WO2019064325A1 - レーザ加工方法およびレーザ加工装置 - Google Patents

レーザ加工方法およびレーザ加工装置 Download PDF

Info

Publication number
WO2019064325A1
WO2019064325A1 PCT/JP2017/034650 JP2017034650W WO2019064325A1 WO 2019064325 A1 WO2019064325 A1 WO 2019064325A1 JP 2017034650 W JP2017034650 W JP 2017034650W WO 2019064325 A1 WO2019064325 A1 WO 2019064325A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
laser beam
processing apparatus
processing
workpiece
Prior art date
Application number
PCT/JP2017/034650
Other languages
English (en)
French (fr)
Inventor
芳晴 黒崎
山本 達也
恭平 石川
政之 佐伯
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201780079600.3A priority Critical patent/CN110121397A/zh
Priority to US16/347,592 priority patent/US20190255649A1/en
Priority to JP2018518544A priority patent/JP6385622B1/ja
Priority to PCT/JP2017/034650 priority patent/WO2019064325A1/ja
Priority to DE112017006002.8T priority patent/DE112017006002T5/de
Publication of WO2019064325A1 publication Critical patent/WO2019064325A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0648Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/073Shaping the laser spot
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • B23K26/382Removing material by boring or cutting by boring

Definitions

  • the present invention relates to a laser processing method and a laser processing apparatus for processing a workpiece by irradiation of a laser beam.
  • Patent Document 1 discloses a technology of a laser processing apparatus that processes a workpiece by irradiating two laser beams having different wavelength ranges.
  • the laser processing apparatus of patent document 1 irradiates to a to-be-processed object the laser beam of a short wavelength which made the focal distance mutually differ, and the laser beam of a long wavelength.
  • Patent Document 1 focuses on a first method of focusing a long wavelength laser beam on the center of a short wavelength laser beam spot for preheating, and on a focus of a short wavelength laser beam for processing. In the region, a second method of forming a spot of a long wavelength laser beam for raising the temperature of the melted workpiece is shown.
  • Patent Document 2 proposes a technology of a laser processing apparatus in which laser beams having different beam shapes are superimposed and irradiated on a workpiece.
  • the present invention is made in view of the above, and an object of the present invention is to obtain a laser processing method which enables high quality processing.
  • a first laser oscillator for pulsating a first laser beam, and a first laser beam have a wavelength or pulse width
  • a second laser oscillator for pulsating a second laser beam In a laser processing method, a first laser beam and a second laser beam are alternately irradiated to a workpiece.
  • the laser processing method according to the present invention has an effect that high quality processing can be performed.
  • the figure which shows the structure of the laser processing apparatus concerning Embodiment 1 of this invention The figure which shows the example of intensity distribution of laser beam L1 in the workpiece
  • work shown in FIG. A perspective view showing an example of the beam shaper shown in FIG. 1
  • Top view of the beam shaper shown in FIG. 4 A cross-sectional view showing a heat affected layer produced when a long wavelength laser beam is irradiated to the work shown in FIG. 1
  • FIG. 8 Sectional view of workpiece on line IX-IX shown in FIG. 8 Sectional view of the work in the XX line shown in FIG. 8
  • the 2nd figure which shows the mode of processing by the laser processing apparatus shown in FIG.
  • a flowchart showing the procedure of the laser processing method according to the first embodiment A block diagram showing an example of the hardware configuration of the controller shown in FIG. 1
  • FIG. 1 The figure which shows the structure of the laser processing apparatus concerning Embodiment 2 of this invention.
  • the 1st figure which shows the mode of the processing by the laser processing apparatus shown in FIG.
  • FIG. 1 is a view showing the configuration of a laser processing apparatus 1 according to a first embodiment of the present invention.
  • the laser processing apparatus 1 processes a workpiece 15 which is a workpiece by irradiation of a laser beam.
  • the X axis and the Y axis are two axes parallel to the horizontal direction and perpendicular to each other.
  • the Z axis is an axis parallel to the vertical direction and perpendicular to the X axis and the Y axis.
  • the work 15 is placed on the stage 13 in a plane parallel to the X axis and the Y axis.
  • a direction indicated by an arrow in the drawing may be referred to as a plus X direction, and a direction opposite to the direction indicated by the arrow may be referred to as a minus X direction.
  • the direction indicated by the arrow in the drawing may be referred to as the plus Z direction, and the direction opposite to the direction indicated by the arrow may be referred to as the minus Z direction.
  • the plus Z direction is the vertically upward direction.
  • the negative Z direction is the vertically downward direction.
  • the laser processing apparatus 1 includes a laser oscillator 2 which is a first laser oscillator, and a laser oscillator 3 which is a second laser oscillator.
  • the laser oscillator 2 pulsates the first laser beam.
  • the laser oscillator 3 pulsates a second laser beam whose wavelength is different from that of the first laser beam.
  • the laser beam L1 which is a first laser beam is a pulsed laser of a first wavelength.
  • the laser beam L2, which is the second laser beam is a pulsed laser of the second wavelength.
  • the second wavelength is longer than the first wavelength.
  • the pulse width of the laser beam L1 and the pulse width of the laser beam L2 are the same.
  • the beam shaper 4 shapes the beam shape of the laser beam L1 irradiated to the workpiece 15 into an annular beam shape whose peripheral intensity is high compared to the center of the beam.
  • the laser beam L1 has a toroidal beam shape at the work 15 that has a higher peripheral intensity than the center of the beam.
  • the beam shaper 5 shapes the beam shape of the laser beam L2 irradiated to the workpiece 15 into a circular beam shape in which the intensity becomes maximum at the center of the beam.
  • the laser beam L2 has a circular beam shape in which the intensity becomes maximum at the center of the beam at the work 15.
  • the laser oscillators 2 and 3 are a solid state laser, a semiconductor laser, a fiber laser, a CO 2 laser, or a CO laser.
  • Examples of the first wavelength and the second wavelength are 10.6 ⁇ m, 9.3 ⁇ m, 5 ⁇ m, 1.06 ⁇ m, 1.03 ⁇ m, 532 nm, 355 nm and 266 nm, and the first wavelength is greater than the second wavelength
  • the first and second wavelengths are set to be short.
  • the mirror 6 is disposed in the optical path of the laser beam L 1 from the beam shaper 4.
  • the mirror 6 reflects the laser beam L 1 and causes the laser beam L 1 to travel to the dichroic mirror 7.
  • the dichroic mirror 7 is disposed at the intersection of the optical path of the laser beam L 1 from the mirror 6 and the optical path of the laser beam L 2 from the beam shaper 5.
  • the dichroic mirror 7 has wavelength characteristics that reflect light of the first wavelength and transmit light of the second wavelength.
  • the dichroic mirror 7 reflects the laser beam L1 and transmits the laser beam L2, thereby matching the traveling direction of the laser beam L1 with the traveling direction of the laser beam L2.
  • the dichroic mirror 7 may reflect the laser beam L2 and transmit the laser beam L1.
  • the mirror 8 reflects the laser beams L1 and L2 from the dichroic mirror 7 and causes the laser beams L1 and L2 to travel to the processing head 10.
  • the galvano scanners 11 and 12 are accommodated in the processing head 10.
  • the galvano scanner 11 deflects the laser beams L1 and L2 irradiated to the work 15 in the Y-axis direction.
  • the galvano scanner 11 displaces the incident position of the laser beams L1 and L2 on the work 15 in the Y-axis direction by the rotation of the reflecting surface that reflects the laser beams L1 and L2.
  • the galvano scanner 12 deflects the laser beams L1 and L2 irradiated by the workpiece 15 in the X-axis direction.
  • the galvano scanner 12 displaces the incident positions of the laser beams L1 and L2 on the workpiece 15 in the X-axis direction by the rotation of the reflecting surface that reflects the laser beams L1 and L2 from the galvano scanner 11.
  • the galvano scanners 11 and 12 displace the laser beams L1 and L2 in the X-axis direction and the Y-axis direction.
  • the condensing optical system 9 is provided to the processing head 10.
  • the condensing optical system 9 converges the laser beams L1 and L2.
  • the condensing optical system 9 includes one or more condensing lenses.
  • the focusing optical system 9 is an f ⁇ lens having a focusing position of the laser beams L1 and L2 at a position of f ⁇ obtained by multiplying the focal length f of the focusing optical system 9 by the deflection angle ⁇ of the galvano scanners 11 and 12 Also good.
  • the position of the entrance pupil of the condensing optical system 9 is set at an intermediate position between the galvano scanner 11 and the galvano scanner 12.
  • the laser processing apparatus 1 may have only one of the galvano scanners 11 and 12. In addition, the laser processing apparatus 1 may deflect the laser beams L1 and L2 using components other than the galvano scanners 11 and 12. The laser processing apparatus 1 replaces the galvano scanners 11 and 12 and deflects light using an acousto-optic deflector (Acousto-Optic Deflector, AOD) that deflects light using an acousto-optic effect, or an electro-optical effect.
  • An electro-optical deflector Electric-Optic Deflector, EOD may be provided.
  • the processing head 10 is movable in the X-axis direction and the Y-axis direction.
  • the processing head 10 may be movable in only one of the X-axis direction and the Y-axis direction.
  • the controller 14 controls the entire laser processing apparatus 1.
  • the controller 14 controls the laser oscillation of the laser oscillators 2 and 3, the drive of the processing head 10, and the drive of the galvano scanners 11 and 12.
  • the controller 14 controls the laser oscillator 2 and the laser oscillator 3 to irradiate the laser beam L1 and the laser beam L2 alternately to the work 15 for each pulse.
  • the work 15 are composite materials such as carbon fiber reinforced plastics (CFRP), glass fiber reinforced plastics (Glass Fiber Reinforced Plastics, GFRP) and aramid fiber reinforced plastics (Aramid Fiber Reinforced Plastics, AFRP), semiconductor thin film , And glass material.
  • CFRP carbon fiber reinforced plastics
  • GFRP Glass Fiber Reinforced Plastics
  • AFRP aramid fiber reinforced plastics
  • semiconductor thin film semiconductor thin film
  • glass material such as silicon fiber reinforced plastics (CFRP), glass fiber reinforced plastics (Glass Fiber Reinforced Plastics, GFRP) and aramid fiber reinforced plastics (Aramid Fiber Reinforced Plastics, AFRP), semiconductor thin film , And glass material.
  • the laser processing apparatus 1 performs processing for cutting the workpiece 15 by irradiation of the laser beams L1 and L2.
  • the laser processing apparatus 1 applies the laser beams L1 and L2 to the surface on the positive Z direction side of the workpiece 15.
  • the laser processing apparatus 1 irradiates the workpiece 15 with the laser beam L1 and the laser beam L2 on the same optical axis. “On the same optical axis” refers to matching the center of the laser beam L1 with which the workpiece 15 is irradiated with the center of the laser beam L2.
  • the laser processing apparatus 1 cuts the workpiece 15 by causing the workpiece 15 to scan the laser beams L1 and L2 while irradiating the laser beams L1 and L2 alternately.
  • the laser processing apparatus 1 may cause the laser beams L1 and L2 to be repeatedly scanned on the same line of the workpiece 15, and the laser beams L1 and L2 may be irradiated to each position on the line a plurality of times. In this case, the laser processing apparatus 1 cuts the workpiece 15 along the line by repeating the irradiation of the laser beams L1 and L2 and causing the processing point to reach the surface on the negative Z direction side of the workpiece 15.
  • the laser processing apparatus 1 may perform groove processing for forming a groove or hole processing for forming a hole.
  • the material of the work 15 is not limited to the above-described materials as long as processing is performed by multiple irradiation of the laser beams L1 and L2.
  • the stage 13 may be movable in a direction parallel to the X axis and the Y axis.
  • the laser processing apparatus 1 moves one or both of the processing head 10 and the stage 13 and displaces incident positions of the laser beams L1 and L2 on the workpiece 15 by scanning with the galvano scanners 11 and 12.
  • FIG. 2 is a view showing an example of the intensity distribution of the laser beam L1 in the work 15 shown in FIG.
  • the curve shown in FIG. 2 is a graph showing the relationship between the distance from the center O of the laser beam L1 in the X-axis direction and the Y-axis direction, and the intensity of the laser beam L1.
  • the intensity of the laser beam L1 has a maximum value at a certain distance D from the center O. Also, the intensity of the laser beam L1 decreases from the position of the distance D toward the center O. The intensity of the laser beam L1 at the center O is zero. In the XY cross section of the laser beam L1 on the work 15, a portion with high intensity appears in a ring shape along the periphery of the laser beam L1.
  • the intensity of the laser beam L1 at the center O is not limited to zero.
  • the intensity of the laser beam L1 at the center O may be an intensity less than the processing threshold of the workpiece 15. Furthermore, when sufficient intensity can be obtained at the maximum value, the intensity of the laser beam L1 at the center O may be equal to or higher than the processing threshold of the work 15.
  • FIG. 3 is a view showing an example of the intensity distribution of the laser beam L2 in the work 15 shown in FIG.
  • the intensity distribution of the laser beam L2 is a flat top-shaped intensity distribution in which the intensity is maximal and constant in a range of a certain distance from the center O of the laser beam L2.
  • the laser beam L2 is a super Gaussian beam having an intensity distribution that can be approximated to a super Gaussian distribution.
  • the portion with high intensity appears in a circular shape centered on the center O.
  • the laser beam L2 may be a Gaussian beam having an intensity distribution that can be approximated to a normal distribution. In this case, the intensity becomes maximum at the center O of the laser beam L2, and the intensity decreases with distance from the center O. In the XY cross section of the laser beam L2 on the work 15, the portion with high intensity appears in a circular shape centered on the center O.
  • FIG. 4 is a perspective view showing an example of the beam shaper 4 shown in FIG.
  • FIG. 5 is a top view of the beam shaper 4 shown in FIG.
  • the beam shaper 4 is an optical element provided with a plurality of transmission areas 16 having different thicknesses in the direction parallel to the principal ray of the laser from the laser oscillator 2. Each transmission region 16 has a spiral step-like step.
  • the beam shaper 4 converts the phase of the laser from the laser oscillator 2 by causing a phase difference between the light components transmitted through the transmission regions 16 having different thicknesses. By such phase conversion, the beam shaper 4 converts the laser beam L1 from the laser oscillator 2 into a laser beam L1 having an annular intensity distribution.
  • the beam shaper 4 may be a plurality of axicon lenses.
  • the plurality of axicon lenses may be dispersed in the optical path of the laser from the laser oscillator 2.
  • the beam shaper 4 may include an aspheric lens other than the axicon lens.
  • the laser processing apparatus 1 may include a laser oscillator capable of outputting the laser beam L1 of a high-order annular beam mode instead of the laser oscillator 2 and the beam shaper 4.
  • the laser processing apparatus 1 may be provided with a laser oscillator capable of outputting a laser beam L2 of a high-order circular beam mode instead of the laser oscillator 3 and the beam shaper 5.
  • FIG. 6 is a cross-sectional view showing the heat affected layer 17 produced when the workpiece 15 shown in FIG. 1 is irradiated with a long wavelength laser beam.
  • FIG. 7 is a cross-sectional view showing the heat affected layer 17 produced when the workpiece 15 shown in FIG. 1 is irradiated with a laser beam of short wavelength.
  • a long wavelength laser beam has a higher output than a short wavelength laser beam, so that a long wavelength laser beam reaches a deeper position in the workpiece than a short wavelength laser beam.
  • the laser processing apparatus 1 can accelerate the processing and processing can be performed at high speed.
  • the thickness of the heat affected layer 17 is increased by the laser beam reaching a deep position.
  • the heat affected layer 17 is a portion of the laser-processed workpiece that has been changed from its original state due to thermal effects.
  • the heat affected layer 17 removes the plastic component while leaving the fiber component. Since such a heat affected layer 17 causes a reduction in the strength of the processed product and a deterioration in the appearance, the more the heat affected layer 17 remains in the processed product, the lower the quality of the processed product.
  • the laser beam of short wavelength has a low output as compared with the laser beam of long wavelength, and the heat affected layer 17 generated by the penetration of energy can be reduced. If processing using only a short wavelength laser beam is performed, the laser processing apparatus 1 can perform high quality processing. On the other hand, in the case of processing with a short wavelength laser beam, the processing takes a long time, and the time from the start to the end of the processing of the workpiece 15 may be significantly extended. In laser processing, it is desired that both efficient processing of a workpiece and high-quality processing be compatible.
  • FIG. 8 is a first view showing a state of processing by the laser processing apparatus 1 shown in FIG.
  • FIG. 8 shows the state of irradiation of the laser beams L1 and L2 onto the workpiece 15 while cutting is being advanced in the plus X direction.
  • a cut surface 18 is formed at a portion of the work 15 on which processing has been performed.
  • the laser processing apparatus 1 aligns the center O of the laser beam L1 with the center O of the laser beam L2, and sequentially advances the laser beam L1 and the laser beam L2 to the processing area 20.
  • the laser processing apparatus 1 can advance cutting in any direction in the X-axis direction and the Y-axis direction.
  • FIG. 9 is a cross-sectional view of the work 15 taken along line IX-IX shown in FIG.
  • the laser processing apparatus 1 aligns the center O with the center position C of the processing area 20 and irradiates the laser beam L1 to process the outer edge portion of the processing area 20 into an annular shape.
  • a processing groove 21 having a depth d1 is formed.
  • the processing groove 21 has an annular shape on the XY plane.
  • the intensity of the laser beam L1 at the center O may be equal to or higher than the processing threshold of the work 15 as long as the processing groove 21 having a shape dug deeper than the surface of the work 15 at the center position C can be formed. .
  • FIG. 10 is a cross-sectional view of the work 15 taken along the line XX shown in FIG.
  • the laser processing apparatus 1 processes the portion surrounded by the outer edge portion of the processing area 20 into a circular shape by irradiating the processing area 20 with the laser beam L2 subsequent to the irradiation of the laser beam L1.
  • a processed groove 22 having a depth d2 is formed in a portion surrounded by the outer edge portion.
  • the processing groove 22 is formed in a portion closer to the central position C than the outer edge of the processing groove 21 by the laser beam L1.
  • the part of the workpiece 15 outside the machining groove 21 in the X-axis direction and the Y-axis direction is the part left on the workpiece.
  • the laser processing apparatus 1 can reduce the number of the heat-affected layers 17 in the remaining part of the workpiece by forming the processing groove 21 by irradiation of the laser beam L1 having a short wavelength.
  • the laser processing apparatus 1 separates the portion to be removed by the laser beam L2 from the portion left on the workpiece by forming the processing groove 21 prior to the irradiation of the laser beam L2.
  • the heat affected layer 17 generated by the irradiation of the long wavelength laser beam L2 is accommodated in the range closer to the central position C than the outer edge of the processing groove 21 in the X axis direction and the Y axis direction.
  • the laser processing apparatus 1 can reduce the spread of the heat affected layer 17 from the processing region 20 in the X-axis direction and the Y-axis direction, and can reduce the heat affected layer 17 left on the processed product.
  • the laser processing apparatus 1 includes the processing by the long wavelength laser beam L2, the time required for the processing can be shortened as compared with the case where the processing is performed only by the short wavelength laser beam. Thereby, the laser processing apparatus 1 can process the workpiece 15 efficiently.
  • the depth d2 of the processed groove 22 formed by the single irradiation of the laser beam L2 is the same as the depth d1 of the processed groove 21 formed by the single irradiation of the laser beam L1.
  • the laser processing apparatus 1 can suppress the spread of the heat affected layer 17.
  • the depth d1 of the processed groove 21 by one irradiation of the laser beam L1 and the depth d2 of the processed groove 22 by one irradiation of the laser beam L2 are not limited to the same case, and the processed groove 21 is not limited.
  • the depth d1 of the groove may be deeper than the depth d2 of the processing groove 22. Also in this case, the laser processing apparatus 1 can suppress the spread of the heat affected layer 17 caused by the irradiation of the laser beam L2.
  • FIG. 11 is a second view showing a state of processing by the laser processing apparatus 1 shown in FIG.
  • the laser processing apparatus 1 moves the position to be irradiated with the laser beams L1 and L2 in the plus X direction from the portion subjected to the processing by driving the processing head 10.
  • the laser processing apparatus 1 performs processing by irradiation of the laser beam L1 after the operation of aiming the laser beams L1 and L2 at the position P1 shown in FIG. 11, and then performs processing by irradiation of the laser beam L2.
  • the laser processing device 1 moves the sights of the laser beams L1 and L2 to the position P2 next to the position P1 in the plus X direction.
  • the laser processing apparatus 1 performs processing by irradiation of the laser beam L1 to the position P2, and then performs processing by irradiation of the laser beam L2.
  • the laser processing apparatus 1 repeats the irradiation of the laser beam L1 and the irradiation of the laser beam L2 alternately for each pulse to process the workpiece 15.
  • the laser processing apparatus 1 may move the position every time the laser beams L1 and L2 are irradiated a plurality of times, in addition to moving the position each time the laser beams L1 and L2 are irradiated once.
  • FIG. 12 is a diagram for explaining the outputs of the laser beams L1 and L2 by the laser processing apparatus 1 shown in FIG.
  • the vertical axes PL1 and PL2 represent the powers of the laser beams L1 and L2
  • the horizontal axes represent time.
  • the laser processing apparatus 1 repeats on and off of the output of the laser beam L1 at a constant power.
  • the laser processing apparatus 1 repeats the output of the laser beam L2 at a constant power and the output off.
  • the outputs of the laser beams L1 and L2 are represented by rectangular waves of a fixed width.
  • the laser processing apparatus 1 emits the laser beam L1 to the position P1 at time T1.
  • the laser processing apparatus 1 emits the laser beam L2 to the position P1 at time T2 after time T1.
  • the laser processing apparatus 1 causes the laser beam L1 to advance to the processing area 20 at the position P1 by controlling the laser oscillators 2 and 3 by the controller 14, and then causes the laser beam L2 to advance to the processing area 20.
  • the laser processing apparatus 1 emits the laser beam L1 to the position P2 at time T3 after time T2.
  • the laser processing apparatus 1 also emits the laser beam L2 to the position P2 at time T4 after time T3.
  • the laser processing apparatus 1 causes the laser beam L1 to travel to the processing area 20 at the position P2 by controlling the laser oscillators 2 and 3 by the controller 14, and then causes the laser beam L2 to travel to the processing area 20.
  • the laser processing apparatus 1 irradiates the work 15 with the laser beam L 1 and the laser beam L 2 alternately for each pulse.
  • the laser processing apparatus 1 may irradiate the work 15 with the laser beam L1 and the laser beam L2 alternately for each of a plurality of pulses. A part of the pulse of the laser beam L1 and a part of the pulse of the laser beam L2 may overlap.
  • the laser processing apparatus 1 cuts the work 15 by irradiating the laser beam L1 and the laser beam L2 to each position of the work 15 once, and the laser beam L1 and the laser beam L2 to each position of the work 15
  • the workpiece 15 may be cut by alternately irradiating a plurality of times.
  • the laser processing apparatus 1 may scan the laser beam L1 and the laser beam L2 multiple times by driving the galvano scanners 11 and 12.
  • the outputs of the laser beams L1 and L2 may be represented by waveforms other than rectangular waves.
  • FIG. 13 is a view showing a modified example of the output of the laser beam L1 by the laser processing apparatus 1 shown in FIG.
  • the output of the laser beam L1 is represented by a waveform in which the power level peaks when the power rises.
  • the output of the laser beam L2 may also be represented by a waveform similar to the waveform shown in FIG.
  • the outputs of the laser beams L1 and L2 may be represented by a waveform close to a Gaussian distribution.
  • FIG. 14 is a flowchart of the laser processing method according to the first embodiment.
  • the laser processing apparatus 1 applies the laser beam L ⁇ b> 1 to the processing area 20 to process the outer edge portion of the processing area 20.
  • the laser processing apparatus 1 applies the laser beam L2 to the processing area 20 to process the portion surrounded by the outer edge portion.
  • the controller 14 determines whether or not the processing of the workpiece 15 is completed in step S3.
  • the laser processing apparatus 1 moves the sights of the laser beams L1 and L2 to the next position in Step S4.
  • the laser processing apparatus repeats the procedure from step S1 for the next position.
  • the laser processing apparatus 1 ends the procedure shown in FIG.
  • FIG. 15 is a block diagram showing an example of the hardware configuration of the controller 14 shown in FIG.
  • One example of a hardware configuration is a microcontroller.
  • the functions of the controller 14 are executed on a program analyzed and executed by a microcontroller. Note that part of the functions of the controller 14 may be implemented on wired logic hardware.
  • the controller 14 includes a processor 25 that executes various processes, and a memory 26 in which programs for various processes are stored.
  • the processor 25 and the memory 26 are connected to each other via a bus 27.
  • the processor 25 develops the loaded program to execute various processes for controlling the laser processing apparatus 1.
  • the laser processing apparatus 1 irradiates the work 15 alternately with the short wavelength laser beam L1 and the long wavelength laser beam L2 for each pulse.
  • the laser processing apparatus 1 processes the outer edge portion of the processing area 20 by the irradiation of the laser beam L1, and then processes the portion surrounded by the outer edge portion by the irradiation of the laser beam L2, thereby leaving the heat left on the processed product.
  • the influence layer 17 is reduced. Thereby, the laser processing apparatus 1 has an effect that high-quality processing can be performed.
  • FIG. 16 is a diagram showing the configuration of a laser processing apparatus 30 according to a second embodiment of the present invention.
  • the laser processing apparatus 30 processes the workpiece 15 by irradiation of laser beams L3 and L4 having different pulse widths, instead of the laser beams L1 and L2 of the first embodiment.
  • the same parts as those in the first embodiment described above are denoted by the same reference numerals, and redundant description will be omitted.
  • the laser processing apparatus 30 includes a laser oscillator 31 which is a first laser oscillator, and a laser oscillator 32 which is a second laser oscillator.
  • the laser oscillator 31 pulsates the first laser beam.
  • the laser oscillator 32 pulsates a second laser beam having a pulse width different from that of the first laser beam.
  • the laser beam L3, which is the first laser beam is a pulsed laser with a first pulse width.
  • the laser beam L4, which is the second laser beam is a pulsed laser with a second pulse width.
  • the second pulse width is longer than the first pulse width.
  • the wavelength of the laser beam L3 and the wavelength of the laser beam L4 are the same.
  • the beam shaper 4 shapes the beam shape of the laser beam L3 irradiated to the workpiece 15 into an annular beam shape whose peripheral intensity is higher than that of the center of the beam.
  • the laser beam L3 has a toroidal beam shape at the work 15 that has a higher peripheral intensity than the center of the beam.
  • the beam shaper 5 shapes the beam shape of the laser beam L4 irradiated to the workpiece 15 into a circular beam shape in which the intensity becomes maximum at the center of the beam.
  • the laser beam L4 has a circular beam shape in which the intensity is maximal at the center of the beam at the work 15.
  • the laser oscillators 31 and 32 are solid-state lasers, semiconductor lasers, fiber lasers, CO 2 lasers, or CO lasers. Examples of the wavelength of the laser oscillated from the laser oscillators 31 and 32 are 10.6 ⁇ m, 9.3 ⁇ m, 5 ⁇ m, 1.06 ⁇ m, 1.03 ⁇ m, 532 nm, 535 nm and 266 nm.
  • the laser oscillator 31 oscillates a short pulse and high peak pulse laser as compared with the laser oscillator 32.
  • the first pulse width is shorter than the second pulse width in picosecond, nanosecond, microsecond, or millisecond units.
  • the polarization direction of the pulse laser oscillated from the laser oscillator 31 and the pulse laser oscillated from the laser oscillator 32 are different from each other.
  • the mirror 6 reflects the laser beam L 3 to advance the laser beam L 3 to the thin film polarizer 33.
  • the thin film polarizer 33 is disposed at the intersection of the optical path of the laser beam L 3 from the mirror 6 and the optical path of the laser beam L 4 from the beam shaper 5.
  • the thin film polarizer 33 reflects the laser beam L3 and transmits the laser beam L4 different in polarization direction from the laser beam L3, so that the traveling direction of the laser beam L3 matches the traveling direction of the laser beam L4.
  • the thin film polarizer 33 may reflect the laser beam L4 and transmit the laser beam L3.
  • the controller 14 controls the laser oscillator 31 and the laser oscillator 32 to irradiate the laser beam L3 and the laser beam L4 to the work 15 alternately for each pulse.
  • the laser processing apparatus 30 irradiates the workpiece 15 with the laser beam L1 and the laser beam L2 on the same optical axis.
  • the laser processing apparatus 30 cuts the workpiece 15 by causing the workpiece 15 to scan the laser beams L3 and L4 while irradiating the laser beams L3 and L4 alternately. In addition to the cutting, the laser processing apparatus 30 may perform groove processing for forming a groove or hole processing for forming a hole.
  • the laser processing apparatus 30 may include one laser oscillator capable of oscillating lasers having different pulse widths, instead of the laser oscillators 31 and 32 and the beam shapers 4 and 5. Such a laser oscillator emits a laser beam L3 of a first pulse width having an annular intensity distribution and a laser beam L4 of a second pulse width having a circular intensity distribution.
  • the laser processing apparatus 30 advances the laser beam L3 and the laser beam L4 to a common optical path without using the thin film polarizer 33.
  • the long pulse laser beam can reach a deeper position in the workpiece as compared to the short pulse laser beam. Temporarily, when processing by only a long pulse laser beam is performed, the laser processing apparatus 30 can accelerate the progress of processing, and high speed processing becomes possible. On the other hand, in the processing by the long pulse laser beam, the thickness of the heat affected layer 17 is the same as the case of irradiating the long wavelength laser beam shown in FIG. 6 by the laser beam reaching a deep position. It will increase.
  • the short pulse laser beam can reduce the number of heat affected layers 17 generated by the penetration of energy, as in the case of irradiation with the short wavelength laser beam shown in FIG. 7. If processing is performed using only a short pulse laser beam, the laser processing apparatus 30 can perform high quality processing. On the other hand, in the case of processing with a short pulse laser beam, the processing takes a long time, and the time from the start to the end of the processing of the workpiece 15 may be significantly extended. In laser processing, it is desired that both efficient processing of a workpiece and high-quality processing be compatible.
  • FIG. 17 is a first view showing a state of processing by the laser processing apparatus 30 shown in FIG.
  • FIG. 17 shows the irradiation of the laser beams L3 and L4 to the work 15 while the cutting is progressing in the plus X direction.
  • the laser processing apparatus 30 aligns the center O of the laser beam L3 with the center O of the laser beam L4, and sequentially advances the laser beam L3 and the laser beam L4 to the processing area 20.
  • the laser processing apparatus 30 can advance cutting in any direction in the X-axis direction and the Y-axis direction.
  • FIG. 18 is a cross-sectional view of the work 15 taken along line XVIII-XVIII shown in FIG.
  • the laser processing apparatus 30 aligns the center O with the center position C of the processing area 20 and irradiates the laser beam L3 to process the outer edge portion of the processing area 20 into an annular shape.
  • a processing groove 21 having a depth d1 is formed.
  • the processing groove 21 has an annular shape on the XY plane.
  • the intensity of the laser beam L3 at the center O is the processing threshold of the work 15 It may be the above strength.
  • FIG. 19 is a cross-sectional view of the work 15 taken along line XIX-XIX shown in FIG.
  • the laser processing apparatus 30 processes the portion surrounded by the outer edge portion of the processing area 20 into a circular shape by irradiating the processing area 20 with the laser beam L4 subsequent to the irradiation of the laser beam L3.
  • a processed groove 22 having a depth d2 is formed in a portion surrounded by the outer edge portion.
  • the processing groove 22 is formed in a portion closer to the central position C than the outer edge of the processing groove 21 by the laser beam L3.
  • the part of the workpiece 15 outside the machining groove 21 in the X-axis direction and the Y-axis direction is the part left on the workpiece.
  • the laser processing apparatus 30 can reduce the number of the heat-affected layers 17 in the remaining part of the workpiece by forming the processing groove 21 by the irradiation of the laser beam L3 with a short pulse.
  • the laser processing apparatus 30 separates the portion to be removed by the laser beam L4 from the portion left on the processed product by forming the processing groove 21 prior to the irradiation of the laser beam L4.
  • the heat affected layer 17 generated by the irradiation of the long pulse laser beam L4 is accommodated in the range closer to the central position C than the outer edge of the processing groove 21 in the X axis direction and the Y axis direction.
  • the laser processing apparatus 30 can reduce the spread of the heat affected layer 17 from the processing region 20 in the X-axis direction and the Y-axis direction, and can reduce the heat affected layer 17 left on the processed product.
  • the laser processing apparatus 30 includes the processing by the long pulse laser beam L4, the time required for the processing can be shortened as compared with the case where the processing is performed only by the short pulse laser beam. Thereby, the laser processing apparatus 30 can process the workpiece
  • the depth d2 of the processed groove 22 formed by one irradiation of the laser beam L4 is the same as the depth d1 of the processed groove 21 formed by one irradiation of the laser beam L3. Since the spread of the heat affected layer 17 caused by the irradiation of the laser beam L4 is blocked by the processed groove 21, the laser processing apparatus 30 can suppress the spread of the heat affected layer 17.
  • the depth d1 of the processed groove 21 by one irradiation of the laser beam L3 and the depth d2 of the processed groove 22 by one irradiation of the laser beam L4 are not limited to the same case, and the processed groove 21 is not limited.
  • the depth d1 of the groove may be deeper than the depth d2 of the processing groove 22. Also in this case, the laser processing apparatus 30 can suppress the spread of the heat affected layer 17 caused by the irradiation of the laser beam L4.
  • FIG. 20 is a second view showing a state of processing by the laser processing apparatus 30 shown in FIG.
  • the laser processing apparatus 30 moves the position to be irradiated with the laser beams L3 and L4 in the plus X direction from the processed part by driving the processing head 10.
  • the laser processing apparatus 30 performs processing by irradiation of the laser beam L3 after performing an operation of aiming the laser beams L3 and L4 at the position P1 shown in FIG. 20, and then performs processing by irradiation of the laser beam L4.
  • the laser processing device 30 moves the sights of the laser beams L3 and L4 to the position P2 next to the position P1 in the plus X direction.
  • the laser processing apparatus 30 performs processing by irradiation of the laser beam L3 to the position P2, and then performs processing by irradiation of the laser beam L4.
  • the laser processing apparatus 30 alternately repeats the irradiation of the laser beam L 3 and the irradiation of the laser beam L 4 for each pulse to process the workpiece 15.
  • FIG. 21 is a diagram for explaining the outputs of the laser beams L3 and L4 by the laser processing apparatus 30 shown in FIG.
  • the vertical axes PL3 and PL4 represent the power of the laser beams L3 and L4, and the horizontal axis represents time.
  • the laser processing device 30 repeats the output of the laser beam L3 at a constant power and the output off.
  • the output of the laser beam L3 is represented by a rectangular wave of constant width w1.
  • the laser processing apparatus 30 repeatedly turns on and off the output of the laser beam L4 at a constant power.
  • the output of the laser beam L4 is represented by a rectangular wave of constant width w2.
  • the width w1 is shorter than the width w2, and the relationship of w1 ⁇ w2 holds.
  • the laser processing device 30 emits the laser beam L3 to the position P1 at time T1.
  • the laser processing apparatus 30 emits the laser beam L4 to the position P1 at time T2 after time T1.
  • the laser processing apparatus 30 advances the laser beam L3 to the processing area 20 at the position P1 by controlling the laser oscillators 31 and 32 by the controller 14 and then advances the laser beam L4 to the processing area 20.
  • the laser processing apparatus 30 emits the laser beam L3 to the position P2 at time T3 after time T2.
  • the laser processing apparatus 30 also emits the laser beam L4 to the position P2 at time T4 after time T3.
  • the laser processing apparatus 30 causes the laser beam L3 to advance to the processing area 20 at the position P2 by controlling the laser oscillators 31 and 32 by the controller 14, and then causes the laser beam L4 to advance to the processing area 20.
  • the laser processing apparatus 30 irradiates the workpiece 15 with the laser beam L 3 and the laser beam L 4 alternately for each pulse.
  • the laser processing apparatus 30 may irradiate the work 15 with the laser beam L3 and the laser beam L4 alternately for each of a plurality of pulses. A part of the pulse of the laser beam L3 and a part of the pulse of the laser beam L4 may overlap.
  • the laser processing apparatus 30 cuts the work 15 by irradiating the respective positions of the work 15 with the laser beam L3 and the laser beam L4 once each, and further, the laser beam L3 and the laser beam L4 to each position of the work 15
  • the workpiece 15 may be cut by alternately irradiating a plurality of times.
  • the laser processing apparatus 30 may scan the laser beam L3 and the laser beam L4 multiple times by driving the galvano scanners 11 and 12.
  • the outputs of the laser beams L3 and L4 may be represented by waveforms other than rectangular waves.
  • FIG. 22 is a view showing a modified example of the output of the laser beam L3 by the laser processing apparatus 1 shown in FIG.
  • FIG. 23 is a view showing a modified example of the output of the laser beam L4 by the laser processing apparatus 1 shown in FIG.
  • the output of the laser beam L3 is represented by a waveform in which the power level peaks at the rise of the power.
  • the output of the laser beam L4 is represented by a waveform whose power level peaks at power rise.
  • the outputs of the laser beams L3 and L4 may be represented by a waveform close to a Gaussian distribution.
  • the laser processing apparatus 30 irradiates the work 15 alternately with the short pulse laser beam L3 and the long pulse laser beam L4 for each pulse.
  • the laser processing apparatus 30 processes the outer edge portion of the processing area 20 by the irradiation of the laser beam L3, and then processes the portion surrounded by the outer edge portion by the irradiation of the laser beam L4 to leave the heat left on the processed product.
  • the influence layer 17 is reduced. Thereby, the laser processing apparatus 30 has an effect that high quality processing can be performed.
  • the configuration shown in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and one of the configurations is possible within the scope of the present invention. Parts can be omitted or changed.

Abstract

レーザ加工方法は、第1のレーザビームであるレーザビーム(L1)をパルス発振する第1のレーザ発振器であるレーザ発振器(2)と、第1のレーザビームとは波長またはパルス幅が異なる第2のレーザビームであるレーザビーム(L2)をパルス発振する第2のレーザ発振器であるレーザ発振器(3)とを備えるレーザ加工装置(1)のレーザ加工方法である。レーザ加工方法において、第1のレーザビームと第2のレーザビームとを交互にワーク(15)に照射する。

Description

レーザ加工方法およびレーザ加工装置
 本発明は、レーザビームの照射により被加工物を加工するレーザ加工方法およびレーザ加工装置に関する。
 レーザビームの照射による被加工物の加工では、被加工物に残される熱影響層ができるだけ少なくなるような高い加工品質を実現できることが望まれている。
 特許文献1には、波長域が互いに異なる2つのレーザビームを照射して被加工物を加工するレーザ加工装置の技術が開示されている。特許文献1のレーザ加工装置は、焦点距離を互いに異ならせた短波長のレーザビームと長波長のレーザビームとを被加工物へ照射する。特許文献1には、予熱のための短波長のレーザビームのスポットの中心に長波長のレーザビームの焦点を合わせる第1の手法と、加工のための短波長のレーザビームの焦点を中心とする領域に、溶融した被加工物の温度を上昇させるための長波長のレーザビームのスポットを形成する第2の手法とが示されている。特許文献2には、互いに異なるビーム形状のレーザビームを被加工物にて重畳して照射するレーザ加工装置の技術が提案されている。
特開2015-44238号公報 特開2013-176800号公報
 特許文献1および特許文献2の技術では、被加工物の材料によっては熱影響層が増大し、高い加工品質を得ることが困難となる場合がある。
 本発明は、上記に鑑みてなされたものであって、高品質な加工を可能とするレーザ加工方法を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明にかかるレーザ加工方法は、第1のレーザビームをパルス発振する第1のレーザ発振器と、第1のレーザビームとは波長またはパルス幅が異なる第2のレーザビームをパルス発振する第2のレーザ発振器とを備えるレーザ加工装置のレーザ加工方法である。レーザ加工方法において、第1のレーザビームと第2のレーザビームとを交互に被加工物に照射する。
 本発明にかかるレーザ加工方法は、高品質な加工が可能となるという効果を奏する。
本発明の実施の形態1にかかるレーザ加工装置の構成を示す図 図1に示すワークにおけるレーザビームL1の強度分布の例を示す図 図1に示すワークにおけるレーザビームL2の強度分布の例を示す図 図1に示すビーム整形器の一例を示す斜視図 図4に示すビーム整形器の上面図 図1に示すワークへ長波長のレーザビームを照射した場合に生じる熱影響層を示す断面図 図1に示すワークへ短波長のレーザビームを照射した場合に生じる熱影響層を示す断面図 図1に示すレーザ加工装置による加工の様子を示す第1の図 図8に示すIX-IX線におけるワークの断面図 図8に示すX-X線におけるワークの断面図 図1に示すレーザ加工装置による加工の様子を示す第2の図 図1に示すレーザ加工装置によるレーザビームL1,L2の出力について説明する図 図1に示すレーザ加工装置によるレーザビームL1の出力の変形例を示す図 実施の形態1にかかるレーザ加工方法の手順を示すフローチャート 図1に示す制御器のハードウェア構成の例を示すブロック図 本発明の実施の形態2にかかるレーザ加工装置の構成を示す図 図16に示すレーザ加工装置による加工の様子を示す第1の図 図17に示すXVIII-XVIII線におけるワークの断面図 図17に示すXIX-XIX線におけるワークの断面図 図16に示すレーザ加工装置による加工の様子を示す第2の図 図16に示すレーザ加工装置によるレーザビームL3,L4の出力について説明する図 図1に示すレーザ加工装置によるレーザビームL3の出力の変形例を示す図 図1に示すレーザ加工装置によるレーザビームL4の出力の変形例を示す図
 以下に、本発明の実施の形態にかかるレーザ加工方法およびレーザ加工装置を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
 図1は、本発明の実施の形態1にかかるレーザ加工装置1の構成を示す図である。レーザ加工装置1は、レーザビームの照射により、被加工物であるワーク15を加工する。図1において、X軸とY軸とは、水平方向に平行、かつ互いに垂直な2軸とする。Z軸は、鉛直方向に平行、かつX軸とY軸とに垂直な軸とする。ワーク15は、ステージ13にて、X軸とY軸とに平行な面に載置される。なお、X軸方向のうち、図中矢印で示す方向をプラスX方向、矢印で示した方向とは逆の方向をマイナスX方向と称することがある。また、Z軸方向のうち、図中矢印で示す方向をプラスZ方向、矢印で示した方向とは逆の方向をマイナスZ方向と称することがある。プラスZ方向は、鉛直上方向である。マイナスZ方向は、鉛直下方向である。
 レーザ加工装置1は、第1のレーザ発振器であるレーザ発振器2と、第2のレーザ発振器であるレーザ発振器3とを備える。レーザ発振器2は、第1のレーザビームをパルス発振する。レーザ発振器3は、第1のレーザビームとは波長が異なる第2のレーザビームをパルス発振する。第1のレーザビームであるレーザビームL1は、第1の波長のパルスレーザである。第2のレーザビームであるレーザビームL2は、第2の波長のパルスレーザである。第2の波長は、第1の波長より長い。なお、実施の形態1にて、レーザビームL1のパルス幅とレーザビームL2のパルス幅とは同じである。
 ビーム整形器4は、ワーク15に照射されるレーザビームL1のビーム形状を、ビームの中心に比べて周縁の強度が高い円環状のビーム形状に整形する。レーザビームL1は、ワーク15にて、ビームの中心に比べて周縁の強度が高い円環状のビーム形状を有する。ビーム整形器5は、ワーク15に照射されるレーザビームL2のビーム形状を、ビームの中心にて強度が極大値となる円状のビーム形状に整形する。レーザビームL2は、ワーク15にて、ビームの中心にて強度が極大値となる円状のビーム形状を有する。
 レーザ発振器2,3は、固体レーザ、半導体レーザ、ファイバーレーザ、COレーザ、あるいはCOレーザである。第1の波長および第2の波長の例は、10.6μm、9.3μm、5μm、1.06μm、1.03μm、532nm、355nmおよび266nmであって、第1の波長が第2の波長より短くなるように、第1の波長および第2の波長は設定される。
 ミラー6は、ビーム整形器4からのレーザビームL1の光路に配置されている。ミラー6は、レーザビームL1を反射して、ダイクロイックミラー7へレーザビームL1を進行させる。ダイクロイックミラー7は、ミラー6からのレーザビームL1の光路と、ビーム整形器5からのレーザビームL2の光路との交点に配置されている。
 ダイクロイックミラー7は、第1の波長の光を反射し、第2の波長の光を透過させる波長特性を持つ。ダイクロイックミラー7は、レーザビームL1を反射し、かつレーザビームL2を透過させることで、レーザビームL1の進行方向とレーザビームL2の進行方向とを一致させる。なお、ダイクロイックミラー7は、レーザビームL2を反射し、かつレーザビームL1を透過させるものであっても良い。
 ミラー8は、ダイクロイックミラー7からのレーザビームL1,L2を反射して、加工ヘッド10へレーザビームL1,L2を進行させる。ガルバノスキャナ11,12は、加工ヘッド10に収容されている。
 ガルバノスキャナ11は、ワーク15に照射されるレーザビームL1,L2をY軸方向に偏向させる。ガルバノスキャナ11は、レーザビームL1,L2を反射する反射面の回転により、ワーク15上におけるレーザビームL1,L2の入射位置を、Y軸方向において変位させる。ガルバノスキャナ12は、ワーク15の照射されるレーザビームL1,L2をX軸方向に偏向させる。ガルバノスキャナ12は、ガルバノスキャナ11からのレーザビームL1,L2を反射する反射面の回転により、ワーク15上におけるレーザビームL1,L2の入射位置を、X軸方向において変位させる。ガルバノスキャナ11,12は、X軸方向とY軸方向とへレーザビームL1,L2を変位させる。
 集光光学系9は、加工ヘッド10に設けられている。集光光学系9は、レーザビームL1,L2を収束する。集光光学系9は、1つあるいは複数の集光レンズを備える。集光光学系9は、レーザビームL1,L2の集光位置を、集光光学系9の焦点距離fにガルバノスキャナ11,12の偏向角θを掛け合せたfθの位置とするfθレンズであっても良い。集光光学系9の入射瞳の位置は、ガルバノスキャナ11とガルバノスキャナ12との中間位置に設定されている。
 レーザ加工装置1は、ガルバノスキャナ11,12のうちの一方のみを備えるものであっても良い。また、レーザ加工装置1は、ガルバノスキャナ11,12以外の構成部品を用いて、レーザビームL1,L2を偏向させても良い。レーザ加工装置1は、ガルバノスキャナ11,12に代えて、音響光学効果を利用して光を偏向させる音響光学偏向器(Acousto-Optic Deflector,AOD)、あるいは電気光学効果を利用して光を偏向させる電気光学偏向器(Electro-Optic Deflector,EOD)を備えていても良い。
 加工ヘッド10は、X軸方向とY軸方向とに移動可能とされている。加工ヘッド10は、X軸方向とY軸方向とのうちの一方のみへ移動可能とされていても良い。
 制御器14は、レーザ加工装置1の全体を制御する。制御器14は、レーザ発振器2,3のレーザ発振と、加工ヘッド10の駆動と、ガルバノスキャナ11,12の駆動とを制御する。制御器14は、レーザ発振器2とレーザ発振器3との制御により、レーザビームL1とレーザビームL2とを1パルスごとに交互にワーク15に照射させる。
 ワーク15の例は、炭素繊維強化プラスチック(Carbon Fiber Reinforced Plastics,CFRP)、ガラス繊維強化プラスチック(Glass Fiber Reinforced Plastics,GFRP)およびアラミド繊維強化プラスチック(Aramid Fiber Reinforced Plastics,AFRP)といった複合材料、半導体薄膜、およびガラス材料である。1つの例では、レーザ加工装置1は、レーザビームL1,L2の照射によりワーク15を切断する加工を行う。
 レーザ加工装置1は、ワーク15のプラスZ方向側の面へレーザビームL1,L2を照射する。レーザ加工装置1は、レーザビームL1とレーザビームL2とを、同一の光軸上にてワーク15に照射する。同一の光軸上とは、ワーク15に照射するレーザビームL1の中心とレーザビームL2の中心とを一致させることを指すものとする。レーザ加工装置1は、レーザビームL1,L2を交互に照射しながらワーク15にてレーザビームL1,L2を走査させることにより、ワーク15を切断する。レーザ加工装置1は、ワーク15の同一ライン上にてレーザビームL1,L2を繰り返し走査させて、当該ライン上の各位置へレーザビームL1,L2を複数回照射しても良い。この場合、レーザビームL1,L2の照射を繰り返して、ワーク15のマイナスZ方向側の面にまで加工点を到達させることにより、レーザ加工装置1は、当該ラインに沿ってワーク15を切断する。
 なお、レーザ加工装置1は、切断以外に、溝を形成する溝加工、あるいは穴を形成する穴加工を行うものであっても良い。ワーク15の材料は、レーザビームL1,L2の複数回の照射による加工が行われるものであれば良く、上述する材料に限られない。ステージ13は、X軸とY軸とに平行な方向において移動可能であっても良い。レーザ加工装置1は、加工ヘッド10とステージ13との一方あるいは双方を移動させるとともに、ガルバノスキャナ11,12による走査により、ワーク15上におけるレーザビームL1,L2の入射位置を変位させる。
 図2は、図1に示すワーク15におけるレーザビームL1の強度分布の例を示す図である。図2に示す曲線は、X軸方向およびY軸方向におけるレーザビームL1の中心Oからの距離と、レーザビームL1の強度との関係を表したグラフである。
 レーザビームL1の強度は、中心Oからある一定の距離Dの位置にて極大値となる。また、レーザビームL1の強度は、距離Dの位置から中心Oへ向かうにしたがって低下する。中心OにおけるレーザビームL1の強度はゼロとなる。ワーク15上におけるレーザビームL1のXY断面において、強度が高い部分は、レーザビームL1の周縁に沿って円環状に表れる。
 なお、中心OにおけるレーザビームL1の強度はゼロである場合に限られない。中心OにおけるレーザビームL1の強度は、ワーク15の加工閾値未満の強度であれば良い。さらに、極大値にて十分な強度を得られる場合には、中心OにおけるレーザビームL1の強度は、ワーク15の加工閾値以上の強度であっても良い。
 図3は、図1に示すワーク15におけるレーザビームL2の強度分布の例を示す図である。レーザビームL2の強度分布は、レーザビームL2の中心Oからある一定の距離の範囲にて強度が極大値かつ一定となるフラットトップ形状の強度分布である。レーザビームL2は、スーパーガウス分布に近似可能な強度分布を持つスーパーガウシアンビームとする。ワーク15上におけるレーザビームL2のXY断面において、強度が高い部分は、中心Oを中心とする円状に表れる。
 なお、レーザビームL2は、正規分布に近似可能な強度分布を持つガウシアンビームであっても良い。この場合、レーザビームL2の中心Oにて強度は極大値となり、中心Oから離れるにしたがって強度は低下する。ワーク15上におけるレーザビームL2のXY断面において、強度が高い部分は、中心Oを中心とする円状に表れる。
 図4は、図1に示すビーム整形器4の一例を示す斜視図である。図5は、図4に示すビーム整形器4の上面図である。ビーム整形器4は、レーザ発振器2からのレーザの主光線に平行な方向への厚みを互いに異ならせた複数の透過領域16を備える光学素子である。各透過領域16は、螺旋階段状の段差をなしている。ビーム整形器4は、互いに厚みが異なる透過領域16を透過した光成分同士において位相差を生じさせることにより、レーザ発振器2からのレーザの位相を変換させる。かかる位相変換により、ビーム整形器4は、レーザ発振器2からのレーザビームL1を、円環状の強度分布を持つレーザビームL1へ変換する。
 ビーム整形器4は、複数のアキシコンレンズであっても良い。複数のアキシコンレンズは、レーザ発振器2からのレーザの光路において分散させて配置されたものであっても良い。ビーム整形器4は、アキシコンレンズ以外の非球面レンズを含むものであっても良い。なお、レーザ加工装置1は、レーザ発振器2とビーム整形器4とに代えて、高次の円環状のビームモードのレーザビームL1を出力可能なレーザ発振器を備えていても良い。
 また、図1に示すビーム整形器5の1つの例は、非球面レンズである。レーザ加工装置1は、レーザ発振器3とビーム整形器5とに代えて、高次の円状のビームモードのレーザビームL2を出力可能なレーザ発振器を備えていても良い。
 ここで、長波長のレーザビームを照射したときと短波長のレーザビームを照射したときとにおけるワーク15の加工の様子の違いについて説明する。図6は、図1に示すワーク15へ長波長のレーザビームを照射した場合に生じる熱影響層17を示す断面図である。図7は、図1に示すワーク15へ短波長のレーザビームを照射した場合に生じる熱影響層17を示す断面図である。
 通常、長波長のレーザビームは、短波長のレーザビームと比べて高出力であることから、長波長のレーザビームは、短波長のレーザビームと比べて、被加工物において深い位置に到達することができる。仮に、長波長のレーザビームのみによる加工を行った場合、レーザ加工装置1は、加工の進行を速めることができ、高速な加工が可能となる。その一方で、長波長のレーザビームによる加工では、レーザビームが深い位置にまで到達することで、熱影響層17の厚さが増大することとなる。
 熱影響層17は、レーザ加工による加工品のうち、熱的影響により元の状態から変化が生じた部分である。ワーク15の材料が繊維強化プラスチックである場合、熱影響層17では、プラスチック成分が除去される一方、繊維成分が残される。このような熱影響層17が加工品の強度の低下、外観の悪化の要因となるため、熱影響層17が加工品に多く残存するほど、加工品の品質を低下させることとなる。
 また、短波長のレーザビームは、長波長のレーザビームと比べて低出力であって、エネルギーの浸透によって生じる熱影響層17を少なくすることができる。仮に、短波長のレーザビームのみによる加工を行った場合、レーザ加工装置1は、高品質な加工を行うことができる。その一方で、短波長のレーザビームによる加工では、加工に長い時間を要することとなり、ワーク15の加工の開始から完了までの時間が大幅に延びることがある。レーザ加工では、被加工物の効率的な加工と、高品質な加工とを両立できることが望まれている。
 次に、実施の形態1にかかるレーザ加工方法による加工の手順について説明する。図8は、図1に示すレーザ加工装置1による加工の様子を示す第1の図である。図8には、プラスX方向へ切断を進行させている最中におけるワーク15へのレーザビームL1,L2の照射の様子を示している。ワーク15のうち加工が施された部分には、切断面18が形成されている。レーザ加工装置1は、レーザビームL1の中心OとレーザビームL2の中心Oとを一致させて、レーザビームL1とレーザビームL2とを加工領域20へ順次進行させる。なお、レーザ加工装置1は、X軸方向およびY軸方向における任意の方向へ切断を進行させることができる。
 図9は、図8に示すIX-IX線におけるワーク15の断面図である。レーザ加工装置1は、加工領域20の中心位置Cに中心Oを合わせてレーザビームL1を照射することにより、加工領域20の外縁部分を円環状に加工する。加工領域20の外縁部分には、深さd1の加工溝21が形成される。加工溝21は、XY平面にて円環形状をなす。
 中心OにおけるレーザビームL1の強度をゼロあるいは加工閾値未満とすることで、加工領域20の中心位置C付近には加工が施されない。なお、中心位置Cにおけるワーク15の表面より深く掘り下げられた形状の加工溝21を形成可能であれば、中心OにおけるレーザビームL1の強度は、ワーク15の加工閾値以上の強度であっても良い。
 図10は、図8に示すX-X線におけるワーク15の断面図である。レーザ加工装置1は、レーザビームL1の照射に続いて、加工領域20へレーザビームL2を照射することにより、加工領域20のうち外縁部分により囲われた部分を円状に加工する。外縁部分により囲われた部分には、深さd2の加工溝22が形成される。加工溝22は、レーザビームL1による加工溝21の外縁より中心位置C側の部分に形成される。
 ワーク15のうち、X軸方向およびY軸方向における加工溝21の外側の部分は、加工品において残される部分となる。レーザ加工装置1は、短波長のレーザビームL1の照射によって加工溝21を形成することで、加工品において残される部分の熱影響層17を少なくすることができる。
 また、レーザ加工装置1は、レーザビームL2の照射より先に加工溝21を形成しておくことで、レーザビームL2による除去の対象とする部分を、加工品において残される部分から分離させる。長波長のレーザビームL2の照射によって生じる熱影響層17は、X軸方向およびY軸方向において、加工溝21の外縁より中心位置C側の範囲に収められる。これにより、レーザ加工装置1は、加工領域20からX軸方向およびY軸方向への熱影響層17の拡がりを低減可能とし、加工品に残される熱影響層17を少なくすることができる。
 さらに、レーザ加工装置1は、長波長のレーザビームL2による加工を含めたことで、短波長のレーザビームのみによる加工を行う場合と比較して、加工に要する時間を短縮できる。これにより、レーザ加工装置1は、ワーク15を効率的に加工することができる。
 レーザビームL2の1回の照射により形成される加工溝22の深さd2は、レーザビームL1の1回の照射により形成される加工溝21の深さd1と同じである。レーザビームL2の照射による熱影響層17の拡がりが加工溝21において遮られることにより、レーザ加工装置1は、熱影響層17の拡がりを抑制することができる。なお、レーザビームL1の1回の照射による加工溝21の深さd1と、レーザビームL2の1回の照射による加工溝22の深さd2とは、同じである場合に限られず、加工溝21の深さd1が加工溝22の深さd2より深くなることがあっても良い。この場合も、レーザ加工装置1は、レーザビームL2の照射による熱影響層17の拡がりを抑制することができる。
 図11は、図1に示すレーザ加工装置1による加工の様子を示す第2の図である。レーザ加工装置1は、加工ヘッド10の駆動により、加工が施された部分からプラスX方向へ、レーザビームL1,L2を照射させる位置を移動させる。
 レーザ加工装置1は、図11に示す位置P1にレーザビームL1,L2の照準を合わせる動作の後、レーザビームL1の照射による加工を行い、その後レーザビームL2の照射による加工を行う。位置P1へのレーザビームL1,L2による加工を終えると、レーザ加工装置1は、レーザビームL1,L2の照準を、プラスX方向における位置P1の隣の位置P2へ移動させる。レーザ加工装置1は、位置P2へのレーザビームL1の照射による加工を行い、その後レーザビームL2の照射による加工を行う。このように、レーザ加工装置1は、レーザビームL1,L2の照準を移動させながら、レーザビームL1の照射とレーザビームL2の照射とを1パルスごとに交互に繰り返して、ワーク15を加工する。レーザ加工装置1は、レーザビームL1,L2を1回ずつ照射するごとに位置を移動させるほか、レーザビームL1,L2を複数回ずつ照射するごとに位置を移動させても良い。
 図12は、図1に示すレーザ加工装置1によるレーザビームL1,L2の出力について説明する図である。図12において、縦軸PL1,PL2はレーザビームL1,L2のパワーを表し、横軸は時間を表す。レーザ加工装置1は、一定のパワーでのレーザビームL1の出力のオンとオフとを繰り返す。レーザ加工装置1は、一定のパワーでのレーザビームL2の出力と、出力オフとを繰り返す。レーザビームL1,L2の出力は、一定の幅の矩形波により表される。
 レーザ加工装置1は、時間T1にて、位置P1へレーザビームL1を射出する。レーザ加工装置1は、時間T1の後の時間T2にて、位置P1へレーザビームL2を射出する。レーザ加工装置1は、制御器14によるレーザ発振器2,3の制御により、位置P1の加工領域20へレーザビームL1を進行させてから、当該加工領域20へレーザビームL2を進行させる。
 次に、レーザ加工装置1は、時間T2の後の時間T3にて、位置P2へレーザビームL1を射出する。また、レーザ加工装置1は、時間T3の後の時間T4にて、位置P2へレーザビームL2を射出する。レーザ加工装置1は、制御器14によるレーザ発振器2,3の制御により、位置P2の加工領域20へレーザビームL1を進行させてから、当該加工領域20へレーザビームL2を進行させる。レーザ加工装置1は、制御器14の制御により、レーザビームL1とレーザビームL2とを1パルスごとに交互にワーク15に照射する。なお、レーザ加工装置1は、レーザビームL1とレーザビームL2とを複数パルスごとに交互にワーク15に照射しても良い。レーザビームL1のパルスの一部とレーザビームL2のパルスの一部とは重複していても良い。
 レーザ加工装置1は、ワーク15の各位置へレーザビームL1とレーザビームL2とを1回ずつ照射することによりワーク15を切断するほか、ワーク15の各位置へレーザビームL1とレーザビームL2とを交互に複数回ずつ照射することによりワーク15を切断しても良い。この場合、レーザ加工装置1は、ガルバノスキャナ11,12の駆動により、レーザビームL1とレーザビームL2とを複数回走査させても良い。
 レーザビームL1,L2の出力は、矩形波以外の波形により表されるものであっても良い。図13は、図1に示すレーザ加工装置1によるレーザビームL1の出力の変形例を示す図である。変形例において、レーザビームL1の出力は、パワーの立ち上がり時にパワーレベルがピークとなる波形により表される。レーザビームL1の出力と同様に、レーザビームL2の出力も、図13に示す波形と同様の波形により表されるものであっても良い。この他、レーザビームL1,L2の出力は、ガウス分布に近い波形により表されるものであっても良い。
 図14は、実施の形態1にかかるレーザ加工方法の手順を示すフローチャートである。ステップS1にて、レーザ加工装置1は、加工領域20へレーザビームL1を照射して、加工領域20の外縁部分を加工する。ステップS1に続くステップS2にて、レーザ加工装置1は、当該加工領域20へレーザビームL2を照射して、外縁部分により囲われた部分を加工する。
 当該加工領域20へレーザビームL1,L2を照射してから、ステップS3にて、制御器14は、ワーク15の加工が完了したか否かを判断する。ワーク15の加工が完了していない場合(ステップS3:No)、レーザ加工装置1は、ステップS4にて、レーザビームL1,L2の照準を次の位置へ移動させる。レーザ加工装置は、次の位置について、ステップS1からの手順を繰り返す。ワーク15の加工が完了した場合(ステップS3:Yes)、レーザ加工装置1は、図14に示す手順を終了する。
 制御器14による制御機能は、ハードウェア構成を使用して実現される。図15は、図1に示す制御器14のハードウェア構成の例を示すブロック図である。ハードウェア構成の1つの例は、マイクロコントローラである。制御器14の機能は、マイクロコントローラにて解析および実行されるプログラム上で実行される。なお、制御器14の機能の一部は、ワイヤードロジックによるハードウェア上で実行しても良い。
 制御器14は、各種処理を実行するプロセッサ25と、各種処理のためのプログラムが格納されるメモリ26とを備える。プロセッサ25とメモリ26とは、バス27を介して互いに接続されている。プロセッサ25は、ロードされたプログラムを展開して、レーザ加工装置1の制御のための各種処理を実行する。
 実施の形態1によると、レーザ加工装置1は、短波長のレーザビームL1と長波長のレーザビームL2とを1パルスごとに交互にワーク15に照射する。レーザ加工装置1は、レーザビームL1の照射により加工領域20の外縁部分を加工してから、レーザビームL2の照射により、外縁部分により囲われた部分を加工することで、加工品に残される熱影響層17を少なくする。これにより、レーザ加工装置1は、高品質な加工が可能となるという効果を奏する。
実施の形態2.
 図16は、本発明の実施の形態2にかかるレーザ加工装置30の構成を示す図である。レーザ加工装置30は、実施の形態1のレーザビームL1,L2に代えて、パルス幅が互いに異なるレーザビームL3,L4の照射によりワーク15を加工する。上記の実施の形態1と同一の部分には同一の符号を付し、重複する説明を省略する。
 レーザ加工装置30は、第1のレーザ発振器であるレーザ発振器31と、第2のレーザ発振器であるレーザ発振器32とを備える。レーザ発振器31は、第1のレーザビームをパルス発振する。レーザ発振器32は、第1のレーザビームとはパルス幅が異なる第2のレーザビームをパルス発振する。第1のレーザビームであるレーザビームL3は、第1のパルス幅のパルスレーザである。第2のレーザビームであるレーザビームL4は、第2のパルス幅のパルスレーザである。第2のパルス幅は、第1のパルス幅より長い。なお、実施の形態2にて、レーザビームL3の波長とレーザビームL4の波長とは同じである。
 ビーム整形器4は、ワーク15に照射されるレーザビームL3のビーム形状を、ビームの中心に比べて周縁の強度が高い円環状のビーム形状に整形する。レーザビームL3は、ワーク15にて、ビームの中心に比べて周縁の強度が高い円環状のビーム形状を有する。ビーム整形器5は、ワーク15に照射されるレーザビームL4のビーム形状を、ビームの中心にて強度が極大値となる円状のビーム形状に整形する。レーザビームL4は、ワーク15にて、ビームの中心にて強度が極大値となる円状のビーム形状を有する。
 レーザ発振器31,32は、固体レーザ、半導体レーザ、ファイバーレーザ、COレーザ、あるいはCOレーザである。レーザ発振器31,32から発振されるレーザの波長の例は、10.6μm、9.3μm、5μm、1.06μm、1.03μm、532nm、355nmおよび266nmである。レーザ発振器31は、レーザ発振器32と比べて、短パルスかつ高ピークのパルスレーザを発振する。第1のパルス幅は、ピコ秒、ナノ秒、マイクロ秒、あるいはミリ秒の単位にて、第2のパルス幅より短い。また、レーザ発振器31から発振されるパルスレーザと、レーザ発振器32から発振されるパルスレーザとは、偏光方向が互いに異なる。
 ミラー6は、レーザビームL3を反射して、薄膜偏光子33へレーザビームL3を進行させる。薄膜偏光子33は、ミラー6からのレーザビームL3の光路と、ビーム整形器5からのレーザビームL4の光路との交点に配置されている。薄膜偏光子33は、レーザビームL3を反射し、レーザビームL3とは偏光方向が異なるレーザビームL4を透過させることで、レーザビームL3の進行方向とレーザビームL4の進行方向とを一致させる。なお、薄膜偏光子33は、レーザビームL4を反射し、かつレーザビームL3を透過させるものであっても良い。
 制御器14は、レーザ発振器31とレーザ発振器32との制御により、レーザビームL3とレーザビームL4とを1パルスごとに交互にワーク15に照射させる。レーザ加工装置30は、レーザビームL1とレーザビームL2とを、同一の光軸上にてワーク15に照射する。レーザ加工装置30は、レーザビームL3,L4を交互に照射しながらワーク15にてレーザビームL3,L4を走査させることにより、ワーク15を切断する。なお、レーザ加工装置30は、切断以外に、溝を形成する溝加工、あるいは穴を形成する穴加工を行うものであっても良い。
 なお、レーザ加工装置30は、レーザ発振器31,32およびビーム整形器4,5に代えて、パルス幅が互いに異なるレーザを発振可能な1つのレーザ発振器を備えていても良い。かかるレーザ発振器は、円環状の強度分布を持つ第1のパルス幅のレーザビームL3と、円状の強度分布を持つ第2のパルス幅のレーザビームL4とを射出する。レーザ加工装置30は、薄膜偏光子33を用いず、共通の光路へレーザビームL3とレーザビームL4とを進行させる。
 ここで、長パルスのレーザビームを照射したときと短パルスのレーザビームを照射したときとにおけるワーク15の加工の様子の違いについて説明する。長パルスのレーザビームは、短パルスのレーザビームと比べて、被加工物において深い位置に到達することができる。仮に、長パルスのレーザビームのみによる加工を行った場合、レーザ加工装置30は、加工の進行を速めることができ、高速な加工が可能となる。その一方で、長パルスのレーザビームによる加工では、レーザビームが深い位置にまで到達することで、図6に示す長波長のレーザビームを照射した場合と同様に、熱影響層17の厚さが増大することとなる。
 また、短パルスのレーザビームは、図7に示す短波長のレーザビームを照射した場合と同様に、エネルギーの浸透によって生じる熱影響層17を少なくすることができる。仮に、短パルスのレーザビームのみによる加工を行った場合、レーザ加工装置30は、高品質な加工を行うことができる。その一方で、短パルスのレーザビームによる加工では、加工に長い時間を要することとなり、ワーク15の加工の開始から完了までの時間が大幅に延びることがある。レーザ加工では、被加工物の効率的な加工と、高品質な加工とを両立できることが望まれている。
 次に、実施の形態2にかかるレーザ加工方法による加工の手順について説明する。図17は、図16に示すレーザ加工装置30による加工の様子を示す第1の図である。図17には、プラスX方向へ切断を進行させている最中におけるワーク15へのレーザビームL3,L4の照射の様子を示している。レーザ加工装置30は、レーザビームL3の中心OとレーザビームL4の中心Oとを一致させて、レーザビームL3とレーザビームL4とを加工領域20へ順次進行させる。なお、レーザ加工装置30は、X軸方向およびY軸方向における任意の方向へ切断を進行させることができる。
 図18は、図17に示すXVIII-XVIII線におけるワーク15の断面図である。レーザ加工装置30は、加工領域20の中心位置Cに中心Oを合わせてレーザビームL3を照射することにより、加工領域20の外縁部分を円環状に加工する。加工領域20の外縁部分には、深さd1の加工溝21が形成される。加工溝21は、XY平面にて円環形状をなす。
 中心OにおけるレーザビームL3の強度をゼロあるいは加工閾値未満とすることで、加工領域20の中心位置C付近には加工が施されない。なお、中心位置Cに対しある程度の深さd1の加工溝21が得られる程度のレーザビームL3の十分な強度を得られる場合には、中心OにおけるレーザビームL3の強度は、ワーク15の加工閾値以上の強度であっても良い。
 図19は、図17に示すXIX-XIX線におけるワーク15の断面図である。レーザ加工装置30は、レーザビームL3の照射に続いて、加工領域20へレーザビームL4を照射することにより、加工領域20のうち外縁部分により囲われた部分を円状に加工する。外縁部分により囲われた部分には、深さd2の加工溝22が形成される。加工溝22は、レーザビームL3による加工溝21の外縁より中心位置C側の部分に形成される。
 ワーク15のうち、X軸方向およびY軸方向における加工溝21の外側の部分は、加工品において残される部分となる。レーザ加工装置30は、短パルスのレーザビームL3の照射によって加工溝21を形成することで、加工品において残される部分の熱影響層17を少なくすることができる。
 また、レーザ加工装置30は、レーザビームL4の照射より先に加工溝21を形成しておくことで、レーザビームL4による除去の対象とする部分を、加工品において残される部分から分離させる。長パルスのレーザビームL4の照射によって生じる熱影響層17は、X軸方向およびY軸方向において、加工溝21の外縁より中心位置C側の範囲に収められる。これにより、レーザ加工装置30は、加工領域20からX軸方向およびY軸方向への熱影響層17の拡がりを低減可能とし、加工品に残される熱影響層17を少なくすることができる。
 さらに、レーザ加工装置30は、長パルスのレーザビームL4による加工を含めたことで、短パルスのレーザビームのみによる加工を行う場合と比較して、加工に要する時間を短縮できる。これにより、レーザ加工装置30は、ワーク15を効率的に加工することができる。
 レーザビームL4の1回の照射により形成される加工溝22の深さd2は、レーザビームL3の1回の照射により形成される加工溝21の深さd1と同じである。レーザビームL4の照射による熱影響層17の拡がりが加工溝21において遮られることにより、レーザ加工装置30は、熱影響層17の拡がりを抑制することができる。なお、レーザビームL3の1回の照射による加工溝21の深さd1と、レーザビームL4の1回の照射による加工溝22の深さd2とは、同じである場合に限られず、加工溝21の深さd1が加工溝22の深さd2より深くなることがあっても良い。この場合も、レーザ加工装置30は、レーザビームL4の照射による熱影響層17の拡がりを抑制することができる。
 図20は、図16に示すレーザ加工装置30による加工の様子を示す第2の図である。レーザ加工装置30は、加工ヘッド10の駆動により、加工が施された部分からプラスX方向へ、レーザビームL3,L4を照射させる位置を移動させる。
 レーザ加工装置30は、図20に示す位置P1にレーザビームL3,L4の照準を合わせる動作の後、レーザビームL3の照射による加工を行い、その後レーザビームL4の照射による加工を行う。位置P1へのレーザビームL3,L4による加工を終えると、レーザ加工装置30は、レーザビームL3,L4の照準を、プラスX方向における位置P1の隣の位置P2へ移動させる。レーザ加工装置30は、位置P2へのレーザビームL3の照射による加工を行い、その後レーザビームL4の照射による加工を行う。このように、レーザ加工装置30は、レーザビームL3,L4の照準を移動させながら、レーザビームL3の照射とレーザビームL4の照射とを1パルスごとに交互に繰り返して、ワーク15を加工する。
 図21は、図16に示すレーザ加工装置30によるレーザビームL3,L4の出力について説明する図である。図21において、縦軸PL3,PL4はレーザビームL3,L4のパワーを表し、横軸は時間を表す。レーザ加工装置30は、一定のパワーでのレーザビームL3の出力と出力オフとを繰り返す。レーザビームL3の出力は、一定の幅w1の矩形波により表される。レーザ加工装置30は、一定のパワーでのレーザビームL4の出力のオンとオフとを繰り返す。レーザビームL4の出力は、一定の幅w2の矩形波により表される。幅w1は、幅w2より短く、w1<w2の関係が成り立つ。
 レーザ加工装置30は、時間T1にて、位置P1へレーザビームL3を射出する。レーザ加工装置30は、時間T1の後の時間T2にて、位置P1へレーザビームL4を射出する。レーザ加工装置30は、制御器14によるレーザ発振器31,32の制御により、位置P1の加工領域20へレーザビームL3を進行させてから、当該加工領域20へレーザビームL4を進行させる。
 次に、レーザ加工装置30は、時間T2の後の時間T3にて、位置P2へレーザビームL3を射出する。また、レーザ加工装置30は、時間T3の後の時間T4にて、位置P2へレーザビームL4を射出する。レーザ加工装置30は、制御器14によるレーザ発振器31,32の制御により、位置P2の加工領域20へレーザビームL3を進行させてから、当該加工領域20へレーザビームL4を進行させる。レーザ加工装置30は、制御器14の制御により、レーザビームL3とレーザビームL4とを1パルスごとに交互にワーク15に照射する。なお、レーザ加工装置30は、レーザビームL3とレーザビームL4とを複数パルスごとに交互にワーク15に照射しても良い。レーザビームL3のパルスの一部とレーザビームL4のパルスの一部とは重複していても良い。
 レーザ加工装置30は、ワーク15の各位置へレーザビームL3とレーザビームL4とを1回ずつ照射することによりワーク15を切断するほか、ワーク15の各位置へレーザビームL3とレーザビームL4とを交互に複数回ずつ照射することによりワーク15を切断しても良い。この場合、レーザ加工装置30は、ガルバノスキャナ11,12の駆動により、レーザビームL3とレーザビームL4とを複数回走査させても良い。
 レーザビームL3,L4の出力は、矩形波以外の波形により表されるものであっても良い。図22は、図1に示すレーザ加工装置1によるレーザビームL3の出力の変形例を示す図である。図23は、図1に示すレーザ加工装置1によるレーザビームL4の出力の変形例を示す図である。変形例において、レーザビームL3の出力は、パワーの立ち上がり時にパワーレベルがピークとなる波形により表される。レーザビームL4の出力は、パワーの立ち上がり時にパワーレベルがピークとなる波形により表される。この他、レーザビームL3,L4の出力は、ガウス分布に近い波形により表されるものであっても良い。
 実施の形態2によると、レーザ加工装置30は、短パルスのレーザビームL3と長パルスのレーザビームL4とを1パルスごとに交互にワーク15に照射する。レーザ加工装置30は、レーザビームL3の照射により加工領域20の外縁部分を加工してから、レーザビームL4の照射により、外縁部分により囲われた部分を加工することで、加工品に残される熱影響層17を少なくする。これにより、レーザ加工装置30は、高品質な加工が可能となるという効果を奏する。
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
 1,30 レーザ加工装置、2,3,31,32 レーザ発振器、4,5 ビーム整形器、6,8 ミラー、7 ダイクロイックミラー、9 集光光学系、10 加工ヘッド、11,12 ガルバノスキャナ、13 ステージ、14 制御器、15 ワーク、16 透過領域、17 熱影響層、18 切断面、20 加工領域、21,22 加工溝、25 プロセッサ、26 メモリ、27 バス、33 薄膜偏光子、L1,L2,L3,L4 レーザビーム。

Claims (8)

  1.  第1のレーザビームをパルス発振する第1のレーザ発振器と、前記第1のレーザビームとは波長またはパルス幅が異なる第2のレーザビームをパルス発振する第2のレーザ発振器とを備えるレーザ加工装置のレーザ加工方法であって、
     前記第1のレーザビームと前記第2のレーザビームとを交互に被加工物に照射することを特徴とするレーザ加工方法。
  2.  前記第1のレーザビームと前記第2のレーザビームとを1パルスごとに交互に前記被加工物に照射することを特徴とする請求項1に記載のレーザ加工方法。
  3.  前記第1のレーザビームと前記第2のレーザビームとを、同一の光軸上にて前記被加工物に照射することを特徴とする請求項1または2に記載のレーザ加工方法。
  4.  前記第1のレーザビームは、前記被加工物にて、ビームの中心に比べて周縁の強度が高い円環状のビーム形状を有することを特徴とする請求項1から3のいずれか1つに記載のレーザ加工方法。
  5.  第1のレーザビームをパルス発振する第1のレーザ発振器と、
     前記第1のレーザビームとは波長またはパルス幅が異なる第2のレーザビームをパルス発振する第2のレーザ発振器と、
     前記第1のレーザ発振器と前記第2のレーザ発振器との制御により、前記第1のレーザビームと前記第2のレーザビームとを交互に被加工物に照射させる制御器と、
     を備えることを特徴とするレーザ加工装置。
  6.  前記制御器は、前記第1のレーザビームと前記第2のレーザビームとを1パルスごとに交互に前記被加工物に照射させることを特徴とする請求項5に記載のレーザ加工装置。
  7.  前記第1のレーザビームと前記第2のレーザビームとを、同一の光軸上にて前記被加工物に照射することを特徴とする請求項5または6に記載のレーザ加工装置。
  8.  前記被加工物に照射される前記第1のレーザビームのビーム形状を、ビームの中心に比べて周縁の強度が高い円環状のビーム形状に整形するビーム整形器を備えることを特徴とする請求項5から7のいずれか1つに記載のレーザ加工装置。
PCT/JP2017/034650 2017-09-26 2017-09-26 レーザ加工方法およびレーザ加工装置 WO2019064325A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201780079600.3A CN110121397A (zh) 2017-09-26 2017-09-26 激光加工方法以及激光加工装置
US16/347,592 US20190255649A1 (en) 2017-09-26 2017-09-26 Laser beam machining method and laser beam machine
JP2018518544A JP6385622B1 (ja) 2017-09-26 2017-09-26 レーザ加工方法およびレーザ加工装置
PCT/JP2017/034650 WO2019064325A1 (ja) 2017-09-26 2017-09-26 レーザ加工方法およびレーザ加工装置
DE112017006002.8T DE112017006002T5 (de) 2017-09-26 2017-09-26 Laserstrahlbearbeitungsverfahren und Laserstrahlmaschine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/034650 WO2019064325A1 (ja) 2017-09-26 2017-09-26 レーザ加工方法およびレーザ加工装置

Publications (1)

Publication Number Publication Date
WO2019064325A1 true WO2019064325A1 (ja) 2019-04-04

Family

ID=63444242

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/034650 WO2019064325A1 (ja) 2017-09-26 2017-09-26 レーザ加工方法およびレーザ加工装置

Country Status (5)

Country Link
US (1) US20190255649A1 (ja)
JP (1) JP6385622B1 (ja)
CN (1) CN110121397A (ja)
DE (1) DE112017006002T5 (ja)
WO (1) WO2019064325A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111872566A (zh) * 2019-05-03 2020-11-03 三星显示有限公司 用于制造窗的方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11638970B2 (en) 2019-09-24 2023-05-02 Lawrence Livermore National Security, Llc Enhanced material shock using spatiotemporal laser pulse formatting

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07251284A (ja) * 1994-03-14 1995-10-03 Mitsubishi Heavy Ind Ltd Al合金のレーザー溶接方法
JP2007029952A (ja) * 2005-07-22 2007-02-08 Sumitomo Heavy Ind Ltd レーザ加工装置及びレーザ加工方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62289390A (ja) * 1986-06-10 1987-12-16 Toshiba Corp レ−ザ−加工機
JPH05104276A (ja) * 1991-10-16 1993-04-27 Toshiba Corp レーザ加工装置およびレーザによる加工方法
JP2005238291A (ja) * 2004-02-26 2005-09-08 Sumitomo Heavy Ind Ltd レーザ加工方法及びレーザ加工装置
JP2013176800A (ja) * 2012-02-29 2013-09-09 Mitsubishi Heavy Ind Ltd 加工装置及び加工方法
JP5189684B1 (ja) * 2012-03-07 2013-04-24 三菱重工業株式会社 加工装置、加工ユニット及び加工方法
US20160207144A1 (en) * 2013-08-28 2016-07-21 Mitsubishi Heavy Industries, Ltd. Laser processing apparatus
JP6025798B2 (ja) * 2014-10-07 2016-11-16 三菱重工業株式会社 レーザ加工装置
CN104858547B (zh) * 2015-04-17 2016-09-21 温州职业技术学院 一种基于双光束空间特性调节的激光加工头
CN104816087B (zh) * 2015-04-17 2016-11-30 温州大学 一种基于单光束时空特性调节的激光加工头
CN204504505U (zh) * 2015-04-17 2015-07-29 温州职业技术学院 一种双光束组合式激光加工头

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07251284A (ja) * 1994-03-14 1995-10-03 Mitsubishi Heavy Ind Ltd Al合金のレーザー溶接方法
JP2007029952A (ja) * 2005-07-22 2007-02-08 Sumitomo Heavy Ind Ltd レーザ加工装置及びレーザ加工方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111872566A (zh) * 2019-05-03 2020-11-03 三星显示有限公司 用于制造窗的方法

Also Published As

Publication number Publication date
JP6385622B1 (ja) 2018-09-05
CN110121397A (zh) 2019-08-13
JPWO2019064325A1 (ja) 2019-11-14
US20190255649A1 (en) 2019-08-22
DE112017006002T5 (de) 2019-08-29

Similar Documents

Publication Publication Date Title
US10556293B2 (en) Laser machining device and laser machining method
US20210094127A1 (en) Multi-Laser System and Method for Cutting and Post-Cut Processing Hard Dielectric Materials
US10343237B2 (en) System and method for laser beveling and/or polishing
JP6249225B2 (ja) レーザ加工装置及びレーザ加工方法
KR101891341B1 (ko) 접합 기판의 가공 방법 그리고 가공 장치
JP4175636B2 (ja) ガラスの切断方法
US9764427B2 (en) Multi-laser system and method for cutting and post-cut processing hard dielectric materials
JP4171399B2 (ja) レーザ照射装置
US11565350B2 (en) System and method for laser beveling and/or polishing
KR100864863B1 (ko) 멀티 레이저 시스템
KR20150126603A (ko) 테이퍼 제어를 위한 빔 각도 및 작업물 이동의 공조
JP2007029952A (ja) レーザ加工装置及びレーザ加工方法
WO2012063348A1 (ja) レーザ加工方法及び装置
JP6385622B1 (ja) レーザ加工方法およびレーザ加工装置
KR101309803B1 (ko) 레이저 드릴링 장치 및 레이저 드릴링 방법
WO2020241138A1 (ja) レーザ加工装置及びそれを用いたレーザ加工方法
WO2018110415A1 (ja) レーザ加工装置及びレーザ加工方法
JP2023552942A (ja) レーザ加工システムおよび方法
CN113601027A (zh) 一种双激光复合隐形切割方法及加工系统
WO2018211691A1 (ja) レーザ加工装置
JP2007288219A (ja) レーザ照射装置
JP2013176800A (ja) 加工装置及び加工方法
JP2021142546A (ja) 光学ユニット、レーザー加工装置及びレーザー加工方法
JP2021030249A (ja) レーザー加工装置、及びレーザー加工方法
KR101358804B1 (ko) 레이저빔 조사 장치 및 그 동작 방법

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018518544

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17927769

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17927769

Country of ref document: EP

Kind code of ref document: A1