WO2018058748A1 - 用于微元件的转移的转置头及微元件的转移方法 - Google Patents

用于微元件的转移的转置头及微元件的转移方法 Download PDF

Info

Publication number
WO2018058748A1
WO2018058748A1 PCT/CN2016/104868 CN2016104868W WO2018058748A1 WO 2018058748 A1 WO2018058748 A1 WO 2018058748A1 CN 2016104868 W CN2016104868 W CN 2016104868W WO 2018058748 A1 WO2018058748 A1 WO 2018058748A1
Authority
WO
WIPO (PCT)
Prior art keywords
micro
component
vacuum
vacuum path
path
Prior art date
Application number
PCT/CN2016/104868
Other languages
English (en)
French (fr)
Inventor
徐宸科
郑建森
邵小娟
林科闯
Original Assignee
厦门市三安光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201610865728.XA external-priority patent/CN106449498B/zh
Priority claimed from CN201610865727.5A external-priority patent/CN106328576B/zh
Application filed by 厦门市三安光电科技有限公司 filed Critical 厦门市三安光电科技有限公司
Priority to US15/859,659 priority Critical patent/US10916458B2/en
Publication of WO2018058748A1 publication Critical patent/WO2018058748A1/zh
Priority to US17/139,976 priority patent/US11631601B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67144Apparatus for mounting on conductive members, e.g. leadframes or conductors on insulating substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G61/00Use of pick-up or transfer devices or of manipulators for stacking or de-stacking articles not otherwise provided for
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6838Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping with gripping and holding devices using a vacuum; Bernoulli devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/53Means to assemble or disassemble
    • Y10T29/5313Means to assemble electrical device
    • Y10T29/53191Means to apply vacuum directly to position or hold work part

Definitions

  • Transposition head for micro-component transfer and transfer method of micro-components
  • the present invention relates to a micro-component for display, and more particularly to a transposition head and a transfer method of a micro-element for transfer of a micro-element.
  • Micro-element technology refers to an array of minute-sized components that are integrated at a high density on a substrate.
  • micro-light-emitting diode (Micro LED) technology is becoming a hot research topic, and the industry expects high-quality micro-component products to enter the market.
  • High-quality micro-pitch LED products can have a profound impact on traditional display products such as LCD/OL ED that are already on the market.
  • a micro-element is first formed on a donor substrate, and then the micro-element is transferred onto a receiving substrate.
  • the receiving substrate is, for example, a display screen.
  • One difficulty in the fabrication of microcomponents is how to transfer the microcomponents from the donor substrate to the receiving substrate.
  • a conventional method of transferring micro-elements is to transfer micro-elements from a transfer substrate to a receiving substrate by wafer bonding.
  • One of the implementation methods of the transfer method is direct transfer, that is, directly bonding the micro-element array from the transfer substrate to the receiving substrate, and then removing the transfer substrate.
  • Another method of implementation is indirect transfer. The method comprises two steps of joining/stripping. First, the transfer substrate extracts the array of microelements from the donor substrate, then transfers the substrate and then bonds the array of microelements to the receiving substrate, and finally removes the transferred substrate.
  • the extraction micro-element array is generally performed by means of electrostatic pickup. An array of transfer heads is required during electrostatic pickup.
  • the structure of the transfer head array is relatively complex and needs to be considered for its reliability. Manufacturing transfer head arrays requires additional cost. A phase change needs to be generated before picking up the transfer head array. In addition, in the manufacturing process using the transfer head array, the thermal budget of the micro-component for phase change is limited, usually less than 350 ° C, or, more specifically, less than 200 ° C; otherwise, the performance of the micro-component may deteriorate.
  • the present invention proposes a transfer head for transfer of micro-elements and a transfer method of micro-elements.
  • a transposition head for transfer of a micro-component comprising: a cavity having a vacuum path, and a kit having a plurality of nozzles and a plurality of vacuum path components,
  • the suction nozzles are disposed to communicate with the vacuum path components, respectively, the vacuum path components are formed to communicate with vacuum paths formed in the cavities, respectively, and the suction nozzles use vacuum pressure to adsorb microelements or Release the micro-components, the vacuum pressure being transmitted via the vacuum path component and the vacuum path in each of the passages, wherein: when the kit is mounted to the cavity, the upper surface of the kit is provided with an optical switch assembly for The vacuum path components in each path are controlled to sag or close the vacuum path to control the suction nozzle to use vacuum pressure to adsorb or release the required micro-components.
  • the optical switching component comprises a DMD chip.
  • the DMD chip includes a micromirror to control the enthalpy or off of the vacuum path component and the vacuum path in each of the vias by changing the angle between the micromirror and the upper surface of the kit.
  • the angle is less than or equal to 12°.
  • the vacuum path component and the vacuum path in each path are closed; when the angle is not zero, the vacuum path component in each path is smashed with the vacuum path.
  • a method of fabricating a transposition head for micro-component transfer comprising: a cavity having a vacuum path, and having an array of nozzles and a kit of array type vacuum path members, the nozzles being disposed to communicate with the vacuum path members, the vacuum path members being formed to communicate with vacuum paths formed in the cavities, respectively, and the suction
  • the nozzle uses vacuum pressure to adsorb the microcomponent or release the microcomponent, the vacuum pressure is transmitted via the vacuum path component and the vacuum path in each passage, and when the kit is mounted to the cavity, the upper surface of the kit is provided with a photoelectric barrier a component for controlling the sputum or closing of the vacuum path component and the vacuum path in each path, thereby controlling the suction element to use vacuum pressure to adsorb or release the required micro-component, and is characterized by: manufacturing a kit having an array of micro-porous structures, The array microporous structure is used as a
  • the array microporous structure is formed by laser processing or TSV or wire drawing process or any combination of the foregoing process technologies.
  • the array microporous structure has a first cornice and a second cornice, and the first cornice is greater than or The person is equal to the second mouth.
  • the size of the array microporous structure is between 1 and 100 ⁇ m.
  • the array microporous structure has a pitch of 1 to 100 ⁇ m.
  • the kit is made of metal or silicon or ceramic or glass or plastic or any combination of the foregoing.
  • the material of the nozzle is metal or silicon or ceramic or glass or plastic or any combination of the foregoing.
  • the inner surface of the array microporous structure forms a conductive layer or an insulating layer or other functional layer
  • a method for transferring a micro-component comprises the steps of:
  • the transposition head according to claim 1 is oriented toward a second substrate, the suction nozzle uses a vacuum pressure releasing micro-component, and the vacuum path component and the vacuum in each passage are controlled by the optical switching assembly The path is turned on or off to release the desired micro-elements on the second substrate.
  • the number of the micro-elements is plural, wherein step (2) only a part of the micro-components are adsorbed to extract the required micro-elements.
  • the number of the micro-elements is plural, wherein step (3) only decouples part of the micro-elements to release the required micro-elements.
  • the optical switching component comprises a DMD chip.
  • the DMD chip includes a micromirror to control the enthalpy or off of the vacuum path component and the vacuum path in each of the vias by changing the angle between the micromirror and the upper surface of the kit.
  • the angle is less than or equal to 12°.
  • the vacuum path component in each path when the angle is zero, the vacuum path component in each path is closed with the vacuum path; when the angle is not zero, the vacuum path component in each path is snoring with the vacuum path.
  • the first substrate is a growth substrate or a carrier substrate.
  • the second substrate is an active device array substrate or a passive device array substrate.
  • FIG. 1 is a flow chart of a method of transferring a micro-element according to a first embodiment of the present invention.
  • FIG. 2 to FIG. 6 are schematic diagrams showing processes of a method of transferring a micro component according to Embodiment 1 of the present invention.
  • FIG. 7 to FIG. 11 are schematic diagrams showing a manufacturing process of a transposition head for micro component transfer according to Embodiment 2 of the present invention.
  • FIG. 12 is a schematic diagram of a transposition head for micro component transfer according to Embodiment 2 of the present invention.
  • FIG. 13 is a schematic view of a transposition head for micro component transfer according to Embodiment 3 of the present invention.
  • FIG. 14 is a schematic diagram of a transposition head for micro component transfer according to Embodiment 4 of the present invention.
  • 100 first substrate
  • 200 micro-component
  • 300 transposition head
  • 301 cavity with vacuum path
  • 302 kit
  • 303 nozzle
  • 304 vacuum path component
  • 3 06 functional layer
  • 3021 microporous structure
  • 3022 first opening
  • 3023 second opening
  • 400 second substrate.
  • FIG. 1 shows a method for transferring a micro component, which mainly includes process steps S100 to S300, which will be described below in conjunction with FIGS. 2 to 6.
  • a first substrate 100 is provided.
  • the substrate may be a growth substrate or a carrier substrate.
  • the substrate is preferably a carrier substrate.
  • the material of the carrier substrate may be glass, silicon, or polycarbonate. Acrylonitrile Butadiene Styrene or any combination thereof. It should be understood that the specific embodiments of the above-mentioned carrier substrate are merely illustrative and are not intended to limit the present invention. Those having ordinary knowledge in the technical field of the present invention should flexibly select the specificity of the first substrate 100 according to actual needs. Implementation.
  • a plurality of micro-elements 200 are disposed on the first substrate 100.
  • the micro-components may be wafers or light-emitting diodes or laser diodes that have not been subjected to a wafer dicing process.
  • the micro-components are thin light-emitting diodes (Thin Light-emitting Diodes).
  • the thickness can range from about 0.5 ⁇ m to about 100 ⁇ m.
  • the shape of the micro-element 200 may be a cylinder, and the radius of the cylinder may be about 0.5 ⁇ m to about 500 ⁇ m.
  • the micro-element 200 may also be a triangular cylinder, a cube, a rectangular parallelepiped, a hexagonal cylinder, and an octagonal cylinder. Or other polygonal cylinders.
  • a transposition head 300 that faces and contacts the micro-element 20 0 on the first substrate 100.
  • the transposition head 300 includes: a cavity 301 having a vacuum path, and a kit 302 having a plurality of suction nozzles 303 and a plurality of vacuum path members 304, the suction nozzles 303 being disposed to communicate with the vacuum path members 304, respectively, the vacuum path members 304 They are formed to communicate with the vacuum path formed in the cavity 301, respectively, and the suction nozzle 303 adsorbs the micro-elements or releases the micro-components using vacuum pressure, and the vacuum pressure is transmitted through the vacuum path members and the vacuum path in the respective passages.
  • the upper surface of the kit is provided with an optical shutter assembly 305 for controlling the squeaking or closing of the vacuum path member and the vacuum path in each passage, thereby controlling the vacuum of the nozzle Pressure adsorption or release of the required microcomponents.
  • the number of nozzles, vacuum path members, and micro-components is three, and the nozzle/vacuum path member/micro-element in FIG. 3 is defined as the first, second, and third from left to right.
  • the optical switch assembly 305 preferably includes a DMD chip having a micro mirror that controls the vacuum path component and the vacuum path in each path by changing the angle between the micro mirror and the upper surface of the kit. ⁇ or off.
  • the transposition head 300 faces and contacts the micro-element 200 on the first substrate 100, and the suction nozzle uses vacuum pressure adsorption micro-elements to control the vacuum path components and vacuum in each passage by the optical switching assembly. ⁇ or off the path to extract the required micro-components.
  • a second substrate 400 is provided, and the transposition head 300 faces the second substrate 400.
  • the second substrate serves as a receiving substrate, and may be selected from automotive glass, glass sheets, flexible electronic substrates such as flexible films with circuits, display back sheets, solar glass, metals, polymers, polymer composites, and glass fibers.
  • the nozzle 303 uses the vacuum pressure release micro-element 200 to control the vacuum path component in each of the vias and the vacuum path by the optical switching component 305 to release the desired micro-element onto the second substrate 400.
  • the second substrate 400 may be an active device array substrate or a passive device array substrate.
  • the active device array substrate is preferred. Therefore, the second substrate 400 and the micro device 200 will form an active display panel, but are not limited thereto. this.
  • the second substrate 400 and the micro-element 200 may also form a light-emitting device.
  • micro-elements may be extracted all at once, or may be only partially extracted as needed. Further, the qualified micro-component transfer can be partially extracted, leaving the remaining unqualified micro-components; the unqualified micro-components can also be extracted, and the qualified micro-components are left on the first substrate, thereby improving the efficiency in the transfer process of the micro-components. With yield.
  • the micro-component transfer method of the present embodiment can be used to fabricate an electronic device, which can be widely used in an electronic device, and the electronic device can be a mobile phone, a tablet computer, or the like.
  • FIG. 7 to FIG. 11 are schematic diagrams showing a manufacturing process of a transposition head for micro component transfer, which mainly includes The following process steps:
  • kits 302 is provided.
  • the material of the kit may be metal or silicon or ceramic or glass or plastic or any combination thereof.
  • a silicon substrate is preferred as the kit material.
  • an array type microporous structure 3021 is formed on a silicon substrate, and the array type microporous structure can be used as a vacuum path member or a nozzle, and the array type microporous structure adopts a wire drawing process or a silicon perforation.
  • Technology TSV
  • laser drilling is preferably used, and a laser beam having a power density of 10 ⁇ l 'ow/cn ⁇ is used, and the diameter of the array microporous structure 3021 is W. Between 1 ⁇ 100 ⁇ , the spacing D is between 1 ⁇ 100 ⁇ .
  • the silicon substrate is thinned.
  • the thickness of the silicon substrate can be set to be limited to 0.01 to 0.6 mm, and the thickness of the thin film can be adapted according to actual needs. Adjustment.
  • the thickness of the silicon substrate is 0.01 to 0.4 mm. More preferably, the thickness of the silicon substrate is 0.1 to 0.3 mm.
  • the thinning treatment can be achieved by a process such as grinding, chemical mechanical polishing or plasma etching.
  • the first opening 3 022 and the second opening 3023 are respectively formed on the upper and lower surfaces of the array type microporous structure 3021.
  • the first cornice is greater than or equal to the second cornice. In this embodiment, the first cornice size is equal to the second cornice size.
  • a photo-electrical-off component 305 is formed at the first port 3022, preferably including a DMD chip having a micro-mirror.
  • the array type microporous structure 3021 is preferably used as the vacuum path member 304, and the second port 3023 is used as the suction nozzle 303, so that no additional nozzle is required.
  • a cavity 301 having a vacuum path is formed over the kit 302, and a transposition head 300 for micro component transfer is thus obtained.
  • the substrate 100 is provided.
  • the substrate may be a growth substrate or a carrier substrate.
  • the substrate is preferably a carrier substrate.
  • the material of the carrier substrate may be glass, silicon, polycarbonate, acrylonitrile butadiene-styrene. (Acrylonitrile Butadiene Styrene) or any combination thereof.
  • the specific embodiments of the above-mentioned carrier substrate are merely illustrative and are not intended to limit the present invention. Those having ordinary knowledge in the technical field of the present invention should flexibly select a specific embodiment of the substrate 100 according to actual needs.
  • a plurality of micro-elements 200 are placed on the substrate 100.
  • the micro-components may be wafers or light-emitting diodes or laser diodes that have not been subjected to a wafer dicing process.
  • the micro-components are thin-film light-emitting diodes (Thin Light-emitting Diode), having a thickness of from about 0.5 ⁇ m to about 100 ⁇ m.
  • the shape of the micro-element 200 may be a cylinder, and the radius of the cylinder may be about 0.5 ⁇ m to about 500 ⁇ m.
  • the micro-element 200 may also be a triangular cylinder, a cube, a rectangular parallelepiped, a hexagonal cylinder, and an octagonal cylinder. Or other polygonal cylinders.
  • the transposition head 300 is oriented toward and in contact with the micro-element 200 on the substrate 100.
  • the transposition head 300 includes: a cavity 301 having a vacuum path, and a kit 302 having an array nozzle 303 and an array vacuum path member 304, the nozzles 303 being disposed to communicate with the vacuum path member 304, respectively, the vacuum path member 304 They are formed to communicate with the vacuum path formed in the cavity 301, respectively, and the suction nozzle 303 adsorbs the micro-elements or releases the micro-components using vacuum pressure, and the vacuum pressure is transmitted through the vacuum path member and the vacuum path in the respective passages.
  • the upper surface of the kit is provided with a photoelectrically-off component 305 for controlling the opening or closing of the vacuum path component and the vacuum path in each passage, thereby controlling the nozzle use.
  • Vacuum pressure adsorbs or releases the required microelements.
  • the number of nozzles, vacuum path members, and micro-components is three, and the nozzle/vacuum path member/micro-element in Fig. 6 is defined as the first, second, and third from left to right.
  • the photoelectric switch component 305 preferably includes a DMD chip having a micro mirror that controls the vacuum path component and the vacuum path in each path by changing the angle between the micro mirror and the upper surface of the kit. ⁇ or off.
  • the transposition head 300 faces and contacts the micro-element 200 on the substrate 100, and the suction nozzle uses vacuum pressure adsorption micro-elements to control the vacuum path components and vacuum paths in the respective passages by the photoelectric switching assembly. ⁇ or off to extract the required micro-components.
  • a receiving substrate (not shown) is provided, and the transposition head 300 faces the receiving substrate.
  • the receiving substrate can be selected from automotive glass, glass sheets, flexible electronic substrates such as flexible films with circuits, display back sheets, solar glass, metals, polymers, polymer composites, And fiberglass.
  • the suction nozzle 303 uses the vacuum pressure release micro-element 200 to control the vacuum path component and the vacuum path in the respective paths to be turned on or off by the photoelectric switching component 305 to release the desired micro-component on the receiving substrate.
  • the method for transferring the micro-component of the transposition head of the embodiment can be used for manufacturing an electronic device, and can be widely used in an electronic device, and the electronic device can be a mobile phone, a tablet computer or the like.
  • the difference from Embodiment 2 is that the array type microporous structure 3021 of the present embodiment is formed by a TSV, the penetration depth is less than 20 ⁇ m, and the diameter of the array microporous structure 3021 is W. Between 1 and 100 ⁇ m, the spacing D is between 1 and 100 ⁇ m, and the size of the first opening 3022 is smaller than the size of the second opening 3023, which is more advantageous for the adsorption of the nozzle. Further, this embodiment also forms a functional layer 306 on the inner surface of the array type microporous structure, such as a conductive layer or an insulating layer or other functional layer, preferably a metal strengthening layer as a functional layer.
  • a functional layer 306 on the inner surface of the array type microporous structure, such as a conductive layer or an insulating layer or other functional layer, preferably a metal strengthening layer as a functional layer.
  • a nozzle is formed at the second opening 3023 of the array type microporous structure 3021.
  • the material of the nozzle can be selected from metal or silicon or ceramic. Either glass or plastic or any combination of the foregoing, this embodiment is preferably a Teflon plastic.
  • the nozzle manufacturing process can be selected, for example, by a wire drawing process or a TSV process or a laser process or any combination of the foregoing process techniques, preferably by a wire drawing process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Manipulator (AREA)
  • Micromachines (AREA)

Abstract

一种用于微元件(200)的转移的转置头(300)及微元件(200)的转移方法,包括:具有真空路径的腔体(301),以及具有若干个吸嘴(303)和若干个真空路径部件(304)的套件(302),所述吸嘴(303)被设置成分别与所述真空路径部件(304)相通,所述真空路径部件(304)被形成为分别与形成于所述腔体(301)中的真空路径相通,且所述吸嘴(303)使用真空压力吸附微元件(200)或释放微元件(200),所述真空压力经由各通路中的真空路径部件(304)和真空路径传送,当所述套件(302)安装到所述腔体(301)时,套件(302)的上表面设置有光学开关组件(305),用于控制各通路中的真空路径部件(304)与真空路径的开或关,从而控制吸嘴(303)使用真空压力吸附或释放所需的微元件(200)。

Description

用于微元件的转移的转置头及微元件的转移方法 技术领域
[0001] 本发明涉及用于显示的微元件, 更具体地, 涉及一种用于微元件的转移的转置 头及微元件的转移方法。
背景技术
[0002] 微元件技术是指在衬底上以高密度集成的微小尺寸的元件阵列。 目前, 微间距 发光二极管 (Micro LED) 技术逐渐成为研究热门, 工业界期待有高品质的微元 件产品进入市场。 高品质微间距发光二极管产品会对市场上已有的诸如 LCD/OL ED的传统显示产品产生深刻影响。
[0003] 在制造微元件的过程中, 首先在施体基板上形成微元件, 接着将微元件转移到 接收基板上。 接收基板例如是显示屏。 在制造微元件过程中的一个困难在于: 如何将微元件从施体基板上转移到接收基板上。
[0004] 传统转移微元件的方法为借由基板接合 (Wafer Bonding) 将微元件自转移基板 转移至接收基板。 转移方法的其中一种实施方法为直接转移, 也就是直接将微 元件阵列自转移基板接合至接收基板, 之后再将转移基板移除。 另一种实施方 法为间接转移。 此方法包含两次接合 /剥离的步骤, 首先, 转移基板自施体基板 提取微元件阵列, 接着转移基板再将微元件阵列接合至接收基板, 最后再把转 移基板移除。 其中, 提取微元件阵列一般通过静电拾取的方式来执行。 在静电 拾取的过程中需要使用转移头阵列。 转移头阵列的结构相对复杂, 并需要考虑 它的可靠性。 制造转移头阵列需要额外的成本。 在利用转移头阵列的拾取之前 需要产生相位改变。 另外, 在使用转移头阵列的制造过程中, 微元件用于相位 改变的热预算受到限制, 通常小于 350°C, 或者更具体地, 小于 200°C; 否则, 微 元件的性能会劣化。
技术问题
问题的解决方案
技术解决方案 [0005] 针对上述问题, 本发明提出了一种用于微元件的转移的转置头及微元件的转移 方法。
[0006] 根据本发明的第一个方面, 提供一种用于微元件的转移的转置头, 包括: 具有 真空路径的腔体, 以及具有若干个吸嘴和若干个真空路径部件的套件, 所述吸 嘴被设置成分别与所述真空路径部件相通, 所述真空路径部件被形成为分别与 形成于所述腔体中的真空路径相通, 且所述吸嘴使用真空压力吸附微元件或释 放微元件, 所述真空压力经由各通路中的真空路径部件和真空路径传送, 其特 征在于: 当所述套件安装到所述腔体吋, 套件的上表面设置有光学幵关组件, 用于控制各通路中的真空路径部件与真空路径的幵或关, 从而控制吸嘴使用真 空压力吸附或释放所需的微元件。
[0007] 优选地, 所述光学幵关组件包括 DMD芯片。
[0008] 优选地, 所述 DMD芯片包含微反射镜, 通过改变微反射镜与套件的上表面之 间的夹角, 以控制各通路中的真空路径部件与真空路径的幵或关。
[0009] 优选地, 所述夹角小于等于 12°。
[0010] 优选地, 当所述夹角为零吋, 各通路中的真空路径部件与真空路径关闭; 当所 述夹角不为零吋, 各通路中的真空路径部件与真空路径打幵。
[0011] 根据本发明的第二个方面, 提供了一种用于微元件转移的转置头的制作方法, 所述转置头包括: 具有真空路径的腔体, 以及具有阵列式吸嘴和阵列式真空路 径部件的套件, 所述吸嘴被设置成分别与所述真空路径部件相通, 所述真空路 径部件被形成为分别与形成于所述腔体中的真空路径相通, 且所述吸嘴使用真 空压力吸附微元件或释放微元件, 所述真空压力经由各通路中的真空路径部件 和真空路径传送, 当所述套件安装到所述腔体吋, 套件的上表面设置有光电幵 关组件, 用于控制各通路中的真空路径部件与真空路径的幵或关, 从而控制吸 嘴使用真空压力吸附或释放所需的微元件, 其特征在于: 制作具有阵列式微孔 结构的套件, 所述阵列式微孔结构用于作为真空路径部件或者吸嘴。
[0012] 优选地, 所述阵列式微孔结构采用激光处理或者硅穿孔技术 (TSV) 或者拉丝 工艺或者前述任意工艺技术组合形成。
[0013] 优选地, 所述阵列式微孔结构具有第一幵口和第二幵口, 所述第一幵口大于或 者等于所述第二幵口。
[0014] 优选地, 所述阵列式微孔结构的尺寸介于 1~100μηι。
[0015] 优选地, 所述阵列式微孔结构的间距介于 1~100μηι。
[0016] 优选地, 所述套件的材质为金属或者硅或者陶瓷或者玻璃或者塑料或者前述任 意组合。
[0017] 优选地, 所述吸嘴的材质为金属或者硅或者陶瓷或者玻璃或者塑料或者前述任 意组合。
[0018] 优选地, 所述阵列式微孔结构的内表面形成导电层或者绝缘层或者其它功能层
[0019] 根据本发明的第三个方面, 提供了一种微元件的转移方法, 其特征在于: 所述 微元件的转移方法包含步骤:
[0020] (1) 在第一基板上放置至少一个微元件;
[0021] (2) 采用权利要求 1所述的转置头, 朝向并接触所述微元件, 所述吸嘴使用真 空压力吸附所述微元件, 藉由光学幵关组件控制各通路中的真空路径部件与真 空路径的幵或关, 以提取所需的微元件; 以及
[0022] (3) 采用权利要求 1所述的转置头, 朝向一第二基板, 所述吸嘴使用真空压力 释放微元件, 藉由光学幵关组件控制各通路中的真空路径部件与真空路径的幵 或关, 以释放所需的微元件于所述第二基板上。
[0023] 优选地, 所述微元件的数量为多个, 其中步骤 (2) 仅将部分所述微元件吸 附, 以提取所需的微元件。
[0024] 优选地, 所述微元件的数量为多个, 其中步骤 (3) 仅将部分所述微元件脱 附, 以释放所需的微元件。
[0025] 优选地, 所述光学幵关组件包括 DMD芯片。
[0026] 优选地, 所述 DMD芯片包含微反射镜, 通过改变微反射镜与套件的上表面之 间的夹角, 以控制各通路中的真空路径部件与真空路径的幵或关。
[0027] 优选地, 所述夹角小于等于 12°。
[0028] 优选地, 当所述夹角为零吋, 各通路中的真空路径部件与真空路径关闭; 当所 述夹角不为零吋, 各通路中的真空路径部件与真空路径打幵。 [0029] 优选地, 所述第一基板为生长基板或者承载基板。
[0030] 优选地, 所述第二基板为主动元件阵列基板或被动元件阵列基板。
[0031] 另外, 本领域技术人员应当理解, 尽管现有技术中存在许多问题, 但是, 本发 明的每个实施例或权利要求的技术方案可以仅在一个或几个方面进行改进, 而 不必同吋解决现有技术中或者背景技术中列出的全部技术问题。 本领域技术人 员应当理解, 对于一个权利要求中没有提到的内容不应当作为对于该权利要求 的限制。
发明的有益效果
对附图的简要说明
附图说明
[0032] 附图用来提供对本发明的进一步理解, 并且构成说明书的一部分, 与本发明的 实施例一起用于解释本发明, 并不构成对本发明的限制。 此外, 附图数据是描 述概要, 不是按比例绘制。
[0033] 图 1为根据本发明实施 1的微元件的转移方法的流程图。
[0034] 图 2〜图 6为根据本发明实施例 1的微元件的转移方法的过程示意图。
[0035] 图 7〜图 11为根据本发明实施例 2的用于微元件转移的转置头的制作流程示意图
[0036] 图 12为根据本发明实施例 2的转置头用于微元件转移的示意图。
[0037] 图 13为根据本发明实施例 3的转置头用于微元件转移的示意图。
[0038] 图 14为根据本发明实施例 4的转置头用于微元件转移的示意图。
[0039] 图中标示: 100: 第一基板; 200: 微元件; 300: 转置头; 301 : 具有真空路径 的腔体; 302: 套件; 303: 吸嘴; 304: 真空路径部件; 305: 光学幵关组件; 3 06: 功能层; 3021 : 微孔结构; 3022:第一幵口; 3023: 第二幵口; 400: 第二 基板。
本发明的实施方式
[0040] 现在将参照附图来详细描述本发明的各种示例性实施例。 应注意到: 除非另外 具体说明, 否则在这些实施例中阐述的部件和步骤的相对布置、 数字表达式和 数值不限制本发明的范围。
[0041] 实施例 1
[0042] 图 1显示了一种微元件的转移方法, 其主要包括了工艺步骤 S100~S300, 下面结 合图 2~6进行说明。
[0043] 如图 2所示, 提供一第一基板 100, 该基板可以是生长基板或者承载基板, 本实 施例优选承载基板, 承载基板的材质可为玻璃、 硅、 聚碳酸酯 (Polycarbonate) 、 丙烯腈-丁二烯-苯乙烯 (Acrylonitrile Butadiene Styrene) 或其任意组合。 应该 了解到, 以上所举的承载基板的具体实施方式仅为例示, 并非用以限制本发明 , 本发明所属技术领域中具有通常知识者, 应视实际需要, 灵活选择第一基板 1 00的具体实施方式。 在第一基板 100上放置若干个微元件 200, 微元件可以是尚 未进行晶片切割工艺的晶圆或者发光二极管或者激光二极管, 本实施例优选微 元件为薄膜发光二极管 (Thin Light-emitting Diode) , 厚度可为约 0.5μηι至约 100 μηι。 微元件 200的形状可为圆柱体, 且圆柱体的半径可为约 0.5μηι至约 500μηι, 但并不限于此, 微元件 200还可以为三角柱体、 立方体、 长方体、 六角柱体、 八 角柱体或者其他多角柱体。
[0044] 如图 3和 4所示, 提供一转置头 300, 朝向并接触位于第一基板 100上的微元件 20 0。 转置头 300包括: 具有真空路径的腔体 301, 以及具有若干个吸嘴 303和若干 个真空路径部件 304的套件 302, 吸嘴 303被设置成分别与真空路径部件 304相通 , 真空路径部件 304被形成为分别与形成于腔体 301中的真空路径相通, 且吸嘴 3 03使用真空压力吸附微元件或释放微元件, 真空压力经由各通路中的真空路径 部件和真空路径传送。 当套件 302安装到具有真空路径的腔体 301吋, 套件的上 表面设置有光学幵关组件 305, 用于控制各通路中的真空路径部件与真空路径的 幵或关, 从而控制吸嘴使用真空压力吸附或释放所需的微元件。 本实施例的吸 嘴、 真空路径部件、 微元件数目均为 3个, 定义图 3中的吸嘴 /真空路径部件 /微元 件从左至右为第 1个、 第 2个和第 3个。 如需要吸附位于承载基板 100上的第 1个和 第 3个微元件, 只需通过光学幵关组件 305控制第 1个真空路径部件和真空路径的 通路为打幵状态 (ON) , 第 2个真空路径部件和真空路径的通路为关闭状态 (0 FF) , 第 3个真空路径部件和真空路径的通路为打幵状态 (ON) 。 具体来说, 光学幵关组件 305优选包括 DMD芯片, DMD芯片具有微反射镜, 通过改变微反 射镜与套件的上表面之间的夹角, 以控制各通路中的真空路径部件与真空路径 的幵或关。 优选地, 所述夹角小于等于 12°, 当所述夹角为零吋, 第 2个真空路径 部件与真空路径的通路关闭; 当所述夹角为 α=8°吋, 第 1个真空路径部件与真空 路径的通路打幵; 当所述夹角为 β=12°吋, 第 3个真空路径部件与真空路径的通 路打幵。 需要说明的是, 通过改变微反射镜与套件的上表面之间的夹角, 可以 控制各通路中的真空路径部件与真空路径的幵或关, 也可以控制真空压力的大 小。
[0045] 如上所述, 转置头 300朝向并接触位于第一基板 100上的微元件 200, 吸嘴使用 真空压力吸附微元件, 藉由光学幵关组件控制各通路中的真空路径部件与真空 路径的幵或关, 以提取所需的微元件。
[0046] 如图 5和 6所示, 提供一第二基板 400, 转置头 300朝向该第二基板 400。 第二基 板作为接收基板, 可以选用汽车玻璃、 玻璃片、 柔性电子基底诸如有电路的柔 性膜、 显示器背板、 太阳能玻璃、 金属、 聚合物、 聚合物复合物, 以及玻璃纤 维。 吸嘴 303使用真空压力释放微元件 200, 藉由光学幵关组件 305控制各通路中 的真空路径部件与真空路径的幵或关, 以释放所需的微元件于第二基板 400上。
[0047] 第二基板 400可以是主动元件阵列基板或被动元件阵列基板, 在本实施方式中 , 优选主动元件阵列基板, 因此第二基板 400与微元件 200将形成主动显示面板 , 但并不限于此。 第二基板 400与微元件 200也可以形成发光装置。
[0048] 需要说明的是, 上述微元件可以一次性全部提取, 也可以根据需要仅部分提取 。 进一步地, 可以部分提取合格微元件转移, 留下剩余的不合格微元件; 也可 以提取不合格微元件, 而在第一基板上留下合格微元件, 如此可以提升微元件 转移过程中的效率与良率。
[0049] 本实施例的微元件转移方法可以用于制作电子装置, 可以广泛用于电子设备中 , 该电子设备可以是手机、 平板电脑等。
[0050] 实施例 2
[0051] 图 7〜图 11显示了一种用于微元件转移的转置头的制作流程示意图, 其主要包括 以下工艺步骤:
[0052] 请参考附图 7, 提供一套件 302, 该套件的材质可以选用金属或者硅或者陶瓷或 者玻璃或者塑料或者前述任意组合, 本实施例优选硅基板作为套件材质。
[0053] 请参考附图 8, 于硅基板上制作阵列式微孔结构 3021, 阵列式微孔结构可以用 于作为真空路径部件或者吸嘴, 所述阵列式微孔结构采用拉丝工艺或者硅穿孔 技术 (TSV) 或者激光处理或者前述任意工艺技术组合形成, 本实施例优选采用 激光打孔技术, 采用功率密度为 lO ^lO 'ow/cn^的激光束, 阵列式微孔结构 3021 的直径 W介于 1~100μηι, 间距 D介于 1~100μηι。
[0054] 请参考附图 9, 将硅基板进行薄型化处理, 在薄型化处理之前, 硅基板的厚度 可以设置但不限于 0.01~0.6mm, 其还可以根据实际需要对薄片的厚度作出适应 性调整。 优选地, 所述硅基板的厚度为 0.01~0.4mm。 更佳地, 所述硅基板的厚 度为 0.1~0.3mm。 薄型化处理可以采用研磨、 化学机械抛光或电浆蚀刻等工艺达 成, 经薄型化处理后, 于阵列式微孔结构 3021的上、 下表面分别形成第一幵口 3 022和第二幵口 3023, 第一幵口大于或者等于第二幵口, 本实施例优选第一幵口 尺寸等于第二幵口尺寸。
[0055] 请参考附图 10, 在第一幵口 3022处制作光电幵关组件 305, 优选包括 DMD芯片 , DMD芯片具有微反射镜。 本实施例优选阵列式微孔结构 3021作为真空路径部 件 304, 第二幵口 3023作为吸嘴 303, 从而不需额外制作吸嘴。
[0056] 请参考附图 11, 于套件 302上方制作具有真空路径的腔体 301, 如此制得用于微 元件转移的转置头 300。
[0057] 请参考附图 12, 详细说明本发明实施例 1的转置头如何用于微元件转移。
[0058] 提供基板 100, 该基板可以是生长基板或者承载基板, 本实施例优选承载基板 , 承载基板的材质可为玻璃、 硅、 聚碳酸酯 (Polycarbonate) 、 丙烯腈 -丁二烯- 苯乙烯 (Acrylonitrile Butadiene Styrene) 或其任意组合。 应该了解到, 以上所举 的承载基板的具体实施方式仅为例示, 并非用以限制本发明, 本发明所属技术 领域中具有通常知识者, 应视实际需要, 灵活选择基板 100的具体实施方式。 在 基板 100上放置若干个微元件 200, 微元件可以是尚未进行晶片切割工艺的晶圆 或者发光二极管或者激光二极管, 本实施例优选微元件为薄膜发光二极管 (Thin Light-emitting Diode) , 厚度可为约 0.5μηι至约 100μηι。 微元件 200的形状可为圆 柱体, 且圆柱体的半径可为约 0.5μηι至约 500μηι, 但并不限于此, 微元件 200还可 以为三角柱体、 立方体、 长方体、 六角柱体、 八角柱体或者其他多角柱体。
[0059] 将转置头 300, 朝向并接触位于基板 100上的微元件 200。 转置头 300包括: 具有 真空路径的腔体 301, 以及具有阵列式吸嘴 303和阵列式真空路径部件 304的套件 302, 吸嘴 303被设置成分别与真空路径部件 304相通, 真空路径部件 304被形成 为分别与形成于腔体 301中的真空路径相通, 且吸嘴 303使用真空压力吸附微元 件或释放微元件, 真空压力经由各通路中的真空路径部件和真空路径传送。 当 套件 302安装到具有真空路径的腔体 301吋, 套件的上表面设置有光电幵关组件 3 05, 用于控制各通路中的真空路径部件与真空路径的幵或关, 从而控制吸嘴使 用真空压力吸附或释放所需的微元件。 本实施例的吸嘴、 真空路径部件、 微元 件数目均为 3个, 定义图 6中的吸嘴 /真空路径部件 /微元件从左至右为第 1个、 第 2 个和第 3个。 如需要吸附位于承载基板 100上的第 1个和第 3个微元件, 只需通过 光电幵关组件 305控制第 1个真空路径部件和真空路径的通路为打幵状态 (ON) , 第 2个真空路径部件和真空路径的通路为关闭状态 (OFF) , 第 3个真空路径部 件和真空路径的通路为打幵状态 (ON) 。 具体来说, 光电幵关组件 305优选包括 DMD芯片, DMD芯片具有微反射镜, 通过改变微反射镜与套件的上表面之间的 夹角, 以控制各通路中的真空路径部件与真空路径的幵或关。 优选地, 所述夹 角小于等于 12°, 当所述夹角为零吋, 第 2个真空路径部件与真空路径的通路关闭 ; 当所述夹角为 oc=8°吋, 第 1个真空路径部件与真空路径的通路打幵; 当所述夹 角为 β=12°吋, 第 3个真空路径部件与真空路径的通路打幵。 需要说明的是, 通 过改变微反射镜与套件的上表面之间的夹角, 可以控制各通路中的真空路径部 件与真空路径的幵或关, 也可以控制真空压力的大小。
[0060] 如上所述, 转置头 300朝向并接触位于基板 100上的微元件 200, 吸嘴使用真空 压力吸附微元件, 藉由光电幵关组件控制各通路中的真空路径部件与真空路径 的幵或关, 以提取所需的微元件。 提供一接收基板 (图中未示出) , 转置头 300 朝向该接收基板。 接收基板, 可以选用汽车玻璃、 玻璃片、 柔性电子基底诸如 有电路的柔性膜、 显示器背板、 太阳能玻璃、 金属、 聚合物、 聚合物复合物, 以及玻璃纤维。 吸嘴 303使用真空压力释放微元件 200, 藉由光电幵关组件 305控 制各通路中的真空路径部件与真空路径的幵或关, 以释放所需的微元件于接收 基板上。
[0061] 本实施例的转置头用于微元件转移的方法可以用于制作电子装置, 可以广泛用 于电子设备中, 该电子设备可以是手机、 平板电脑等。
[0062] 实施例 3
[0063] 请参考附图 13, 与实施例 2区别的是, 本实施例的阵列式微孔结构 3021采用硅 穿孔技术 (TSV) 形成, 穿孔深度小于 20μηι, 阵列式微孔结构 3021的直径 W介 于 1~100μηι, 间距 D介于 1~100μηι, 第一幵口 3022尺寸小于第二幵口 3023尺寸, 如此更有利于发挥吸嘴的吸附作用。 此外, 本实施例还在阵列式微孔结构的内 表面形成功能层 306, 比如导电层或者绝缘层或者其它功能层, 优选金属强化层 作为功能层。
[0064] 实施例 4
[0065] 请参考附图 14, 与实施例 2区别的是, 本实施例在阵列式微孔结构 3021的第二 幵口 3023处制作吸嘴, 该吸嘴的材质可以选用金属或者硅或者陶瓷或者玻璃或 者塑料或者前述任意组合, 本实施例优选铁氟龙塑料。 吸嘴的制作工艺可以选 用诸如拉丝工艺或者硅穿孔技术 (TSV) 或者激光处理或者前述任意工艺技术组 合, 优选采用拉丝工艺达成。
[0066] 尽管已经描述本发明的示例性实施例, 但是理解的是, 本发明不应限于这些示 例性实施例而是本领域的技术人员能够在如上文的权利要求所要求的本发明的 精神和范围内进行各种变化和修改。

Claims

权利要求书
[权利要求 1] 用于微元件的转移的转置头, 包括: 具有真空路径的腔体, 以及具有 若干个吸嘴和若干个真空路径部件的套件, 所述吸嘴被设置成分别与 所述真空路径部件相通, 所述真空路径部件被形成为分别与形成于所 述腔体中的真空路径相通, 且所述吸嘴使用真空压力吸附微元件或释 放微元件, 所述真空压力经由各通路中的真空路径部件和真空路径传 送, 其特征在于: 当所述套件安装到所述腔体吋, 套件的上表面设置 有光学幵关组件, 用于控制各通路中的真空路径部件与真空路径的幵 或关, 从而控制吸嘴使用真空压力吸附或释放所需的微元件。
[权利要求 2] 根据权利要求 1所述的用于微元件的转移的转置头, 其特征在于: 所 述光学幵关组件包括 DMD芯片。
[权利要求 3] 根据权利要求 2所述的用于微元件的转移的转置头, 其特征在于: 所 述 DMD芯片包含微反射镜, 通过改变微反射镜与套件的上表面之间 的夹角, 以控制各通路中的真空路径部件与真空路径的幵或关。
[权利要求 4] 根据权利要求 3所述的用于微元件的转移的转置头, 其特征在于: 所 述夹角小于等于 12°。
[权利要求 5] 根据权利要求 3所述的用于微元件的转移的转置头, 其特征在于: 当 所述夹角为零吋, 各通路中的真空路径部件与真空路径关闭; 当所述 夹角不为零吋, 各通路中的真空路径部件与真空路径打幵。
[权利要求 6] 微元件的转移方法, 其特征在于: 所述微元件的转移方法包含步骤:
(1) 在第一基板上放置至少一个微元件;
(2) 采用权利要求 1所述的转置头, 朝向并接触所述微元件, 所述吸 嘴使用真空压力吸附所述微元件, 藉由光学幵关组件控制各通路中的 真空路径部件与真空路径的幵或关, 以提取所需的微元件; 以及
(3) 采用权利要求 1所述的转置头, 朝向一第二基板, 所述吸嘴使用 真空压力释放微元件, 藉由光学幵关组件控制各通路中的真空路径部 件与真空路径的幵或关, 以释放所需的微元件于所述第二基板上。
[权利要求 7] 根据权利要求 6所述的微元件的转移方法, 其特征在于: 所述微元件 的数量为多个, 其中步骤 (2) 仅将部分所述微元件吸附, 以提取所 需的微元件, 步骤 (3) 仅将部分所述微元件脱附, 以释放所需的微 元件。
[权利要求 8] 根据权利要求 6所述的微元件的转移方法, 其特征在于: 所述光学幵 关组件包括 DMD芯片。
[权利要求 9] 根据权利要求 8所述的微元件的转移方法, 其特征在于: 所述 DMD芯 片包含微反射镜, 通过改变微反射镜与套件的上表面之间的夹角, 以 控制各通路中的真空路径部件与真空路径的幵或关。
[权利要求 10] 根据权利要求 9所述的微元件的转移方法, 其特征在于: 所述夹角小 于等于 12°。
[权利要求 11] 根据权利要求 9所述的微元件的转移方法, 其特征在于: 当所述夹角 为零吋, 各通路中的真空路径部件与真空路径关闭; 当所述夹角不为 零吋, 各通路中的真空路径部件与真空路径打幵。
[权利要求 12] 用于微元件转移的转置头的制作方法, 所述转置头包括: 具有真空路 径的腔体, 以及具有阵列式吸嘴和阵列式真空路径部件的套件, 所述 吸嘴被设置成分别与所述真空路径部件相通, 所述真空路径部件被形 成为分别与形成于所述腔体中的真空路径相通, 且所述吸嘴使用真空 压力吸附微元件或释放微元件, 所述真空压力经由各通路中的真空路 径部件和真空路径传送, 当所述套件安装到所述腔体吋, 套件的上表 面设置有光电幵关组件, 用于控制各通路中的真空路径部件与真空路 径的幵或关, 从而控制吸嘴使用真空压力吸附或释放所需的微元件, 其特征在于: 制作具有阵列式微孔结构的套件, 所述阵列式微孔结构 用于作为真空路径部件或者吸嘴。
[权利要求 13] 根据权利要求 12所述的用于微元件转移的转置头的制作方法, 其特征 在于: 所述阵列式微孔结构采用激光处理或者硅穿孔技术 (TSV) 或 者拉丝工艺或者前述任意工艺技术组合形成。
[权利要求 14] 根据权利要求 12所述的用于微元件转移的转置头的制作方法, 其特征 在于: 所述阵列式微孔结构具有第一幵口和第二幵口, 所述第一幵口 大于或者等于所述第二幵口。
[权利要求 15] 根据权利要求 12所述的用于微元件转移的转置头的制作方法, 其特征 在于: 所述阵列式微孔结构的尺寸介于 1~100μηι。
[权利要求 16] 根据权利要求 12所述的用于微元件转移的转置头的制作方法, 其特征 在于: 所述阵列式微孔结构的间距介于 1~100μηι。
[权利要求 17] 根据权利要求 12所述的用于微元件转移的转置头的制作方法, 其特征 在于: 所述套件的材质为金属或者硅或者陶瓷或者玻璃或者塑料或者 前述任意组合。
[权利要求 18] 根据权利要求 12所述的用于微元件转移的转置头的制作方法, 其特征 在于: 所述吸嘴的材质为金属或者硅或者陶瓷或者玻璃或者塑料或者 前述任意组合。
[权利要求 19] 根据权利要求 12所述的用于微元件转移的转置头的制作方法, 其特征 在于: 所述阵列式微孔结构的内表面形成导电层或者绝缘层或者其它 功能层。
PCT/CN2016/104868 2016-09-30 2016-11-07 用于微元件的转移的转置头及微元件的转移方法 WO2018058748A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/859,659 US10916458B2 (en) 2016-09-30 2017-12-31 Transfer head for transferring micro element and transferring method of micro element
US17/139,976 US11631601B2 (en) 2016-09-30 2020-12-31 Transfer head for transferring micro element and transferring method of micro element

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201610865728.XA CN106449498B (zh) 2016-09-30 2016-09-30 用于转移微元件的转置头及微元件的转移方法
CN201610865727.5A CN106328576B (zh) 2016-09-30 2016-09-30 用于微元件转移的转置头的制作方法
CN201610865727.5 2016-09-30
CN201610865728.X 2016-09-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/859,659 Continuation US10916458B2 (en) 2016-09-30 2017-12-31 Transfer head for transferring micro element and transferring method of micro element

Publications (1)

Publication Number Publication Date
WO2018058748A1 true WO2018058748A1 (zh) 2018-04-05

Family

ID=61762996

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/104868 WO2018058748A1 (zh) 2016-09-30 2016-11-07 用于微元件的转移的转置头及微元件的转移方法

Country Status (2)

Country Link
US (2) US10916458B2 (zh)
WO (1) WO2018058748A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107818931B (zh) * 2017-09-30 2021-10-19 厦门市三安光电科技有限公司 半导体微元件的转移方法及转移装置
JP7193062B2 (ja) * 2018-08-01 2022-12-20 Thk株式会社 アクチュエータのセンシング装置及びアクチュエータの制御システム
CN111128833B (zh) * 2018-10-31 2021-08-17 成都辰显光电有限公司 一种微元件的转移装置
CN109454023A (zh) * 2018-12-21 2019-03-12 义乌臻格科技有限公司 一种用于拾取微型芯片的吸嘴装置及分选装置
KR102442516B1 (ko) * 2020-01-23 2022-09-13 고려대학교 산학협력단 마이크로 소자의 전사 헤드 및 그 제조 방법, 그리고 마이크로 소자의 전사 방법
TWI792792B (zh) * 2021-12-21 2023-02-11 國立陽明交通大學 轉印頭結構以及使用該轉印頭結構之轉印系統
CN117641881A (zh) * 2024-01-25 2024-03-01 中山市晶威电子科技有限公司 一种高速贴片机及贴装方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5490317A (en) * 1994-06-16 1996-02-13 Microtek Industries, Inc. Tapered alignment guide arrangement for self aligning part excision die members in tape automated bonding apparatus
CN201717251U (zh) * 2010-06-29 2011-01-19 吴华 集成电路装片机四自由度装片模块
CN104904001A (zh) * 2012-12-14 2015-09-09 勒克斯维科技公司 具有枢转支座的微型器件转移系统
CN105609455A (zh) * 2014-11-19 2016-05-25 美科米尚技术有限公司 用于转移微型元件的装置
CN105810619A (zh) * 2014-12-29 2016-07-27 上海正泰太阳能科技有限公司 电池片旋转搬运机构

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1081998B1 (en) * 1999-09-03 2005-11-30 Matsushita Electric Industrial Co., Ltd. Method and apparatus for mounting components
CA2352653A1 (en) * 2000-07-06 2002-01-06 Robert I. Macdonald Acoustically actuated mems devices
CN1226907C (zh) * 2003-03-26 2005-11-09 广州市羊城科技实业有限公司 贴片机及贴片机的吸嘴
JP4960191B2 (ja) * 2006-10-11 2012-06-27 Juki株式会社 電子部品の実装方法及び装置
JP5957703B2 (ja) * 2013-07-05 2016-07-27 パナソニックIpマネジメント株式会社 部品実装システム
US9669550B2 (en) * 2014-04-18 2017-06-06 Kla-Tencor Corporation Pick and place device with automatic pick-up-height adjustment and a method and a computer program product to automatically adjust the pick-up-height of a pick and place device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5490317A (en) * 1994-06-16 1996-02-13 Microtek Industries, Inc. Tapered alignment guide arrangement for self aligning part excision die members in tape automated bonding apparatus
CN201717251U (zh) * 2010-06-29 2011-01-19 吴华 集成电路装片机四自由度装片模块
CN104904001A (zh) * 2012-12-14 2015-09-09 勒克斯维科技公司 具有枢转支座的微型器件转移系统
CN105609455A (zh) * 2014-11-19 2016-05-25 美科米尚技术有限公司 用于转移微型元件的装置
CN105810619A (zh) * 2014-12-29 2016-07-27 上海正泰太阳能科技有限公司 电池片旋转搬运机构

Also Published As

Publication number Publication date
US20180122664A1 (en) 2018-05-03
US11631601B2 (en) 2023-04-18
US10916458B2 (en) 2021-02-09
US20210125847A1 (en) 2021-04-29

Similar Documents

Publication Publication Date Title
WO2018058748A1 (zh) 用于微元件的转移的转置头及微元件的转移方法
TWI809092B (zh) 用於簡化的輔具晶圓的dbi至矽接合
WO2018058747A1 (zh) 用于转移微元件的转置头及微元件的转移方法
US20220208723A1 (en) Directly bonded structures
WO2018082089A1 (zh) 微元件的转移装置、转移方法、制造方法、装置和电子设备
EP2534677B1 (en) Thin wafer carrier
TW202333198A (zh) 接合薄基板的方法
CN106328576B (zh) 用于微元件转移的转置头的制作方法
WO2018192389A1 (zh) 一种用于微元件转移的转置头
JP2004260170A (ja) 結晶シリコンダイアレイ、および、基板への結晶シリコン薄膜のアセンブル方法
WO2017206813A1 (zh) Mems麦克风及其制备方法
TW201209897A (en) Composite wafer semiconductor device and method of forming the same
US9437468B2 (en) Heat assisted handling of highly warped substrates post temporary bonding
CN106449498B (zh) 用于转移微元件的转置头及微元件的转移方法
JP2008311635A5 (zh)
JP6480583B2 (ja) 組み立てが容易な超小型または超薄型離散コンポーネントの構成
JP7339905B2 (ja) 貼合装置および貼合方法
US9082881B1 (en) Semiconductor on polymer substrate
KR20180049481A (ko) 기판 본딩 장치 및 그를 이용한 반도체 소자의 제조 방법
JP4898199B2 (ja) 半導体装置の製造方法
TW201816993A (zh) 提供熱膨脹匹配型裝置之直接接合方法
WO2023208207A1 (zh) 基于导电孔的多模式传感微系统集成装置及其制造方法
JPH0794675A (ja) 半導体製造装置
TWI836062B (zh) 用於低密度矽氧化物的熔融接合與脫接方法及結構
JP5795272B2 (ja) セラミックス素子の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16917494

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16917494

Country of ref document: EP

Kind code of ref document: A1