WO2019062117A1 - 半导体微元件的转移方法及转移装置 - Google Patents

半导体微元件的转移方法及转移装置 Download PDF

Info

Publication number
WO2019062117A1
WO2019062117A1 PCT/CN2018/085127 CN2018085127W WO2019062117A1 WO 2019062117 A1 WO2019062117 A1 WO 2019062117A1 CN 2018085127 W CN2018085127 W CN 2018085127W WO 2019062117 A1 WO2019062117 A1 WO 2019062117A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor micro
bonding layer
hole
semiconductor
micro
Prior art date
Application number
PCT/CN2018/085127
Other languages
English (en)
French (fr)
Inventor
吴政
丁绍滢
李佳恩
徐宸科
Original Assignee
厦门市三安光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门市三安光电科技有限公司 filed Critical 厦门市三安光电科技有限公司
Publication of WO2019062117A1 publication Critical patent/WO2019062117A1/zh
Priority to US16/830,938 priority Critical patent/US20200227302A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/03Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0095Post-treatment of devices, e.g. annealing, recrystallisation or short-circuit elimination
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68354Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used to support diced chips prior to mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68363Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used in a transfer process involving transfer directly from an origin substrate to a target substrate without use of an intermediate handle substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68381Details of chemical or physical process used for separating the auxiliary support from a device or wafer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83001Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector involving a temporary auxiliary member not forming part of the bonding apparatus
    • H01L2224/83005Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector involving a temporary auxiliary member not forming part of the bonding apparatus being a temporary or sacrificial substrate

Definitions

  • the present invention relates to a semiconductor micro-component for display, and more particularly to a transfer method for a semiconductor micro-element, a semiconductor micro-element device, and an electronic device including the semiconductor micro-element device.
  • Semiconductor micro-element technology refers to an array of micro-sized elements that are integrated at a high density on a substrate.
  • an important micro-light-emitting diode (Micro LED) technology in semiconductor micro-elements has become a hot research topic, and the industry is in urgent need of semiconductor micro-element micro-light-emitting diode products to enter the market quickly.
  • display products made of miniature light-emitting diodes can achieve ultra-high resolution, and the future will replace the traditional display products such as LCD/OLED already on the market.
  • a semiconductor micro-element In the process of fabricating a semiconductor micro-element, a semiconductor micro-element is first formed on a transfer substrate, and then the semiconductor micro-element is transferred onto a reception substrate.
  • the receiving substrate is, for example, a display screen.
  • One difficulty in the fabrication of semiconductor micro-elements is how to transfer semiconductor micro-elements from the donor substrate to the receiving substrate in large quantities. The most important metric to measure this technology is to shift yield.
  • a conventional method of transferring semiconductor micro-elements is to transfer semiconductor micro-components from a transfer substrate to a receiving substrate by wafer bonding.
  • One of the implementation methods of the transfer method is direct transfer, that is, directly bonding the semiconductor micro-elements array from the transfer substrate to the receiving substrate, and then removing the transfer substrate.
  • Another implementation method is indirect transfer. The method comprises two steps of bonding/peeling. First, the transfer substrate extracts the semiconductor micro-element array from the donor substrate, then transfers the substrate and then bonds the semiconductor micro-element array to the receiving substrate, and finally removes the transfer substrate.
  • transfer yield An important indicator for measuring the technology of transferring semiconductor micro-elements is the transfer yield, which is generally 100%. Since the MLED size is on the micron scale ( ⁇ 100um), small differences between the core particles will result in different adhesion forces required for the core particles to transfer the transfer tape, resulting in a transfer yield of less than 100%. Therefore, improving the transfer yield is a technical difficulty of MLED. technical problem
  • the present invention proposes a method of transferring semiconductor micro-elements.
  • a method of transferring a semiconductor micro-element includes the steps of:
  • the support structure of the bonding layer has a via hole, and after the semiconductor micro-element is removed, a thrust is applied from the via hole to the semiconductor micro-element to separate the semiconductor micro-element from the bonding layer.
  • the number of the semiconductor micro-elements is plural, wherein the step (2) applies a thrust only to a part of the semiconductor micro-elements to separate the required semiconductor micro-elements.
  • the through hole generates the thrust by injecting a fluid into the semiconductor micro-component.
  • the through hole has a pore diameter of 1 ⁇ m to 10 ⁇ m.
  • the through hole of the support structure near one end of the semiconductor micro-element has a smaller aperture than the through-hole of one end of the semiconductor micro-element.
  • the through hole diameter of the support structure near one end of the semiconductor micro-element is ⁇ ⁇ 6 ⁇ .
  • the material of the bonding layer is a polymer material.
  • the material of the bonding layer comprises BCB glue (Benzo Cyclo Butene, benzocyclobutene), silica gel, polyester resin, polyurethane or polyimide or elastomer or epoxy resin Or polydimethylsiloxane or polyurethane with ethylene terephthalate or polymethyl methacrylate or multi-walled carbon nanotubes or any combination of the foregoing.
  • BCB glue Benzo Cyclo Butene, benzocyclobutene
  • silica gel polyester resin
  • polydimethylsiloxane or polyurethane with ethylene terephthalate or polymethyl methacrylate or multi-walled carbon nanotubes or any combination of the foregoing.
  • the surface of the semiconductor micro-element has an insulating layer, and the insulating layer on the semiconductor micro-element is bonded to the support structure.
  • the insulating layer on the semiconductor micro-component is provided with a pit at a position where the insulating structure is bonded to the support structure.
  • a method for transferring a semiconductor micro-element comprising the steps of: [0021] (1) providing a bonding layer on a substrate, the bonding layer having a supporting structure; [0022] (2) the bonding layer is connected to the semiconductor micro-element through the support structure;
  • the supporting structure of the bonding layer has a through hole, and after the supporting structure is connected to the semiconductor micro-component, a suction force is applied from the through hole to the semiconductor micro-component, so that the semiconductor micro-component is adsorbed on the bonding layer, and the semiconductor micro-element is reduced. risk.
  • the number of the semiconductor micro-elements is plural, wherein the step (2) adsorbs only a part of the semiconductor micro-elements to release the semiconductor micro-elements required to be specified.
  • a semiconductor micro-component transfer device having a substrate and a bonding layer disposed on the substrate, the bonding layer being provided with a supporting structure, and the bonding layer passing through the supporting structure and The semiconductor micro-elements are connected, and the support structure has a through hole.
  • the bonding layer is made of a polymer material.
  • the material of the bonding layer comprises BCB glue (Benzo Cyclo Butene, benzocyclobutene), silica gel, polyester resin, polyurethane or polyimide or elastomer or epoxy resin Or polydimethylsiloxane or polyurethane with ethylene terephthalate or polymethyl methacrylate or multi-walled carbon nanotubes or any combination of the foregoing.
  • BCB glue Benzo Cyclo Butene, benzocyclobutene
  • silica gel polyester resin
  • polydimethylsiloxane or polyurethane with ethylene terephthalate or polymethyl methacrylate or multi-walled carbon nanotubes or any combination of the foregoing.
  • the through hole has a pore diameter of 1 ⁇ m to 10 ⁇ m.
  • the through hole of the support structure near one end of the semiconductor micro-element has a smaller aperture than the through-hole of one end of the semiconductor micro-element.
  • the through hole diameter of the support structure near one end of the semiconductor micro-element is ⁇ ⁇ 6 ⁇ .
  • the other end of the through hole connected to the semiconductor micro-element is connected to the fluid device, and the fluid device has a function of selecting an injection fluid or generating a vacuum suction force in the through hole.
  • the number of the through holes is plural, and the fluid device has a function of only introducing a fluid into a part of the through holes or generating a vacuum suction only in a part of the through holes.
  • FIG. 6 are schematic structural views of Embodiment 1;
  • Embodiment 7 is a schematic structural view of Embodiment 2.
  • FIG. 8 to FIG. 9 are schematic structural views of Embodiment 5.
  • a method for transferring a semiconductor micro-element comprising the steps of:
  • Providing a semiconductor micro-element which in turn includes a substrate 100, a first semiconductor layer 11
  • an active layer 120 0, an active layer 120, a second semiconductor layer 130, a first electrode 111 and a second electrode 131;
  • the surface of the semiconductor micro-component is covered with a sacrificial layer 200, and the sacrificial layer 200 material includes TiW, Al, Ni or any combination thereof, the sacrificial layer 200 has a hole 210, and the hole 210 penetrates the surface of the semiconductor micro-component;
  • a silica column 220 is formed in the hole 210 of the sacrificial layer 200, and the diameter of the silica column 220 is ⁇ - ⁇ ;
  • a transfer substrate is prepared.
  • the transfer substrate is composed of at least a bonding layer 300 and a substrate 310.
  • the bonding layer 300 material includes BCB glue (Benzo Cyclo Butene, benzocyclobutene), silica gel, Polyester resin, polyurethane or polyimide or elastomer or epoxy or polydimethylsiloxane or polyurethane with ethylene terephthalate or polymethyl methacrylate or multi-wall carbon nano Tube or any combination of the foregoing, referring to FIG.
  • the bonding layer 300-plane of the substrate 310 is bonded to the sacrificial layer 200 of the semiconductor micro-element, and the bonding layer 300 enters the hole 210 to encapsulate the silicon dioxide during the bonding process.
  • the pillar 220 forms a support structure 301, and the silicon dioxide pillar 220 is connected to the substrate 310 through the bonding layer 300;
  • the sacrificial layer 200 is removed by wet etching, and the silicon dioxide pillar is punched through the substrate 310 by laser perforation from the back surface of the semiconductor micro-element from the substrate 3 10 by a double-sided optical positioning system. 220, the through hole 320 is penetrated from the back surface of the substrate 310 to the surface of the semiconductor micro-component;
  • a thrust is applied from the via 320 to the semiconductor micro-element to separate the semiconductor micro-element from the bonding layer 300, and a method of generating thrust includes injection.
  • a fluid such as an inert gas or a liquid, having a gas flow rate of 5 g/mm 2 to 15 g/mm 2 ;
  • the present embodiment differs from Embodiment 1 in that, in step (6), the vacuum is applied to the semiconductor micro-components that do not need to be removed, to avoid vibration or other reasons, and the semiconductor micro-chip that does not need to be removed is used. element.
  • the substrate according to the technical solution of the present invention is suitable for performing multiple substrate transfer on a semiconductor micro-component, and provides a method for transferring a micro-component, comprising the steps of:
  • [0055] (1) providing a plurality of semiconductor micro-elements and a transfer substrate, the transfer substrate having a substrate 310 and a bonding layer 300 disposed on the substrate 310, the substrate 310 having a thickness of 50 ⁇ m - ⁇ , the substrate 310 material is sapphire or Si or metal.
  • the bonding layer 300 is provided with a support structure 301, the bonding layer 300 is connected to the semiconductor micro-element through the support structure 301, the support structure 301 has a through hole 320;
  • This embodiment is supplemented with the description of the first embodiment to the third embodiment.
  • the semiconductor micro-element is transferred, and the support structure 301 and the semiconductor micro-
  • the insulating layers 140 on the elements are connected, and the insulating layer 140 acts on the semiconductor micro-elements to prevent short-circuiting, damage, and the like.
  • the support structure 301 is a tubular structure, after the support structure 301 is separated from the semiconductor micro-component, the support structure 301 is easily broken, and the partial support structure 301 remains on the surface of the insulating layer 140.
  • the difference between the embodiment and the embodiment 4 is that the aperture of the through hole of the support structure 301 near one end of the semiconductor micro-element is smaller than the aperture of the through-hole 320 away from the end of the semiconductor micro-element, and the contact area of the support structure 301 with the insulating layer 140 is reduced.
  • the adsorption force forms a shape that is easier to separate, reducing the probability of the support structure 301 breaking.
  • a recess 141 is disposed at a corresponding position where the insulating layer 140 on the semiconductor micro-element is bonded to the support structure 301, and the dimple 141 ensures that even if the support structure 301 is broken, the residual portion It will also be within the pits 141 to avoid affecting subsequent processes of the semiconductor micro-elements.
  • This embodiment mainly improves the transfer device, and provides a semiconductor micro-component transfer device having a substrate 310 and a bonding layer 300 disposed on the substrate 310.
  • the bonding layer 300 is provided with a support structure 301.
  • the bonding layer 300 is made of a polymer material, and the bonding layer 300 is connected to the semiconductor micro-element through the supporting structure 301.
  • the support structure 301 has a through hole 320 having a hole diameter of ⁇ 10 ⁇ , and the through hole 320 of the support structure 301 near one end of the semiconductor micro-element has a smaller aperture than the through-hole 320 away from the end of the semiconductor micro-element.
  • the through hole 320 of the support structure 301 near one end of the semiconductor micro-element has a hole diameter of ⁇ ⁇ 6 ⁇ .
  • the other end of the through hole 320 connected to the semiconductor micro-element is connected to the fluid device, and the fluid device has a function of selectively injecting a fluid or generating a vacuum suction force in the through hole 320, the number of the through holes 320 being plural, and the fluid device having The function of only introducing fluid into a part of the through holes 320 or generating vacuum suction only in the part of the through holes 320

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Led Device Packages (AREA)
  • Micromachines (AREA)
  • Led Devices (AREA)
  • Thin Film Transistor (AREA)

Abstract

本发明公开了半导体微元件的转移方法及转移装置,在基板上设置有键合层,键合层与半导体微元件相连接,连接的键合层部分具有柱状支撑结构,键合层柱状支撑结构的中间有用于吹气的通孔,通孔靠近半导体微元件的一端为电极或非电极区域,键合层材料为高聚物。

Description

半导体微元件的转移方法及转移装置 技术领域
[0001] 本发明涉及用于显示的半导体微元件, 更具体地, 涉及一种用于半导体微元件 的转移方法、 一种半导体微元件装置以及一种包含半导体微元件装置的电子设 备。
背景技术
[0002] 半导体微元件技术是指在衬底上以高密度集成的微小尺寸的元件阵列。 目前, 半导体微元件中的一个重要代表微型发光二极管 (Micro LED) 技术已经成为研 究热门, 工业界亟待半导体微元件微型发光二极管产品能够迅速进入市场。 未 来微型发光二极管制作的显示屏产品可以实现超高分辨率, 未来必将取代市场 上已有的诸如 LCD/OLED的传统显示屏产品。
[0003] 在制造半导体微元件的过程中, 首先在转移基板上形成半导体微元件, 接着将 半导体微元件转移到接收基板上。 接收基板例如是显示屏。 在制造半导体微元 件过程中的一个困难在于: 如何大量地将半导体微元件从施体基板上转移到接 收基板上。 衡量此技术最重要的指标就是转移良率。
[0004] 传统转移半导体微元件的方法为借由基板键合 (Wafer Bonding) 将半导体微元 件自转移基板转移至接收基板。 转移方法的其中一种实施方法为直接转移, 即 直接将半导体微元件阵列自转移基板键合至接收基板, 之后再将转移基板移除 。 另一种实施方法为间接转移。 此方法包含两次接合 /剥离的步骤, 首先, 转移 基板自施体基板提取半导体微元件阵列, 接着转移基板再将半导体微元件阵列 键合至接收基板, 最后再把转移基板移除。
[0005] 衡量转移半导体微元件技术的重要指标就是转移良率, 一般需求为 100%。 由 于 MLED尺寸在微米级别 (<100um) , 芯粒之间的微小差异就会导致芯粒在用 转移胶带转移吋所需要的粘附力量不同, 导致转移良率小于 100%。 所以, 提高 转移良率是目前 MLED的一个技术难点。 技术问题
问题的解决方案
技术解决方案
[0006] 针对上述问题, 本发明提出了一种半导体微元件的转移方法。
[0007] 根据本发明的第一个方面, 一种半导体微元件的转移方法, 所述半导体微元件 的转移方法包含步骤:
[0008] ( 1) 在基板上设置键合层, 键合层具有支撑结构;
[0009] (2) 半导体微元件通过支撑结构与键合层相连接;
[0010] 键合层的支撑结构中具有通孔, 在移除半导体微元件吋, 从通孔向半导体微元 件施加推力, 让半导体微元件与键合层分离。
[0011] 优选地, 所述半导体微元件的数量为多个, 其中步骤 (2) 仅向部分所述半导 体微元件施加推力, 以分离所需的半导体微元件。
[0012] 优选地, 所述通孔通过向半导体微元件注入流体, 以产生所述推力。
[0013] 优选地, 所述通孔的孔径为 1μηι ~10μιη。
[0014] 优选地, 所述支撑结构靠近半导体微元件一端的通孔孔径小于远离半导体微元 件一端的通孔孔径。
[0015] 优选地, 所述支撑结构靠近半导体微元件一端的通孔孔径为 Ιμηι ~6μηι。
[0016] 优选地, 所述键合层的材料为高分子材料。
[0017] 优选地, 所述键合层的材料包括 BCB胶 (Benzo Cyclo Butene,苯并环丁烯) 、 硅胶、 聚酯树脂、 聚亚胺酯或聚酰亚胺或人造橡胶或环氧树脂或聚二甲基硅氧 烷或聚氨酯与对苯二甲酸乙二酯或聚甲基丙烯酸甲酯或多壁碳纳米管或前述任 意组合。
[0018] 优选地, 所述半导体微元件表面具有绝缘层, 所述半导体微元件上的绝缘层与 支撑结构键合。
[0019] 优选地, 所述半导体微元件上的绝缘层与支撑结构键合的位置上设置有凹坑。
[0020] 根据本发明的第二个方面, 提供了通过通孔吸力吸附半导体微元件的转移方法
, 一种半导体微元件的转移方法, 所述半导体微元件的转移方法包含步骤: [0021] ( 1) 在基板上设置键合层, 键合层具有支撑结构; [0022] (2) 键合层通过支撑结构与半导体微元件相连接;
[0023] 键合层的支撑结构中具有通孔, 在支撑结构连接半导体微元件吋, 从通孔向半 导体微元件施加吸力, 让半导体微元件吸附在键合层上, 减少半导体微元件脱 落的风险。
[0024] 优选地, 所述半导体微元件的数量为多个, 其中步骤 (2) 仅将部分所述半导 体微元件吸附, 以释放所需指定的半导体微元件。
[0025] 根据本发明的第三个方面, 提供了一种半导体微元件的转移装置, 具有基板和 设置在基板上的键合层, 键合层设置有支撑结构, 键合层通过支撑结构与半导 体微元件相连接, 所述支撑结构具有通孔。
[0026] 优选地, 所述键合层采用高分子材料。
[0027] 优选地, 所述键合层的材料包括 BCB胶 (Benzo Cyclo Butene,苯并环丁烯) 、 硅胶、 聚酯树脂、 聚亚胺酯或聚酰亚胺或人造橡胶或环氧树脂或聚二甲基硅氧 烷或聚氨酯与对苯二甲酸乙二酯或聚甲基丙烯酸甲酯或多壁碳纳米管或前述任 意组合。
[0028] 优选地, 所述通孔的孔径为 1μηι ~10μιη。
[0029] 优选地, 所述支撑结构靠近半导体微元件一端的通孔孔径小于远离半导体微元 件一端的通孔孔径。
[0030] 优选地, 所述支撑结构靠近半导体微元件一端的通孔孔径为 Ιμηι ~6μηι。
[0031] 优选地, 与半导体微元件连接的通孔另一端与流体装置相连接, 流体装置具有 选择注入流体或者在通孔产生真空吸力的功能。
[0032] 优选地, 所述通孔数量为多个, 流体装置具有仅向部分通孔通入流体或者仅在 部分通孔产生真空吸力的功能。
发明的有益效果
有益效果
另外, 本领域技术人员应当理解, 尽管现有技术中存在许多问题, 但是, 本发 明的每个实施例或权利要求的技术方案可以仅在一个或几个方面进行改进, 而 不必同吋解决现有技术中或者背景技术中列出的全部技术问题。 本领域技术人 员应当理解, 对于一个权利要求中没有提到的内容不应当作为对于该权利要求 的限制。
对附图的简要说明
附图说明
[0034] 附图用来提供对本发明的进一步理解, 并且构成说明书的一部分, 与本发明的 实施例一起用于解释本发明, 并不构成对本发明的限制。 此外, 附图数据是描 述概要, 不是按比例绘制。
[0035] 图 1〜图 6为实施例 1的结构示意图;
[0036] 图 7为实施例 2的结构示意图;
[0037] 图 8〜图 9为实施例 5的结构示意图;
[0038] 图中标示:
100、 衬底, 110、 第一半导体层, 111、 第一电极, 120、 活性层, 130、 第二半 导体层, 131、 第二电极, 140、 绝缘层, 141、 凹坑, 200、 牺牲层, 210、 孔洞 , 220、 二氧化硅柱体, 300、 键合层, 301、 支撑结构, 310、 基板, 320、 通孔
本发明的实施方式
[0039] 现在将参照附图来详细描述本发明的各种示例性实施例。 应注意到: 除非另外 具体说明, 否则在这些实施例中阐述的部件和步骤的相对布置、 数字表达式和 数值不限制本发明的范围。
[0040] 以下对至少一个示例性实施例的描述实际上仅仅是说明性的, 决不作为对本发 明及其应用或使用的任何限制。
[0041] 对于相关领域普通技术人员已知的技术、 方法和设备可能不作详细讨论, 但在 适当情况下, 所述技术、 方法和设备应当被视为说明书的一部分。
[0042] 实施例 1
[0043] 一种半导体微元件的转移方法, 所述半导体微元件的转移方法包含步骤:
[0044] (1) 提供一半导体微元件, 半导体微元件依次包括衬底 100、 第一半导体层 11
0、 活性层 120、 第二半导体层 130、 第一电极 111和第二电极 131 ;
[0045] (2) 参看图 1, 在半导体微元件表面覆盖一层牺牲层 200, 牺牲层 200材料包括 TiW、 Al、 Ni或其任意组合, 牺牲层 200具有孔洞 210, 孔洞 210贯穿到半导体微 元件表面;
[0046] (3) 参看图 2, 在牺牲层 200的孔洞 210内制作二氧化硅柱体 220, 二氧化硅柱 体 220的直径为 Ιμηι -ΙΟμηΐ;
[0047] (4) 参看图 3, 准备一转移基板, 转移基板至少由键合层 300和基板 310组成, 键合层 300材料包括 BCB胶 (Benzo Cyclo Butene,苯并环丁烯) 、 硅胶、 聚酯树 脂、 聚亚胺酯或聚酰亚胺或人造橡胶或环氧树脂或聚二甲基硅氧烷或聚氨酯与 对苯二甲酸乙二酯或聚甲基丙烯酸甲酯或多壁碳纳米管或前述任意组合, 参看 图 4, 将基板 310的键合层 300—面与半导体微元件的牺牲层 200—面相向键合, 键合过程中, 键合层 300进入孔洞 210包裹二氧化硅柱体 220, 形成支撑结构 301 , 二氧化硅柱体 220穿过键合层 300与基板 310连接;
[0048] (5) 参看图 5, 通过湿法蚀刻消除牺牲层 200, 利用双面光学定位系统从基板 3 10背离半导体微元件的背面通过激光打孔贯穿基板 310并打掉二氧化硅柱体 220 , 将通孔 320从基板 310背面贯穿到半导体微元件表面;
[0049] (6) 参看图 6, 在需要选择性移除部分半导体微元件吋, 从通孔 320向半导体 微元件施加推力, 让半导体微元件与键合层 300分离, 产生推力的方法包括注入 流体, 例如惰性气体或者液体, 气体流量为 5g/mm 2~15g/ mm 2
[0050] (7) 用常规转移设备转移与键合层 300分离的半导体微元件, 转移设备例如为 吸嘴。
[0051] 实施例 2
[0052] 参看图 7, 本实施跟实施例 1区别在于, 步骤 (6) 中同吋向部分不需要移除的 半导体微元件施加真空吸力, 避免振动或者其他原因导致不需要移除的半导体 微元件。
[0053] 实施例 3
[0054] 根据本发明的技术方案的基板, 适用于对半导体微元件进行多次基板转移, 提 供一种微元件的转移方法, 包括步骤:
[0055] ( 1) 提供多颗半导体微元件和一转移基板, 转移基板具有基板 310和设置在基 板 310上的键合层 300, 基板 310厚度为50μm -ΙΟΟμηι, 基板 310材料为蓝宝石或者 Si或者金属。 键合层 300设置有支撑结构 301 , 键合层 300通过支撑结构 301与半导体微元件相连接, 所述支撑结构 301具有通 孔 320;
[0056] (2) 利用常规转移设备将半导体微元件吸取到转移基板上, 半导体微元件与 转移装置的支撑结构 301相连接, 转移装置通过支撑结构 301的通孔 320对半导体 微元件选择性吸真空或者吹气。 保留指定的半导体微元件;
[0057] (3) 将在转移装置上保留下来的半导体微元件, 粘附到另一目标基板上, 从 基板 310的通孔 320对半导体微元件吹气, 键合层 300与半导体微元件分离, 从而 高可靠性地完成半导体微元件的转移, 实现半导体微元件的翻转。
[0058] 实施例 4
[0059] 本实施例在实施例 1~实施例 3的方案基础上进行补充说明, 为避免在半导体微 元件转移过程中其上的电极脱落, 转移半导体微元件吋, 将支撑结构 301与半导 体微元件上的绝缘层 140相连接, 绝缘层 140在半导体微元件上起到诸如防止短 路、 损坏等保护作用。
[0060] 实施例 5
[0061] 当支撑结构 301为管状结构吋, 在支撑结构 301与半导体微元件分离吋, 容易出 现支撑结构 301断裂, 部分支撑结构 301残留在绝缘层 140表面, 为了解决这个技 术问题, 参看图 8, 本实施例跟实施例 4的区别在于, 所述支撑结构 301靠近半导 体微元件一端的通孔孔径小于远离半导体微元件一端的通孔 320孔径, 降低支撑 结构 301对绝缘层 140的接触面积和吸附力, 形成更容易分离的形状, 降低支撑 结构 301断裂的概率。
[0062] 进一步提出一种技术方案, 参看图 9, 在半导体微元件上的绝缘层 140与支撑结 构 301键合的对应位置上设置凹坑 141, 凹坑 141保证即使支撑结构 301断裂, 残 留部分也将在凹坑 141内, 避免对半导体微元件的后续工艺造成影响。
[0063] 实施例 6
[0064] 本实施例主要对转移装置进行改进, 提供一种半导体微元件的转移装置, 具有 基板 310和设置在基板 310上的键合层 300, 键合层 300设置有支撑结构 301, 所述 键合层 300采用高分子材料, 键合层 300通过支撑结构 301与半导体微元件相连接 [0065] 支撑结构 301具有通孔 320, 通孔 320的孔径为 Ιμηι ~10μηι, 所述支撑结构 301靠 近半导体微元件一端的通孔 320孔径小于远离半导体微元件一端的通孔 320孔径 , 所述支撑结构 301靠近半导体微元件一端的通孔 320孔径为 Ιμηι ~6μηι。
[0066] 与半导体微元件连接的通孔 320另一端与流体装置相连接, 流体装置具有选择 注入流体或者在通孔 320产生真空吸力的功能, 所述通孔 320数量为多个, 流体 装置具有仅向部分通孔 320通入流体或者仅在部分通孔 320产生真空吸力的功能
[0067] 尽管已经描述本发明的示例性实施例, 但是理解的是, 本发明不应限于这些示 例性实施例而是本领域的技术人员能够在如下文的权利要求所要求的本发明的 精神和范围内进行各种变化和修改。

Claims

权利要求书
一种半导体微元件的转移方法, 所述半导体微元件的转移方法包含步 骤:
( 1) 在基板上设置键合层, 键合层具有支撑结构;
(2) 半导体微元件通过支撑结构与键合层相连接;
其特征在于: 键合层的支撑结构中具有通孔, 在移除半导体微元件吋
, 从通孔向半导体微元件施加推力, 让半导体微元件与键合层分离。 根据权利要求 1所述的一种半导体微元件的转移方法, 其特征在于: 所述半导体微元件的数量为多个, 其中步骤 (2) 仅向部分所述半导 体微元件施加推力, 以分离所需的半导体微元件。
根据权利要求 1所述的一种半导体微元件的转移方法, 其特征在于: 所述通孔通过向半导体微元件注入流体, 以产生所述推力。
一种半导体微元件的转移方法, 所述半导体微元件的转移方法包含步 骤:
( 1) 在基板上设置键合层, 键合层具有支撑结构;
(2) 键合层通过支撑结构与半导体微元件相连接;
其特征在于: 键合层的支撑结构中具有通孔, 在支撑结构连接半导体 微元件吋, 从通孔向半导体微元件施加吸力, 让半导体微元件吸附在 键合层上。
根据权利要求 4所述的一种半导体微元件的转移方法, 其特征在于: 所述半导体微元件的数量为多个, 其中步骤 (2) 仅将部分所述半导 体微元件吸附, 释放指定的部分半导体微元件。
根据权利要求 1或 4所述的一种半导体微元件的转移方法, 其特征在于 : 所述通孔的孔径为 1μηι ~10μιη。
根据权利要求 1或 4所述的一种半导体微元件的转移方法, 其特征在于 : 所述支撑结构靠近半导体微元件一端的通孔孔径小于远离半导体微 元件一端的通孔孔径。
根据权利要求 1或 4所述的一种半导体微元件的转移方法, 其特征在于 : 所述支撑结构靠近半导体微元件一端的通孔孔径为 Ιμηι ~6μηι。
[权利要求 9] 根据权利要求 1或 4所述的一种半导体微元件的转移方法, 其特征在于
: 所述键合层的材料为高分子材料。
[权利要求 10] 根据权利要求 1或 4所述的一种半导体微元件的转移方法, 其特征在于
: 所述键合层的材料包括 BCB胶 (Benzo Cyclo Butene,苯并环丁烯)
、 硅胶、 聚酯树脂、 聚亚胺酯或聚酰亚胺或人造橡胶或环氧树脂或聚 二甲基硅氧烷或聚氨酯与对苯二甲酸乙二酯或聚甲基丙烯酸甲酯或多 壁碳纳米管或前述任意组合。
[权利要求 11] 根据权利要求 1或 4所述的一种半导体微元件的转移方法, 其特征在 于: 所述半导体微元件表面具有绝缘层, 所述半导体微元件上的绝缘 层与支撑结构键合。
[权利要求 12] 根据权利要求 11所述的一种半导体微元件的转移方法, 其特征在于: 所述半导体微元件上的绝缘层与支撑结构键合的位置上设置有凹坑。
[权利要求 13] —种半导体微元件的转移装置, 具有基板和设置在基板上的键合层, 键合层设置有支撑结构, 键合层通过支撑结构与半导体微元件相连接
, 其特征在于: 所述支撑结构具有通孔。
[权利要求 14] 根据权利要求 13所述的一种半导体微元件的转移装置, 其特征在于: 所述键合层采用高分子材料。
[权利要求 15] 根据权利要求 13所述的一种半导体微元件的转移装置, 其特征在于: 所述键合层的材料包括 BCB胶、 硅胶、 聚酯树脂、 聚亚胺酯或聚酰亚 胺或人造橡胶或环氧树脂或聚二甲基硅氧烷或聚氨酯与对苯二甲酸乙 二酯或聚甲基丙烯酸甲酯或多壁碳纳米管或前述任意组合。
[权利要求 16] 根据权利要求 13所述的一种半导体微元件的转移装置, 其特征在于: 所述通孔的孔径为 Ιμηι ~10μηι。
[权利要求 17] 根据权利要求 13所述的一种半导体微元件的转移装置, 其特征在于: 所述支撑结构靠近半导体微元件一端的通孔孔径小于远离半导体微元 件一端的通孔孔径。
[权利要求 18] 根据权利要求 13所述的一种半导体微元件的转移装置, 其特征在于: 所述支撑结构靠近半导体微元件一端的通孔孔径为 1μηι ~6μιη。
[权利要求 19] 根据权利要求 13所述的一种半导体微元件的转移装置, 其特征在于: 与半导体微元件连接的通孔另一端与流体装置相连接, 流体装置具有 选择注入流体或者在通孔产生真空吸力的功能。
[权利要求 20] 根据权利要求 19所述的一种半导体微元件的转移装置, 其特征在于: 所述通孔数量为多个, 流体装置具有仅向部分通孔通入流体或者仅在 部分通孔产生真空吸力的功能。
PCT/CN2018/085127 2017-09-30 2018-04-28 半导体微元件的转移方法及转移装置 WO2019062117A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/830,938 US20200227302A1 (en) 2017-09-30 2020-03-26 Structure and method for transferring a micro semiconductor element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710918727.1A CN107818931B (zh) 2017-09-30 2017-09-30 半导体微元件的转移方法及转移装置
CN201710918727.1 2017-09-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/830,938 Continuation-In-Part US20200227302A1 (en) 2017-09-30 2020-03-26 Structure and method for transferring a micro semiconductor element

Publications (1)

Publication Number Publication Date
WO2019062117A1 true WO2019062117A1 (zh) 2019-04-04

Family

ID=61607502

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/085127 WO2019062117A1 (zh) 2017-09-30 2018-04-28 半导体微元件的转移方法及转移装置

Country Status (3)

Country Link
US (1) US20200227302A1 (zh)
CN (1) CN107818931B (zh)
WO (1) WO2019062117A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107818931B (zh) * 2017-09-30 2021-10-19 厦门市三安光电科技有限公司 半导体微元件的转移方法及转移装置
CN111446340B (zh) * 2018-05-04 2022-08-02 天津三安光电有限公司 一种微型发光元件及其制作方法
CN111613562B (zh) * 2019-02-25 2023-04-18 启端光电股份有限公司 真空转移装置及其形成方法
TWI673888B (zh) * 2019-02-25 2019-10-01 友達光電股份有限公司 發光元件的製作方法
WO2020191593A1 (zh) * 2019-03-25 2020-10-01 厦门市三安光电科技有限公司 微发光组件、微发光二极管及微发光二极管转印方法
CN112017988B (zh) * 2019-05-31 2024-03-19 成都辰显光电有限公司 转移设备
CN114664982A (zh) * 2019-06-24 2022-06-24 天津三安光电有限公司 一种制造适于转移的半导体发光元件结构的方法
CN110416139B (zh) 2019-09-11 2021-08-31 京东方科技集团股份有限公司 一种转移载板、其制作方法及发光二极管芯片的转移方法
CN114078994B (zh) * 2020-08-11 2023-05-12 重庆康佳光电技术研究院有限公司 微型led芯片转移方法及显示背板
WO2022174358A1 (en) * 2021-02-22 2022-08-25 Vuereal Inc. Cartridge interference
CN114242640A (zh) * 2021-12-21 2022-03-25 淮安澳洋顺昌光电技术有限公司 一种Micro LED芯片的转移方法和显示设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106229287A (zh) * 2016-09-30 2016-12-14 厦门市三安光电科技有限公司 用于转移微元件的转置头及微元件的转移方法
CN106328576A (zh) * 2016-09-30 2017-01-11 厦门市三安光电科技有限公司 用于微元件转移的转置头的制作方法
CN106449498A (zh) * 2016-09-30 2017-02-22 厦门市三安光电科技有限公司 用于转移微元件的转置头及微元件的转移方法
CN107039298A (zh) * 2016-11-04 2017-08-11 厦门市三安光电科技有限公司 微元件的转移装置、转移方法、制造方法、装置和电子设备
CN107068693A (zh) * 2017-02-20 2017-08-18 友达光电股份有限公司 电子组件及其制造方法、转置元件及微元件的转置方法
CN107818931A (zh) * 2017-09-30 2018-03-20 厦门市三安光电科技有限公司 半导体微元件的转移方法及转移装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200947641A (en) * 2008-05-15 2009-11-16 Gio Optoelectronics Corp Die bonding apparatus
TWI422075B (zh) * 2009-03-13 2014-01-01 Advanced Optoelectronic Tech 覆晶式半導體光電元件之結構及其製造方法
EP2359886A1 (en) * 2010-02-12 2011-08-24 Debiotech S.A. Micromechanic passive flow regulator
US9217541B2 (en) * 2013-05-14 2015-12-22 LuxVue Technology Corporation Stabilization structure including shear release posts
US9780270B2 (en) * 2013-06-04 2017-10-03 Nthdegree Technologies Worldwide Inc. Molded LED light sheet
KR102199991B1 (ko) * 2014-05-28 2021-01-11 엘지이노텍 주식회사 발광 소자 및 이를 구비한 라이트 유닛
JP6271380B2 (ja) * 2014-09-12 2018-01-31 アルパッド株式会社 半導体装置の製造装置と半導体装置の製造方法
US10700120B2 (en) * 2015-01-23 2020-06-30 Vuereal Inc. Micro device integration into system substrate
WO2018058748A1 (zh) * 2016-09-30 2018-04-05 厦门市三安光电科技有限公司 用于微元件的转移的转置头及微元件的转移方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106229287A (zh) * 2016-09-30 2016-12-14 厦门市三安光电科技有限公司 用于转移微元件的转置头及微元件的转移方法
CN106328576A (zh) * 2016-09-30 2017-01-11 厦门市三安光电科技有限公司 用于微元件转移的转置头的制作方法
CN106449498A (zh) * 2016-09-30 2017-02-22 厦门市三安光电科技有限公司 用于转移微元件的转置头及微元件的转移方法
CN107039298A (zh) * 2016-11-04 2017-08-11 厦门市三安光电科技有限公司 微元件的转移装置、转移方法、制造方法、装置和电子设备
CN107068693A (zh) * 2017-02-20 2017-08-18 友达光电股份有限公司 电子组件及其制造方法、转置元件及微元件的转置方法
CN107818931A (zh) * 2017-09-30 2018-03-20 厦门市三安光电科技有限公司 半导体微元件的转移方法及转移装置

Also Published As

Publication number Publication date
CN107818931B (zh) 2021-10-19
US20200227302A1 (en) 2020-07-16
CN107818931A (zh) 2018-03-20

Similar Documents

Publication Publication Date Title
WO2019062117A1 (zh) 半导体微元件的转移方法及转移装置
KR102000302B1 (ko) 전자, 광학, 및/또는 기계 장치 및 시스템, 그리고 이를 제조하기 위한 방법
US11990438B2 (en) Chiplets with connection posts
US10222698B2 (en) Chiplets with wicking posts
KR101454985B1 (ko) 제작 기판을 캐리어 기판으로부터 분리하기 위한 장치 및 방법
WO2018192389A1 (zh) 一种用于微元件转移的转置头
JP5652940B2 (ja) 半導体チップ付着装置、及び半導体チップ付着方法
JP6603327B2 (ja) フレキシブル導電振動膜、フレキシブル振動センサ及びその製造方法と応用
US8389862B2 (en) Extremely stretchable electronics
JP4591378B2 (ja) 半導体装置の製造方法
WO2018032621A1 (zh) 微元件的转移方法、装置及电子设备
KR102361841B1 (ko) 멤브레인 필터
JP2007173811A (ja) Ic整合基板とキャリアの結合構造、及びその製造方法と電子デバイスの製造方法
JP6480583B2 (ja) 組み立てが容易な超小型または超薄型離散コンポーネントの構成
JP2009180620A (ja) Icチップの接合強度試験装置及びicチップの接合強度試験方法
Peng et al. One‐Step Selective Adhesive Transfer Printing for Scalable Fabrication of Stretchable Electronics
Chen et al. Interfacial liquid film transfer printing of versatile flexible electronic devices with high yield ratio
WO2016145775A1 (zh) 柔性导电振膜、柔性振动传感器及其制备方法和应用
WO2010081275A1 (zh) 一种衬底上基片的微细加工方法
JP2005078064A (ja) フレキシブルパネルの製造方法
TWI381433B (zh) 結合ic整合基板與載板之結構及其製造方法與電子裝置之製造方法
JP6991399B2 (ja) 半導体素子の製造方法及び半導体素子の製造システム
Sung et al. Micro devices integration with large-area 2D chip-network using stretchable electroplating copper spring
TWI695416B (zh) 用於轉移微型元件的方法
Ahn et al. Transfer printing techniques and inorganic single-crystalline materials for flexible and stretchable electronics

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18861175

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18861175

Country of ref document: EP

Kind code of ref document: A1