WO2012088820A1 - Mems器件的制作方法 - Google Patents

Mems器件的制作方法 Download PDF

Info

Publication number
WO2012088820A1
WO2012088820A1 PCT/CN2011/074289 CN2011074289W WO2012088820A1 WO 2012088820 A1 WO2012088820 A1 WO 2012088820A1 CN 2011074289 W CN2011074289 W CN 2011074289W WO 2012088820 A1 WO2012088820 A1 WO 2012088820A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
sacrificial layer
forming
sacrificial
dielectric layer
Prior art date
Application number
PCT/CN2011/074289
Other languages
English (en)
French (fr)
Inventor
毛剑宏
唐德明
Original Assignee
上海丽恒光微电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海丽恒光微电子科技有限公司 filed Critical 上海丽恒光微电子科技有限公司
Priority to US13/882,337 priority Critical patent/US8877537B2/en
Priority to EP11852932.0A priority patent/EP2631939B1/en
Publication of WO2012088820A1 publication Critical patent/WO2012088820A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00134Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems comprising flexible or deformable structures
    • B81C1/0015Cantilevers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00261Processes for packaging MEMS devices
    • B81C1/00277Processes for packaging MEMS devices for maintaining a controlled atmosphere inside of the cavity containing the MEMS
    • B81C1/00293Processes for packaging MEMS devices for maintaining a controlled atmosphere inside of the cavity containing the MEMS maintaining a controlled atmosphere with processes not provided for in B81C1/00285
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/0802Details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/01Suspended structures, i.e. structures allowing a movement
    • B81B2203/0118Cantilevers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2207/00Microstructural systems or auxiliary parts thereof
    • B81B2207/07Interconnects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0101Shaping material; Structuring the bulk substrate or layers on the substrate; Film patterning
    • B81C2201/0102Surface micromachining
    • B81C2201/0105Sacrificial layer
    • B81C2201/0109Sacrificial layers not provided for in B81C2201/0107 - B81C2201/0108
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0101Shaping material; Structuring the bulk substrate or layers on the substrate; Film patterning
    • B81C2201/0118Processes for the planarization of structures
    • B81C2201/0125Blanket removal, e.g. polishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2203/00Forming microstructural systems
    • B81C2203/01Packaging MEMS
    • B81C2203/0145Hermetically sealing an opening in the lid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/0825Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass
    • G01P2015/0828Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass the mass being of the paddle type being suspended at one of its longitudinal ends
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/0072Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks of microelectro-mechanical resonators or networks

Definitions

  • the present invention relates to the field of semiconductor device fabrication, and more particularly to a method of fabricating a MEMS device.
  • Micro-Electro-Mechanical Systems is a micro-device or system that integrates and produces micro-frames, micro-sensors, micro-actuators, and signal processing and control circuits. It has been developed with the development of semiconductor integrated circuit microfabrication technology and ultra-precision machining technology. Microelectronic devices using MEMS technology have a broad application prospect in aerospace, aerospace, environmental monitoring, biomedical, and virtually all areas of contact.
  • MEMS devices are smaller in size, no more than one centimeter, or even a few micrometers, and the device layer thickness is even smaller. Due to the use of silicon-based semiconductor materials, it is possible to make extensive use of mature technologies and processes in the production of semiconductor integrated circuits for low-cost mass production. Among them, the micromechanical structure as the sensing, transmission and motion mechanism is the most important component of MEMS devices. Micro-mechanical structures usually need to be placed in an enclosed space to avoid receiving external environmental influences, including fixed support parts and movable The free end of the suspension.
  • a fabrication process for a sacrificial medium is required.
  • the basic process includes: first trenching a desired space size in a semiconductor dielectric layer, and filling the trench with a sacrificial medium Then, a micro-mechanical structure layer is formed on the surface of the sacrificial medium, and finally the sacrificial medium is removed, so that the micro-mechanical structure constitutes a suspension.
  • the prior art has the following problems: When filling a sacrificial medium, chemical vapor deposition is usually used. In order to ensure that the trench is filled, a sacrificial dielectric layer usually formed needs to cover the surface of the semiconductor dielectric layer outside the trench, and then pass. Chemical mechanical polishing to thin the surface of the sacrificial dielectric layer until the surface of the semiconductor dielectric layer is exposed such that the surface of the sacrificial dielectric layer in the trench is flat with the surface of the surrounding semiconductor dielectric layer Qi.
  • Common sacrificial media include amorphous carbon, and some organic polymeric materials. These sacrificial media are easily removed by a ashing process in a gaseous manner.
  • the grinding speed is very slow, and is much larger than the bottom semiconductor dielectric layer.
  • the grinding takes a long time, on the other hand, it is difficult to accurately stagnate on the surface of the semiconductor dielectric layer during polishing, which easily causes thickness loss on the surface of the bottom semiconductor dielectric layer. .
  • the problem to be solved by the present invention is to provide a method for fabricating a MEMS device, which solves the problem of slow grinding speed of the sacrificial medium in the prior art and easy over-grinding.
  • the method for fabricating a MEMS device provided by the present invention includes:
  • first sacrificial layer Forming a first sacrificial layer on a surface of the semiconductor substrate, the first sacrificial layer being made of amorphous carbon;
  • the etching the first sacrificial layer to form the first recess comprises:
  • first mask pattern Forming a first mask pattern on a surface of the first sacrificial layer, the first mask pattern defining a first dielectric layer pattern of the MEMS device;
  • the first dielectric layer is made of silicon oxide or silicon nitride and formed by chemical vapor deposition.
  • a first driving layer is further formed in the semiconductor substrate, and the mechanical structure layer of the £ corresponds to a position of the first driving layer below.
  • the method further includes forming a contact hole in the first dielectric layer, and the micro-mechanical structure layer is electrically connected to the metal interconnection structure in the semiconductor substrate through the contact hole.
  • the manufacturing method of the MEMS device further includes:
  • a cover layer is formed on a surface of the isolation layer, and the cover layer covers the through hole.
  • the etching the second sacrificial layer to form the second recess comprises:
  • the second mask pattern is removed.
  • the material and the forming process of the second dielectric layer are the same as the first dielectric layer.
  • the isolation layer before forming the isolation layer, further comprising forming a second driving layer on the surface of the second sacrificial layer and forming a contact hole in the second dielectric layer and the first dielectric layer; the second driving layer and the micromechanical structure therebelow The locations of the layers correspond; the second drive layer is electrically connected to the metal interconnect structure within the semiconductor substrate through the contact holes.
  • the method for removing the first sacrificial layer and the second sacrificial layer comprises: introducing oxygen into the through hole and removing by using an ashing process.
  • the ashing process has a temperature range of 350 oC to 450oC.
  • the invention has the following advantages: firstly forming a sacrificial dielectric layer, and patterning the sacrificial dielectric layer, and then forming a dielectric layer, avoiding grinding of amorphous carbon, shortening the production cycle, Greatly improved production efficiency.
  • 1 is a schematic flow chart of a method for fabricating a MEMS device according to the present invention
  • 2 to 18 are schematic cross-sectional views showing a method of fabricating a MEMS device according to an embodiment of the present invention. detailed description
  • a sacrificial dielectric layer of a desired thickness is first formed and patterned to avoid chemical mechanical polishing thereof.
  • Step S101 providing a semiconductor substrate
  • the semiconductor substrate is a bottom semiconductor structure of the MEMS device, and is not limited to a single crystal silicon substrate or silicon on insulator, and the semiconductor substrate may further include an underlying metal interconnection structure, chip or other semiconductor connected to the MEMS device. Devices, etc. Further, a driving mechanism for driving the mechanical structure in the MEMS device, such as an electrode plate, is also formed in the semiconductor substrate.
  • Step S102 forming a first sacrificial layer on a surface of the semiconductor substrate, wherein the first sacrificial layer is made of amorphous carbon;
  • the thickness of the first sacrificial layer is selected in accordance with the size of the space required to accommodate the micromechanical structure in the MEMS device. For example, assuming that the micromechanical structure of the MEMS device is a cantilever, and the free path of the cantilever is h, the thickness of the first sacrificial layer is at least h, so as to ensure that the space formed by the subsequent process after removing the first sacrificial layer is sufficient. The margin allows for bending or vibration of the cantilever.
  • Step S103 etching the first sacrificial layer to form a first recess
  • the first recess is for forming a support dielectric layer of the micromechanical structure and forming a contact hole for connecting the micromechanical structure in the support dielectric layer, the specific size of which should be selected according to the above needs.
  • Step S104 covering a surface of the first sacrificial layer to form a first dielectric layer
  • the first dielectric layer not only fills the first recess but also covers the first sacrificial layer to ensure that the first recess is filled without leaving any voids.
  • the first dielectric layer should be selected from materials which are easy to be subjected to chemical mechanical polishing, such as silicon oxide, silicon nitride or the like.
  • Step S105 using a chemical mechanical polishing process to thin the first dielectric layer until the first sacrificial layer is exposed; Since the amorphous carbon is an inert substance and it is difficult to react with the polishing liquid, it is difficult to perform chemical mechanical polishing. Therefore, the first dielectric layer can be thinned by using the first sacrificial layer as a polishing stop layer. When the chemical mechanical polishing is stagnant, the first dielectric layer retains only a portion located within the first recess, and the top surface is flush with the surface of the first sacrificial layer.
  • Step S106 forming a micro-mechanical structure layer on the first dielectric layer and the surface of the first sacrificial layer, and exposing the first sacrificial layer.
  • the surfaces of the first dielectric layer and the first sacrificial layer are flush, it is easy to fabricate the micromechanical structure of the MEMS device under the support of the above two layers, such as a cantilever beam, a cantilever or the like.
  • Corresponding etching processes such as vias, trenches, are typically also required to expose the first sacrificial layer to facilitate subsequent processing to remove the first sacrificial layer.
  • the micromechanical structure is supported only by the first dielectric layer, and the lower portion forms a lower space to constitute a suspended state.
  • the sacrificial layer of the upper layer and the related driving mechanism and the isolation structure are required to be An upper space of the micromechanical structure is formed.
  • the MEMS device described in this embodiment is a micro-switch having a cantilever that can be bent by inducing an electric field, and the cantilever is suspended in a closed vacuum space and is not affected by the external environment.
  • a top plate and a bottom plate are respectively disposed at the top and the bottom of the closed space as a driving mechanism of the cantilever for forming the electric field.
  • 2 to 18 are schematic cross-sectional views showing a method of fabricating the above MEMS device.
  • a semiconductor substrate which includes a metal interconnection layer 100 and a lower electrode plate 101.
  • the metal interconnect layer 100 is for electrical connection with a micro-mechanical structure (cantilever) of the MEMS device of the present embodiment;
  • the lower electrode plate 101 serves as a first driving layer and is located in a surface region i of the semiconductor substrate.
  • a first sacrificial layer 201 is formed on the surface of the semiconductor substrate, and the first sacrificial layer 201 is used to form a lower space of the cantilever, the thickness of which is not less than the stroke in which the cantilever is bent downward.
  • the first sacrificial layer 201 is made of amorphous carbon and formed by chemical vapor deposition.
  • the first sacrificial layer 201 is etched to form a first recess 301.
  • the etching may be plasma etching, and although the amorphous carbon is difficult to chemically react with other substances, due to the nature Loose, so it is easier to remove by a dry etching process such as plasma etching with physical bombardment effect.
  • a photoresist mask is formed on the surface of the first sacrificial layer 201 by using a photolithography process, and the first sacrificial layer 201 is etched by using a semiconductor substrate as an etch stop layer to form a desired first recess 301. .
  • a semiconductor substrate is exposed at the bottom of the first recess 301, and the metal interconnect layer 100 is aligned to facilitate fabrication of a contact hole connected to the metal interconnect layer 100 in the first recess 301.
  • FIG. 5 is a top plan view of FIG. 4.
  • the first recess 301 divides the first sacrificial layer 201 into independent square regions, and in the square region, at the bottom of the first sacrificial layer 201.
  • the lower electrode plate 101 is aligned.
  • the occluded lower electrode plate 101 is indicated by a broken line in Fig. 5 due to the limitation of the positional relationship.
  • a first dielectric layer 401 is formed on the surface of the semiconductor structure, and the first dielectric layer 401 is filled not only in the first recess 301 but also on the surface of the first sacrificial layer 201.
  • the material of the first dielectric layer 401 may be a conventional semiconductor dielectric material such as silicon oxide or silicon nitride, which is formed by a chemical vapor deposition process.
  • the first dielectric layer 401 is thinned by chemical mechanical polishing until the surface of the first sacrificial layer 201 is exposed. Since the amorphous carbon is difficult to react with the polishing liquid, the polishing speed is extremely slow, and the above-described chemical mechanical polishing process is liable to be stagnated on the surface of the first sacrificial layer 201. After the first dielectric layer 401 on the surface of the first sacrificial layer 201 is polished, the first dielectric layer 401 only retains a portion of the original first recess 301, and the top surface of the first dielectric layer 401 and the first sacrifice Layer 201 is flush.
  • a contact hole 601 is formed in the first dielectric layer 401, and the contact hole 601 is connected to the metal interconnection layer 100 in the semiconductor substrate.
  • a micromechanical structure layer 500 is formed on the surface of the first dielectric layer 401 and the first sacrificial layer 201, and the first sacrificial layer 201 is exposed.
  • 10 is a top plan view of FIG. 9.
  • the micro-mechanical structure layer 500 in the embodiment is a metal cantilever, one end of which is connected to the first dielectric layer 401 as a fixed end, and the other end is located at the other end.
  • the first sacrificial layer 201 serves as a free end.
  • the micromechanical structure layer 500 is also electrically connected at its fixed end to the metal interconnect layer 100 within the semiconductor substrate through contact holes 601.
  • a metal layer may be formed on the surface of the first dielectric layer 401 and the first sacrificial layer 201 by using a physical vapor deposition process, and then the metal layer is patterned to form the metal cantilever, and at the same time, a part of the first sacrifice is exposed.
  • the surface of layer 201 may be formed on the surface of the first dielectric layer 401 and the first sacrificial layer 201 by using a physical vapor deposition process, and then the metal layer is patterned to form the metal cantilever, and at the same time, a part of the first sacrifice is exposed.
  • a second sacrificial layer 202 is formed on the surface of the semiconductor structure obtained above. Said The second sacrificial layer 202 is used to fabricate the upper space of the cantilever, and thus covers at least the surface of the first sacrificial layer 201 and the micro-mechanical structure layer 500, the thickness of which is not less than the stroke of the cantilever upward bending.
  • the material and the forming method of the second sacrificial layer 202 are completely the same as those of the first sacrificial layer 201, and are connected to each other.
  • the second sacrificial layer 202 is etched to form a second recess 302.
  • the bottom of the second recess 302 is aligned with the first dielectric layer 401 and the germanium mechanical structure layer 500 is exposed.
  • 13 is a top plan view of FIG. 12. Referring to FIG. 13, the second recess 302 also divides the second sacrificial layer 202 into square regions corresponding to the first sacrificial layer 201.
  • the etching can also be plasma etching.
  • the second dielectric layer 402 is formed on the surface of the second sacrificial layer 202, and the second dielectric layer 402 is further filled in the second recess 302.
  • the material and the forming process may be combined with the first dielectric layer. 401 is the same.
  • the first dielectric layer 401 is thinned by chemical mechanical polishing until the surface of the first sacrificial layer 201 is exposed. Also, the above chemical mechanical polishing process is liable to stagnant on the surface of the second sacrificial layer 202. After the second dielectric layer 402 on the surface of the second sacrificial layer 202 is ground, the second dielectric layer 402 only retains a portion of the original second recess 302, and the top surface of the second dielectric layer 402 and the second sacrificial Layer 202 is flush.
  • the upper electrode plate 102 and the isolation layer 600 are sequentially formed on the surface of the second sacrificial layer 202.
  • the upper electrode plate 102 corresponds to the mechanical structure layer 500 and the lower electrode plate 101 as a second driving layer.
  • the lower electrode plate 101 and the upper electrode plate 102 form a driving electric field in the MEMS device to generate an electric field force acting on the mechanical layer 500.
  • the interconnect layer 100 is electrically connected.
  • the isolation layer 600 is etched to form a via hole, and the bottom of the via hole exposes the second sacrificial layer 202; then the second sacrificial layer 202 and the first sacrificial layer 201 are removed through the via hole.
  • oxygen can be introduced into the through hole, and the second sacrificial layer 202 and the first sacrificial layer 201 are removed by an ashing process, and the temperature of the ashing process ranges from 350 o C to 450 o C.
  • the amorphous carbon can be oxidized to carbon dioxide or carbon monoxide gas at the above temperature, and is discharged through the through holes, the second sacrificial medium 202 and the first sacrificial layer 201 are completely removed, and the rest of the device is not affected.
  • a cover layer 601 covering the through hole is formed on the surface of the isolation layer 600 by a chemical vapor deposition process, and the cover layer 601 can easily block the through holes on the isolation layer 600 during the formation process. It does not penetrate into the isolation layer 600.
  • the upper space and the lower space constitute an enclosed space for accommodating the cantilever.
  • the fabrication of the MEMS device of the present embodiment is completed. It can be seen that in the fabrication of the MEMS device of the present invention, a sacrificial layer is formed on the surface of the semiconductor substrate, and the sacrificial layer is patterned, and the formation position of the MEMS device, especially the micromechanical structure, is defined, and the MEMS is formed.
  • the dielectric layer of the device does not require chemical mechanical polishing and thinning of the sacrificial layer of amorphous carbon material, which can shorten the production cycle and greatly improve the production efficiency compared with the prior art.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Micromachines (AREA)
  • Pressure Sensors (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Description

MEMS器件的制作方法
本申请要求于 2010 年 12 月 27 日提交中国专利局、 申请号为 201010607826.6、发明名称为" MEMS器件的制作方法,,的中国专利申请的优先 权, 其全部内容通过引用结合在本申请中。
技术领域
本发明涉及半导体器件制造领域,尤其涉及一种 MEMS器件的制作方法。
背景技术
敫机电系统 ( Micro-Electro-Mechanical Systems,MEMS )是一种可集成化 生产, 集微型机构、 微型传感器、 微型执行器以及信号处理和控制电路于一体 的微型器件或系统。它是随着半导体集成电路微细加工技术和超精密机械加工 技术的发展而发展起来的。 采用 MEMS技术的微电子器件在航空、 航天、 环 境监控、生物医学以及几乎人们所接触到的所有领域中有着十分广阔的应用前 景。
相对于传统的机械结构, MEMS器件的尺寸更小, 最大不超过一个厘米, 甚至仅仅为数个微米, 其中的器件层厚度就更加微小。 由于采用了以硅为主的 半导体材料, 因此可大量利用半导体集成电路生产中的成熟技术、 工艺, 进行 低成本的批量化生产。其中微机械结构作为传感、传动以及运动机构是 MEMS 器件的最重要的组成部分,微机械结构通常需要设置于封闭空间中, 以避免收 到外部环境影响, 包括固定的支撑部分以及可活动且悬浮的自由端。
为了在半导体结构中形成悬浮的微机械结构,需要应用到牺牲介质的制作 工艺, 基本流程包括: 先在半导体介质层中挖取所需空间尺寸的沟槽, 在所述 沟槽内填充牺牲介质, 然后在牺牲介质表面制作微机械结构层, 最后去除牺牲 介质, 使得微机械结构构成悬浮。 更多关于制作具有悬浮的微机械结构层的 MEMS器件的方法, 可以参见专利号为 US2008290430A1、 US7239712B1 以 及 US2007065967的美国专利。
现有技术存在如下问题: 在填充牺牲介质时, 通常采用化学气相沉积, 为 了保证填满所述沟槽,通常形成的牺牲介质层需要还覆盖于沟槽之外半导体介 质层的表面, 然后通过化学机械研磨减薄所述牺牲介质层的表面, 直至露出半 导体介质层表面, 使得沟槽内的牺牲介质层表面与周围半导体介质层表面平 齐。 常见的牺牲介质包括无定形碳、 以及一些有机聚合材料等, 这些牺牲介质 虽然^艮容易用灰化工艺以气态的方式去除,但由于化学性质特殊, 艮难与抛光 液反应, 因此在进行化学机械研磨时, 研磨速度非常緩慢, 且远大于底部的半 导体介质层,一方面研磨耗时较长, 另一方面研磨时难以准确停滞于半导体介 质层表面, 容易造成底部半导体介质层表面的厚度损失。
发明内容
本发明解决的问题是提供一种 MEMS器件的制作方法, 解决现有技术中 对牺牲介质的研磨速度緩慢, 且容易过研磨的问题。
本发明提供的 MEMS器件的制作方法, 包括:
提供半导体衬底, 所述半导体衬底内形成有金属互连结构;
在所述半导体衬底的表面形成第一牺牲层,所述第一牺牲层的材质为无定 形碳;
刻蚀所述第一牺牲层形成第一凹槽;
在所述第一牺牲层表面覆盖形成第一介质层;
采用化学机械研磨工艺减薄所述第一介质层, 直至露出所述第一牺牲层; 在所述第一牺牲层表面形成微机械结构层, 并曝露出第一牺牲层, 所述微 机械结构层的部分与所述第一介质层连接。
所述刻蚀第一牺牲层形成第一凹槽包括:
在第一牺牲层表面形成第一掩模图形, 所述第一掩模图形定义 MEMS器 件的第一介质层图形;
刻蚀所述第一牺牲层直至露出半导体衬底, 形成所述第一凹槽; 去除所述第一掩模图形。
可选的, 所述第一介质层的材质为氧化硅或氮化硅, 采用化学气相沉积形 成。
可选的, 所述半导体衬底内还形成有第一驱动层, 所述 £机械结构层与其 下方的第一驱动层的位置相对应。
可选的,还包括在第一介质层内形成接触孔, 所述微机械结构层通过所述 接触孔与所述半导体衬底内的金属互连结构电连接。
进一步的, 所述 MEMS器件的制作方法, 还包括:
在所述微机械结构层以及第一牺牲层表面形成第二牺牲层,所述第二牺牲 层的材质与第一牺牲层相同;
刻蚀所述第二牺牲层形成第二凹槽;
在所述第二牺牲层表面覆盖形成第二介质层;
采用化学机械研磨工艺减薄所述第二介质层, 直至露出所述第二牺牲层; 在所述第二牺牲层的表面形成隔离层;
刻蚀所述隔离层形成通孔, 所述通孔露出第二牺牲层;
通过所述通孔去除第二牺牲层以及第一牺牲层;
在所述隔离层表面形成覆盖层, 且所述覆盖层覆盖通孔。
所述刻蚀第二牺牲层形成第二凹槽包括:
在第二牺牲层表面形成第二掩模图形,所述第二掩模图形定义所述 MEMS 器件的第二介质层图形;
刻蚀所述第二牺牲层直至露出微机械结构层或第一介质层,形成所述第二 凹槽;
去除所述第二掩模图形。
可选的, 所述第二介质层的材质以及形成工艺与第一介质层相同。
可选的,在形成隔离层前还包括在第二牺牲层表面形成第二驱动层以及在 第二介质层以及第一介质层内形成接触孔;所述第二驱动层与其下方的微机械 结构层的位置相对应;所述第二驱动层通过所述接触孔与所述半导体衬底内的 金属互连结构电连接。
可选的, 所述去除第一牺牲层以及第二牺牲层的方法包括: 向通孔内通入 氧气, 采用灰化工艺去除。 所述灰化工艺的温度范围为 350 oC ~450oC。
与现有技术相比, 本发明具有以下优点: 先形成牺牲介质层, 并图形化所 述牺牲介质层, 再形成介质层的方法, 避免了对无定形碳的研磨, 能够缩短生 产周期, 极大提高了生产效率。
附图说明
通过附图中所示的本发明的优选实施例的更具体说明,本发明的上述及其 他目的、特征和优势将更加清晰。 附图中与现有技术相同的部件使用了相同的 附图标记。 附图并未按比例绘制, 重点在于示出本发明的主旨。 在附图中为清 楚起见, 放大了层和区域的尺寸。
图 1是本发明所述 MEMS器件制作方法的流程示意图; 图 2至图 18是本发明实施例 MEMS器件制作方法的剖面示意图。 具体实施方式
现有的 MEMS器件制造工艺中,在制作容纳悬浮的微机械结构的空间时, 牺牲介质层的材质为诸如无定形碳的惰性物质时,极难使用常规的化学机械研 磨工艺进行表面减薄处理。 本发明则先形成所需厚度的牺牲介质层并图形化, 以避免对其进行化学机械研磨。
图 1为本发明所述 MEMS器件制作方法的流程示意图, 基本步骤包括: 步骤 S101、 提供半导体衬底;
所述半导体衬底为 MEMS器件的底层半导体结构, 不局限于单晶硅衬底 或绝缘体上硅, 所述半导体衬底内还可以包括与 MEMS器件连接的底层金属 互连结构、 芯片或其他半导体器件等。 此外, MEMS 器件中用于驱动 £机械 结构的驱动机构, 例如电极板也形成于所述半导体衬底内。
步骤 S102、 在所述半导体衬底的表面形成第一牺牲层, 所述第一牺牲层 的材质为无定形碳;
根据 MEMS器件中容纳微机械结构所需的空间尺寸, 选择所述第一牺牲 层的厚度。 例如, 假设 MEMS器件的微机械结构为悬臂, 所述悬臂的自由行 程为 h, 则所述第一牺牲层的厚度至少为 h, 以保证后续工艺去除第一牺牲层 后所形成的空间具有足够的宽裕度允许悬臂的弯曲或震动。
步骤 S103、 刻蚀所述第一牺牲层形成第一凹槽;
所述第一凹槽用于形成微机械结构的支撑介质层以及在所述支撑介质层 内制作连接所述微机械结构的接触孔, 其具体尺寸应当根据上述需要进行选 择。
步骤 S104、 在所述第一牺牲层表面覆盖形成第一介质层;
所述第一介质层不但填充于第一凹槽内,还覆盖于第一牺牲层上, 以保证 所述第一凹槽内被填满, 而不留任何空隙。且所述第一介质层应当选择易于进 行化学机械研磨的材质, 例如氧化硅、 氮化硅等。
步骤 S105、 采用化学机械研磨工艺减薄所述第一介质层, 直至露出所述 第一牺牲层; 由于无定形碳为惰性物质,难以与抛光液反应, 因此较难进行化学机械研 磨, 因此可以以第一牺牲层为抛光停止层, 对第一介质层进行减薄。 当所述化 学机械研磨停滞时, 所述第一介质层仅保留位于所述第一凹槽内的部分,且顶 部表面与第一牺牲层的表面相平齐。
步骤 S106、 在所述第一介质层以及第一牺牲层表面形成微机械结构层, 并曝露出第一牺牲层。
由于第一介质层以及第一牺牲层的表面相平齐,因此很容易在上述两层的 支撑下制作 MEMS器件的微机械结构, 例如悬梁、 悬臂等。 通常还需要进行 相关的刻蚀工艺, 例如通孔、 沟槽的制作以曝露出第一牺牲层, 以便于后续工 艺去除所述第一牺牲层。 当第一牺牲层被去除后, 所述微机械结构仅被第一介 质层所支撑, 而其余部分下方则形成下空间, 构成悬浮的状态。
此外如果 MEMS器件的微机械结构需要封闭式的容纳空间以及位于所述 微机械结构上方的驱动机构, 则在步骤 S106之后还需要进行上层的牺牲层以 及相关驱动机构、 隔离结构的制作工艺, 以形成所述微机械结构的上空间。
以下以一个具有封闭式空间以及位于所述空间内的悬臂结构的 MEMS器 件的制作方法为例, 进一步阐述本发明之特点。
殳设本实施例所述 MEMS器件为微开关, 具有能够感应电场而弯曲的悬 臂, 所述悬臂悬浮于封闭式的真空空间内, 不受外界环境影响。 所述封闭空间 的顶部以及底部分别设置有上电板以及下电板,作为所述悬臂的驱动机构, 用 于形成所述电场。图 2至图 18示出了上述 MEMS器件的制作方法的剖面示意 图。
如图 2所示,提供半导体衬底, 所述半导体衬底包括金属互连层 100以及 下电极板 101。 所述金属互连层 100用于与本实施例所述 MEMS器件的微机 械结构(悬臂)电连接; 所述下电极板 101作为第一驱动层, 位于半导体衬底 的表面区 i或。
如图 3所示,在半导体衬底表面形成第一牺牲层 201 ,所述第一牺牲层 201 用于形成悬臂的下空间, 其厚度不小于悬臂向下弯曲的行程。 本实施例中, 所 述第一牺牲层 201的材质为无定形碳, 采用化学气相沉积形成。
如图 4所示, 刻蚀所述第一牺牲层 201 , 形成第一凹槽 301。 所述刻蚀可 以为等离子刻蚀, 无定形碳虽然难以与其他物质产生化学反应,但是由于性质 疏松, 因此较容易被等离子刻蚀等具有物理轰击效果的干法刻蚀工艺所去除。 具体的, 采用光刻工艺在第一牺牲层 201表面形成光刻胶掩模, 并以半导体衬 底为刻蚀停止层刻蚀所述第一牺牲层 201 , 形成所需的第一凹槽 301。 所述第 一凹槽 301底部露出半导体衬底, 且对准金属互连层 100, 以便于在第一凹槽 301内制作与金属互连层 100连接的接触孔。
图 5为图 4的俯视示意图, 结合图 5所示, 所述第一凹槽 301将第一牺牲 层 201分割成独立的方形区域,且在所述方形区域内、第一牺牲层 201的底部 对准所述下电极板 101。 由于位置关系的限制, 图 5中以虚线框示意被遮挡的 下电极板 101。
如图 6所示, 在上述半导体结构的表面形成第一介质层 401 , 所述第一介 质层 401不但填充于第一凹槽 301内,还覆盖于第一牺牲层 201表面。 所述第 一介质层 401的材质可以为氧化硅或氮化硅等常规的半导体介质材料,采用化 学气相沉积工艺形成。
如图 7所示, 采用化学机械研磨, 减薄所述第一介质层 401直至露出第一 牺牲层 201的表面。 由于无定形碳难以与抛光液反应, 因此抛光速度极慢, 上 述化学机械研磨工艺很容易停滞于第一牺牲层 201 表面。 当第一牺牲层 201 表面的第一介质层 401被研磨完后, 所述第一介质层 401仅存留原第一凹槽 301内的部分, 且第一介质层 401的顶部表面与第一牺牲层 201相平齐。
如图 8所示, 在所述第一介质层 401内制作接触孔 601 , 所述接触孔 601 与半导体衬底内的金属互连层 100连接。
如图 9所示,在所述第一介质层 401以及第一牺牲层 201表面形成微机械 结构层 500, 并曝露出所述第一牺牲层 201。 图 10为图 9的俯视示意图, 结合 图 10所示, 本实施例中所述微机械结构层 500为金属材质的悬臂, 其一端与 第一介质层 401相连接作为固定端,另一端则位于第一牺牲层 201上作为自由 端。所述微机械结构层 500在其固定端处还通过接触孔 601与半导体衬底内的 金属互连层 100电连接。
具体的,可以先采用物理气相沉积工艺在所述第一介质层 401以及第一牺 牲层 201表面形成金属层, 然后图形化所述金属层形成上述金属悬臂, 并同时 曝露出了部分第一牺牲层 201的表面。
如图 11所示, 在上述得到的半导体结构表面形成第二牺牲层 202。 所述 第二牺牲层 202用于制作悬臂的上空间,因此至少覆盖于第一牺牲层 201以及 微机械结构层 500的表面, 其厚度不小于所述悬臂向上弯曲的行程。本实施例 中, 所述第二牺牲层 202的材质与形成方法与第一牺牲层 201完全相同,且相 互连接。
如图 12所示, 刻蚀所述第二牺牲层 202形成第二凹槽 302。 所述第二凹 槽 302底部对准第一介质层 401 , 且露出敫机械结构层 500。 图 13为图 12的 俯视示意图, 结合图 13所示, 所述第二凹槽 302也将第二牺牲层 202分割成 方形区域, 与前述第一牺牲层 201相对应。 所述刻蚀同样可以是等离子刻蚀。
如图 14所示, 在第二牺牲层 202的表面覆盖形成第二介质层 402, 所述 第二介质层 402还填充于第二凹槽 302内,其材质以及形成工艺可以与第一介 质层 401相同。
如图 15所示, 采用化学机械研磨, 减薄所述第一介质层 401直至露出第 一牺牲层 201 的表面。 同样上述化学机械研磨工艺很容易停滞于第二牺牲层 202表面。 当第二牺牲层 202表面的第二介质层 402被研磨完后, 所述第二介 质层 402仅存留原第二凹槽 302内的部分,且第二介质层 402的顶部表面与第 二牺牲层 202相平齐。
如图 16所示, 在所述第二牺牲层 202的表面依次形成上电极板 102以及 隔离层 600。所述上电极板 102与 £机械结构层 500以及下电极板 101相对应, 作为第二驱动层。 所述下电极板 101与上电极板 102在 MEMS器件内形成驱 动电场, 产生作用于 £机械结构层 500的电场力。 此外在形成隔离层 600前, 还可以包括在第二介质层 402以及第一介质层 401内制作接触孔 602的步骤, 所述上电极板 102通过所述接触孔 602与半导体衬底中的金属互连层 100电连 接。
如图 17所示, 刻蚀所述隔离层 600形成通孔, 所述通孔的底部露出第二 牺牲层 202; 然后通过所述通孔去除第二牺牲层 202以及第一牺牲层 201。
具体的, 本实施例中可以向通孔内通入氧气, 并进行灰化工艺去除第二牺 牲层 202以及第一牺牲层 201 , 所述灰化工艺的温度范围为 350 oC ~450oC。 无定形碳在上述温度下能够被氧化成二氧化碳或一氧化碳气体,而通过通孔排 出, 上述第二牺牲介质 202以及第一牺牲层 201将被彻底地去除, 而器件的其 余部分并不会受到影响, 便形成了微机械结构层 500 (即悬臂)的上空间以及 下空间。此时所述悬臂仅有与第一介质层 401以及第二介质层 402连接的一端 被固定, 而另一端则悬浮于上述空间内, 能够进行向上或向下的弯曲动作。
如图 18所示, 采用化学气相沉积工艺, 在隔离层 600的表面形成覆盖所 述通孔的覆盖层 601 , 所述覆盖层 601在形成过程中很容易将隔离层 600上的 通孔堵塞, 而不会渗入隔离层 600内。 当上述通孔被堵塞后, 所述上空间以及 下空间便构成了容纳悬臂的封闭空间。
经过以上步骤便完成本实施例的 MEMS器件的制作。 由此可见, 在本发 明所述的 MEMS器件的制作中, 采用先在半导体衬底表面形成牺牲层, 并图 形化所述牺牲层, 定义 MEMS 器件尤其是微机械结构的形成位置, 再形成 MEMS 器件的介质层, 因此并不需要对无定形碳材质的牺牲层进行化学机械 研磨减薄处理, 相比于现有技术, 能够缩短生产周期, 极大提高了生产效率。
本发明虽然已以较佳实施例公开如上,但其并不是用来限定本发明,任何 本领域技术人员在不脱离本发明的精神和范围内,都可以利用上述揭示的方法 和技术内容对本发明技术方案做出可能的变动和修改, 因此, 凡是未脱离本发 改、 等同变化及修饰, 均属于本发明技术方案的保护范围。

Claims

权 利 要 求
1、 一种 MEMS器件的制作方法, 其特征在于, 包括:
提供半导体衬底, 所述半导体衬底内形成有金属互连结构;
在所述半导体衬底的表面形成第一牺牲层,所述第一牺牲层的材质为无定 形碳;
刻蚀所述第一牺牲层形成第一凹槽;
在所述第一牺牲层表面覆盖形成第一介质层;
采用化学机械研磨工艺减薄所述第一介质层, 直至露出所述第一牺牲层; 在第一牺牲层表面形成微机械结构层, 并曝露出第一牺牲层, 所述微机械 结构层的部分与所述第一介质层连接。
2、 如权利要求 1所述的制作方法, 其特征在于, 所述刻蚀第一牺牲层形 成第一凹槽包括:
在第一牺牲层表面形成第一掩模图形,所述第一掩模图形定义所述 MEMS 器件的第一介质层图形;
采用等离子刻蚀工艺刻蚀所述第一牺牲层直至露出半导体衬底,形成所述 第一凹槽;
去除所述第一掩模图形。
3、 如权利要求 1所述的制作方法, 其特征在于, 所述第一介质层的材质 为氧化硅或氮化硅, 采用化学气相沉积形成。
4、 如权利要求 1所述的制作方法, 其特征在于, 所述半导体衬底内还形 成有第一驱动层, 所述微机械结构层与其下方的第一驱动层的位置相对应。
5、 如权利要求 1所述的制作方法, 其特征在于, 在第一牺牲层表面形成 微机械结构层前还包括在第一介质层内形成接触孔,所述微机械结构层通过所 述接触孔与所述半导体衬底内的金属互连结构电连接。
6、 如权利要求 1所述的制作方法, 其特征在于, 还包括:
在所述微机械结构层以及第一牺牲层表面形成第二牺牲层,所述第二牺牲 层的材质与第一牺牲层相同;
刻蚀所述第二牺牲层形成第二凹槽;
在所述第二牺牲层表面覆盖形成第二介质层;
采用化学机械研磨工艺减薄所述第二介质层, 直至露出所述第二牺牲层; 在所述第二牺牲层的表面形成隔离层;
刻蚀所述隔离层形成通孔, 所述通孔露出第二牺牲层;
通过所述通孔去除第二牺牲层以及第一牺牲层;
在所述隔离层表面形成覆盖层, 且所述覆盖层覆盖通孔。
7、 如权利要求 6所述的制作方法, 其特征在于, 所述刻蚀第二牺牲层形 成第二凹槽包括:
在第二牺牲层表面形成第二掩模图形,所述第二掩模图形定义所述 MEMS 器件的第二介质层图形;
采用等离子刻蚀工艺刻蚀所述第二牺牲层直至露出微机械结构层或第一 介质层, 形成所述第二凹槽;
去除所述第二掩模图形。
8、 如权利要求 6所述的制作方法, 其特征在于, 所述第二介质层的材质 以及形成工艺与第一介质层相同。
9、 如权利要求 6所述的制作方法, 其特征在于, 在形成隔离层前还包括 在第二牺牲层表面形成第二驱动层,所述第二驱动层与其下方的微机械结构层 的位置相对应。
10、 如权利要求 9所述的制作方法, 其特征在于, 在形成隔离层前还包括 在第二介质层以及第一介质层内形成接触孔,所述第二驱动层通过所述接触孔 与所述半导体衬底内的金属互连结构电连接。
11、 如权利要求 6所述的制作方法, 其特征在于, 所述去除第一牺牲层以 及第二牺牲层的方法包括: 向通孔内通入氧气, 采用灰化工艺去除。
12、 如权利要求 11所述的制作方法, 其特征在于, 所述灰化工艺的温度 范围为 350 oC ~450oC。
PCT/CN2011/074289 2010-12-27 2011-05-19 Mems器件的制作方法 WO2012088820A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/882,337 US8877537B2 (en) 2010-12-27 2011-05-19 Method for manufacturing MEMS device
EP11852932.0A EP2631939B1 (en) 2010-12-27 2011-05-19 Method for manufacturing mems device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010607826.6 2010-12-27
CN201010607826.6A CN102530831B (zh) 2010-12-27 2010-12-27 Mems器件的制作方法

Publications (1)

Publication Number Publication Date
WO2012088820A1 true WO2012088820A1 (zh) 2012-07-05

Family

ID=46339066

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/074289 WO2012088820A1 (zh) 2010-12-27 2011-05-19 Mems器件的制作方法

Country Status (4)

Country Link
US (1) US8877537B2 (zh)
EP (1) EP2631939B1 (zh)
CN (1) CN102530831B (zh)
WO (1) WO2012088820A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9759562B2 (en) * 2012-09-04 2017-09-12 University Of Cyprus Hybrid MEMS microfluidic gyroscope
WO2014119810A1 (ko) * 2013-02-01 2014-08-07 한국과학기술원 멤스 디바이스 제조방법
US9102519B2 (en) * 2013-03-14 2015-08-11 Infineon Technologies Ag Semiconductor devices and methods of forming thereof
CN104058367A (zh) * 2013-03-22 2014-09-24 上海丽恒光微电子科技有限公司 Mems器件的制造方法
US9162868B2 (en) * 2013-11-27 2015-10-20 Infineon Technologies Ag MEMS device
KR101572045B1 (ko) * 2014-04-14 2015-11-27 한국과학기술원 소자 패키징 방법 및 이를 이용한 소자 패키지
CN105439081B (zh) * 2014-09-30 2017-06-13 中芯国际集成电路制造(上海)有限公司 Mems器件的形成方法
CN105819394A (zh) * 2015-01-07 2016-08-03 中芯国际集成电路制造(上海)有限公司 Mems器件的形成方法
CN105987836B (zh) * 2015-02-17 2018-10-23 中芯国际集成电路制造(上海)有限公司 Tem样品及其制备方法
US9446948B1 (en) 2015-02-26 2016-09-20 Analog Devices, Inc. Apparatus and method of forming a MEMS device with etch channels
US10364144B2 (en) * 2017-11-17 2019-07-30 Texas Instruments Incorporated Hermetically sealed package for mm-wave molecular spectroscopy cell
CN111362228B (zh) * 2018-12-25 2023-09-08 中芯集成电路(宁波)有限公司 封装方法及封装结构
CN110076940B (zh) * 2019-03-26 2021-10-08 中国科学院微电子研究所 一种基于金属微观结构的精密模具

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1522223A (zh) * 2001-06-27 2004-08-18 英特尔公司 在微机电结构应用中形成间隙的牺牲层技术
US20040219340A1 (en) * 2003-04-29 2004-11-04 Motorola Inc. Method of adding mass to MEMS structures
US20070065967A1 (en) 2005-09-16 2007-03-22 Dalsa Semiconductor Inc. Micromachined structures using collimated DRIE
US7239712B1 (en) 2004-06-23 2007-07-03 National Semiconductor Corporation Inductor-based MEMS microphone
US20080290430A1 (en) 2007-05-25 2008-11-27 Freescale Semiconductor, Inc. Stress-Isolated MEMS Device and Method Therefor
CN101559915A (zh) * 2008-09-17 2009-10-21 电子科技大学 一种制备mems器件的牺牲层工艺方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5690839A (en) 1994-05-04 1997-11-25 Daewoo Electronics Co., Ltd. Method for forming an array of thin film actuated mirrors
CN1366332A (zh) * 2001-01-17 2002-08-28 世界先进积体电路股份有限公司 制造金属氧化物半导体元件双层栅极的方法
US7943412B2 (en) * 2001-12-10 2011-05-17 International Business Machines Corporation Low temperature Bi-CMOS compatible process for MEMS RF resonators and filters
US7205621B2 (en) * 2003-02-17 2007-04-17 Nippon Telegraph And Telephone Corporation Surface shape recognition sensor
EP1841688A1 (en) * 2005-01-24 2007-10-10 University College Cork-National University of Ireland, Cork Packaging of micro devices
KR100672153B1 (ko) * 2005-05-25 2007-01-19 주식회사 하이닉스반도체 텅스텐 게이트 전극을 갖는 반도체 소자의 제조방법
CN100483188C (zh) * 2006-06-12 2009-04-29 中芯国际集成电路制造(上海)有限公司 硅基液晶显示器件及其制造和检测方法
CN100517634C (zh) * 2006-11-13 2009-07-22 中芯国际集成电路制造(上海)有限公司 沟槽的制造方法及其应用于制造图像传感器方法
US7732299B2 (en) * 2007-02-12 2010-06-08 Taiwan Semiconductor Manufacturing Company, Ltd. Process for wafer bonding
JP2010162629A (ja) * 2009-01-14 2010-07-29 Seiko Epson Corp Memsデバイスの製造方法
US8957485B2 (en) * 2009-01-21 2015-02-17 Cavendish Kinetics, Ltd. Fabrication of MEMS based cantilever switches by employing a split layer cantilever deposition scheme
FR2946636B1 (fr) 2009-06-15 2012-03-23 Commissariat Energie Atomique Procede de liberation ameliore de la structure suspendue d'un composant nems et/ou mems

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1522223A (zh) * 2001-06-27 2004-08-18 英特尔公司 在微机电结构应用中形成间隙的牺牲层技术
US20040219340A1 (en) * 2003-04-29 2004-11-04 Motorola Inc. Method of adding mass to MEMS structures
US7239712B1 (en) 2004-06-23 2007-07-03 National Semiconductor Corporation Inductor-based MEMS microphone
US20070065967A1 (en) 2005-09-16 2007-03-22 Dalsa Semiconductor Inc. Micromachined structures using collimated DRIE
US20080290430A1 (en) 2007-05-25 2008-11-27 Freescale Semiconductor, Inc. Stress-Isolated MEMS Device and Method Therefor
CN101559915A (zh) * 2008-09-17 2009-10-21 电子科技大学 一种制备mems器件的牺牲层工艺方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2631939A4

Also Published As

Publication number Publication date
CN102530831A (zh) 2012-07-04
EP2631939A4 (en) 2014-10-01
EP2631939A1 (en) 2013-08-28
EP2631939B1 (en) 2016-04-06
US8877537B2 (en) 2014-11-04
US20130309797A1 (en) 2013-11-21
CN102530831B (zh) 2014-05-21

Similar Documents

Publication Publication Date Title
WO2012088820A1 (zh) Mems器件的制作方法
US9938138B2 (en) MEMS device structure with a capping structure
US9458009B2 (en) Semiconductor devices and methods of forming thereof
US20190297441A1 (en) Semiconductor Devices Having a Membrane Layer with Smooth Stress-Relieving Corrugations and Methods of Fabrication Thereof
JP5602761B2 (ja) 分離した微細構造を有する微小電気機械システムデバイス及びその製造方法
JP4544880B2 (ja) 微小電気機械式装置の封止方法
JP2014523815A (ja) 環境に曝露される部分を備える封止型memsデバイスのための工程
JP2013198979A (ja) 単結晶シリコン電極を備えた容量性微小電気機械式センサー
TW201134749A (en) Method for manufacturing a micro-electromechanical structure
CN104003348A (zh) 用于具有双层面结构层和声学端口的mems结构的方法
TWI612010B (zh) 製造微機電系統結構的方法
TWI700238B (zh) 藉由將表面粗糙化而改良靜摩擦之方法
CA2752746C (en) Mems device with integrated via and spacer
CN102556943B (zh) 微机电传感器的形成方法
WO2012088822A1 (zh) Mems开关及其制作方法
TW202124253A (zh) 微機電系統裝置及其形成方法
JP4994096B2 (ja) 半導体装置の製造方法およびこれを用いた半導体装置
JP2007134453A (ja) マイクロマシン混載の電子回路装置、およびマイクロマシン混載の電子回路装置の製造方法
US8936960B1 (en) Method for fabricating an integrated device
KR100613604B1 (ko) Soi 웨이퍼를 이용한 부유 구조체 형성방법
CN106865489B (zh) Mems器件的制造方法
JP2004001140A (ja) 中空構造体の製造方法、及びmems素子の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11852932

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011852932

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13882337

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE