WO2010081275A1 - 一种衬底上基片的微细加工方法 - Google Patents

一种衬底上基片的微细加工方法 Download PDF

Info

Publication number
WO2010081275A1
WO2010081275A1 PCT/CN2009/001164 CN2009001164W WO2010081275A1 WO 2010081275 A1 WO2010081275 A1 WO 2010081275A1 CN 2009001164 W CN2009001164 W CN 2009001164W WO 2010081275 A1 WO2010081275 A1 WO 2010081275A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
metal
polymer
plating
hole
Prior art date
Application number
PCT/CN2009/001164
Other languages
English (en)
French (fr)
Inventor
陈兢
张轶铭
Original Assignee
北京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京大学 filed Critical 北京大学
Publication of WO2010081275A1 publication Critical patent/WO2010081275A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00023Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems without movable or flexible elements
    • B81C1/00039Anchors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0101Shaping material; Structuring the bulk substrate or layers on the substrate; Film patterning
    • B81C2201/0102Surface micromachining
    • B81C2201/0105Sacrificial layer
    • B81C2201/0108Sacrificial polymer, ashing of organics

Definitions

  • the present invention relates to microelectromechanical system (MEMS) micromachining technology, and in particular to a microfabrication method for a substrate on a substrate.
  • MEMS microelectromechanical system
  • SOI Silicon On Insulator
  • the high aspect ratio SOI MEMS device is applied to inertial sensors and electrostatic driving.
  • the obtained device has simple process, high efficiency, large capacitance plate area, large driving force, small chip area, high power carrying capacity and integration.
  • SOI wafers are costly, which hinders cost-sensitive applications.
  • SOI uses silicon as the only structural material. Silicon materials have their own poor electrical conductivity and low fracture toughness, which limits the performance and application of the device. Scope and reliability, such as applications requiring conductive contact, require special processes to create sidewall coverage on the silicon surface, and long-term operation will result in contact failure.
  • the silicon material is brittle, is not resistant to large shocks and large overloads, and cannot operate in harsh environments, limiting the application range of the device. Summary of the invention
  • the present invention overcomes the deficiencies of the prior art and provides a microfabrication method for substrates on substrates for processing MEMS devices.
  • a microfabrication method for a substrate on a substrate the steps of which include -
  • a microfabrication method for a substrate on a substrate the steps of which include:
  • step 1) of the above two methods metal wiring is performed on the upper surface of the substrate, and the metal layer is located under the plating hole of the substrate.
  • the substrate is glass, silicon, titanium metal, aluminum or molybdenum.
  • the substrate is one of silicon, germanium, a group III-V compound, titanium metal, aluminum and molybdenum.
  • the polymer is a photoresist SU8, BCB, Polyimide PMMA, AZ series photo-etching gel or the like.
  • the plating metal is gold, copper, nickel, tin, or the like.
  • the micro-machining method of the substrate on the substrate of the invention can realize low-cost, high-precision, high aspect ratio three-dimensional processing of various materials on the substrate by pressure bonding, chemical mechanical polishing, deep etching and electroplating processes, and the process Micromachining compatible with CMOS processes for processing a wide range of MEMS devices.
  • the contact resistance can be reduced, the breaking strength can be improved, the system reliability can be increased, and the device can be fabricated to operate in a harsh environment.
  • metal wiring can be performed on the substrate and connected to the structural layer by electroplating to form a metal system on the substrate, and cross interconnection and multilayer interconnection can be realized.
  • Embodiment 1 is a process flow diagram of Embodiment 1 of the present invention.
  • Embodiment 2 is a process flow diagram of Embodiment 2 of the present invention. Detailed ways
  • a method for preparing a plating hole by etching a through hole is firstly carried out, and the specific steps are as follows: 1. Preparation of the substrate: Glass, silicon, titanium metal, aluminum or molybdenum may be selected as the substrate, as shown in FIG. 1 (a) ). Second, the choice of substrate: The substrate material can be silicon, germanium, III-V compound, titanium metal, aluminum or molybdenum. 3. The metal or metal compound layer 1 and layer 2 are deposited on the surface of the substrate sheet, and the metal layer 2 is patterned.
  • a metal layer 1 which does not undergo electroplating is deposited on the surface of the substrate sheet, such as sputtering Q, 30 nm ; and a metal layer 2 is deposited, such as sputtering.
  • Au500nm; as shown in Figure 1 (b)
  • the metal layer 2 is patterned, as shown in Figure 1 (c).
  • the polymer acts as an intermediate adhesion layer, and the substrate is bonded to the substrate by pressure bonding.
  • a layer of a polymer such as a low dielectric resin BCB having a thickness of 5 ⁇ m is deposited on the substrate, and the substrate is placed thereon to overlap the polymer so that the polymer is in the intermediate layer as shown in Fig. 1(d).
  • the substrate is bonded to the substrate by pressure bonding, see Figure 1 (e).
  • the substrate is thinned and deep etched to form a via.
  • the substrate is thinned, and the substrate is thinned to a suitable thickness by a chemical mechanical polishing method, such as 40 ⁇ -100 ⁇ , as shown in FIG. 1 (f>;
  • a deep etching mask such as a SU 5 photoresist or a metal hard mask having a thickness of 50 ⁇ m is deposited on the surface of the substrate, and patterned, as shown in FIG. 1 (h);
  • the substrate is etched through deep etching as shown in Figure 1 (i).
  • the substrate is etched through to form a plated hole. See Figure 1 (m) to further remove some of the polymer, as shown in Figure 1 (n).
  • the intermediate polymer is etched through the through hole of the substrate.
  • the intermediate polymer BCB is etched by a mixed gas of a fluorine-based gas and oxygen, and the structure is released, as shown in Fig. 1 (q).
  • Embodiment 2 a method for etching a through hole after preparing a plating hole, the specific steps are as follows:
  • the preparation of the substrate glass, silicon, titanium metal, aluminum or molybdenum can be selected as the substrate, as shown in Figure 2 (a).
  • the choice of substrate can be silicon, germanium, III-V compound, titanium metal, aluminum or molybdenum. 3.
  • the metal or metal compound layer 1 and layer 2 are deposited on the surface of the substrate sheet, and the metal layer 2 is patterned.
  • a metal layer 1 which does not undergo electroplating is deposited on the surface of the substrate sheet, such as sputtering Cr 30 nm; and a metal layer 2 is deposited, such as sputtering Au500 nm. , as shown in Figure 2 (b); metal layer 2 is graphical, see Figure 2 (c). 4.
  • the polymer acts as an intermediate adhesion layer, and the substrate is bonded to the substrate by pressure bonding.
  • a layer of polymer is deposited on the substrate, as shown in Fig. 2(d), such as BCB having a thickness of 5 ⁇ m, and the substrate is placed thereon to overlap the polymer so that the polymer is in the intermediate layer.
  • the substrate is bonded to the substrate by pressure bonding, see Figure 2 (e).
  • the substrate is thinned and deep etched to form a plated hole.
  • the substrate is thinned, and the substrate is thinned to a suitable thickness by chemical mechanical polishing, such as 40 ⁇ -100 ⁇ , as shown in FIG. 2(f);
  • a deep etching mask such as a SU 8 photoresist or a metal hard mask having a thickness of 50 ⁇ m is deposited on the surface of the substrate, and patterned, as shown in FIG. 2 (g) ;
  • the substrate is etched through to form a plated hole, as shown in Fig. 2 ( ).
  • a deep etch mask is deposited on the surface of the substrate, such as a SU 5 photoresist or a metal hard mask having a thickness of 50 ⁇ m, and patterned, as shown in Fig. 2 (1).
  • the polymer of the present invention may be photoresists SU8, Polyimide and PMMA in addition to BCB.
  • AZ series photoresist and so on.
  • the micro-machining method of the substrate on the substrate provided by the present invention is described above by the detailed embodiments, and those skilled in the art can understand that the invention can be modified or modified without departing from the spirit of the invention; The preparation method thereof is also not limited to the contents disclosed in the examples.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Micromachines (AREA)

Description

一种衬底上基片的微细加工方法 技术领域
本发明是关于微电子机械系统 (MEMS) 微加工技术, 具体涉及一种衬底上基片的 微细加工方法。 背景技术
目前 SOI (绝缘体上硅) 技术在半导体和微机械领域发挥的作用越来越大。 高深宽 比的 SOI MEMS器件应用于惯性传感器和静电驱动, 得到的器件工艺简单, 效率高, 电容极板面积大、 驱动力大、 占用芯片面积小、 功率承载能力和集成度都较高。 然而, SOI晶圆成本较高, 这妨碍了成本敏感的应用; 另外, SOI使用硅作为唯一结构材料, 硅材料存在自身导电性能不佳, 断裂韧度低等缺点, 制约了器件的性能和应用范围和可 靠性, 如需要接触导电的应用场合需要在硅表面使用特殊工艺形成侧墙覆盖, 并且长时 间工作将导致触点失效。 此外, 硅材料脆性大, 不耐大冲击和大过载, 也无法在恶劣环 境下工作, 限制了器件的应用范围。 发明内容
本发明克服了现有技术中的不足,提供了一种用于加工 MEMS器件的衬底上基片的 微细加工方法。
本发明的技术方案是:
一种衬底上基片的微细加工方法, 其步骤包括-
1)使用聚合物作为中间黏附层, 通过压力键合的方法, 将衬底与基片键合在一起, 形成衬底上基片;
2) ¾!"基片减薄, 并深刻蚀形成通孔;
3)对上述通孔进行回填, 再次对基片进行深刻蚀形成电镀孔;
4)在电镀孔内电镀金属, 形成衬底与基片间的支撑;
5)释放上述通孔, 通过该通孔对聚合物进行刻蚀, 释放结构。
一种衬底上基片的微细加工方法, 其步骤包括:
1)使用聚合物作为中间黏附层, 通过压力键合的方法, 将衬底片与基片键合在一 起, 形成衬底上基片; 2)基片减薄, 并深刻蚀形成电镀孔;
3)在电镀孔内电鍍金属, 形成衬底与基片间的支撑;
4)对基片再次深刻蚀, 形成通孔;
5)通过上述通孔对聚合物进行刻蚀, 释放结构。
在上述两方法的步骤 1)中,在衬底的上表面进行金属布线,该金属层位于基片的电 镀孔下方。
上述两方法中, 所述衬底为玻璃、 硅、 金属钛、 铝或钼。
上述两方法中, 所述基片采用硅、 锗、 III-V族化合物、 金属钛、 铝和钼中的一种。 上述两方法中, 所述聚合物为光刻胶 SU8、 BCB、 Polyimide PMMA、 AZ系列光 刻胶等。
上述两方法中, 所属电镀金属为金、 铜、 镍、 锡等。
与现有技术相比, 本发明的有益效果是:
本发明衬底上基片的微细加工方法通过压力键合、化学机械抛光、深刻蚀和电镀工 艺, 可在衬底上实现多种材料的低成本、 高精度、 高深宽比三维加工, 且工艺与 CMOS 工艺兼容的微机械加工, 可用于加工多种 MEMS器件。
如使用金属作为结构材料, 可以降低接触电阻, 提高断裂强度, 增加系统可靠性, 制作出的器件可在恶劣环境下工作。
且, 在衬底上可进行金属布线, 并通过电鍍与结构层连接, 形成衬底上金属系统, 可以实现交叉互连以及多层互连。 附图说明
图 1为本发明实施例一的工艺流程图;
图 2为本发明实施例二的工艺流程图。 具体实施方式
下面结合附图和具体实施方式对本发明作进一步详细描述:
实施例一, 釆用先刻蚀通孔后制备电镀孔的方法, 具体步骤为- 一、 衬底的制备: 可以选用玻璃、 硅、 金属钛、 铝或钼作为衬底, 请见图 1 (a)。 二、 基片的选择: 基片材料可以为硅、 锗、 III-V族化合物、 金属钛、 铝或钼等。 三、 衬底片表面淀积金属或金属化合物层 1和层 2, 并图形化金属层 2。 具体为, 为了保证后续的电镀只发生在金属层 2的区域, 首先在衬底片表面淀积不 会发生电镀的金属层 1, 如溅射 Q,30nm; 再淀积金属层 2, 如溅射 Au500nm;, 如图 1 (b)所示, 金属层 2图形化, 请见图 1 (c)。
四、 聚合物作为中间黏附层, 通过压力键合将衬底与基片键合在一起。
具体为, 在衬底淀积一层聚合物, 比如厚 5 μ πι的低介电树脂 BCB, 再将基片与之 重叠放置, 使聚合物处于中间层, 如图 1 (d) 所示。
通过压力键合将衬底与基片连接在一起, 请见图 1 (e)。
五、 基片减薄, 并进行深刻蚀, 形成通孔。
具体为, 基片减薄, 通过化学机械抛光的方法, 将基片减薄至合适的厚度, 如 40 ΐΏ-100 ιη, 如图 1 (f〉所示;
然后, 基片表面淀积深刻蚀掩膜, 如厚 50 μ ιη 的 SU8光刻胶或金属硬掩膜等, 并 图形化, 请见图 1 (h);
通过深刻蚀, 将基片刻蚀穿通, 如图 1 (i) 所示。
六、 去除基片表面的掩膜, 淀积填充物, 比如 parylene回填, 请见图 1 (k)。
七、 光刻, 图形化填充物薄膜, 如图 1 (1)所示。
八、 通过深刻蚀, 将基片刻蚀穿通形成电镀孔, 请见图 1 (m), 进一步去除部分聚 合物, 如图 1 (n) 所示。
九、 在电镀孔内电镀金属层 3, 比如 Cu, 形成支撑, 请见图 1 (0)。
十、 去除基片表面的填充物薄膜, 并释放通孔, 如图 1 (p)所示。
十一、 穿过基片的通孔, 对中间聚合物进行刻蚀, 比如采用氟基气体与氧气的混合 气体刻蚀中间聚合物 BCB, 释放结构, 如图 1 (q)所示。
十二、 去除金属层 1, 请见图 1 (r), 完成衬底上基片的微细加工。 实施例二, 采用先制备电镀孔后刻蚀通孔的方法, 具体步骤为:
一、衬底的制备: 可以选用玻璃、硅、金属钛、铝或钼作为衬底, 如图 2 (a)所示。 二、 基片的选择: 基片材料可以为硅、 锗、 III-V族化合物、 金属钛、 铝或钼等。 三、 衬底片表面淀积金属或金属化合物层 1和层 2, 并图形化金属层 2。
具体为, 为了保证后续的电镀只发生在金属层 2的区域, 首先在衬底片表面淀积不 会发生电镀的金属层 1 , 如溅射 Cr 30nm; 再淀积金属层 2, 如溅射 Au500nm, 如图 2 (b)所示; 金属层 2图形化, 请见图 2 (c)。 四、 聚合物作为中间黏附层, 通过压力键合将衬底与基片键合在一起。
具体为, 在衬底淀积一层聚合物, 如图 2 (d)所示, 比如厚 5 μ πι的 BCB, 再将 基片与之重叠放置, 使聚合物处于中间层。通过压力键合将衬底与基片连接在一起, 请 见图 2 (e)。
五、 基片减薄, 并进行深刻蚀, 形成电镀孔。
具体为, 基片减薄, 通过化学机械拋光的方法, 将基片减薄至合适的厚度, 如 40 μ πι-100 ηι, 如图 2 (f) 所示;
然后, 基片表面淀积深刻蚀掩膜, 如厚 50 μ ιη的 SU8光刻胶或金属硬掩膜等, 并 图形化, 请见图 2 (g);
通过深刻蚀, 将基片刻蚀穿通, 形成电镀孔, 如图 2 ( )所示。
去除部分聚合物, 请见图 2 (i)。
六、 在电镀孔内电镀金属层 3, 比如 Cu, 形成支撑, 如图 2 (j)所示。
七、 去除基片表面的掩膜, 请见图 2 (k)。
八、 基片表面淀积深刻蚀掩膜, 如厚 50 μ πι的 SU8光刻胶或金属硬掩膜等, 并图 形化, 如图 2 (1)所示。
九、 通过深刻蚀, 将基片刻蚀穿通, 形成通孔, 如图 2 (m) 所示。
十、 去除基片表面的深刻蚀掩膜, 如图 2 (n) 所示, 通过基片的通孔对中间聚合 物进行刻蚀, 比如采用氟基气体与氧气的混合气体刻蚀中间聚合物 BCB,释放结构,请 见图 2 ( 0)。
十一、 去除金属层 1, 完成衬底上基片的微细加工, 如图 2 (p)所示。 聚合物既可以淀积在衬底上, 也可以淀积在基片上。
另外, 本发明聚合物除 BCB夕卜, 还可以是光刻胶 SU8, Polyimide以及 PMMA和
AZ系列光刻胶等。 以上通过详细实施例描述了本发明所提供的衬底上基片的微细加工方法, 本领域的 技术人员应当理解,在不脱离本发明实质的范围内,可以对本发明做一定的变形或修改; 其制备方法也不限于实施例中所公开的内容。

Claims

权利要求书
1、 一种衬底上基片的微细加工方法, 其步骤包括:
1)使用聚合物作为中间黏附层, 通过压力键合的方法, 将衬底与基片键合在一起, 形成衬底上基片;
2)对基片减薄, 并深刻蚀形成通孔;
3)对上述通孔进行回填, 再次对基片进行深刻蚀形成电镀孔;
4)在电镀孔内电镀金属, 形成衬底与基片间的支撑;
5)释放上述通孔, 通过该通孔对聚合物进行刻蚀, 释放结构。
2、 如权利要求 1所述的方法, 其特征在于, 在衬底的上表面进行金属布线, 该金 属层位于基片的电镀孔下方。
3、 如权利要求 1或 2所述的方法, 其特征在于, 所述衬底为玻璃、 硅、 金属钛、 铝或钼, 所述基片采用硅、 锗、 III-V族化合物、 金属钛、 铝和钼中的一种。
4、 如权利要求 1或 2所述的方法, 其特征在于, 所述聚合物为光刻胶 SU8、 BCB、 Polyimide、 PMMA或 AZ系列光刻胶。
5、 如权利要求 1或 2所述的方法, 其特征在于, 所属电镀金属为金、 铜、 镍或锡。
6、 一种衬底上基片的微细加工方法, 其步骤包括:
1)使用聚合物作为中间黏附层, 通过压力键合的方法, 将衬底片与基片键合在一 起, 形成衬底上基片;
2)基片减薄, 并深刻蚀形成电镀孔;
3)在电镀孔内电镀金属, 形成衬底与基片间的支撑;
4)对基片再次深刻蚀, 形成通孔;
5)通过上述通孔对聚合物迸行刻蚀, 释放结构。
7、 如权利要求 6所述的方法, 其特征在于, 在衬底的上表面进行金属布线, 该金 属层位于基片的电镀孔下方。
8、 如权利要求 6或 7所述的方法, 其特征在于, 所述衬底为玻璃、 硅、 金属钛、 铝或钼, 所述基片采用硅、 锗、 III-V族化合物、 金属钛、 铝和钼中的一种。
9、 如权利要求 6或 7所述的方法, 其特征在于, 所述聚合物为光刻胶 SU8、 BCB、 Polyimide、 PMMA或 AZ系列光刻胶。
10、如权利要求 6或 7所述的方法, 其特征在于, 所属电镀金属为金、铜、镍或锡。
PCT/CN2009/001164 2008-12-30 2009-10-20 一种衬底上基片的微细加工方法 WO2010081275A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2008102411031A CN101445217B (zh) 2008-12-30 2008-12-30 一种衬底上基片的微细加工方法
CN200810241103.1 2008-12-30

Publications (1)

Publication Number Publication Date
WO2010081275A1 true WO2010081275A1 (zh) 2010-07-22

Family

ID=40741149

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/001164 WO2010081275A1 (zh) 2008-12-30 2009-10-20 一种衬底上基片的微细加工方法

Country Status (2)

Country Link
CN (1) CN101445217B (zh)
WO (1) WO2010081275A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103253628A (zh) * 2013-05-06 2013-08-21 北京大学 一种基于深刻蚀技术的微小金属零件制备及装配方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101445217B (zh) * 2008-12-30 2011-05-04 北京大学 一种衬底上基片的微细加工方法
US20130115754A1 (en) * 2011-11-07 2013-05-09 Jing Chen Micro machining method for a substrate on an underlay
CN102424355A (zh) * 2011-11-16 2012-04-25 中国科学院上海微系统与信息技术研究所 一种增强BCB和Au之间粘附性的方法
CN104228304A (zh) * 2013-06-21 2014-12-24 无锡华润上华半导体有限公司 微机械制造工艺中的层间粘合方法
CN106158512A (zh) * 2015-04-08 2016-11-23 北京大学 一种金属钼基微继电器及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08199389A (ja) * 1995-01-27 1996-08-06 Nikon Corp 電解メッキ方法および微細パターン作製方法
US5658698A (en) * 1994-01-31 1997-08-19 Canon Kabushiki Kaisha Microstructure, process for manufacturing thereof and devices incorporating the same
JP2005028504A (ja) * 2003-07-11 2005-02-03 Sony Corp Mems素子及びその製造方法
US6905613B2 (en) * 2001-07-10 2005-06-14 Honeywell International Inc. Use of an organic dielectric as a sacrificial layer
CN101143699A (zh) * 2007-11-08 2008-03-19 上海交通大学 通用性薄膜材料图形化方法
JP2008126375A (ja) * 2006-11-22 2008-06-05 Sumitomo Electric Ind Ltd 3次元微細構造体の製造方法
JP2008284656A (ja) * 2007-05-18 2008-11-27 Toyota Motor Corp 構造体の製造方法
CN101445217A (zh) * 2008-12-30 2009-06-03 北京大学 一种衬底上基片的微细加工方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5658698A (en) * 1994-01-31 1997-08-19 Canon Kabushiki Kaisha Microstructure, process for manufacturing thereof and devices incorporating the same
JPH08199389A (ja) * 1995-01-27 1996-08-06 Nikon Corp 電解メッキ方法および微細パターン作製方法
US6905613B2 (en) * 2001-07-10 2005-06-14 Honeywell International Inc. Use of an organic dielectric as a sacrificial layer
JP2005028504A (ja) * 2003-07-11 2005-02-03 Sony Corp Mems素子及びその製造方法
JP2008126375A (ja) * 2006-11-22 2008-06-05 Sumitomo Electric Ind Ltd 3次元微細構造体の製造方法
JP2008284656A (ja) * 2007-05-18 2008-11-27 Toyota Motor Corp 構造体の製造方法
CN101143699A (zh) * 2007-11-08 2008-03-19 上海交通大学 通用性薄膜材料图形化方法
CN101445217A (zh) * 2008-12-30 2009-06-03 北京大学 一种衬底上基片的微细加工方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103253628A (zh) * 2013-05-06 2013-08-21 北京大学 一种基于深刻蚀技术的微小金属零件制备及装配方法

Also Published As

Publication number Publication date
CN101445217B (zh) 2011-05-04
CN101445217A (zh) 2009-06-03

Similar Documents

Publication Publication Date Title
Lapisa et al. Wafer-level heterogeneous integration for MOEMS, MEMS, and NEMS
EP2973657B1 (en) Surface roughening to reduce adhesion in an integrated mems device
WO2010081275A1 (zh) 一种衬底上基片的微细加工方法
JP5313903B2 (ja) 誘電体薄膜を用いたウエハ貫通電気相互接続及びその他構造の形成
US20070180916A1 (en) Capacitive micromachined ultrasound transducer and methods of making the same
JP5656825B2 (ja) 基板によるチップの自己組立
US20020179921A1 (en) Compliant hermetic package
TW201209897A (en) Composite wafer semiconductor device and method of forming the same
US20130341738A1 (en) Method for manufacturing a component having an electrical through-connection
US8410658B2 (en) Multi-layer electrostatic energy harvester and method of making the same
WO2012088820A1 (zh) Mems器件的制作方法
WO2015103910A1 (zh) 薄膜支撑梁的制作方法
KR20090102406A (ko) 마이크로 전자기계 시스템 소자의 패키징 방법 및 그패키지
CN104003348A (zh) 用于具有双层面结构层和声学端口的mems结构的方法
EP1880977A2 (en) Silicon on metal for MEMS devices
CN101364044B (zh) 一种玻璃上基片的微细加工方法
Park et al. Pattern transfer of large-scale thin membranes with controllable self-delamination interface for integrated functional systems
US7863752B2 (en) MEMS device with integrated via and spacer
CN108313975B (zh) 半导体装置及其制造方法
Fischer et al. SiCer-A substrate to combine ceramic and silicon based micro systems
JP5877852B2 (ja) 省スペース使用のための、取り外し可能なマイクロ素子およびナノ素子
TW201825383A (zh) 封裝的形成方法
WO2010072044A1 (zh) 一种基于金属钛的mems机械继电器的制备方法
US8710601B2 (en) MEMS structure and method for making the same
US20130115754A1 (en) Micro machining method for a substrate on an underlay

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09838062

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09838062

Country of ref document: EP

Kind code of ref document: A1