial exposure) at an exposure dose of 80 mJ / cm 2 using EXM-1201) to peel off the support film.
  • an exposure machine having an ultra-high pressure mercury lamp from the support film side to the photosensitive resin layer product name: manufactured by Oak Corporation
  • Light was irradiated (initial exposure) at an exposure dose of 80 mJ / cm 2 using EXM-1201) to peel off the support film.
  • the photosensitive resin layer after the initial exposure was spray-developed at 30 ° C. for 40 seconds using a 1.0 mass% sodium carbonate aqueous solution.
  • the photosensitive resin layer after development was irradiated with an exposure dose of 500 mJ / cm 2 (additional exposure) using an exposure machine having an ultra-high pressure mercury lamp (product name: EXM-1201 manufactured by Oak Manufacturing Co., Ltd.) .
  • the sample after the additional exposure was heated at 140 ° C. for 30 minutes using a box-type drier (manufactured by Mitsubishi Electric Corporation, model number: NV50-CA) (annealing treatment).
  • a box-type drier manufactured by Mitsubishi Electric Corporation, model number: NV50-CA
  • the cross cut test of 100 mass was implemented twice about the obtained adhesion measurement sample with reference to JIS standard (JIS K5400). Specifically, 100 squares of 1 mm ⁇ 1 mm squares were cut in the protective film of the obtained adhesion measurement sample using a cutter knife. Thereafter, mending tape # 810 (manufactured by 3M Co., Ltd.) was strongly crimped to the cross-hatched portion, and after 30 seconds, it was quickly peeled off from the end of the tape in the direction of an angle of approximately 180 °. Thereafter, the state of the grid was observed, and the cross cut adhesion was evaluated according to the following scores. Evaluation was performed using the mean value of two tests. The results are shown in Table 2.
  • the adhesion measurement sample prepared in the same manner as the above adhesion evaluation was immersed in a 0.02 M aqueous solution of acetic acid at 23 ⁇ 5 ° C. for 1 hour.
  • the adhesion was evaluated in the same manner as in the evaluation of the adhesion except that a sample for measuring the adhesion after immersion was used. The results are shown in Table 2.
  • the droplet was wiped off, and after washing the surface with water, the presence or absence of peeling of the protective film from the copper-nickel alloy layer was observed, and the acid resistance was evaluated according to the following criteria.
  • the protective film is peeled off in the form of droplets, and a circular mark is attached. The results are shown in Table 2.
  • No peeling of the protective film even after 200 hours.
  • Fair Peeling of protective film in 100 hours or more and less than 200 hours.
  • X Peeling off of the protective film in less than 100 hours.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Materials For Photolithography (AREA)

Abstract

保護膜は、銅ニッケル合金を含む電極を有する基材上に設けられ、上記電極の一部又は全部を被覆する保護膜であって、上記保護膜の架橋密度が5.0mol/m以上であるものである。

Description

保護膜、フォースセンサ及び感光性フィルム
 本発明は、保護膜、フォースセンサ及び感光性フィルムに関する。
 パソコン、テレビ等の大型電子機器、カーナビゲーション、携帯電話、電子辞書等の小型電子機器、OA・FA機器等の表示機器などには、液晶表示素子又は有機EL表示素子、及び、タッチパネル(タッチセンサ)が用いられている。
 タッチパネルは、抵抗膜方式及び静電容量方式等の各種の方式がすでに実用化されているが、近年、これらのタッチパネルと薄型のフォースセンサとを組み合わせた表示機器が開発されている。フォースセンサは、押した圧力の強弱を検知し、荷重に応じた圧電信号を発生できる。そのため、フォースセンサをタッチパネルと組み合わせた表示機器は、タッチする強さの加減に応じて様々な入力操作が可能となる。また、フォースセンサにタッチ位置を検出する機能を持たせることで、タッチパネルを別途設けることなく、フォースセンサのみで荷重検出と位置検出を行う方法も提案されている(例えば、下記特許文献1参照)。
 フォースセンサに用いられる電極の材料としては、銅及び銀等が挙げられるが、抵抗値及び線膨張係数の観点から、銅ニッケル合金が検討されている(例えば、下記特許文献2参照)。また、フォースセンサの電極上には、腐食防止の観点から、絶縁性の保護膜が設けられる。
特開2016-14668号公報 特開2017-101983号公報
 フォースセンサの電極として銅ニッケル合金を含む電極を用い、当該電極上に保護膜を形成することで、電極の腐食を抑制することが可能となる。しかしながら、上記構成のフォースセンサを、OCA(Optical Clear Adhesive)等の粘着剤を用いて他の部材と接着した場合、電極表面から保護膜が剥離するという問題が生じやすいことを本発明者らは見出した。
 上記課題に鑑み、本発明は、銅ニッケル合金を含む電極からの剥離を充分に抑制可能な保護膜、当該保護膜を備えるフォースセンサ、及び、感光性フィルムを提供することを目的とする。
 上記目的を達成するために、本発明は、銅ニッケル合金を含む電極を有する基材上に設けられ、上記電極の一部又は全部を被覆する保護膜であって、上記保護膜の架橋密度が5.0mol/m以上である、保護膜を提供する。
 本発明者らは、OCA等の粘着剤を用いた場合に銅ニッケル合金を含む電極表面から保護膜が剥離する原因について鋭意検討を重ねた結果、OCA等の粘着剤に含まれる酸成分が保護膜を透過して電極表面に達し、保護膜と電極表面との間の密着力を酸成分が低下させることで、保護膜の剥離が生じることを見出した。そして、OCA等の粘着剤由来の酸成分が保護膜を透過することを防ぐ方法について更なる鋭意検討を重ねた結果、保護膜の架橋密度を5.0mol/m以上とすることにより、酸成分の透過を抑制可能であることを見出した。すなわち、本発明の保護膜によれば、架橋密度が5.0mol/m以上であることでOCA等の粘着剤に由来する酸成分の透過を充分に抑制することができ、銅ニッケル合金を含む電極からの保護膜の剥離を充分に抑制することができる。
 上記保護膜は、80℃のホットプレート上に0.02Mの酢酸水溶液を0.02ml滴下し、上記酢酸水溶液上に縦50mm、横50mm、厚さ8μmの上記保護膜を置き、上記保護膜上に青色リトマス紙を置いた時の、上記青色リトマス紙の少なくとも一部が赤色に変化するまでの時間を酸透過時間とした場合、上記酸透過時間が0.5時間以上であるものであることが好ましい。かかる保護膜によれば、酸成分の透過をより充分に抑制することができ、銅ニッケル合金を含む電極からの保護膜の剥離をより充分に抑制することができる。
 上記保護膜は、ペンタエリスリトール骨格を有する化合物を含有することが好ましい。かかる保護膜によれば、架橋密度が高く且つ酸成分が透過しにくい架橋構造を有することができ、酸成分の透過をより充分に抑制することができ、銅ニッケル合金を含む電極からの保護膜の剥離をより充分に抑制することができる。また、上記保護膜は、透湿度を充分に低減することができ、銅ニッケル合金を含む電極の腐食抑制性を向上させることができる。
 上記保護膜は、バインダーポリマーと、光重合性化合物と、光重合開始剤と、を含有する感光性樹脂組成物の硬化物からなることが好ましい。かかる保護膜によれば、架橋密度が高く且つ酸成分が透過しにくい架橋構造を有することができ、酸成分の透過をより充分に抑制することができ、銅ニッケル合金を含む電極からの保護膜の剥離をより充分に抑制することができる。また、上記保護膜は、透湿度を充分に低減することができ、銅ニッケル合金を含む電極の腐食抑制性を向上させることができる。
 上記保護膜において、反応性官能基の反応率が60~70%であることが好ましい。かかる保護膜によれば、架橋密度が高く且つ酸成分が透過しにくい架橋構造を有することができ、酸成分の透過をより充分に抑制することができ、銅ニッケル合金を含む電極からの保護膜の剥離をより充分に抑制することができる。
 上記保護膜において、上記銅ニッケル合金を含む電極を有する基材は、その一方の主面の全面積に占める上記電極の面積割合が10%以上であるものであることができる。電極の面積割合が大きいほど、保護膜と電極との剥離が生じやすいため、保護膜と電極との優れた密着性が得られる本発明の効果をより有効に得ることができる。また、電極の面積割合が大きい基材としては、フォースセンサを構成する基材等が挙げられるが、かかる用途の基材上に保護膜を形成する方法として、本発明は有用である。
 上記保護膜において、上記銅ニッケル合金を含む電極を有する基材が、フォースセンサを構成するものであることができる。フォースセンサを構成する基材上に保護膜を形成する方法として、本発明は有用である。
 本発明はまた、銅ニッケル合金を含む電極を有する基材と、上記基材上に設けられ、上記電極の一部又は全部を被覆する上記本発明の保護膜と、を備えるフォースセンサを提供する。かかるフォースセンサによれば、OCA等の粘着剤を用いて他の部材と接着した場合であっても、銅ニッケル合金を含む電極からの保護膜の剥離を充分に抑制することができる。
 上記フォースセンサにおいて、上記銅ニッケル合金を含む電極を有する基材は、その一方の主面の全面積に占める上記電極の面積割合が10%以上であるものであることができる。
 本発明はさらに、支持フィルムと、上記支持フィルム上に設けられた感光性樹脂層と、を備える感光性フィルムであって、上記感光性樹脂層は、厚さを40μmとした上記感光性樹脂層に対して、総露光量580mJ/cmで露光し、140℃で30分加熱した後の架橋密度が5.0mol/m以上となる層である、感光性フィルムを提供する。かかる感光性フィルムによれば、銅ニッケル合金を含む電極からの剥離を充分に抑制可能な保護膜を形成することができる。
 本発明によれば、銅ニッケル合金を含む電極からの剥離を充分に抑制可能な保護膜、当該保護膜を備えるフォースセンサ、及び、感光性フィルムを提供することができる。
本発明の一実施形態に係るフォースセンサを示す模式上面図である。 本発明の一実施形態に係るフォースセンサを示す模式断面図である。 本発明の他の一実施形態に係るフォースセンサを示す模式断面図である。
 以下、場合により図面を参照しつつ、本発明を実施するための形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。なお、本明細書において、「(メタ)アクリル酸」とは、アクリル酸又はメタクリル酸を意味し、「(メタ)アクリレート」とは、アクリレート又はそれに対応するメタクリレートを意味する。「A又はB」とは、AとBのどちらか一方を含んでいればよく、両方とも含んでいてもよい。
 また、本明細書において「層」及び「膜」との語は、平面図として観察したときに、全面に形成されている形状の構造に加え、一部に形成されている形状の構造も包含される。また、本明細書において「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の作用が達成されれば、本用語に含まれる。また、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。
 さらに、本明細書において組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。また、例示材料は特に断らない限り単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 また、本明細書中に段階的に記載されている数値範囲において、ある段階の数値範囲の上限値又は下限値は、他の段階の数値範囲の上限値又は下限値に置き換えてもよい。また、本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
<保護膜>
 本実施形態の保護膜は、銅ニッケル合金を含む電極を有する基材上に設けられ、上記電極の一部又は全部を被覆する保護膜であって、架橋密度が5.0mol/m以上である保護膜である。架橋密度が5.0mol/m以上であることで、保護膜により酸成分の透過を充分に抑制することができ、銅ニッケル合金を含む電極からの保護膜の剥離を充分に抑制することができる。保護膜の架橋密度は、銅ニッケル合金を含む電極からの保護膜の剥離をより充分に抑制する観点から、7.0mol/m以上であることがより好ましく、8.0mol/m以上であることがさらに好ましい。一方、屈曲性の観点から、保護膜の架橋密度は15.0mol/m以下であることが好ましい。
 保護膜の架橋密度は、下記式により求められる。
n=E’/3RT
[n:架橋密度(mol/m)、E’:貯蔵弾性率(Pa)、R:気体定数(=8.31J/mol・k)、T:絶対温度(K)]
 よって、保護膜の貯蔵弾性率E’を測定し、その結果及び測定時の温度を上記式に当てはめることで、架橋密度を算出することができる。本実施形態においては、例えば、測定温度175℃±0.5℃での貯蔵弾性率の値を用いて、架橋密度を算出することができる。
 保護膜の架橋密度は、保護膜を形成するために用いる後述の感光性樹脂組成物の組成、特に光重合性化合物の種類及び含有量、並びに、バインダーポリマーの種類等により制御することができる。また、保護膜の架橋密度は、保護膜を製造する際の製造条件、特に露光及び加熱等の処理条件により調整することができる。
 また、保護膜の酸透過時間は、厚さ8μmの保護膜において、0.5時間以上であることが好ましく、1.0時間以上であることがより好ましく、2.0時間以上であることがさらに好ましい。酸透過時間が上記下限値以上であることで、銅ニッケル合金を含む電極からの保護膜の剥離をより充分に抑制することができる。ここで、保護膜の酸透過時間は、以下の方法で測定することができる。
 80℃のホットプレート上に0.02Mの酢酸水溶液を0.02ml滴下し、上記酢酸水溶液上に縦50mm、横50mm、厚さ8μmの上記保護膜を置き、上記保護膜上に青色リトマス紙を置いた時の、上記青色リトマス紙の少なくとも一部が赤色に変化するまでの時間を酸透過時間とする。
 また、保護膜は反応性官能基の反応率が60~70%であることが好ましい。上記反応率が上記範囲内であることで、保護膜は、架橋密度が高く且つ酸成分が透過しにくい架橋構造を有することができ、酸成分の透過をより充分に抑制することができ、銅ニッケル合金を含む電極からの保護膜の剥離をより充分に抑制することができる。ここで、上記反応率は、以下の方法で測定することができる。
 フーリエ変換赤外分光光度計IRTracer-100(株式会社島津製作所製、製品名)を使用し、ATR法により、保護膜(硬化物)及び硬化前の保護膜(未硬化物)の反射IRスペクトルを取得する。取得したスペクトルについて、以下の式で反応率を算出する。
反応率(%)=100×(1-b/a)
 式中、a及びbは以下の通りである。
a:未硬化物の測定ピーク面積(810cm-1)/未硬化物のリファレンスピーク面積(1720cm-1
b:硬化物の測定ピーク面積(810cm-1)/硬化物のリファレンスピーク面積(1720cm-1
810cm-1:炭素-炭素二重結合に起因する吸収
1720cm-1:炭素-酸素二重結合に起因する吸収
 保護膜は、硬化前後の保護膜(後述の感光性樹脂層又は感光性樹脂組成物を塗布してなる塗膜、及び、その硬化物)から上記方法で測定される反応率が上記範囲となるように作製されたものであることが好ましいとも言える。また、硬化前後の保護膜から上記方法で測定される反応率が上記範囲となるように、保護膜を作製することが好ましいとも言える。
 上記保護膜は、下記の転写型感光性フィルムの感光性樹脂層を硬化させることで形成することができる。あるいは、上記保護膜は、下記の転写型感光性フィルムの感光性樹脂層を作製する際に用いる感光性樹脂組成物を、銅ニッケル合金を含む電極を有する基材上に直接塗布し、硬化させることで形成することができる。以下、転写型感光性フィルム及び感光性樹脂組成物について説明する。
<転写型感光性フィルム>
 本実施形態の転写型感光性フィルムは、支持フィルムと、該支持フィルム上に設けられた感光性樹脂層と、を備えるものである。転写型感光性フィルムは、感光性樹脂層上に設けられた保護フィルムをさらに備えていてもよい。上記転写型感光性フィルムを用いることで、例えばフォースセンサのセンシング領域に設けられた銅ニッケル合金を含む電極の保護機能を有する保護膜を容易に形成することができる。
(支持フィルム)
 支持フィルムとしては、重合体フィルムを用いることができる。重合体フィルムの材質としては、ポリエチレンテレフタレート、ポリカーボネート、ポリエチレン、ポリプロピレン、ポリエーテルサルフォン、シクロオレフィンポリマー等が挙げられる。
 支持フィルムの厚さは、被覆性の確保と、支持フィルムを介して活性光線を照射する際の解像度の低下を抑制する観点から、5~100μmであることが好ましく、10~70μmであることがより好ましく、15~40μmであることがさらに好ましく、15~35μmであることが特に好ましい。
(感光性樹脂層)
 感光性樹脂層は、バインダーポリマー(以下、(A)成分ともいう)と、光重合性化合物(以下、(B)成分ともいう)と、光重合開始剤(以下、(C)成分ともいう)とを含有する感光性樹脂組成物から形成されることが好ましい。
 (A)成分としては、アルカリ現像によりパターニングを可能とする観点から、カルボキシル基を有するポリマーを用いることが好ましい。
 (A)成分は、(メタ)アクリル酸、及び(メタ)アクリル酸アルキルエステルに由来する構造単位を含有する共重合体が好適である。上記共重合体は、上記(メタ)アクリル酸、(メタ)アクリル酸アルキルエステルと共重合し得るその他のモノマーを構造単位に含有していてもよい。その他のモノマーとして具体的には、(メタ)アクリル酸グリシジルエステル、(メタ)アクリル酸ベンジルエステル、スチレン、(メタ)アクリル酸シクロヘキシルエステル等が挙げられる。また、得られる保護膜の透湿度を低減する観点から、(メタ)アクリル酸トリシクロアルキルエステル等のトリシクロ骨格を有するモノマーを用いることが好ましい。
 上記(メタ)アクリル酸アルキルエステルとしては、(メタ)アクリル酸メチルエステル、(メタ)アクリル酸エチルエステル、(メタ)アクリル酸ブチルエステル、(メタ)アクリル酸2-エチルヘキシルエステル、(メタ)アクリル酸ヒドロキシルエチルエステル等が挙げられる。
 これらの中でも、アルカリ現像性(特に無機アルカリ水溶液に対する現像性)、パターニング性、透明性の観点から、(メタ)アクリル酸、(メタ)アクリル酸グリシジルエステル、(メタ)アクリル酸ベンジルエステル、スチレン、(メタ)アクリル酸メチルエステル、(メタ)アクリル酸エチルエステル、(メタ)アクリル酸ブチルエステル、(メタ)アクリル酸2-エチルヘキシルエステル、(メタ)アクリル酸シクロヘキシルエステル、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシ(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンタニルオキシ(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、シクロヘキシルマレイミド、ヒドロキシエチル(メタ)アクリレート及びヒドロキシブチル(メタ)アクリレートからなる群より選択される少なくとも一種の化合物に由来する構造単位を有するバインダーポリマーが好ましく、(メタ)アクリル酸、(メタ)アクリル酸グリシジルエステル、(メタ)アクリル酸ベンジルエステル、スチレン、(メタ)アクリル酸メチルエステル、(メタ)アクリル酸エチルエステル、(メタ)アクリル酸ブチルエステル、(メタ)アクリル酸2-エチルヘキシルエステル及び(メタ)アクリル酸シクロヘキシルエステルからなる群より選択される少なくとも一種の化合物に由来する構造単位を有するバインダーポリマーがより好ましく、(メタ)アクリル酸、(メタ)アクリル酸アルキルエステル、(メタ)アクリル酸グリシジルエステル及び(メタ)アクリル酸シクロヘキシルエステルに由来する構造単位を有するバインダーポリマーが特に好ましい。また、バインダーポリマーは、上記構造単位として少なくともヒドロキシエチル(メタ)アクリレート又はヒドロキシブチル(メタ)アクリレートを含む共重合体のヒドロキシエチル(メタ)アクリレート又はヒドロキシブチル(メタ)アクリレートに、イソシアネートエチル(メタ)アクリレート又はグリシジル(メタ)アクリレートを付加反応させたものであってもよい。
 本実施形態においては、保護膜の透湿度を低減する観点から、側鎖に分岐構造及び/又は脂環構造を有する基、側鎖に酸性基を有する基、並びに、側鎖にエチレン性不飽和基を有する基を含有するバインダーポリマーを用いることができる。側鎖に分岐構造及び/又は脂環構造を有する基は、側鎖に分岐構造を有する基を含有するモノマー、又は側鎖に脂環構造を有する基を含有するモノマーによって導入することができる。側鎖に酸性基を有する基は、側鎖に酸性基を有する基を含有するモノマーによって導入することができる。
 側鎖に分岐構造を有する基を含有するモノマーの具体例としては、例えば(メタ)アクリル酸i-プロピル、(メタ)アクリル酸i-ブチル、(メタ)アクリル酸s-ブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸i-アミル、(メタ)アクリル酸t-アミル、(メタ)アクリル酸sec-iso-アミル、(メタ)アクリル酸2-オクチル、(メタ)アクリル酸3-オクチル、(メタ)アクリル酸t-オクチル等が挙げられる。これらの中でも、(メタ)アクリル酸i-プロピル、(メタ)アクリル酸i-ブチル、メタクリル酸t-ブチルが好ましく、さらに好ましくは、メタクリル酸i-プロピル、メタクリル酸t-ブチルである。
 側鎖に脂環構造を有する基を含有するモノマーの具体例としては、例えば炭素原子数5~20個の脂環式炭化水素基を有する(メタ)アクリレートが挙げられる。より具体的な例としては、例えば(メタ)アクリル酸(ビシクロ〔2.2.1]ヘプチル-2)、(メタ)アクリル酸-1-アダマンチル、(メタ)アクリル酸-2-アダマンチル、(メタ)アクリル酸-3-メチル-1-アダマンチル、(メタ)アクリル酸-3,5-ジメチル-1-アダマンチル、(メタ)アクリル酸-3-エチルアダマンチル、(メタ)アクリル酸-3-メチル-5-エチル-1-アダマンチル、(メタ)アクリル酸-3,5,8-トリエチル-1-アダマンチル、(メタ)アクリル酸-3,5-ジメチル-8-エチル-1-アダマンチル、(メタ)アクリル酸2-メチル-2-アダマンチル、(メタ)アクリル酸2-エチル-2-アダマンチル、(メタ)アクリル酸3-ヒドロキシ-1-アダマンチル、(メタ)アクリル酸オクタヒドロ-4,7-メンタノインデン-5-イル、(メタ)アクリル酸オクタヒドロ-4,7-メンタノインデン-1-イルメチル、(メタ)アクリル酸-1-メンチル、(メタ)アクリル酸ジシクロペンタニル、(メタ)アクリル酸-3-ヒドロキシ-2,6,6-トリメチル-ビシクロ〔3.1.1〕ヘプチル、(メタ)アクリル酸-3,7,7-トリメチル-4-ヒドロキシ-ビシクロ〔4.1.0〕ヘプチル、(メタ)アクリル酸(ノル)ボルニル、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸フェンチル、(メタ)アクリル酸-2,2,5-トリメチルシクロヘキシル、(メタ)アクリル酸シクロヘキシル等が挙げられる。これら(メタ)アクリル酸エステルの中でも、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸(ノル)ボルニル、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸-1-アダマンチル、(メタ)アクリル酸-2-アダマンチル、(メタ)アクリル酸フェンチル、(メタ)アクリル酸1-メンチル、(メタ)アクリル酸ジシクロペンタニルが好ましく、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸(ノル)ボルニル、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸-2-アダマンチルが特に好ましい。
 (A)成分が側鎖に分岐構造及び/又は脂環構造を有する基を含有することにより、基材に対する良好な密着性を得ることができる。また、側鎖に脂環構造を有する基を有すことにより、保護膜の透湿度を低減することができる。
 側鎖に酸性基を有する基を含有するモノマーの具体例としては、公知のものの中から適宜選択することができ、例えば、(メタ)アクリル酸、ビニル安息香酸、マレイン酸、マレイン酸モノアルキルエステル、フマル酸、イタコン酸、クロトン酸、桂皮酸、ソルビン酸、α-シアノ桂皮酸、アクリル酸ダイマー、水酸基を有するモノマーと環状酸無水物との付加反応物、ω-カルボキシ-ポリカプロラクトンモノ(メタ)アクリレート等が挙げられる。これらは、適宜製造したものを使用してもよいし、市販品を使用してもよい。
 (A)成分が側鎖に酸性基を有する基を含有することにより、アルカリ現像によるパターニングを可能とすることができる。
 側鎖にエチレン性不飽和基を有する基としては、特に制限はなく、エチレン性不飽和基としては、(メタ)アクリロイル基が好ましい。また、エチレン性不飽和基とモノマーとの連結はエステル基、アミド基、カルバモイル基などの2価の連結基であれば特に制限はない。側鎖にエチレン性不飽和基を導入する方法は公知の方法の中から適宜選択することができ、例えば、酸性基を持つ基にエポキシ基を持つ(メタ)アクリレートを付加する方法、ヒドロキシ基を持つ基にイソシアネート基を持つ(メタ)アクリレートを付加する方法、イソシアネート基を持つ基にヒドロキシ基を持つ(メタ)アクリレートを付加する方法などが挙げられる。その中でも、酸性基を持つ繰り返し単位にエポキシ基を持つ(メタ)アクリレートを付加する方法が最も製造が容易であり、低コストである点で好ましい。
 (A)成分が側鎖にエチレン性不飽和基を有する基を含有することにより、基材に対する良好な密着性を得ることができる。また、保護膜の透湿度を低減することができる。さらに、(A)成分が側鎖にエチレン性不飽和基を有する基を含有することにより、保護膜の架橋密度を向上させることができ、銅ニッケル合金を含む電極からの保護膜の剥離を充分に抑制することができる。
 (A)成分を構成するモノマー全量を基準として、側鎖に分岐構造及び/又は脂環構造を有する基を構成するモノマーの割合は、10~70モル%であることが好ましく、15~65モル%であることがより好ましく、20~60モル%であることがさらに好ましい。また、(A)成分を構成するモノマー全量を基準として、側鎖に酸性基を有する基を構成するモノマーの割合は、5~70モル%であることが好ましく、10~60モル%であることがより好ましく、20~50モル%がさらに好ましい。さらに、(A)成分を構成するモノマー全量を基準として、側鎖にエチレン性不飽和基を有する基を構成するモノマーの割合は、5~70モル%であることが好ましく、10~60モル%であることがより好ましく、20~50モル%がさらに好ましい。上記モノマーの割合を満たすことで、アルカリ現像によるパターニング性、基材へのラミネート性、及び、基材に対する良好な密着性をバランス良く向上させることができる。
 (A)成分の重量平均分子量は、解像度の観点から、10,000~200,000であることが好ましく、15,000~150,000であることがより好ましく、30,000~150,000であることがさらに好ましく、30,000~100,000であることが特に好ましく、40,000~100,000であることが極めて好ましい。なお、重量平均分子量は、本明細書の実施例に記載したゲルパーミエーションクロマトグラフィー法により測定することができる。
 (A)成分の酸価は、所望の形状を有する硬化膜(保護膜)をアルカリ現像で容易に形成する観点から、75mgKOH/g以上とすることが好ましい。また、保護膜形状の制御容易性と保護膜の防錆性との両立を図る観点から、(A)成分の酸価は、75~200mgKOH/gであることが好ましく、75~150mgKOH/gであることがより好ましく、75~120mgKOH/gであることがさらに好ましい。なお、酸価は、本明細書の実施例に記載した方法で測定することができる。
 (A)成分の水酸基価は、保護膜の防錆性をより向上させる観点から、50mgKOH/g以下であることが好ましく、45mgKOH/g以下であることがより好ましい。
 なお、感光性樹脂層は、上述した(A)バインダーポリマー以外の他のバインダーポリマーをさらに含有していてもよい。
 (B)成分としては、エチレン性不飽和基を有する光重合性化合物を用いることができる。エチレン性不飽和基を有する光重合性化合物としては、一官能ビニルモノマー、二官能ビニルモノマー、又は少なくとも3つの重合可能なエチレン性不飽和基を有する多官能ビニルモノマーが挙げられる。また、得られる保護膜の架橋密度をより向上させ、銅ニッケル合金を含む電極からの保護膜の剥離をより充分に抑制する観点から、(B)成分は、ペンタエリスリトールテトラ(メタ)アクリレート等のペンタエリスリトール骨格を有する化合物を含むことが好ましい。また、得られる保護膜の透湿度を低減する観点から、(B)成分は、(メタ)アクリル酸トリシクロアルキルエステル等のトリシクロ骨格を有する化合物を含んでいてもよい。
 上記一官能ビニルモノマーとしては、例えば、上記(A)成分の好適な例である共重合体の合成に用いられるモノマーとして例示したものが挙げられる。
 上記分子内に二つの重合可能なエチレン性不飽和基を有する二官能ビニルモノマーとしては、保護膜の透湿度を低減する観点から、トリシクロデカン骨格又はトリシクロデセン骨格を有する化合物を含んでいてもよい。銅ニッケル合金を含む電極の腐食抑制の観点から、トリシクロデカン骨格又はトリシクロデセン骨格を有する化合物として、下記一般式(B-1)で表されるジ(メタ)アクリレート化合物を含んでいてもよい。
Figure JPOXMLDOC01-appb-C000001
[一般式(B-1)中、R31及びR32は、それぞれ独立に水素原子又はメチル基を示し、Xは、トリシクロデカン骨格又はトリシクロデセン骨格を有する2価の基を示し、R33及びR34は、それぞれ独立に炭素数1~4のアルキレン基を示し、n及びmは、それぞれ独立に0~2の整数を示し、p及びqは、それぞれ独立に0以上の整数を示し、p+q=0~10となるように選択される。]
 上記一般式(B-1)において、R33及びR34は、エチレン基又はプロピレン基であることが好ましく、エチレン基であることがより好ましい。また、プロピレン基はn-イソプロピレン基及びイソプロピレン基のいずれであってもよい。
 上記一般式(B-1)で表される化合物によれば、Xに含まれるトリシクロデカン骨格又はトリシクロデセン骨格を有する2価の基が、嵩高い構造を有することで、保護膜の低透湿性を実現し、銅ニッケル合金を含む電極の腐食抑制性を向上させることができる。ここで、本明細書中における「トリシクロデカン骨格」及び「トリシクロデセン骨格」とは、それぞれ以下の構造(それぞれ、結合手は任意の箇所である)をいう。
Figure JPOXMLDOC01-appb-C000002
 トリシクロデカン骨格又はトリシクロデセン骨格を有する化合物としては、得られる保護膜の低透湿性の観点から、トリシクロデカンジメタノールジ(メタ)アクリレートなどのトリシクロデカン骨格を有する化合物が好ましい。これらは、DCP及びA-DCP(いずれも新中村化学工業株式会社製)として入手可能である。
 (B)成分における、トリシクロデカン骨格又はトリシクロデセン骨格を有する化合物の割合は、透湿度を低減する観点から、感光性樹脂組成物に含まれる光重合性化合物の合計量100質量部のうち、50質量部以上、70質量部以上、又は、80質量部以上であってもよい。
 トリシクロデカン骨格又はトリシクロデセン骨格を有する化合物とは別の、分子内に二つの重合可能なエチレン性不飽和基を有する二官能ビニルモノマーとしては、ポリエチレングリコールジ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、2,2-ビス(4-(メタ)アクリロキシポリエトキシポリプロポキシフェニル)プロパン、ビスフェノールAジグリシジルエーテルジ(メタ)アクリレート等が挙げられる。
 上記少なくとも3つの重合可能なエチレン性不飽和基を有する多官能ビニルモノマーとしては、従来公知のものを特に制限無く用いることができる。電極の腐食防止及び現像性の観点から、上記多官能ビニルモノマーとしては、トリメチロールプロパントリ(メタ)アクリレート等のトリメチロールプロパン由来の骨格を有する(メタ)アクリレート化合物;テトラメチロールメタントリ(メタ)アクリレート、テトラメチロールメタンテトラ(メタ)アクリレート等のテトラメチロールメタン由来の骨格を有する(メタ)アクリレート化合物;ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート等のペンタエリスリトール由来の骨格を有する(メタ)アクリレート化合物;ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等のジペンタエリスリトール由来の骨格を有する(メタ)アクリレート化合物;ジトリメチロールプロパンテトラ(メタ)アクリレート等のジトリメチロールプロパン由来の骨格を有する(メタ)アクリレート化合物;又はジグリセリン由来の骨格を有する(メタ)アクリレート化合物;シアヌル酸由来の骨格を有する(メタ)アクリレート化合物を用いることが好ましい。
 これらの中でも、上記多官能ビニルモノマーは、得られる保護膜の架橋密度をより向上させる観点から、ペンタエリスリトール由来の骨格を有する(メタ)アクリレート化合物、ジペンタエリスリトール由来の骨格を有する(メタ)アクリレート化合物、トリメチロールプロパン由来の骨格を有する(メタ)アクリレート化合物、ジトリメチロールプロパン由来の骨格を有する(メタ)アクリレート化合物、又は、シアヌル酸由来の骨格を有する(メタ)アクリレート化合物を含むことがさらに好ましく、ペンタエリスリトール由来の骨格を有する(メタ)アクリレート化合物を含むことが特に好ましい。
 ここで、「~由来の骨格を有する(メタ)アクリレート化合物」について、ジトリメチロールプロパン由来の骨格を有する(メタ)アクリレート化合物を例にとり説明する。ジトリメチロールプロパン由来の骨格を有する(メタ)アクリレートとは、ジトリメチロールプロパンと、(メタ)アクリル酸とのエステル化物を意味し、当該エステル化物には、アルキレンオキシ基で変性された化合物も包含される。上記エステル化物は、一分子中におけるエステル結合数が最大数の4であることが好ましいが、エステル結合の数が1~3の化合物が混合していてもよい。
 (B)成分における、ペンタエリスリトール骨格を有する化合物の割合は、得られる保護膜の架橋密度をより向上させ、銅ニッケル合金を含む電極からの保護膜の剥離をより充分に抑制する観点から、感光性樹脂組成物に含まれる光重合性化合物の合計量100質量部のうち、50質量部以上であることが好ましく、70質量部以上であることがより好ましく、又は、80質量部以上であることがさらに好ましい。
 また、得られる保護膜の架橋密度をより向上させ、銅ニッケル合金を含む電極からの保護膜の剥離をより充分に抑制する観点から、(B)成分は、多官能ビニルモノマーの中でも、4官能ビニルモノマーを含むことが好ましい。2官能又は3官能ビニルモノマーの場合、架橋点が相対的に少なく、5官能以上のビニルモノマーの場合、嵩高くなり反応し難くなりやすいことから、架橋密度を向上させる観点では、4官能ビニルモノマーが適している。
 分子内に少なくとも3つの重合可能なエチレン性不飽和基を有する多官能ビニルモノマーと、一官能ビニルモノマー又は二官能ビニルモノマーを組み合わせて用いる場合、使用する割合に特に制限は無いが、光硬化性及び電極腐食を防止する観点から、多官能ビニルモノマーの割合が、感光性樹脂組成物に含まれる光重合性化合物の合計量100質量部のうち、30質量部以上であることが好ましく、50質量部以上であることがより好ましく、75質量部以上であることがさらに好ましい。
 (A)成分及び(B)成分の含有量は、(A)成分及び(B)成分の合計量100質量部に対し、(A)成分が35~85質量部であることが好ましく、40~80質量部であることがより好ましく、50~70質量部であることがさらに好ましく、50~65質量部であることが特に好ましい。特に、パターン形成性を維持する点では、(A)成分及び(B)成分の合計量100質量部に対し、(A)成分が、35質量部以上であることが好ましく、40質量部以上であることがより好ましく、50質量部以上であることがさらに好ましい。一方、保護膜の架橋密度を高める点では、(A)成分及び(B)成分の合計量100質量部に対し、(A)成分が、85質量部以下であることが好ましく、80質量部以下であることがより好ましく、70質量部以下であることがさらに好ましく、65質量部以下であることが特に好ましい。
 (C)成分としては、従来公知の光重合開始剤を特に制限無く用いることができるが、透明性の高い光重合開始剤を用いることが好ましい。基材上に、厚さが10μm以下の薄膜であっても充分な解像度で保護膜を形成する点では、(C)成分はオキシムエステル化合物及び/又はホスフィンオキサイド化合物を含むことが好ましい。ホスフィンオキサイド化合物としては、2,4,6-トリメチルベンゾイル-ジフェニル-ホスフィンオキサイド等が挙げられる。
 オキシムエステル化合物は、下記一般式(1)で表される化合物、下記一般式(2)で表される化合物、又は下記一般式(3)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000003
 式(1)中、R11及びR12は、それぞれ独立に、炭素数1~12のアルキル基、炭素数4~10のシクロアルキル基、フェニル基又はトリル基を示し、炭素数1~8のアルキル基、炭素数4~6のシクロアルキル基、フェニル基又はトリル基であることが好ましく、炭素数1~4のアルキル基、炭素数4~6のシクロアルキル基、フェニル基又はトリル基であることがより好ましく、メチル基、シクロペンチル基、フェニル基又はトリル基であることがさらに好ましい。R13は、-H、-OH、-COOH、-O(CH)OH、-O(CHOH、-COO(CH)OH又は-COO(CHOHを示し、-H、-O(CH)OH、-O(CHOH、-COO(CH)OH、又は-COO(CHOHであることが好ましく、-H、-O(CHOH、又は-COO(CHOHであることがより好ましい。
Figure JPOXMLDOC01-appb-C000004
 式(2)中、2つのR14は、それぞれ独立に、炭素数1~6のアルキル基を示し、プロピル基であることが好ましい。R15は、NO又はArCO(ここで、Arはアリール基を示す。)を示し、Arとしては、トリル基が好ましい。R16及びR17は、それぞれ独立に、炭素数1~12のアルキル基、フェニル基、又はトリル基を示し、メチル基、フェニル基又はトリル基であることが好ましい。
Figure JPOXMLDOC01-appb-C000005
 式(3)中、R18は、炭素数1~6のアルキル基を示し、エチル基であることが好ましい。R19はアセタール結合を有する有機基であり、後述する式(3-1)に示す化合物が有するR19に対応する置換基であることが好ましい。R20及びR21は、それぞれ独立に、炭素数1~12のアルキル基、フェニル基又はトリル基を示し、メチル基、フェニル基又はトリル基であることが好ましく、メチル基であることがより好ましい。R22は、水素原子又はアルキル基を示す。
 上記一般式(1)で表される化合物としては、例えば、下記式(1-1)で表される化合物及び下記式(1-2)で表される化合物が挙げられる。下記式(1-1)で表される化合物は、IRGACURE OXE 01(BASFジャパン株式会社製、製品名)として入手可能である。
Figure JPOXMLDOC01-appb-C000006
 上記一般式(2)で表される化合物としては、例えば、下記式(2-1)で表される化合物が挙げられる。下記式(2-1)で表される化合物は、DFI-091(ダイトーケミックス株式会社製、製品名)として入手可能である。
Figure JPOXMLDOC01-appb-C000007
 上記一般式(3)で表される化合物としては、例えば、下記式(3-1)で表される化合物が挙げられる。下記式(3-1)で表される化合物は、アデカオプトマーN-1919(株式会社ADEKA製、製品名)として入手可能である。
Figure JPOXMLDOC01-appb-C000008
 その他のオキシムエステル化合物としては、下記式(4)で表される化合物、下記式(5)で表される化合物を用いることができる。
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
 上記の中でも、上記式(1-1)で表される化合物が極めて好ましい。なお、上記式(1-1)で表される化合物が保護膜に含まれているかどうかは、保護膜の熱分解ガスクロマトグラフ質量分析を行ったときに、ヘプタノニトリル及び安息香酸が検出されるかどうかを指標にして判断することができる。保護膜が高温の加熱工程を受けていない場合は、ヘプタノニトリル及び安息香酸が検出されることで保護膜に上記式(1-1)で表される化合物が含まれていたことがわかる。保護膜の熱分解ガスクロマトグラフ質量分析における安息香酸の検出ピーク面積は、ヘプタノニトリルの検出ピーク面積に対して、1~10%の範囲で検出される。
 保護膜の熱分解ガスクロマトグラフ質量分析は、測定サンプルを140℃で加熱して発生したガスについてガスクロマトグラフ質量分析を行うことが好ましい。上記の測定サンプルの加熱時間は、1~60分の範囲であればよいが、30分であることが好ましい。熱分解ガスクロマトグラフ質量分析の測定条件の一例を以下に示す。
(熱分解ガスクロマトグラフ質量分析の測定条件)
測定装置:GC/MS QP-2010(株式会社島津製作所製、製品名)
カラム:HP-5MS(アジレント・テクノロジー株式会社製、製品名)
Oven Temp:40℃で5分間加熱後、15℃/minの割合で300℃まで昇温
キャリアーガス:ヘリウム、1.0mL/min
インターフェイス温度:280℃
イオンソース温度:250℃
サンプル注入量:0.1mL
 (C)成分の含有量は、光感度及び解像度に優れる点では、(A)成分及び(B)成分の合計量100質量部に対し、0.1~10質量部であることが好ましく、1~5質量部であることがより好ましく、1~3質量部であることがさらに好ましく、1~2質量部であることが特に好ましい。
 本実施形態に係る感光性樹脂組成物は、保護膜の防錆性をより向上させる観点から、メルカプト基を有するトリアゾール化合物、メルカプト基を有するテトラゾール化合物、メルカプト基を有するチアジアゾール化合物、アミノ基を有するトリアゾール化合物及びアミノ基を有するテトラゾール化合物からなる群より選択される少なくとも一種の化合物(以下、(D)成分ともいう)をさらに含有することが好ましい。メルカプト基を有するトリアゾール化合物としては、例えば、3-メルカプト-トリアゾール(和光純薬工業株式会社製、製品名:3MT)が挙げられる。また、メルカプト基を有するチアジアゾール化合物としては、例えば、2-アミノ-5-メルカプト-1,3,4-チアジアゾール(和光純薬工業株式会社製、製品名:ATT)が挙げられる。
 上記アミノ基を有するトリアゾール化合物としては、ベンゾトリアゾール、1H-ベンゾトリアゾール-1-アセトニトリル、ベンゾトリアゾール-5-カルボン酸、1H-ベンゾトリアゾール-1-メタノール、カルボキシベンゾトリアゾール等にアミノ基が置換した化合物、3-メルカプトトリアゾール、5-メルカプトトリアゾール等のメルカプト基を含むトリアゾール化合物にアミノ基が置換した化合物などが挙げられる。
 上記アミノ基を有するテトラゾール化合物としては、5-アミノ-1H-テトラゾール、1-メチル-5-アミノ-テトラゾール、1-メチル-5-メルカプト-1H-テトラゾール、1-カルボキシメチル-5-アミノ-テトラゾール等が挙げられる。これらのテトラゾール化合物は、その水溶性塩であってもよい。具体例としては、1-メチル-5-アミノ-テトラゾールのナトリウム、カリウム、リチウム等のアルカリ金属塩などが挙げられる。
 感光性樹脂組成物が(D)成分を含有する場合、その含有量は、(A)成分及び(B)成分の合計量100質量部に対し、0.05~5.0質量部が好ましく、0.1~2.0質量部がより好ましく、0.2~1.0質量部がさらに好ましく、0.3~0.8質量部が特に好ましい。
 本実施形態に係る感光性樹脂組成物は、銅ニッケル合金を含む電極に対する密着性と、現像残りの発生を防ぐ観点から、エチレン性不飽和結合を含むリン酸エステル(以下、(E)成分ともいう)を含有することが好ましい。なお、本明細書において、エチレン性不飽和結合を含むリン酸エステルは、(B)成分ではなく(E)成分として扱うこととする。
 (E)成分であるエチレン性不飽和結合を含むリン酸エステルとしては、形成する保護膜の防錆性を充分確保しつつ、銅ニッケル合金を含む電極に対する密着性と現像性とを高水準で両立する観点から、ユニケミカル株式会社製のPhosmerシリーズ(Phosmer-M、Phosmer-CL、Phosmer-PE、Phosmer-MH、Phosmer-PP等)、又は日本化薬株式会社製のKAYAMERシリーズ(PM-21、PM-2等)が好ましい。
 上記感光性樹脂層の厚みは、保護膜として充分に効果を奏し、且つ銅ニッケル合金を含む電極を有する基材表面の段差を充分に埋め込む上では、乾燥後の厚みで15μm以下であることが好ましく、2~10μmであることがより好ましく、3~8μmであることがさらに好ましい。また、硬化後における感光性樹脂層の厚みも上記範囲内であることが好ましい。
(他の層)
 本実施形態の転写型感光性フィルムは、適宜選択した他の層を設けてもよい。上記他の層としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、クッション層、酸素遮蔽層、剥離層、接着層等が挙げられる。また、例えば、電極における骨見え現象を抑制することを目的に、屈折率調整層を設けることができる。屈折率調整層として、例えば、酸化ジルコニウム等の金属酸化物粒子を含む樹脂層が挙げられる。上記転写型感光性フィルムは、これらの層を1種単独で有していてもよく、2種以上を有してもよい。また、同種の層を2以上有していてもよい。
(保護フィルム)
 保護フィルムとしては、重合体フィルムを用いることができる。重合体フィルムの材質としては、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリカーボネート、ポリエチレン-酢酸ビニル共重合体等が挙げられる。保護フィルムは、異なる材質からなる重合体フィルムを積層した積層フィルムであってもよく、例えば、ポリエチレン-酢酸ビニル共重合体フィルムとポリエチレンフィルムとを積層した積層フィルム等であってもよい。
 保護フィルムの厚さは、5~100μmが好ましいが、転写型感光性フィルムをロール状に巻いて保管する観点から、70μm以下であることが好ましく、60μm以下であることがより好ましく、50μm以下であることがさらに好ましく、40μm以下であることが特に好ましい。
 転写型感光性フィルムの感光性樹脂層は、例えば、感光性樹脂組成物を含有する塗布液を調製し、これを支持フィルム上に塗布、乾燥することで形成できる。保護フィルムを備える転写型感光性フィルムは、基材上に形成された感光性樹脂層上に、保護フィルムを貼り付けることにより形成することができる。
 塗布液は、上述した本実施形態に係る感光性樹脂組成物を構成する各成分を溶剤に均一に溶解又は分散することにより得ることができる。
 塗布液として用いる溶剤は、特に制限は無く、公知のものが使用できる。具体的には、アセトン、メチルエチルケトン、メチルイソブチルケトン、トルエン、メタノール、エタノール、プロパノール、ブタノール、メチレングリコール、エチレングリコール、プロピレングリコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールエチルメチルエーテル、ジエチレングリコールジエチルエーテル、プロピレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、クロロホルム、塩化メチレン等が挙げられる。
 塗布方法としては、ドクターブレードコーティング法、マイヤーバーコーティング法、ロールコーティング法、スクリーンコーティング法、スピナーコーティング法、インクジェットコーティング法、スプレーコーティング法、ディップコーティング法、グラビアコーティング法、カーテンコーティング法、ダイコーティング法等が挙げられる。
 乾燥条件に特に制限は無いが、乾燥温度は、60~130℃とすることが好ましく、乾燥時間は、0.5~30分とすることが好ましい。
 感光性樹脂層の粘度は、転写型感光性フィルムをロール状に保管した場合に、転写型感光性フィルムの端面から樹脂組成物がしみ出すことを防止する観点及び転写型感光性フィルムを切断する際に樹脂組成物の破片が基材に付着することを防止する観点から、30℃において、15~100mPa・sであることが好ましく、20~90mPa・sであることがより好ましく、25~80mPa・sであることがさらに好ましい。
<フォースセンサ>
 図1の(a)及び(b)は、保護膜を備えるフォースセンサの一実施形態を示す模式上面図であり、図2は、保護膜を備えるフォースセンサの一実施形態を示す模式断面図である。なお、図2は、図1に示したフォースセンサのII-II断面図である。また、図1の(b)は、図1の(a)の領域Aの拡大図である。図1及び図2に示すように、フォースセンサ100は、基材フィルム2、及び、該基材フィルム2の一方の主面F1上に形成された銅ニッケル合金を含む電極4を有する基材10と、基材10上に設けられ、電極4の一部又は全部を被覆する保護膜30とを備える。電極4は、本体部4a、配線部4b、引き出し配線部4c、及び、外部接続端子部4dからなり、これらのうち本体部4a及び配線部4bが、押した圧力の強弱を検知する抵抗式のひずみ受感部5を形成している。ひずみ受感部5は、基材フィルム2の一方の主面F1上に、長さ方向が同一方向となるように複数形成されている。そして、各ひずみ受感部5に対応した引き出し配線部4cが、配線部4bから基材フィルム2の外縁部まで延び、外部接続端子部4dが形成されている。この外部接続端子部4dを介して、ひずみ受感部5で検知した圧力に応じた圧電信号が取り出される。上記構成のフォースセンサ100は、極めて薄い板状の構造物であり、例えば表示機器に搭載される場合には、基材1の電極4側が表示面側となるように搭載される。
 基材フィルム2としては、絶縁性を有するフィルムが用いられ、好ましくはさらに可撓性を有するフィルムが用いられる。基材フィルム2の材質としては、ポリエチレンテレフタレート(PET)等のポリエステル、ポリイミドアミド(AI)、ポリフェニレンサルファイド(PPS)、ポリエーテルエーテルケトン(PEEK)、ポリイミド(PI)、ポリテトラフルオロエチレン(PTFE)などが挙げられる。
 基材フィルム2の厚さは特に限定されないが、押した圧力に対する感度及び基材フィルム自体の強度の観点から、通常、1~300μmであり、好ましくは1~100μmである。
 ひずみ受感部5は、本体部4aを構成する金属の延伸又は圧縮により断面積及び長さが増減し、それに伴って抵抗値が増減することを利用して、押した圧力の強弱を検知することができる。本体部4aは、図1の(b)に示すように、平行に一定の間隔で配設された複数の帯状部が端部同士で幅方向に延伸する連結部で連結された1つの抵抗体である。すなわち、本体部4aは、一本の帯状体を一定間隔で複数回折り返したジグザグ形状を有する。本体部4aの両端は、配線部4bを介して引き出し配線部4cに接続されている。本体部4aは、抵抗値の変化を検出しやすいように、帯状部のそれぞれの幅が小さいことが好ましく、配線部4bは、抵抗値が小さくなるように幅が大きいことが好ましい。また、配線部4bを設けずに、本体部4aの両端部が引き出し配線部4cに直接接続されていてもよい。なお、本実施形態のフォースセンサにおいて、ひずみ受感部5は、上述した構造物に限定されず、押した圧力の強弱を検知可能な公知の構造物を特に制限なく用いることができる。
 本体部4a、配線部4b、引き出し配線部4c及び外部接続端子部4d(以下、「電極各部4a,4b,4c,4d」ともいう)からなる電極4は、材料として銅ニッケル合金を含む。電極各部4a,4b,4c,4dは、それぞれ同一の材料で形成されていてもよく、異なる材料で形成されていてもよい。すなわち、電極各部4a,4b,4c,4dの全てが銅ニッケル合金で形成されていてもよく、一部のみが銅ニッケル合金で形成されていてもよい。また、電極各部4a,4b,4c,4dは、それぞれ銅ニッケル合金と他の材料とを含んでいてもよい。なお、電極4は、通常、不透明である。
 電極4に使用できる銅ニッケル合金以外の他の材料としては、白金、アルミニウム、ニッケル、タングステン、鉄、金、銀、銅、パラジウム、クロム、ニッケルクロム合金、銅マンガン合金、鉄クロム合金等が挙げられる。
 電極4が銅ニッケル合金を含むことにより、良好な抵抗値及び良好な線膨張係数を得ることができると共に、良好な耐食性を得ることができる。上記効果を充分に得る観点から、電極4に含まれる銅ニッケル合金の割合は、電極4全量を基準として、30質量%以上であることが好ましく、50質量%以上であることがより好ましい。
 電極4の厚さは特に限定されないが、押した圧力に対する感度及び電極自体の強度の観点から、通常、0.01~100μmであり、好ましくは0.01~10μmである。なお、電極各部4a,4b,4c,4dは、それぞれ厚さが同一でも異なっていてもよい。また、引き出し配線部4c及び外部接続端子部4dは、2以上の層からなる積層体であってもよい。
 基材10において、その一方の主面の全面積に占める電極4の面積割合(基材フィルム2の一方の主面F1の全面積のうちの、電極4に被覆されている面積の割合)は、10%以上であることが好ましく、30%以上であることがより好ましく、40%以上であることがさらに好ましい。電極4の面積割合が大きいほど、押した圧力に対する感度が向上すると共に、感知できる領域も大きくなる。また、電極4の面積割合が大きいほど、電極4の表面から保護膜30の剥離を抑制するという本発明の効果が有効に発揮される。
 保護膜30は、電極4の全部を被覆していてもよく、一部を被覆していてもよい。例えば、図1の(a)に示すように、保護膜30は、本体部4a、配線部4b及び引き出し配線部4cの全部を被覆し、外部接続端子部4dの一部を被覆していてもよい。この場合、外部接続端子部4dの保護膜30に覆われていない部分は、保護膜30とは別の保護部材により保護されていてもよい。電極4の腐食防止の観点から、保護膜30は、少なくとも本体部4a及び配線部4bの全部を被覆していることが好ましく、本体部4a、配線部4b及び引き出し配線部4cの全部を被覆していることがより好ましい。
 また、保護膜30は、基材フィルム2の一方の主面F1の全部を被覆していてもよく、一部を被覆していてもよい。
 次に、基材10上に保護膜30を形成してフォースセンサ100を製造する方法の一実施形態について説明する。以下では、転写型感光性フィルムを用いて保護膜30を形成する場合を説明する。
 まず、転写型感光性フィルムの保護フィルムを除去した後、感光性樹脂層及び支持フィルムを、基材10の電極4が設けられている側の表面に感光性樹脂層側から圧着することによりラミネート(転写)する。圧着手段としては、圧着ロールが挙げられる。圧着ロールは、加熱圧着できるように加熱手段を備えたものであってもよい。
 加熱圧着する場合の加熱温度は、感光性樹脂層と基材10との密着性の観点、及び、感光性樹脂層の構成成分が熱硬化又は熱分解されにくいようにする観点から、10~160℃とすることが好ましく、20~150℃とすることがより好ましく、30~150℃とすることがさらに好ましい。
 また、加熱圧着時の圧着圧力は、感光性樹脂層と基材10との密着性を充分確保しながら、基材10の変形を抑制する観点から、線圧で50~1×10N/mとすることが好ましく、2.5×10~5×10N/mとすることがより好ましく、5×10~4×10N/mとすることがさらに好ましい。
 転写型感光性フィルムを上記のように加熱圧着すれば、基材10の予熱処理は必ずしも必要ではないが、感光性樹脂層と基材10との密着性をさらに向上させる点から、基材10を予熱処理してもよい。このときの処理温度は、30~150℃とすることが好ましい。
 次に、転写後の感光性樹脂層の所定部分に、フォトマスクを介して、活性光線をパターン状に照射する(露光工程)。なお、フォトマスクを介さずに、感光性樹脂層の全面に活性光線を照射してもよい。活性光線を照射する際、感光性樹脂層上の支持フィルムが透明の場合には、そのまま活性光線を照射することができ、不透明の場合には除去してから活性光線を照射する。活性光線の光源としては、公知の活性光源を用いることができる。活性光線の光源としては、例えば、カーボンアーク灯、水銀蒸気アーク灯、高圧水銀灯、超高圧水銀灯、キセノンランプ、アルゴンレーザ等のガスレーザ、YAGレーザ等の固体レーザ、半導体レーザ及び窒化ガリウム等の青紫色レーザ等の紫外線、可視光等を有効に放射するものが用いられる。
 活性光線の照射量は、1×10~1×10J/mであり、照射の際に、加熱を伴うこともできる。この活性光線の照射量が、1×10J/m以上であれば、感光性樹脂層の光硬化を充分に進行させることが可能となり、1×10J/m以下であれば感光性樹脂層が変色することを抑制できる傾向がある。
 続いて、活性光線照射後の感光性樹脂層の未露光部を現像液で除去して、基材10が有する電極4の一部又は全部を被覆する保護膜30を形成する。なお、活性光線の照射後、感光性樹脂層に支持フィルムが積層されている場合にはそれを除去した後、現像工程が行われる。
 現像工程は、アルカリ水溶液、水系現像液、有機溶剤等の公知の現像液を用いて、スプレー、シャワー、揺動浸漬、ブラッシング、スクラッビング等の公知の方法により行うことができる。中でも、環境、安全性の観点からアルカリ水溶液を用いて、スプレー現像することが好ましい。なお、現像温度及び時間は従来公知の範囲で調整することができる。
 現像工程後、保護膜30の架橋密度を向上させると共に、基材10(電極4及び基材フィルム2)との密着性を向上させる観点から、活性光線をさらに照射する追加露光工程を行うことが好ましい。追加露光工程での活性光線の照射量は、1×10~1×10J/mであることが好ましく、1×10~5×10J/mであることがより好ましく、1×10~2×10J/mであることがさらに好ましい。また、活性光線の照射の際に、加熱を伴うこともできる。また、追加露光工程での活性光線の照射量は、保護膜30の架橋密度をより向上させる観点から、現像工程の前の露光工程での活性光線の照射量よりも大きくすることが好ましい。活性光線の照射量が上記下限値以上であると、保護膜30の架橋密度をより向上させることができると共に、保護膜30と基材10との密着性をより向上させることができる。活性光線の照射量が上記上限値以下であると、保護膜30が変色することを抑制できる傾向がある。
 追加露光工程後、保護膜30の架橋密度を向上させると共に、基材10(電極4及び基材フィルム2)との密着性を向上させる観点から、保護膜30を加熱してアニール処理するアニール工程を行ってもよい。アニール工程での加熱温度は、50~200℃とすることが好ましく、50~170℃とすることがより好ましく、80~150℃とすることがさらに好ましい。アニール工程での加熱時間は、0.1~2時間とすることが好ましく、0.1~1.5時間とすることがより好ましく、0.1~1時間とすることがさらに好ましい。加熱温度及び加熱時間が上記下限値以上であると、保護膜30の架橋密度をより向上させることができると共に、保護膜30と基材10との密着性をより向上させることができる。加熱温度及び加熱時間が上記上限値以下であると、保護膜30が変色することを抑制できる傾向がある。
 以上により、基材10上に保護膜30が形成されたフォースセンサ100を得ることができる。
 なお、本発明は上記実施形態に限定されるものでなく、様々な変形態様が可能である。
 例えば、フォースセンサは、図1及び図2に示したような基材フィルム2の一方の主面F1上にのみ電極4及び保護膜30を有する場合に限定されず、図3に示すフォースセンサ200のように、基材フィルム2の他方の主面F2上にも電極6及び保護膜40を有していてもよい。この場合、基材20において、基材フィルム2の主面F2上に形成されたひずみ受感部は、長さ方向が主面F1上に形成されたひずみ受感部5の長さ方向と直交するように設けられる。なお、電極6及び保護膜40の構成は、電極4及び保護膜30の構成と同様である。このように、基材フィルム2の両主面にひずみ受感部を設け、主面F1と主面F2とでひずみ受感部の向きを変えることにより、複数の方向のひずみを精度良く検知することができる。
 本実施形態に係る保護膜及びフォースセンサは、各種電子部品に適用することができる。電子部品としては、タッチパネル、液晶ディスプレイ、有機エレクトロルミネッサンス、電子ペーパ等が挙げられる。
 以下、実施例を挙げて本発明についてより具体的に説明する。ただし、本発明は以下の実施例に限定されるものではない。
[バインダーポリマー溶液の作製]
(合成例A1)
 撹拌機、還流冷却機、不活性ガス導入口及び温度計を備えたフラスコに、プロピレングリコールモノメチルエーテル62質量部及びトルエン62質量部を仕込み、窒素ガス雰囲気下で80℃に昇温し、反応温度を80℃±2℃に保ちながら、表1に示す化合物と2,2’-アゾビス(イソブチロニトリル)1.5質量部を4時間かけて均一に滴下した。滴下後、80℃±2℃で6時間撹拌を続け、重量平均分子量が60000±10000、酸価が80mgKOH/gのバインダーポリマー溶液A1(固形分45質量%)を得た。
(合成例A2)
 撹拌機、還流冷却機、不活性ガス導入口及び温度計を備えたフラスコに、プロピレングリコールモノメチルエーテル62質量部及びトルエン62質量部を仕込み、窒素ガス雰囲気下で80℃に昇温し、反応温度を80℃±2℃に保ちながら、表1に示す化合物と2,2’-アゾビス(イソブチロニトリル)1.5質量部を4時間かけて均一に滴下した。滴下後、80℃±2℃で6時間撹拌を続け、重量平均分子量が60000±10000、酸価が115mgKOH/gのバインダーポリマー溶液A2(固形分45質量%)を得た。
(合成例A3)
 反応容器中に1-メトキシ-2-プロパノール(ダイセル化学工業(株)製)85.7質量部をあらかじめ加え80℃に昇温した。他方で、メタクリル酸シクロヘキシル50質量部、メタクリル酸メチル30質量部、メタクリル酸20質量部、及びアゾ系重合開始剤(和光純薬工業株式会社製、V-601)10質量部を混合し、混合溶液を得た。この混合溶液を、窒素ガス雰囲気下、80℃の上記反応容器中に2時間かけて滴下した。滴下後4時間反応させて、アクリル樹脂溶液を得た。
 次いで、上記アクリル樹脂溶液に、ハイドロキノンモノメチルエーテル2.5質量部、及びテトエチルアンモニウムブロマイド8.4質量部を加えた後、グリシジルメタクリレートを2時間かけて滴下した。グリシジルメタクリレートの添加量は、バインダーポリマーの二重結合当量(二重結合1mol当たりのバインダーポリマーの質量)が1000g/molとなる量とした。滴下後、空気を吹き込みながら80℃で4時間反応させ後、固形分濃度が45質量%になるように溶媒としてプロピレングリコールモノメチルエーテルアセテートを添加し、重量平均分子量が60,000、酸価が約130mgKOH/gのバインダーポリマー溶液A3を得た。なお、メタクリル酸シクロヘキシル、メタクリル酸メチル、メタクリル酸、及びグリシジルメタクリレートがx:l:y:z=46mol%:2mol%:20mol%:32mol%になるように、添加量を調整した。
Figure JPOXMLDOC01-appb-T000011
 バインダーポリマーの重量平均分子量及び酸価は、以下の方法で測定したものである。
[重量平均分子量の測定方法]
 重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー法(GPC)によって測定し、標準ポリスチレンの検量線を用いて換算することにより導出した。GPCの測定条件を以下に示す。
<GPC測定条件>
ポンプ:日立 L-6000型(株式会社日立製作所製、製品名)
カラム:Gelpack GL-R420、Gelpack GL-R430、Gelpack GL-R440(以上、日立化成株式会社製、製品名)
溶離液:テトラヒドロフラン
測定温度:40℃
流量:2.05mL/分
検出器:日立 L-3300型RI(株式会社日立製作所製、製品名)
[酸価の測定方法]
 酸価は、次のようにして測定した。まず、バインダーポリマーの溶液を130℃で1時間加熱し、揮発分を除去して、固形分を得た。そして、上記固形分のポリマー1gを精秤した後、このポリマーにアセトンを30g添加し、これを均一に溶解した。次いで、指示薬であるフェノールフタレインをその溶液に適量添加して、0.1NのKOH水溶液を用いて滴定を行った。そして、次式により酸価を算出した。
酸価=0.1×Vf×56.1/(Wp×I/100)
式中、VfはKOH水溶液の滴定量(mL)を示し、Wpは測定したポリマー溶液の質量(g)を示し、Iは測定したポリマー溶液中の不揮発分の割合(質量%)を示す。
(実施例1~6及び比較例1~4)
[感光性樹脂層形成用塗布液の作製]
 表2に示す成分を、同表に示す配合量(単位:質量部)で配合し、攪拌機を用いて15分間混合して感光性樹脂層形成用塗布液を作製した。表2中、(A)成分の配合量は固形分の配合量を示す。なお、塗布液は、溶媒としてメチルエチルケトンを用い、固形分20~30質量%に調整した。
Figure JPOXMLDOC01-appb-T000012
 表2中の成分の記号は以下の意味を示す。
〔(A)成分〕
 上述した方法で作製したバインダーポリマー溶液A1、A2、A3を用いた。
〔(B)成分〕
A-TMMT:ペンタエリスリトールテトラアクリレート(新中村化学工業株式会社製、製品名)
T-1420:ジトリメチロールプロパンテトラアクリレート(日本化薬株式会社製、製品名)
A-DCP:トリシクロデカンジメタノールジアクリレート(新中村化学工業株式会社製、製品名)
TMPTA:トリメチロールプロパントリアクリレート(日本化薬株式会社製、製品名)
DPHA:ジペンタエリスリトールヘキサアクリレート(日本化薬株式会社製、製品名)
〔(C)成分〕
OXE01:1,2-オクタンジオン,1-[4-(フェニルチオ)フェニル-,2-(O-ベンゾイルオキシム)](BASFジャパン株式会社製、製品名「IRGACURE OXE 01」)
〔(D)成分〕
B-6030:5-アミノ-1H-テトラゾール(千代田ケミカル株式会社製、製品名)
〔(E)成分〕
PM-21:エチレン性不飽和結合を含むリン酸エステル(日本化薬株式会社製、製品名)
〔その他の成分〕
AD8032:オクタメチルシクロテトラシロキサン(東レ・ダウコーニング株式会社製、製品名「ADDITIVE8032」
[転写型感光性フィルムの作製]
 支持フィルムとして厚さ16μmのポリエチレンテレフタレートフィルム(東レ株式会社製、製品名:FB40)を使用し、上記で作製した感光性樹脂層形成用塗布液を支持フィルム上にコンマコーターを用いて均一に塗布し、100℃の熱風対流式乾燥機で3分間乾燥して溶剤を除去し、厚さ8μmの感光性樹脂層を形成した。
 保護フィルムとして厚さ30μmのポリプロピレンフィルム(王子エフテックス株式会社製、製品名:E-201F)を使用し、上記で作製した感光性樹脂層上に、ラミネータ(日立化成株式会社製、製品名:HLM-3000型)を用いて、23℃で貼り合わせて、支持フィルム、感光性樹脂層及び保護フィルムがこの順で積層された転写型感光性フィルムを作製した。
[保護膜の作製]
 上記で作製した転写型感光性フィルムから保護フィルムを剥離したサンプルを2枚用意し、感光性樹脂層同士をラミネータ(日立化成株式会社製、製品名:HLM-3000型)を用いてロール温度100℃、基板送り速度0.4m/分、圧着圧力(シリンダ圧力)4×10Paの条件でラミネートした。ラミネート後、貼り合わせ品を冷却し、貼り合わせ品の温度が23℃になった時点で、片側の支持フィルムを剥離し、露出した感光性樹脂層と、上記転写型感光性フィルムから保護フィルムを剥離したサンプルの感光性樹脂層とを、上記と同様の条件でラミネートした。本手順で感光性樹脂層が40μmになるまでラミネートした。ラミネート後、一方の支持フィルム側から、超高圧水銀灯を有する露光機(株式会社オーク製作所製、製品名:EXM-1201)を用いて、80mJ/cmの露光量で光照射し(初期露光)、支持フィルムを剥離した。次いで、露出した感光性樹脂層側から、超高圧水銀灯を有する露光機(株式会社オーク製作所製、製品名:EXM-1201)を用いて、500mJ/cmの露光量で光照射した(追加露光)。追加露光後のサンプルを箱型乾燥機(三菱電機株式会社製、型番:NV50-CA)を用いて140℃で30分加熱した(アニール処理)。最後に、サンプルを所定のサイズにカットし、もう1枚の支持フィルムを剥離して、厚さ40μmの保護膜を形成した。
[架橋密度の測定]
 上記で作製した保護膜の貯蔵弾性率を以下の条件で測定した。
測定装置:DVA-220(アイティー計測制御株式会社製)
試験条件:
 サンプルサイズ:40μm×4mm×20mm
 測定モード:引張
 温度範囲:25℃~200℃
 静/動応力比:2
 昇温速度:5℃/min
 周波数:10Hz
 保護膜の架橋密度は、下記式により求められる。本実施例及び比較例においては、175℃(T=448.15K)における貯蔵弾性率の測定結果を用いて、架橋密度を求めた。結果を表2に示す。
n=E’/3RT
[n:架橋密度(mol/m)、E’:貯蔵弾性率(Pa)、R:気体定数(=8.31J/mol・k)、T:絶対温度(K)]
[反応率の測定]
 保護膜の反応率を以下の方法で測定した。転写型感光性フィルムの保護フィルムを剥離しながら、感光性樹脂層を基材(製品名:A4300#125、東洋紡株式会社製)に対向させ、ラミネータ(日立化成株式会社製、製品名:HLM-3000型)を用いてロール温度100℃、基板送り速度0.4m/分、圧着圧力(シリンダ圧力)4×10Paの条件でラミネートした。ラミネート後、基材を冷却し、基材の温度が23℃になった時点で、支持フィルム側から超高圧水銀灯を有する露光機(株式会社オーク製作所製、製品名:EXM-1201)を用いて、80mJ/cmの露光量で光照射し(初期露光)、支持フィルムを剥離した。次いで、露出した感光性樹脂層側から超高圧水銀灯を有する露光機(株式会社オーク製作所製、製品名:EXM-1201)を用いて、500mJ/cmの露光量で光照射した(追加露光)。その後、箱型乾燥機(三菱電機株式会社製、型番:NV50-CA)を用いて140℃で30分加熱した(アニール処理)。これにより、基材上に厚さ8μmの保護膜を形成した。
 フーリエ変換赤外分光光度計IRTracer-100(株式会社島津製作所製、製品名)を使用し、ATR法により、上記で作製した保護膜(硬化物)及び転写型感光性フィルムの感光性樹脂層(未硬化物)の反射IRスペクトルを取得した。取得したスペクトルから反応率を算出した。結果を表2に示す。
[酸透過時間の測定]
 上記で作製した転写型感光性フィルムの感光性樹脂層に対し、上記保護膜(厚さ40μm)の作製方法と同様の方法及び条件で、初期露光、追加露光及びアニール処理を行い、所定のサイズにカットし、もう1枚の支持フィルムを剥離して、縦50mm、横50mm、厚さ8μmの保護膜を、酸透過時間測定用のサンプルとして作製した。80℃のホットプレート上に0.02Mの酢酸水溶液を0.02ml滴下し、酢酸水溶液上に上記保護膜のサンプルを、サンプルの略中央に酢酸水溶液の液滴が配置されるように静かに置き、さらにサンプル上の略中央に青色リトマス紙(横浜油脂工業株式会社製、製品名:PH試験紙(リトマス))を置いた。保護膜のサンプルを置いた時から青色リトマス紙の少なくとも一部が赤色に変化するまでの時間を測定し、それを酸透過時間とした。結果を表2に示す。
[密着性の評価]
(通常時の密着性)
 厚さ125μmのPETフィルムの両方の表面の全面に銅ニッケル合金の層が形成された基材を用意した。上記で作製した転写型感光性フィルムの保護フィルムをはがしながら、上記基材上に、感光性樹脂層が接するようにラミネータ(日立化成株式会社製、製品名:HLM-3000型)を用いて、ロール温度100℃、基板送り速度0.4m/分、圧着圧力(シリンダ圧力)4×10Paの条件でラミネートした。ラミネート後、基材を冷却し、基材の温度が23℃になった時点で、感光性樹脂層に対し、支持フィルム側から超高圧水銀灯を有する露光機(株式会社オーク製作所製、製品名:EXM-1201)を用いて、80mJ/cmの露光量で光照射し(初期露光)、支持フィルムを剥離した。
 初期露光後の感光性樹脂層に対し、1.0質量%炭酸ナトリウム水溶液を用いて、30℃で40秒間スプレー現像した。現像後の感光性樹脂層に対し、超高圧水銀灯を有する露光機(株式会社オーク製作所製、製品名:EXM-1201)を用いて、500mJ/cmの露光量で光照射した(追加露光)。追加露光後のサンプルを箱型乾燥機(三菱電機株式会社製、型番:NV50-CA)を用いて140℃で30分加熱した(アニール処理)。これにより、基材の銅ニッケル合金の層上に、厚さ8μmの保護膜が形成された密着性測定試料を得た。
 次いで、得られた密着性測定試料について、JIS規格(JIS K5400)を参考に、100マスのクロスカット試験をそれぞれ2回実施した。具体的には、得られた密着性測定試料の保護膜に、カッターナイフを用いて、1mm×1mm四方の碁盤目切れ込みを100マス入れた。その後、碁盤目部分にメンディングテープ#810(スリーエム(株)製)を強く圧着させ、30秒後にテープの端からほぼ180°の角度の方向に素早く引き剥がした。その後、碁盤目の状態を観察し、以下の評点に従ってクロスカット密着性を評価した。評価は2回の試験の平均値を用いて行った。結果を表2に示す。
5:全面積のほぼ100%が密着している。
4:全面積のうち95%以上100%未満が密着し残っている。
3:全面積のうち85%以上95%未満が密着し残っている。
2:全面積のうち65%以上85%未満が密着し残っている。
1:全面積のうち35%以上65%未満が密着し残っている。
0:全面積のうち0%以上35%未満が密着し残っている。
(酸環境に晒された後の密着性)
 上記密着性の評価と同様にして作製した密着性測定試料を、23±5℃の0.02Mの酢酸水溶液に1時間浸漬した。浸漬後の密着性測定試料を用いた以外は上記密着性の評価と同様にしてクロスカット試験を行い、密着性を評価した。結果を表2に示す。
[酸耐性の評価]
 上記密着性の評価と同様にして作製した密着性測定試料を、50mm×50mmのサイズに切り出し、酸耐性評価用の試験片とした。この試験片を用いて、保護膜の酸耐性を以下の方法で測定した。上記試験片の保護膜上の中央に、滴下した液滴が真円となるように0.02Mの酢酸水溶液を0.02ml滴下し、85℃85%Rh環境下に所定時間放置した。その後、液滴をふき取り、水で表面を洗浄した後、銅ニッケル合金層からの保護膜の剥がれの有無を観察し、以下の基準に従って酸耐性を評価した。保護膜が剥がれている試験片は、液滴の形に保護膜が剥がれており、円形状の跡が付いていた。結果を表2に示す。
○:200時間後でも保護膜の剥がれなし。
△:100時間以上200時間未満で保護膜の剥がれ発生。
×:100時間未満で保護膜の剥がれ発生。
 2…基材フィルム、4…電極、4a…本体部、4b…配線部、4c…引き出し配線部、4d…外部接続端子部、6…電極、10,20…基材、30,40…保護膜、100,200…フォースセンサ。
 

Claims (10)

  1.  銅ニッケル合金を含む電極を有する基材上に設けられ、前記電極の一部又は全部を被覆する保護膜であって、
     前記保護膜の架橋密度が5.0mol/m以上である、保護膜。
  2.  80℃のホットプレート上に0.02Mの酢酸水溶液を0.02ml滴下し、前記酢酸水溶液上に縦50mm、横50mm、厚さ8μmの前記保護膜を置き、前記保護膜上に青色リトマス紙を置いた時の、前記青色リトマス紙の少なくとも一部が赤色に変化するまでの時間を酸透過時間とした場合、前記酸透過時間が0.5時間以上である、請求項1に記載の保護膜。
  3.  前記保護膜がペンタエリスリトール骨格を有する化合物を含有する、請求項1又は2に記載の保護膜。
  4.  前記保護膜が、バインダーポリマーと、光重合性化合物と、光重合開始剤と、を含有する感光性樹脂組成物の硬化物からなる、請求項1~3のいずれか一項に記載の保護膜。
  5.  前記保護膜における反応性官能基の反応率が60~70%である、請求項1~4のいずれか一項に記載の保護膜。
  6.  前記銅ニッケル合金を含む電極を有する基材は、その一方の主面の全面積に占める前記電極の面積割合が10%以上であるものである、請求項1~5のいずれか一項に記載の保護膜。
  7.  前記銅ニッケル合金を含む電極を有する基材が、フォースセンサを構成するものである、請求項1~6のいずれか一項に記載の保護膜。
  8.  銅ニッケル合金を含む電極を有する基材と、
     前記基材上に設けられ、前記電極の一部又は全部を被覆する請求項1~7のいずれか一項に記載の保護膜と、
    を備えるフォースセンサ。
  9.  前記銅ニッケル合金を含む電極を有する基材は、その一方の主面の全面積に占める前記電極の面積割合が10%以上であるものである、請求項8に記載のフォースセンサ。
  10.  支持フィルムと、前記支持フィルム上に設けられた感光性樹脂層と、を備える感光性フィルムであって、
     前記感光性樹脂層は、厚さを40μmとした前記感光性樹脂層に対して、総露光量580mJ/cmで露光し、140℃で30分加熱した後の架橋密度が5.0mol/m以上となる層である、感光性フィルム。
PCT/JP2017/035612 2017-09-29 2017-09-29 保護膜、フォースセンサ及び感光性フィルム WO2019064535A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/035612 WO2019064535A1 (ja) 2017-09-29 2017-09-29 保護膜、フォースセンサ及び感光性フィルム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/035612 WO2019064535A1 (ja) 2017-09-29 2017-09-29 保護膜、フォースセンサ及び感光性フィルム

Publications (1)

Publication Number Publication Date
WO2019064535A1 true WO2019064535A1 (ja) 2019-04-04

Family

ID=65902764

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/035612 WO2019064535A1 (ja) 2017-09-29 2017-09-29 保護膜、フォースセンサ及び感光性フィルム

Country Status (1)

Country Link
WO (1) WO2019064535A1 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6198804B2 (ja) * 2015-12-01 2017-09-20 日本写真印刷株式会社 多点計測用のひずみセンサとその製造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6198804B2 (ja) * 2015-12-01 2017-09-20 日本写真印刷株式会社 多点計測用のひずみセンサとその製造方法

Similar Documents

Publication Publication Date Title
JP6589953B2 (ja) 感光性エレメント
JP6540766B2 (ja) タッチパネル用電極の保護膜及びタッチパネル
JP6212970B2 (ja) タッチパネル用電極の保護膜及びタッチパネル
JP2018024225A (ja) 転写フィルム、電極保護膜、積層体、静電容量型入力装置および転写フィルムの製造方法
JP6551277B2 (ja) 硬化膜付きタッチパネル用基材の製造方法、それに用いる感光性樹脂組成物、感光性エレメント及びタッチパネル
WO2016001955A1 (ja) 転写形感光性屈折率調整フィルム
JP5304971B1 (ja) タッチパネル用電極の保護膜及びタッチパネル
JP2019175226A (ja) タッチセンサの保護膜形成用感光性フィルム、タッチセンサの保護膜形成用感光性屈折率調整フィルム、タッチセンサの保護膜の形成方法及びタッチパネル
JP2017116774A (ja) 転写形感光性屈折率調整フィルム
JP5523642B1 (ja) プリント配線板製造用光硬化性組成物、その硬化物およびプリント配線板
JP2017201352A (ja) 転写形感光性屈折率調整フィルム、屈折率調整パターンの形成方法及び電子部品
WO2019130750A1 (ja) 転写フィルム、電極保護膜、積層体、静電容量型入力装置、及び、タッチパネルの製造方法
JP2019066630A (ja) 転写型感光性フィルム、保護膜の形成方法及びフォースセンサ
WO2019064535A1 (ja) 保護膜、フォースセンサ及び感光性フィルム
WO2017155003A1 (ja) 転写フィルム、電極保護膜、積層体、静電容量型入力装置、静電容量型入力装置の製造方法、および転写フィルムの製造方法
JP2018165788A (ja) 転写型感光性フィルム、硬化樹脂パターンの形成方法及びタッチパネル
JP6943279B2 (ja) 転写型感光性フィルム、硬化膜パターンの形成方法及びタッチパネル
WO2019064529A1 (ja) 電極の保護膜の形成方法
WO2019207648A1 (ja) 感光性樹脂組成物、転写型感光性フィルム、硬化膜付き基材及びセンシングデバイス
JP2017198878A (ja) 感光性導電フィルム及びそれを用いた導電パターン、導電パターン基板、タッチパネルセンサの製造方法
JP2019215395A (ja) 転写型感光性フィルム、硬化膜パターンの形成方法、積層体及びタッチパネル
JP2015146038A (ja) 樹脂硬化膜パターンの形成方法、感光性樹脂組成物、感光性エレメント、タッチパネルの製造方法及び樹脂硬化膜
KR20180063106A (ko) 전사형 감광성 굴절률 조정 필름
WO2019064528A1 (ja) 転写型感光性フィルム、保護膜の形成方法、フォースセンサの製造方法及びフォースセンサ
JP7210091B2 (ja) 転写型感光性フィルム、硬化膜パターンの形成方法、硬化膜及びタッチパネル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17926614

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17926614

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP