WO2018082089A1 - 微元件的转移装置、转移方法、制造方法、装置和电子设备 - Google Patents
微元件的转移装置、转移方法、制造方法、装置和电子设备 Download PDFInfo
- Publication number
- WO2018082089A1 WO2018082089A1 PCT/CN2016/104869 CN2016104869W WO2018082089A1 WO 2018082089 A1 WO2018082089 A1 WO 2018082089A1 CN 2016104869 W CN2016104869 W CN 2016104869W WO 2018082089 A1 WO2018082089 A1 WO 2018082089A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- micro
- test
- component
- transfer device
- pick
- Prior art date
Links
- 238000012546 transfer Methods 0.000 title claims abstract description 160
- 238000000034 method Methods 0.000 title claims abstract description 52
- 238000004519 manufacturing process Methods 0.000 title abstract description 5
- 238000012360 testing method Methods 0.000 claims abstract description 224
- 239000000758 substrate Substances 0.000 claims abstract description 169
- 230000002950 deficient Effects 0.000 claims abstract description 21
- 230000007547 defect Effects 0.000 claims description 24
- 238000001179 sorption measurement Methods 0.000 claims description 15
- 239000000463 material Substances 0.000 claims description 12
- 239000011664 nicotinic acid Substances 0.000 claims description 10
- 238000005411 Van der Waals force Methods 0.000 claims description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 4
- 239000010703 silicon Substances 0.000 claims description 4
- 229910052710 silicon Inorganic materials 0.000 claims description 4
- 238000003491 array Methods 0.000 claims description 3
- 238000004891 communication Methods 0.000 claims description 3
- 230000003068 static effect Effects 0.000 claims description 3
- 230000000149 penetrating effect Effects 0.000 claims description 2
- 239000010410 layer Substances 0.000 description 35
- 238000010586 diagram Methods 0.000 description 5
- 239000011521 glass Substances 0.000 description 4
- 238000002493 microarray Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 238000004064 recycling Methods 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 229920002635 polyurethane Polymers 0.000 description 2
- 239000004814 polyurethane Substances 0.000 description 2
- 239000011241 protective layer Substances 0.000 description 2
- LLLVZDVNHNWSDS-UHFFFAOYSA-N 4-methylidene-3,5-dioxabicyclo[5.2.2]undeca-1(9),7,10-triene-2,6-dione Chemical compound C1(C2=CC=C(C(=O)OC(=C)O1)C=C2)=O LLLVZDVNHNWSDS-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 239000004205 dimethyl polysiloxane Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 230000003447 ipsilateral effect Effects 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002048 multi walled nanotube Substances 0.000 description 1
- 239000002114 nanocomposite Substances 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- -1 polydimethylsiloxane Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229920003051 synthetic elastomer Polymers 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67242—Apparatus for monitoring, sorting or marking
- H01L21/67271—Sorting devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67242—Apparatus for monitoring, sorting or marking
- H01L21/67288—Monitoring of warpage, curvature, damage, defects or the like
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/2851—Testing of integrated circuits [IC]
- G01R31/2886—Features relating to contacting the IC under test, e.g. probe heads; chucks
- G01R31/2887—Features relating to contacting the IC under test, e.g. probe heads; chucks involving moving the probe head or the IC under test; docking stations
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/683—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L22/00—Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
- H01L22/30—Structural arrangements specially adapted for testing or measuring during manufacture or treatment, or specially adapted for reliability measurements
- H01L22/34—Circuits for electrically characterising or monitoring manufacturing processes, e. g. whole test die, wafers filled with test structures, on-board-devices incorporated on each die, process control monitors or pad structures thereof, devices in scribe line
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/005—Processes
- H01L33/0095—Post-treatment of devices, e.g. annealing, recrystallisation or short-circuit elimination
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/683—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L21/6831—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/683—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L21/6838—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping with gripping and holding devices using a vacuum; Bernoulli devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L22/00—Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
- H01L22/10—Measuring as part of the manufacturing process
- H01L22/14—Measuring as part of the manufacturing process for electrical parameters, e.g. resistance, deep-levels, CV, diffusions by electrical means
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/93—Batch processes
- H01L2224/95—Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
- H01L25/03—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
- H01L25/04—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L25/075—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
- H01L25/0753—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/62—Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
Definitions
- the present invention relates to a micro-component for display, and more particularly to a transfer device, a transfer method, a manufacturing method, a device, and an electronic device for a micro-component.
- Micro-element technology refers to an array of minute-sized components that are integrated at a high density on a substrate.
- micro-light-emitting diode (Micro LED) technology is becoming a hot research topic, and the industry expects high-quality micro-component products to enter the market.
- High-quality micro-pitch LED products can have a profound impact on traditional display products such as LCD/OL ED that are already on the market.
- a micro-element is first formed on a donor substrate, and then the micro-element is transferred onto a receiving substrate.
- the receiving substrate is, for example, a display screen.
- One difficulty in the fabrication of microcomponents is how to transfer the microcomponents from the donor substrate to the receiving substrate.
- a conventional method of transferring micro-elements is to transfer micro-elements from a transfer substrate to a receiving substrate by wafer bonding.
- One of the implementation methods of the transfer method is direct transfer, that is, directly bonding the micro-element array from the transfer substrate to the receiving substrate, and then removing the transfer substrate.
- Another method of implementation is indirect transfer. The method comprises two steps of joining/stripping. First, the transfer substrate extracts the array of microelements from the donor substrate, then transfers the substrate and then bonds the array of microelements to the receiving substrate, and finally removes the transferred substrate.
- the extraction micro-element array is generally performed by means of electrostatic pickup. An array of transfer heads is required during electrostatic pickup.
- a micro-component transfer device having a test circuit that can simultaneously test micro-components during transfer to eliminate unacceptable micro-components.
- the technical solution of the present invention is: a micro-component transfer device, comprising: a base substrate having opposite surfaces; an array of pick-up heads formed on the first surface of the base substrate, Picking up or releasing a micro-component; a test circuit disposed on an interior or/and surface of the base substrate, having a series of sub-test circuits, each sub-test circuit having at least two test electrodes, and transferring the micro-components at the transfer device The photoelectric parameters of the microcomponent were tested in the process.
- At least one test electrode of each of the sub-test circuits is formed on a surface of the pick-up head for contacting the micro-element, and the pick-up head array contacts the micro-element ⁇ to connect the electrodes of the micro-element.
- the test circuit further includes a retractable electrode located on the first surface of the base substrate and subtesting with a test electrode formed on the surface of the pick-up head for contacting the micro-component Circuit.
- a retractable electrode located on the first surface of the base substrate and subtesting with a test electrode formed on the surface of the pick-up head for contacting the micro-component Circuit. This can be applied to micro-elements whose electrodes are on different sides, such as vertical micro-light-emitting diodes.
- the transfer device further includes a CMOS integrated circuit located on the second surface of the base substrate and connected to the test circuit.
- CMOS integrated circuit located on the second surface of the base substrate and connected to the test circuit.
- the base substrate has a through hole structure, and the test circuit extends through the through hole structure to the second surface of the base substrate.
- the base substrate is a silicon substrate, and the CMOS integrated circuit is formed by a part of the Si substrate.
- the CMOS integrated circuit is a structural layer located above the base substrate.
- the pick-up head array picks up the micro-element by electrostatic force, van der Waals force, and vacuum adsorption force.
- the pick-up head has a static electrode layer and a dielectric layer covering the electrode layer, and an adsorption voltage ⁇ is applied to the electrode layer, and the pick-up head generates an electrostatic attraction and picks up the contact therewith. The micro component is picked up.
- each of the pick-up heads of the pick-up head array is provided with a bionic gecko material, and the micro-elements are adsorbed by the adhesive ability of the bionic wall material.
- the pick-up head array is a series of nozzle arrays that use vacuum pressure to adsorb micro-elements or release micro-elements.
- the transfer device further includes a cavity, a plurality of vacuum paths, and a shutoff assembly, wherein the nozzle array is connected to the cavity through the plurality of vacuum paths, and is respectively disposed at the junction / off valve, the shut-off assembly is used to control the ⁇ or OFF of the valves of each vacuum path, thereby controlling the nozzle to use vacuum pressure to adsorb or release the required micro-components.
- the switching component comprises a CMOS integrated circuit and an address electrode array connected to the CMOS integrated circuit, and a valve of each of the vacuum paths corresponds to the address electrode array.
- the valve is a movable member
- the address electrode array is selectively excited by the CMOS integrated circuit with a voltage potential to cause the corresponding movable member to be deflected toward the corresponding address electrode or Close to the electrostatic attraction to control the ⁇ or off of each vacuum path.
- the vacuum path is a series of microporous structures penetrating the base substrate, one end of which is in communication with the cavity, and one end is connected to the nozzle.
- the size of the pick-up head is 100 micrometers or less, and the pitch between each is 200 micrometers or less.
- the present invention also provides a method for transferring a defective micro-component in advance, comprising the steps of: providing a transfer device comprising a base substrate, an array of pick-up heads formed on a surface of the base substrate, and a test circuit on the inside or/and on the surface of the base substrate, the test circuit having a series of sub-test circuits, each sub-test circuit having at least two test electrodes; positioning the transfer device on the micro-components connected to the carrier substrate The test electrode is brought into contact with the micro-component, a test voltage is applied to the test circuit to form a test loop, and the micro-component is tested to obtain a defect pattern of the micro-component on the carrier substrate.
- a micro-component transfer method for pre-excluding defects includes the following steps: (1) providing a transfer device including a base substrate, a pick-up head array formed on a surface of the base substrate And a test circuit disposed on an interior or/and a surface of the base substrate, the test circuit having a series of sub-test circuits, each sub-test circuit having at least two test electrodes; (2) positioning the transfer device to be connected (3) contacting the test electrode with the electrode of the micro-component, applying a test voltage to the test circuit to form a test loop, testing the micro-component, and obtaining a defect pattern of the micro-component on the carrier substrate; (4) Using the array of pick-up heads of the transfer device, pick up the qualified micro-elements on the carrier substrate; (5) release the desired micro-elements onto the receiving substrate.
- a micro-component transfer method for pre-excluding defects includes the following steps: (1) providing a transfer device including a base substrate, an array of pick-up heads formed on a surface of the base substrate And a test circuit disposed on an interior or/and a surface of the base substrate, the test circuit having a series of sub-test circuits, each sub-test circuit having at least two test electrodes; (2) positioning the transfer device to be connected (3) contacting the test electrode with the electrode of the micro-component, applying a test voltage to the test circuit to form a test loop, testing the micro-component, and obtaining the micro-component on the carrier substrate a defect pattern; (4) picking up defective micro-elements on the carrier substrate with the array of pick-up heads of the transfer device; (5) releasing the defective micro-elements onto the receiving substrate.
- a micro-component transfer method for pre-excluding defects includes the following steps: (1) providing a transfer device including a base substrate, an array of pick-up heads formed on a surface of the base substrate And a test circuit disposed on an interior or/and a surface of the base substrate, the test circuit having a series of sub-test circuits, each sub-test circuit having at least two test electrodes; (2) positioning the transfer device to be connected (3) contacting the test electrode with the electrode of the micro-component, applying a test voltage to the test circuit to form a test loop, testing the micro-component, and obtaining a defect pattern of the micro-component on the carrier substrate; (4) Picking up the micro-elements on the carrier substrate with the array of pick-up heads of the transfer device; (5) releasing the failed components and the qualified micro-elements to different receiving substrates, respectively.
- a micro-component transfer method for pre-excluding defects includes the following steps: (1) providing a transfer device including a base substrate, an array of pick-up heads formed on a surface of the base substrate And a test circuit disposed on an interior or/and a surface of the base substrate, the test circuit having a series of sub-test circuits, each sub-test circuit having at least two test electrodes; (2) positioning the transfer device to be connected (3) picking up micro-elements on the carrier substrate with the array of pick-up heads of the transfer device; (4) releasing the micro-elements onto the first receiving substrate; (5) Contacting the test electrode of the transfer device with the electrode of the micro-component, applying a test voltage to the test circuit to form a test loop, testing the micro-component to obtain a defect pattern of the micro-component on the first receiving substrate; (6) picking up with the transfer device An array of heads that pick up defective micro-elements on the first receiving substrate; (7) releasing the failed micro-elements onto the second receiving
- the pick-up head array can pick up micro-components by electrostatic force, van der Waals force, and vacuum adsorption force.
- a method for fabricating a micro-component device comprising transferring a micro-element onto a receiving substrate of a micro-component device using a method in accordance with the present invention.
- a microcomponent device fabricated using the method in accordance with the present invention is provided.
- an electronic device comprising a micro-component device according to the invention.
- FIG. 1 is a cross-sectional side view showing a transfer device of a microcomponent according to a first preferred embodiment of the present invention.
- FIG. 2 is a schematic view showing a voltage applied to an electrode layer of a pickup head of the transfer device shown in FIG. 1 to generate an electrostatic adsorption force.
- FIG. 3 is a schematic illustration of the application of a voltage forming test circuit on the test circuit of the transfer device shown in FIG. 1.
- FIG. 4 is a cross-sectional side view showing a transfer device of a microcomponent according to a second preferred embodiment of the present invention.
- FIG. 5 is a schematic illustration of the application of a voltage on a test circuit of the transfer device shown in FIG. 4 to test the micro-elements.
- FIG. 6 is a schematic view showing a voltage applied to an electrode layer of a pickup head of the transfer device shown in FIG. 4 to generate an electrostatic adsorption force.
- FIG. 7 is a cross-sectional side view showing a transfer device of a microcomponent according to a third preferred embodiment of the present invention.
- FIG. 8 is a schematic illustration of the application of a voltage on a test circuit of the transfer device shown in FIG. 7 to test a micro-element.
- FIG. 9 is a schematic view showing a voltage applied to an electrode layer of a pickup head of the transfer device shown in FIG. 7 to generate an electrostatic adsorption force.
- FIG. 10 is a cross-sectional side view showing a transfer device of a microcomponent according to a fourth preferred embodiment of the present invention. among them
- the surface of the pick-up head 4120 includes a micro-nano composited pile structure.
- FIG. 11 is an SEM view of the pile structure of the transfer device of the micro-component shown in FIG. 10.
- FIG. 12 is a cross-sectional side view showing a transfer device of a microcomponent according to a fifth preferred embodiment of the present invention.
- FIG. 13-15 are schematic illustrations of valves of the vacuum path of the microcomponent transfer device of FIG. 14.
- FIG. 16 is a cross-sectional view taken along line A-A of FIG. 14.
- FIG. 17-18 is a cross-sectional view taken along line B-B of FIG. 14, wherein FIG. 17 is a vacuum path closed state, and FIG. 18 is a vacuum path unclamping state.
- FIG. 19 is a flow diagram of a pre-excluded defect in micro-component transfer in accordance with an implementation of the present invention.
- 20 is a flow chart showing a method of transferring a micro component according to a sixth preferred embodiment of the present invention.
- 21 to 24 are schematic diagrams showing the process of a method for transferring a micro component according to a sixth preferred embodiment of the present invention.
- 25 is a flow chart showing a method of transferring a micro component according to a seventh preferred embodiment of the present invention.
- 26 to 27 are schematic diagrams showing the process of a method for transferring a micro component according to a seventh preferred embodiment of the present invention.
- 28 is a flow chart showing a method of transferring a micro component according to an eighth preferred embodiment of the present invention.
- 29 to 31 are schematic diagrams showing the process of a method for transferring a micro component according to an eighth preferred embodiment of the present invention.
- FIG. 32 is a flow chart showing a method of transferring a micro component according to a ninth preferred embodiment of the present invention.
- 33 to 37 are schematic diagrams showing the process of a micro component transfer method according to a ninth preferred embodiment of the present invention.
- 1110A a first surface of the base substrate
- 1110B a second surface of the base substrate
- 1122, 2122, 3122 electrostatic circuit connection line of the pickup head
- 1124, 2124, 3124 electrode layer of the pickup head
- 2136, 3136 a retractable electrode
- 1140, 2140, 3140, 4140 CMOS integrated circuits
- 1200, 2200, 3200 micro-component
- 1220A, 1220B, 3220 electrodes of the micro-component
- 1300, 2300, 3300 carrier substrate; 1310, 2310, 3310: intermediate layer;
- 1140, 2140, 3140, 4140 CMOS integrated circuits
- 5138 insulating protective layer; 5150: through hole / vacuum path; 5152: valve / movable member; 5154 connecting layer; 5160: cavity; 5170: CMOS integrated circuit; 5172: address electrode layer; 5174: address electrode .
- Embodiments of the present invention describe a transfer device for transferring a micro-component and transfer using the transfer device Method of array of microelements.
- the micro-element array may be a micro LED device, a diode, a transistor, an integrated circuit (IC) chip, etc., and may have a size of 1 to 100 ⁇ m, but is not necessarily limited thereto, and some aspects of the embodiment may be applied to a larger and Smaller size.
- the following embodiments disclose a micro-component transfer device having a pick-up head array for picking up or releasing micro-components, and a size (e.g., length or width) of each pick-up head, using the transfer device ) is 1 ⁇ 100 ⁇ .
- the transfer device is further provided with a test circuit, and each pick-up head corresponds to a sub-test circuit.
- a voltage is applied to the test circuit to form a test loop, and the photoelectric performance test of the micro-component is realized, thereby obtaining the defective micro-component.
- a defect pattern which eliminates defective micro-elements during the transfer of the micro-element array.
- the transfer device 1 100 includes: a base substrate 1110, an array of pick-up heads 1120, a test circuit, and a CMOS integrated circuit 1140.
- the base substrate 1110 is used to provide support and may be formed of various materials such as silicon, ceramics, and polymers.
- the pick-up heads 1120 are arranged in an array on the first surface 1110A of the base substrate 1110, and have a size of 1 ⁇ m to 100 ⁇ m, for example, 50 ⁇ m to 20 ⁇ m, and a pitch of (1 ⁇ m to 100 ⁇ m) ⁇ (1 ⁇ - ⁇ ), for example.
- the array of pick-up heads 1120 is disposed on the first surface 1110A of the base substrate 1100 for picking up the micro-elements by respective adsorption forces (such as electrostatic force, vacuum pressure, van der Waals force, magnetic force, etc.) to achieve the transfer function.
- each of the pick-up heads is also independently controllable, enabling selective pick-up of the release of the micro-elements and micro-elements.
- the test circuit is composed of a series of sub-test circuits, each sub-test circuit corresponding to a pick-up head 1120, each sub-test circuit having at least two test electrodes 1134A and 1134B, the sub-test circuit can be connected to the test module through circuits 1132A and 1132B Working electronics, such as CMOS integrated circuit 1140.
- the array of the pick-up heads 1120 uses electrostatic force to realize the release of the pick-up micro-components and the micro-components.
- Each of the pick-up heads 1120 corresponds to an electrostatic adsorption circuit, including a connection line 1122 and an electrode layer 1124.
- the connection line 1122 can be connected to the CMOS integrated circuit 1140 through the base substrate 1110 to be connected to the external electronic control unit.
- the surface of the electrode layer 1124 is covered with a dielectric layer 1126.
- the test circuit of the transfer device 1100 is composed of a series of sub-test circuits, and each of the pick-up heads 1120 has a corresponding one.
- a subtest circuit consisting of test electrodes 1134A, 1134B and circuits 1132A, 1132B.
- the base substrate 1110 is formed at a position close to the pickup head 1120 with a pair of via structures filled with conductive material forming circuits 1132A and 1132B for connecting the test electrodes 1134A, 1134B to the second surface 1100B provided on the base substrate.
- CMOS integrated circuit 1140 Test electrodes 1134A and 1134B are embedded in dielectric layer 1126, and the lower surface is flush with the lower surface of dielectric layer 1126.
- Surface 1120A of the pick-up head 1120 for contacting the micro-elements is comprised of test electrodes 1134A, 1134B and dielectric layer 1126. As shown in Figure 1. When the surface 1120A of the pick-up head 1120 is in contact with the micro-element, the test electrode 1134A is in contact with the electrode 1 220A of the micro-element, and the test electrode 1134B is in contact with the electrode 1220B of the micro-element.
- the transfer device 1100 of the present embodiment is mainly directed to the micro-element 1200 (for example, the micro-light-emitting diode of the ipsilateral electrode) whose electrodes are on the same side, and the test electrodes 1134A and 1134B are formed on the surface 1120A of the pick-up head 1120 for contacting the micro-element. on.
- the micro-elements 12 00 Prior to the transfer of the micro-elements 1200 using the transfer device 1100, the micro-elements 12 00 are typically placed on the carrier substrate 1300 (with an intermediate layer 1310 therebetween, which is not necessary), wherein the electrodes 1220A and 1220B - Place it upside down.
- the test electrode 1134A is in contact with the electrode 1220A of the micro-element
- the test electrode 1 134B is in contact with the electrode 1220B of the micro-element
- the photoelectric parameters of the micro-component are tested, thereby enabling the micro-component to be tested during the transfer of the micro-component, and the defective micro-component is preliminarily excluded.
- the transfer device 2100 is further provided with at least one retractable electrode 2136, and a test electrode 2134B formed on the surface of the pick-up head for contacting the micro-component constitutes a sub-test circuit, so that the electrode can be applied to different sides of the electrode.
- Micro-components such as vertical miniature light-emitting diodes.
- the retractable electrode 2136 is on the same side as the pick-up head 2120, which may be located outside the array of pick-up heads 2120, and the lower end portion 2136A protrudes from the lower end portion 2120A of the pick-up head 2120.
- the vertical type micro-element 2200 When the vertical type micro-element is transferred using the transfer device 2100, the vertical type micro-element 2200 is placed on the conductive-type carrier substrate 2300, the pickup head 2120 of the transfer device 2100 faces and contacts the micro-element 2200A, and the test electrode 2034B and the micro-e.
- the top surface electrode 2220 of the element 2200 is in contact with the retractable electrode 21 36 in contact with the carrier substrate 2300.
- Figure 5 and Figure 6 show the circuit connection of the test mode and the pickup mode, respectively. Referring to Figure 5, when the transfer device 2100 tests the micro-component, the test voltage is connected to the test power.
- a pole 2134B and a retractable electrode 2136 wherein 2134B is connected to the top surface electrode 2220 of the micro component, and the retractable electrode 2136 is connected to the conductive substrate 2300 to form a test loop for testing the micro component 2200.
- the transfer device 2100 After picking up the micro-element, the adsorption voltage turns on the electrode layer 2124 of the electrostatic circuit, and the surface of the pick-up head 2120 generates electrostatic attraction to pick up the micro-components in contact therewith.
- the transfer device of this embodiment can be used to test and transfer microelements of the same side of the electrode or different sides of the electrode (i.e., vertical type micro-components).
- the test electrode 2134B and the retractable electrode 21 36 constitute a test circuit;
- the test electrodes 2134B and 2134A constitute a test circuit, and the ⁇ retractable electrode 2136 can To the role of electrostatic protection.
- FIG. 7 shows a cross-sectional side view of a transfer device of a third preferred embodiment of the present invention.
- the transfer device 3100 is mainly applied to a vertical type micro device.
- only one test electrode 3134 is formed on the surface of each pick-up head 3120, which simplifies the test circuit.
- FIGS. 8 and 9 show circuit connections of the test mode and the pickup mode, respectively.
- the measurement voltage turns on the test electrode 3134 and the retractable electrode 3136, wherein the test electrode 3134 is connected to the top surface electrode 3220 of the micro device, and the retractable electrode 3136 is connected to the conductive type.
- the carrier substrate 3300 constitutes a test circuit for testing the micro-component 3200.
- the transfer device 2100 picks up the micro-component 3200
- the external power supply is directly grounded at one end and the electrode layer 3124 is turned on at the other end.
- the surface of the head 3120 generates an electrostatic attraction that picks up the microcomponents in contact therewith.
- the pick-up head 4120 of the transfer device 4100 picks up the release of the micro-element and the micro-element using van der Waals force.
- the surface of the pick-up head 4120 is made of bionic gecko material, faces and contacts the micro-component ⁇ , and the micro-element is adsorbed by the adhesive ability of the bionic gecko material to pick up the desired micro-component, and by The desorption ability of the bionic gecko material desorbs the microcomponents to release the microcomponents.
- test electrodes 4314A and 4134B need not cover the surface of the pick-up head 4120, and only a part of the test electrodes are exposed on the surface of the pick-up head for contacting the micro-components, ensuring that the pick-up head 4120 contacts the micro-component ⁇ , the test electrode It can be connected to the electrodes of the micro-element.
- the pick-up head 4120 is made of bionic gecko material, and the bionic gecko material can be made of silicone rubber or polyurethane or multi-wall carbon nanotube or polyester resin or polyimide or artificial rubber or epoxy. Resin or polydimethylsiloxane or polyurethane with ethylene terephthalate or polymethyl methacrylate or any of the foregoing Combination.
- the surface of the pick-up head 4120 includes a micro-nano-composite rigid pile structure, as shown in FIG. 11, for example, having a protrusion density ranging from 1 x 10 5 to 6 x 10 8 protrusions per cm 2 .
- the rigid pile structure made of bionic gecko material contacts the surface of the micro-component to produce van der Waals force, which has an adhesion function, thereby adsorbing the micro-component to extract the desired micro-component.
- the surface of the fluff structure is preferably hydrophobic, which prevents the formation of a water layer on the contact surface, reduces the possible effect of the capillary force as much as possible, and plays an important role in reducing the gap and providing van der Waals force.
- Figure 12 is a cross-sectional side view showing a transfer device of a fifth preferred embodiment of the present invention.
- the pick-up head 5120 of the transfer device 5100 employs a nozzle structure to pick up the release of the micro-elements and the micro-elements by vacuum pressure adsorption.
- the transfer device 5100 has an array of nozzles, each of which is connected to the same cavity 5160 through a vacuum path 5150, each vacuum path having a valve 5152 that controls the vacuum path of the ⁇ /OFF.
- the size of each nozzle (such as length or width) is 1 ⁇ 100 ⁇ .
- the size of each nozzle is 1 ⁇ 20 ⁇
- the pitch of the nozzle array is ( ⁇ ⁇ 100 ⁇ ) ⁇ (1 ⁇ )
- each of the vacuum paths may be a series of microporous structures (e.g., Si substrates) formed on the base substrate 5110.
- each nozzle 5120 corresponds to a vacuum path 5150, a valve 5152 and a shut-off element.
- CMOS memory circuits and address electrode arrays can be used.
- a digital micromirror is a monolithic semiconductor device based on microelectromechanical systems (MEMS) technology, typically comprising an array of regions of bistable movable micromirrors forming picture elements (pixels), micromirror fabrication Above the array of regions corresponding to the addressed memory cells and the associated address electrodes disposed beneath the micromirrors, the address electrodes are selectively energized by the control circuit with a voltage potential to form an electrostatic attraction that causes the respective micromirrors to deflect toward the respective address electrodes force.
- MEMS microelectromechanical systems
- a movable member similar to the micro mirror of the DMD chip is disposed as a valve at a position where each vacuum path communicates with the shared cavity, and an associated address electrode is formed above the movable member.
- the address electrode is selectively energized by the control circuit with a voltage potential to form an electrostatic attractive force that causes the corresponding movable member to deflect toward the corresponding address electrode, causing the movable member to be offset or skewed toward the corresponding address electrode, thereby closing
- the vacuum path is initiated to control the vacuum path by controlling the valves of the vacuum paths by the shut-off assembly to extract the desired micro-components.
- the transfer device 5100 includes a base substrate 5110 and a cavity disposed above the base substrate 5110. Body 5160 and an array of gates located above cavity 5160.
- the base substrate 5110 has an array of holes 5150, and a series of nozzle structures are formed on the lower surface of the base substrate 5110 as the pickup head 5120, and conductive layers 5132A and 5132B are formed on the sidewalls of the through holes 5150, respectively.
- test electrodes 5134 and 51348 are formed on the lower surface of the base substrate 5110, and a dielectric layer is covered on the conductive layers 5132A and 5132B as the insulating protective layer 5138.
- the conductive layers 5132A, 5132B and the test electrodes 5134A, 5134B constitute a test circuit in which a functional circuit (such as a CMOS integrated circuit or the like, not shown) may be formed inside the base substrate 5110 for connecting the test circuit.
- a functional circuit such as a CMOS integrated circuit or the like, not shown
- each of the suction nozzles 5120 is connected to the same cavity 5160 through the through hole 5150.
- Each of the through holes 5150 serves as a vacuum path for transmitting the vacuum pressure, and the suction nozzle 5120 can vacuum the microcomponents or release the microcomponents using vacuum pressure.
- a valve 5152 is provided at the mouth of each through hole 5150 for controlling the ⁇ /OFF of each vacuum path 5150, and the valve of each vacuum path is controlled by the shut-off assembly to control the ⁇ or OFF of the vacuum path.
- the gate array is composed of a CMOS memory circuit layer 5170 and an address electrode layer 5172 located underneath, an address electrode layer 5172 is provided with an array of address electrodes 5174, and an address electrode 5 174 corresponds to a vacuum path 5150.
- the valve 5152 is a member 5152 that is deflectable at the mouth of the microporous structure, the edge of the member is not connected to the edge of the through hole, but through the receiving layer 5154 and the base substrate. 5110 is connected, and the member 5152 is deflected about the bearing by the electrostatic attraction force of the address electrode 5174, and one end thereof is deflected toward the address electrode 5174.
- FIG. 13-15 show schematic illustrations of a valve of a vacuum path including a receiving layer 5154 formed on the surface of the base substrate 5110, and a movable member 5152 on the receiving layer 5154.
- the receiving layer 5154 includes a frame 5154a, a pivot 5154b and a mouth 5154c.
- the pivot 5154b is hung on the frame 5154a and spans the mouth 5154c.
- the movable member 5152 is supported on the pivot 5154b through the hole 5152a.
- the pivot 5154b is deflected or deflected at the center.
- 16 to 18 show cross-sectional views of a single nozzle unit of the transfer device.
- 16 is a schematic view taken along line AA of FIG. 14.
- the upper surface of the pivot 5154b is lower than the frame 5154a, and the member 5152 is suspended from the pivot 5154b.
- 17 to 18 are schematic views taken along line AA of Fig. 12.
- an address electrode 5174 is disposed above the member 5152, and the ⁇ /OFF state of the address electrode 5174 is controlled by the CMOS storage circuit, as the address electrode 5174 is off (OFF), this ⁇ The voltage potential is not excited to the address electrode 5174, no electrostatic attraction force is generated, the member 5152 is not deflected, and the vacuum path 5150 is closed, as shown in FIG. 17; when the address electrode 5174 is in the ON state, this ⁇ The voltage potential is excited to the address electrode 5174 to form an electrostatic attractive force, and the edge of the member 5152 is twisted on the pivot 5154b by the electrostatic attractive force of the address electrode 5174, thereby deflecting toward the address electrode 51 74, and the vacuum path is opened. 5150, as shown in Figure 18.
- FIG. 19 is a flow chart showing the defect elimination of the micro-element using any of the above-described transfer devices, and may include steps S110-S130, which will be briefly described below.
- Step S110 First, any one of the foregoing transfer devices is provided.
- the transfer device includes an array of pick-up heads and a test circuit.
- the test circuit is composed of a series of sub-test electrodes, and each sub-test circuit corresponds to a pick-up head, preferably generally including Two test electrodes, at least one of which is located on a surface of the pick-up head for contacting the micro-component, such that when the pick-up head is in contact with the micro-component, a test current can be injected into the micro-element through the test electrode.
- Step S120 Positioning the transfer device over the micro-components connected to the carrier substrate.
- the carrier substrate may be a growth substrate or a carrier substrate.
- the material of the carrier substrate may be glass, silicon, polycarbonate (PC), or acrylonitrile-butadiene-styrene (ABS). Or any combination thereof.
- the microelements can be microluminescent diodes having a thickness of from about 0.5 ⁇ to about 100 ⁇ .
- the shape of the micro-component may be a cylinder, and the radius of the cylinder may be about 0.5 ⁇ m to about 500 ⁇ m, but the invention is not limited thereto, and the micro-component may also be a triangular cylinder, a cube, a rectangular parallelepiped, a hexagonal cylinder, an octagonal cylinder or Other polygonal cylinders.
- Step S130 contacting the test electrode of the transfer device with the electrode of the micro-component, applying a test voltage to the test circuit to form a test loop, and testing the micro-component to obtain a defect pattern of the micro-component on the carrier substrate.
- the array of pick-up heads contacts the micro-components, and the test electrodes are connected to the electrodes of the micro-components to form a test loop.
- a defect pattern of the micro-element is obtained by testing the micro-element during the transfer process of the micro-element, so that the qualified micro-element or the unacceptable micro-element can be selectively picked up.
- FIG. 20 is a flow chart showing a method for transferring a micro component according to a sixth preferred embodiment of the present invention, which mainly includes steps S210 to S250.
- a transfer device 1100 is provided that is positioned over a micro-component 1200 that is coupled to a carrier substrate 1300.
- the transfer device 1100 mentioned in the first preferred embodiment is briefly described as an example.
- the micro-components are placed on the carrier substrate 1300 with the electrodes facing up, and the test electrodes 1134A and 1134B of the transfer device 1100 are placed. Aligned with the electrodes 1120A and 1120B of the micro-component, respectively. To simplify the illustration, only four micro-elements 1201 ⁇ 1204 are shown.
- the pick-up head 1120 of the transfer device is brought into contact with the micro-component, and the scan test electrode is connected to the electrode of the micro-component, and a voltage is applied to both ends of the test electrode to form a test loop to test the micro-component.
- the defect pattern of the micro-element for example, the photoelectric parameter of the micro-element 1204 is unacceptable, and the photoelectric parameters of the micro-elements 1201 to 12 03 are qualified.
- the qualified micro-elements 1201 to 1203 on the carrier substrate 1300 are selectively picked up by the pickup head array for controlling the transfer device.
- the micro-array array has a pitch of ⁇ , wherein each micro-element has a spacing of 2 ⁇ m and a maximum width of 8 ⁇ m, and the top surface of each micro-component has a width of approximately 8 ⁇ m, corresponding to the pick-up head
- the width of the surface used to contact the microelements is approximately 8 ⁇ m or less to avoid unintentional contact with adjacent micro LED devices.
- Embodiments of the invention are not limited to these specific dimensions and may be of any suitable size.
- the receiving substrate may be selected from automotive glass, glass sheets, flexible electronic substrates such as flexible films with circuits, display back sheets, solar glass, metals, polymers, polymer composites, and glass fibers.
- the test circuit is first tested by the own test circuit to obtain the defect pattern of the micro-array array, and then the qualified micro-component is selectively picked up. It is effective to avoid transferring the defective micro-elements to the end application receiving substrate such as the display backplane during the transfer process of the micro-component.
- FIG. 25 is a flow chart showing a method for transferring a micro-component according to a seventh preferred embodiment of the present invention, which mainly includes steps S310-S350, wherein steps S310-S330 are the same as steps S210-S230, and below. A brief description will be given for steps S340-S350.
- the defective micro-element 1204 on the carrier substrate 1300 is selectively picked up by controlling the pickup array of the transfer device; referring to Fig. 27, the defective micro-component 120 4 is discharged onto the receiving substrate 1500.
- the receiving substrate 1500 can be any recycling device for recovering the unqualified micro components.
- the micro-element array is tested by the test circuit of the transfer device and transferred to the recovery device before the transfer of the micro-component, so that the micro-components remaining on the carrier substrate are all qualified products. Unqualified microcomponents were pre-excluded.
- FIG. 28 is a flowchart showing a method for transferring a micro-component according to an eighth preferred embodiment of the present invention, which mainly includes steps S410-S450, wherein steps S410-S430 are substantially the same as steps S210-S230.
- steps S440-S450 Referring to FIG. 29, the micro-elements 1201-1204 on the carrier substrate 1300 are selectively picked up by controlling the pickup array of the transfer device; referring to FIG. 30, the defective micro-elements 1204 are selectively released to the first receiving substrate 1500 by control. Referring to FIG. 31, the qualified micro-elements 1201 to 1203 are released onto the receiving second substrate 1400.
- the first receiving substrate 1500 may be any recycling device for recovering the defective micro-components; the second receiving substrate 1400 may be a flexible electronic substrate such as a flexible film with a circuit, a display back panel or the like.
- step S450 the qualified micro-components 1201 to 1203 may be selectively released onto the second receiving substrate 1400, and the unqualified micro-components 1204 may be released to the receiving first substrate 1500.
- FIG. 32 is a flow chart showing a method for transferring a micro-component according to a ninth preferred embodiment of the present invention.
- the main method includes steps S510-S570, wherein steps S510-S520 are substantially the same as steps S210-S220.
- steps S530-S570 are a brief description of steps S530-S570.
- the pickup element array of the transfer device selectively picks up the micro-elements 12 01-1204 on the carrier substrate 1300; referring to FIG. 34, the micro-elements 1201-1204 are released onto the second receiving substrate 1400, The pick-up head of the transfer device continues to contact the micro-component, and the test electrode of the transfer device is in contact with the electrode of the micro-element; referring to FIG. 35, a voltage is applied to the test electrode, and each of the micro-elements 1201 to 1204 respectively form a sub-test loop, and the test is obtained.
- the defect pattern of the micro-element for example, the photoelectric parameter of the micro-element 1201 is unacceptable (ie, the defective micro-element), and the photoelectric parameters of the micro-element 1202 ⁇ 1204 are qualified; referring to FIG. 36, the pick-up array of the transfer device selectively picks up the second The defective micro-element 1201 on the substrate 1400 is received; referring to FIG. 37, the defective micro-element 1201 is released to the first receiving substrate 1500.
- the first receiving substrate 1500 may be any recycling device for recovering the defective micro-components;
- the second receiving substrate 1400 may be a flexible electronic substrate such as a flexible film with a circuit, a display back panel or the like.
- the pick-up head array of each of the above embodiments can pick up micro-elements by electrostatic force, van der Waals force, and vacuum adsorption force. Pieces or release micro-components.
- the method for transferring the micro-components of the above embodiments is exemplified by the transfer device 1100 disclosed in FIG. 1.
- the present invention is not limited thereto, and the micro-elements of different electrode structures can be selected according to the requirements. .
- the micro-array array can be tested and transferred a plurality of times by the transfer device.
- the method of transferring the micro-components of the above embodiments can be used to fabricate an electronic device, which can be widely used in electronic devices, such as a mobile phone, a tablet computer, and the like.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Testing Of Individual Semiconductor Devices (AREA)
- Micromachines (AREA)
- Solid State Image Pick-Up Elements (AREA)
Abstract
公开了一种具有测试电路的微元件的转移装置、转移方法、制造方法、装置和电子设备,其在转移过程中可对微元件进行测试,排除缺陷微元件。具有测试电路的微元件转移装置(1100),包括:基底衬底(1110),具有相对的两个表面(1110A,1110B);拾取头(1120)阵列,形成于基底衬底(1110)的第一表面(1110A)上,用于拾取或释放微元件;测试电路,设置于基底衬底(1110)的内部或/和表面(1110A,1110B),具有一系列子测试电路,每个子测试电路具有至少两个测试电极(1134A,1134B),在转移装置(1100)转移微元件过程中同时测试该微元件的光电参数。
Description
技术领域
[0001] 本发明涉及用于显示的微元件, 更具体地, 涉及一种用于微元件的转移装置、 转移方法、 制造方法、 装置和电子设备。
背景技术
[0002] 微元件技术是指在衬底上以高密度集成的微小尺寸的元件阵列。 目前, 微间距 发光二极管 (Micro LED) 技术逐渐成为研究热门, 工业界期待有高品质的微元 件产品进入市场。 高品质微间距发光二极管产品会对市场上已有的诸如 LCD/OL ED的传统显示产品产生深刻影响。
[0003] 在制造微元件的过程中, 首先在施体基板上形成微元件, 接着将微元件转移到 接收基板上。 接收基板例如是显示屏。 在制造微元件过程中的一个困难在于: 如何将微元件从施体基板上转移到接收基板上。
[0004] 传统转移微元件的方法为借由基板接合 (Wafer Bonding) 将微元件自转移基板 转移至接收基板。 转移方法的其中一种实施方法为直接转移, 也就是直接将微 元件阵列自转移基板接合至接收基板, 之后再将转移基板移除。 另一种实施方 法为间接转移。 此方法包含两次接合 /剥离的步骤, 首先, 转移基板自施体基板 提取微元件阵列, 接着转移基板再将微元件阵列接合至接收基板, 最后再把转 移基板移除。 其中, 提取微元件阵列一般通过静电拾取的方式来执行。 在静电 拾取的过程中需要使用转移头阵列。
技术问题
问题的解决方案
技术解决方案
[0005] 本发明的目的是提出一种具有测试电路的微元件转移装置, 其在转移过程中可 同吋对微元件进行测试, 排除不合格的微元件。
[0006] 本发明的技术方案为: 一种微元件的转移装置, 包括: 基底衬底, 具有相对的 两个表面; 拾取头阵列, 形成于所述基底衬底的第一表面上, 用于拾取或释放 微元件; 测试电路, 设置于所述基底衬底的内部或 /和表面上, 具有一系列子测 试电路, 每个子测试电路具有至少两个测试电极, 在所述转移装置转移微元件 过程中同吋测试该微元件的光电参数。
[0007] 优选地, 所述每个子测试电路的至少一个测试电极形成于所述拾取头之用于接 触微元件的表面, 在所述拾取头阵列接触微元件吋连接微元件的电极。
[0008] 优选地, 所述测试电路还包括一可伸缩电极, 其位于所述基底衬底的第一表面 , 与形成于所述拾取头之用于接触微元件的表面的测试电极构成子测试电路。 如此可应用于电极位于不同侧的微元件, 例如垂直型微型发光二极管。
[0009] 优选地, 所述转移装置还包括 CMOS集成电路, 其位于所述基底衬底的第二表 面, 与所述测试电路连接。
[0010] 优选地, 所述基底衬底具有通孔结构, 所述测试电路贯穿所述通孔结构, 延伸 至基底衬底的第二表面。
[0011] 优选地, 所述基底衬底为硅基板, 所述 CMOS集成电路由所述 Si基板的一部分 形成。
[0012] 优选地, 所述 CMOS集成电路为位于所述基底衬底之上的结构层。
[0013] 优选地, 所述拾取头阵列通过静电力、 范德华力、 真空吸附力拾取微元件。
[0014] 优选地, 所述拾取头具有一静力电极层和覆盖在该电极层上的介质层, 向所述 电极层施加吸附电压吋, 所述拾取头产生静电吸力, 拾起与其接触的微元件拾 起。
[0015] 优选地, 所述拾取头阵列的各个拾取头的表面设有仿生壁虎材料, 藉由仿生壁 虎材料的粘附能力吸附微元件。
[0016] 优选地, 所述拾取头阵列为一系列吸嘴阵列, 使用真空压力吸附微元件或释放 微元件。 在一个具体实施例中, 所述转移装置还包括一腔体、 若干真空路径及 幵关组件, 所述吸嘴阵列通过所述若干真空路径连通至该腔体, 并在相通处分 别设置可幵 /关的阀门, 所述幵关组件用于控制各真空路径的阀门的幵或关, 从 而控制所述吸嘴使用真空压力吸附或释放所需的微元件。
[0017] 优选地, 所述幵关组件包括 CMOS集成电路及与所述 CMOS集成电路连接的地 址电极阵列, 各个所述真空路径的阀门与所述地址电极阵列对应。
[0018] 优选地, 所述阀门为一可动的构件, 所述地址电极阵列由所述 CMOS集成电路 用电压电位选择性激励以产生致使相应的可动的构件朝向相应的地址电极偏斜 或靠近的静电吸引力, 以控制各真空路径的幵或关。
[0019] 优选地, 所述真空路径为一系列贯穿所述基底衬底的微孔结构, 其一端与所述 腔体连通, 一端与所述吸嘴连接。
[0020] 优选地, 所述拾取头的尺寸为 100微米以下, 各个之间的间距为 200微米以下。
[0021] 本发明还提供了一种预先排除缺陷的微元件的转移方法, 包括步骤: 提供一转 移装置, 其包括基底衬底、 形成于该基底衬底表面上的拾取头阵列以及设置于 该基底衬底的内部或 /和表面上的测试电路, 该测试电路具有一系列子测试电路 , 每个子测试电路具有至少两个测试电极; 将转移装置定位在被连接在载体基 板上的微元件之上; 使测试电极与微元件接触, 向测试电路施加测试电压形成 测试回路, 测试微元件, 获得载体基板上的微元件的缺陷图案。
[0022] 在一些实施例中, 一种预先排除缺陷的微元件转移方法, 包括下面步骤: (1 ) 提供一转移装置, 其包括基底衬底、 形成于该基底衬底表面上的拾取头阵列 以及设置于该基底衬底的内部或 /和表面上的测试电路, 该测试电路具有一系列 子测试电路, 每个子测试电路具有至少两个测试电极; (2) 将转移装置定位在 被连接在载体基板上的微元件之上; (3) 使测试电极与微元件的电极接触, 向 测试电路施加测试电压形成测试回路, 测试微元件, 获得载体基板上的微元件 的缺陷图案; (4) 用所述转移装置的拾取头阵列, 拾起所述载体基板上的合格 的微元件; (5) 将所需的微元件释放到接收基板上。
[0023] 在一些实施例中, 一种预先排除缺陷的微元件转移方法, 包括下面步骤: (1 ) 提供一转移装置, 其包括基底衬底、 形成于该基底衬底表面上的拾取头阵列 以及设置于该基底衬底的内部或 /和表面上的测试电路, 该测试电路具有一系列 子测试电路, 每个子测试电路具有至少两个测试电极; (2) 将转移装置定位在 被连接在载体基板上的微元件之上; (3) 使测试电极与微元件的电极接触, 向 测试电路施加测试电压形成测试回路, 测试微元件, 获得载体基板上的微元件
的缺陷图案; (4) 用所述转移装置的拾取头阵列, 拾起所述载体基板上的不合 格的微元件; (5) 将所述不合格的微元件释放到接收基板上。
[0024] 在一些实施例中, 一种预先排除缺陷的微元件转移方法, 包括下面步骤: (1 ) 提供一转移装置, 其包括基底衬底、 形成于该基底衬底表面上的拾取头阵列 以及设置于该基底衬底的内部或 /和表面上的测试电路, 该测试电路具有一系列 子测试电路, 每个子测试电路具有至少两个测试电极; (2) 将转移装置定位在 被连接在载体基板上的微元件之上; (3) 使测试电极与微元件的电极接触, 向 测试电路施加测试电压形成测试回路, 测试微元件, 获得载体基板上的微元件 的缺陷图案; (4) 用所述转移装置的拾取头阵列, 拾起所述载体基板上的微元 件; (5) 分别将不合格的元件和合格的微元件释放到不同的接收基板。
[0025] 在一些实施例中, 一种预先排除缺陷的微元件转移方法, 包括下面步骤: (1 ) 提供一转移装置, 其包括基底衬底、 形成于该基底衬底表面上的拾取头阵列 以及设置于该基底衬底的内部或 /和表面上的测试电路, 该测试电路具有一系列 子测试电路, 每个子测试电路具有至少两个测试电极; (2) 将转移装置定位在 被连接在载体基板上的微元件之上; (3) 用所述转移装置的拾取头阵列, 拾起 所述载体基板上的微元件; (4) 将微元件释放到第一接收基板上; (5) 使转 移装置的测试电极与微元件的电极接触, 向测试电路施加测试电压形成测试回 路, 测试微元件, 获得第一接收基板上的微元件的缺陷图案; (6) 用所述转移 装置的拾取头阵列, 拾起所述第一接收基板上的不合格的微元件; (7) 将所述 不合格的微元件释放到第二接收基板上。
[0026] 优选地, 所述拾取头阵列可以通过静电力、 范德华力、 真空吸附力拾取微元件
[0027] 根据本发明的另一个实施例, 提供了一种用于制造微元件装置的方法, 包括使 用根据本发明的方法将微元件转移到微元件装置的接收衬底上。
[0028] 根据本发明的另一个实施例, 提供了一种使用根据本发明的方法制造的微元件 装置。
[0029] 根据本发明的另一个实施例, 提供了一种电子设备, 包含根据本发明的微元件 装置。
发明的有益效果
对附图的简要说明
附图说明
[0030] 图 1是本发明第一个较佳实施例之微元件的转移装置的截面侧视图图示。
[0031] 图 2是在图 1所示的转移装置的拾取头的电极层上施加电压以产生静电吸附力的 示意图示。
[0032] 图 3是在图 1所示的转移装置的测试电路上施加电压形成测试回路的示意图示。
[0033] 图 4是本发明第二个较佳实施例之微元件的转移装置的截面侧视图图示。
[0034] 图 5是在图 4所示的转移装置之测试电路上施加电压以测试微元件的示意图示。
[0035] 图 6是在图 4所示的转移装置之拾取头的电极层上施加电压以产生静电吸附力的 示意图示。
[0036] 图 7是本发明第三个较佳实施例之微元件的转移装置的截面侧视图图示。
[0037] 图 8是在图 7所示的转移装置的测试电路上施加电压以测试微元件的示意图示。
[0038] 图 9是在图 7所示的转移装置之拾取头的电极层上施加电压以产生静电吸附力的 示意图示。
[0039] 图 10是本发明第四个较佳实施例之微元件的转移装置的截面侧视图图示。 其中
, 拾取头 4120的表面包括微纳米复合的刚绒毛结构。
[0040] 图 11是图 10所示微元件的转移装置的刚绒毛结构的 SEM图。
[0041] 图 12本发明第五个较佳实施例之微元件的转移装置的截面侧视图图示。
[0042] 图 13-15为图 14所示微元件转移装置之真空路径的阀门的示意图示。
[0043] 图 16是沿附图 14的线 A-A剖幵的剖面图。
[0044] 图 17-18是沿图 14的线 B-B剖幵的剖面图, 其中图 17为真空路径关闭状态, 图 18 为真空路径幵启状态。
[0045] 图 19是根据本发明实施的一种微元件转移之预先排除缺陷的流程图。
[0046] 图 20是本发明第六个较佳实施例之一种微元件的转移方法的流程图。
[0047] 图 21~24是本发明第六个较佳实施例之一种微元件的转移方法的过程示意图。
[0048] 图 25是本发明第七个较佳实施例之一种微元件的转移方法的流程图。
[0049] 图 26~27是本发明第七个较佳实施例之一种微元件的转移方法的过程示意图。
[0050] 图 28是本发明第八个较佳实施例之一种微元件的转移方法的流程图。
[0051] 图 29~31是本发明第八个较佳实施例之一种微元件的转移方法的过程示意图。
[0052] 图 32是本发明第九个较佳实施例之一种微元件的转移方法的流程图。
[0053] 图 33~37是本发明第九个较佳实施例之一种微元件转移方法的过程示意图。
[0054] 图中标号表示如下:
[0055] 1100、 2100、 3100、 4100、 5100: 转移装置;
[0056] 1110、 2110、 3110、 4110、 5110: 基底衬底
[0057] 1110A : 基底衬底的第一表面; 1110B: 基底衬底的第二表面;
[0058] 1120、 2120、 3120、 4120、 5120: 拾取头;
[0059] 1120A : 拾取头之用接触微元件的表面;
[0060] 1122、 2122、 3122: 拾取头的静电电路连接线路;
[0061] 1124、 2124、 3124: 拾取头的电极层;
[0062] 1126、 2126、 3126: 介质层;
[0063] 1132A 、 1132B、 2132A、 2132B、 3132、 4132A、 4132B、 5132A、 5132B 路;
[0064] 1134A 、 1134B、 2134A、 2134B、 3134、 4134A、 4134B、 5134A、 5134B 试电极;
[0065] 2136、 3136: 可伸缩电极;
[0066] 1140、 2140、 3140、 4140: CMOS集成电路;
[0067] 1200、 2200、 3200: 微元件; 1220A、 1220B、 3220: 微元件的电极;
[0068] 1300、 2300、 3300: 载体基板; 1310、 2310、 3310: 中间层;
[0069] 1140、 2140、 3140、 4140: CMOS集成电路;
[0070] 5138: 绝缘保护层; 5150: 通孔 /真空路径; 5152: 阀门 /可动构件; 5154 接层; 5160: 腔体; 5170: CMOS集成电路; 5172: 地址电极层; 5174: 地址电 极。
本发明的实施方式
本发明的实施例描述了用于转移微元件的转移装置及采用该转移装置进行转移
微元件阵列的方法。 其中, 微元件阵列可以是微型 LED器件、 二极管、 晶体管、 集成电路 (IC)芯片等, 其尺寸可为 1~100μηι, 但并不一定限于此, 并且实施例的 某些方面可适用于更大和更小的尺寸。 下面各实施例公幵了一种微元件的转移 装置及采用该转移装置转移微元件的方法, 该转移装置具有拾取头阵列用于拾 取或释放微元件, 各个拾取头的尺寸 (例如长度或宽度) 为 1~100μηι。 转移装 置还设有测试电路, 每个拾取头对应一个子测试电路, 当拾取头接触微元件吋 , 向测试电路施加电压, 形成测试回路, 实现微元件的光电性能测试, 从而获 取缺陷微元件的缺陷图案, 如此可在微元件阵列转移过程中排除具有缺陷的微 元件。
具体实施例
[0072] 图 1显示了本发明的第一个较佳实施例之转移装置的截面侧视图。 该转移装置 1 100, 包括: 基底衬底 1110、 拾取头 1120阵列、 测试电路及 CMOS集成电路 1140 。 具体地, 基底衬底 1110用于提供支撑作用, 可以由各种材料形成, 诸如硅、 陶瓷和聚合物。 拾取头 1120呈阵列式排列形成于基底衬底 1110的第一表面 1110A 上, 尺寸介于 1μηι~100μιη, 例如可以为 50μηι~20μιη, 节距为(1μηι~100μιη)χ(1μιη -ΙΟΟμηι) , 例如 ΙΟμηιχΙΟμιη或 50μηιχ100μιη的节距。 该拾取头 1120阵列设于基底 衬底 1100的第一表面 1110A上, 用于通过各个吸附力 (诸如静电力、 真空压力、 范德华力、 磁力等) 拾起微元件, 以达到转印之功能。 较佳地, 各个拾取头还 可以独立地可控制, 实现了选择性拾起微元件和微元件的释放。 测试电路由一 系列子测试电路组成, 每个子测试电路对应一个拾取头 1120, 每个子测试电路 至少具有两个测试电极 1134A和 1134B, 该子测试电路可通过电路 1132A和 1132B 连接至与测试模组的工作电子器件, 诸如 CMOS集成电路 1140等。
[0073] 在本实施例中, 该拾取头 1120阵列采用静电力来实现拾起微元件和微元件的释 放, 每个拾取头 1120对应有一静电吸附电路, 包括连接线路 1122和电极层 1124 , 其中连接线路 1122可贯穿基底衬底 1110, 连接至 CMOS集成电路 1140, 从而与 外部电子控制件连接, 电极层 1124的表面覆盖一介质层 1126, 如此当向电极层 1 124施加吸附电压吋, 形成静电吸附力拾起微元件, 如图 2所示。
[0074] 转移装置 1100的测试电路由一系列子测试电路构成, 每个拾取头 1120对应有一
个子测试电路, 该子测试电路由测试电极 1134A、 1134B及电路 1132A、 1132B构 成。 基底衬底 1110在靠近拾取头 1120的位置形成有一对通孔结构, 该通孔内填 充导电材料形成电路 1132A和 1132B , 用于将测试电极 1134A、 1134B连接至设于 基底衬底第二表面 1100B的 CMOS集成电路 1140。 测试电极 1134A和 1134B嵌入介 质层 1126内, 且下表面和介质层 1126的下表面齐平, 此吋拾取头 1120之用于接 触微元件的表面 1120A由测试电极 1134A、 1134B和介质层 1126构成, 如图 1所示 。 当拾取头 1120的表面 1120A与微元件接触吋, 测试电极 1134A与微元件的电极 1 220A接触, 测试电极 1134B与微元件的电极 1220B接触。
[0075] 本实施例之转移装置 1100主要针对电极位于同侧的微元件 1200 (例如同侧电极 的微发光二极管) , 测试电极 1134A和 1134B形成于拾取头 1120之用于接触微元 件的表面 1120A上。 在使用转移装置 1100对微元件 1200进行转移前, 该微元件 12 00—般放置于载体基板 1300上 (两者之间可以有中间层 1310, 相当此并不是必 须的) , 其中电极 1220A和 1220B—般朝上放置。 当转移装置 1100的拾取头 1120 对准接触微元件 1200吋, 测试电极 1134A与微元件的电极 1220A接触, 测试电极 1 134B与微元件的电极 1220B接触, 当通过电路 1132A和 1132B向测试电极 1134A和 1134B施加测试电压吋, 构成测试回路, 如图 3所示, 实现对该微元件的光电参 数的测试, 从而实现在转移微元件的过程中对微元件进行测试, 预先排除具有 缺陷的微元件。
[0076] 图 4显示了本发明的第二个较佳实施例之转移装置的截面侧视图。 区别于转移 装置 1100, 转移装置 2100还设有至少一个可伸缩电极 2136, 与形成于拾取头之 用于接触微元件的表面的测试电极 2134B构成子测试电路, 如此可应用于电极位 于不同侧的微元件, 例如垂直型微型发光二极管。 该可伸缩电极 2136与拾取头 2 120同侧, 其可位于拾取头 2120阵列外, 下端部 2136A突出于拾取头 2120的下端 部 2120A。 当使用转移装置 2100对垂直型微元件进行转移吋, 垂直型微元件 2200 放置于导电型的载体基板 2300上吋, 转移装置 2100的拾取头 2120朝向并接触微 元件 2200吋, 测试电极 2034B与微元件 2200的顶面电极 2220接触, 可伸缩电极 21 36与载体基板 2300接触。 图 5和图 6分别显示了测试模式和拾取模式的电路连接 , 请参看图 5, 当转移装置 2100对微元件进行测试吋, 测试电压分别连接测试电
极 2134B和可伸缩电极 2136, 其中 2134B连接微元件的顶面电极 2220, 可伸缩电 极 2136连接导电的基板 2300, 构成测试回路, 实现对微元件 2200的测试; 请参 看图 6, 当转移装置 2100对微元件进行拾取吋, 吸附电压接通静电电路的电极层 2124, 此吋拾取头 2120表面产生静电吸力, 拾起与之接触的微元件。
[0077] 本实施例之转移装置可用于测试并转印电极同侧或电极不同侧 (即垂直型微元 件) 的微元件。 当应用于转移垂直型微元件吋, 测试电极 2134B和可伸缩电极 21 36构成测试电路; 当应用于转移水平型微元件吋, 测试电极 2134B和 2134A构成 测试电路, 此吋可伸缩电极 2136可起到静电保护的作用。
[0078] 图 7显示了本发明的第三个较佳实施例之转移装置的截面侧视图。 区别于转移 装置 2100, 转移装置 3100主要是应用于垂直型微元件。 在本实施例中, 每个拾 取头 3120的表面仅形成一个测试电极 3134, 简化了测试电路。
[0079] 图 8和图 9分别显示了测试模式和拾取模式的电路连接。 请参看图 8, 当转移装 置 3100对微元件进行测试吋, 测度电压接通测试电极 3134和可伸缩电极 3136, 其中测试电极 3134连接微元件的顶面电极 3220, 可伸缩电极 3136连接至导电型 载体基板 3300, 构成测试回路, 实现对微元件 3200的测试; 请参看图 9, 当转移 装置 2100对微元件 3200进行拾取吋, 外部电源一端直接接地, 另一端接通电极 层 3124, 此吋拾取头 3120表面产生静电吸力, 拾起与之接触的微元件。
[0080] 图 10显示了本发明的第四个较佳实施例之转移装置的截面侧视图。 区别于转移 装置 1100, 转移装置 4100的拾取头 4120采用范德华力拾起微元件和微元件的释 放。 在本实施例中, 拾取头 4120的表面采用仿生壁虎材料制作而成, 朝向并接 触微元件吋, 藉由仿生壁虎材料的粘附能力吸附微元件以拾起所需的微元件, 并藉由仿生壁虎材料的脱附能力脱附微元件, 以释放微元件。 在本实施例中, 测试电极 4314A和 4134B无需覆盖拾取头 4120的表面, 仅需在拾取头之用于接触 微元件的表面上裸露出部分测试电极, 保证拾取头 4120接触微元件吋, 测试电 极可与微元件的电极连接即可。
[0081] 具体地, 拾取头 4120采用仿生壁虎材料制作而成, 仿生壁虎材料可以选用硅橡 胶或聚亚胺酯或多壁碳纳米管或聚酯树脂或聚酰亚胺或人造橡胶或环氧树脂或 聚二甲基硅氧烷或聚氨酯与对苯二甲酸乙二酯或聚甲基丙烯酸甲酯或前述任意
组合。 进一步地, 拾取头 4120的表面包括微纳米复合的刚绒毛结构, 如图 11所 示, 比如是具有范围为 1x10 5至 6x10 8个突起每 cm 2的突起密度。 藉由仿生壁虎 材料制作而成的刚绒毛结构接触微元件表面产生范德华力, 具有粘附作用, 从 而吸附微元件, 以提取所需微元件。 刚绒毛结构的表面优选具有憎水性, 可以 阻止接触面上水层的形成, 尽可能地减小毛细力的可能作用, 对减小间隙、 提 供范德华力起着重要的作用。
[0082] 图 12显示了本发明的第五个较佳实施例之转移装置的截面侧视图。 区别于转移 装置 1100, 转移装置 5100的拾取头 5120采用采用吸嘴结构, 利用真空压力吸附 作用拾起微元件和微元件的释放。 具体地, 移转装置 5100具有吸嘴阵列, 各个 吸嘴通过真空路径 5150连通至同一腔体 5160内, 各个真空路径具有阀门 5152控 制该真空路径的幵 /关。 各个吸嘴的尺寸 (例如长度或宽度) 为 1~100μηι每个吸 嘴的尺寸为 1~20μηι, 吸嘴阵列的节距为(Ιμηι ~100μηι)χ(1μιη
-ΙΟΟμηι) , 例如 ΙΟμηιχΙΟμιη或 50μηιχ100μιη的节距。 为达到该尺寸, 各路真空路 径可为一系列形成于基底衬底 5110的 (例如 Si基板) 微孔结构。 相应的, 每个吸 嘴 5120对应一路真空路径 5150、 一个阀门 5152和一个幵关元件。 为达到微小尺 寸的幵关阵列, 可采用 CMOS储存电路和地址电极阵列实现。
[0083] 数字微反射镜 (DMD) 系基于微机电系统 (MEMS) 技术的单片半导体装置 , 通常包括形成图片元素(像素)的双稳态可移动微反射镜的区域阵列, 微反射 镜制作于对应寻址存储器单元的区域阵列及安置于微反射镜下方的相关联地址 电极上方, 地址电极由控制电路用电压电位选择性激励以形成致使相应微反射 镜朝向相应地址电极偏斜的静电吸引力。 本实施例利用 DMD芯片的原理, 在各 真空路径与共用腔体连通的位置设置类似 DMD芯片之微反射镜的可动的构件作 为阀门, 并在可动的构件上方制作相关联的地址电极, 该地址电极由控制电路 用电压电位选择性激励以形成致使相应可动的构件朝向相应地址电极偏斜的静 电吸引力, 致使该可动的构件向相应的地址电极偏移或偏斜, 从而关闭或幵启 该真空路径, 从而藉由幵关组件控制各真空路径的阀门进而控制真空路径的幵 或关, 以提取所需的微元件。
[0084] 请参看图 12, 转移装置 5100包括基底衬底 5110、 设于该基底衬底 5110上方的腔
体 5160及位于腔体 5160上方的幵关阵列。 具体的, 基底衬底 5110具有孔通 5150 阵列, 并在基底衬底 5110的下部表面形成一系列吸嘴结构作为拾取头 5120, 在 该通孔 5150的侧壁形成导电层 5132A和 5132B , 并分别向基底衬底 5110的上、 下 表面延伸, 在基底衬底 5110的下表面形成测试电极5134 和51348, 在导电层 513 2A和 5132B上覆盖一介质层作为绝缘保护层 5138。 导电层 5132A、 5132B和测试 电极 5134A、 5134B构成测试电路, 其中基底衬底 5110内部可形成功能电路 (诸 如 CMOS集成电路等, 图中未画出) , 用于连接测试电路。 在本实施例中, 各个 吸嘴 5120通过通孔 5150连通至同一腔体 5160内。 各个通孔 5150作为真空路径用 于传送真空压力, 吸嘴 5120得以使用真空压力吸附微元件或释放微元件。 进一 步地, 在各个通孔 5150的幵口处设有阀门 5152, 用于控制各路真空路径 5150的 幵 /关, 并藉由幵关组件控制各真空路径的阀门进而控制真空路径的幵或关, 以 提取所需的微元件。 该幵关阵列由 CMOS储存电路层 5170和位于其下方面的地址 电极层 5172构成, 地址电极层 5172上设置有地址电极 5174阵列, 一个地址电极 5 174对应于一路真空路径 5150。
[0085] 在本实施例中, 阀门 5152为一可在微孔结构的幵口处发生偏转的构件 5152, 该 构件的边缘未连接至通孔的边沿, 而是通过承接层 5154与基底衬底 5110连接, 该构件 5152在地址电极 5174的静电吸引力的作用下, 以该轴承为中心发生偏转 , 其中一个端部向地址电极 5174发生偏斜。
[0086] 图 13-15显示了真空路径的阀门的示意图示, 该阀门结构包括形成于基底衬底 5 110表面上的承接层 5154, 及位于承接层 5154上的可动的构件 5152。 具体的, 承 接层 5154包括框架 5154a、 枢轴 5154b及幵口 5154c, 枢轴 5154b架于框架 5154a上 并横跨幵口 5154c, 可动的构件 5152通过孔 5152a支撑于枢轴 5154b上, 并可以枢 轴 5154b为中心发生偏转或偏斜。
[0087] 图 16~18显示了该转移装置的单个吸嘴单元的剖面图。 其中, 图 16为沿图 14的 线 A-A切幵的示意图, 从该图可看出, 在本实施例中, 枢轴 5154b的上表面低于 框架 5154a, 构件 5152悬吊于枢轴 5154b上。 图 17~18系沿图 12的线 A-A切幵的示 意图, 从图中可看出, 在构件 5152的上方设置地址电极 5174, 通过 CMOS储存电 路控制地址电极 5174的幵 /关状态, 当地址电极 5174处于关闭状态 (OFF) , 此
吋未向地址电极 5174激励电压电位, 不会产生静电吸引力, 构件 5152未发生偏 斜, 关闭该真空路径 5150, 如图 17所示; 当地址电极 5174处于幵启状态 (ON) , 此吋向地址电极 5174激励电压电位, 形成静电吸引力, 构件 5152的边缘在地 址电极 5174的静电吸引力的作用下在枢轴 5154b上发生扭转, 进而向地址电极 51 74发生偏斜, 幵启真空路径 5150, 如图 18所示。
[0088] 图 19显示了采用上述任意一种转移装置进行微元件的缺陷排除的流程图, 可以 包括步骤 S110-S130, 下面进行简单说明。
[0089] 步骤 S110: 首先提供前述任意一种转移装置, 该转移装置包括拾取头阵列和测 试电路, 测试电路由一系列子测试电极构成, 每个子测试电路对应一个拾取头 , 较佳的一般包括两个测试电极, 其中至少一个测试电极位于拾取头之用于接 触微元件的表面上, 如此当拾取头与微元件接触吋可通过测试电极向微元件注 入测试电流。
[0090] 步骤 S120: 将转移装置定位在被连接在载体基板上的微元件之上。 其中该载体 基板可以是生长基板或者承载基板, 如承载基板的材质可为玻璃、 硅、 聚碳酸 酉旨 (Polycarbonate, PC) 、 丙烯腈-丁二烯-苯乙烯 ( Aery lonitrile Butadiene Styrene, ABS) 或其任意组合。 微元件可以为微发光二极管, 厚度可为约 0.5μηι 至约 100μηι。 微元件的形状可为圆柱体, 且圆柱体的半径可为约 0.5μηι至约 500μ m, 但并不限于此, 微元件还可以为三角柱体、 立方体、 长方体、 六角柱体、 八 角柱体或者其他多角柱体。
[0091] 步骤 S130: 使转移装置的测试电极与微元件的电极接触, 向测试电路施加测试 电压形成测试回路, 测试微元件, 获得载体基板上的微元件的缺陷图案。 通过 转移装置的测试电路, 拾取头阵列接触微元件吋, 测试电极与微元件的电极连 接, 形成测试回路。
[0092] 通过在微元件的转移过程同吋对微元件进行测试获得微元件的缺陷图形, 如此 可选择性地拾取合格的微元件或者不合格的微元件。 下面结合附图及实施例对 一种预先排除缺陷的微元件转移方法的具体实施进行详细说明。
[0093] 图 20显示了本发明第六个较佳实施例之一种微元件的转移方法的流程图, 其主 包括步骤 S210~S250。
[0094] 参看图 21, 提供转移装置 1100, 将其定位在被连接在载体基板 1300上的微元件 1200之上。 在本实施例中以前述第一个较佳实施例提及的转移装置 1100为例简 单进行说明, 微元件放置在载体基板 1300上, 其电极朝上放置, 转移装置 1100 的测试电极 1134A和 1134B分别与微元件的电极 1120A和 1120B对齐。 为简化图示 , 图中仅示出了四个微元件 1201~1204。
[0095] 参看图 22, 使转移装置的拾取头 1120与微元件接触, 此吋测试电极与微元件的 电极连接, 向测试电极的两端施加电压, 形成了测试回路对微元件进行测试, 获得了微元件的缺陷图案, 例如微元件 1204的光电参数不合格, 微元件 1201~12 03的光电参数合格。
[0096] 参看图 23, 通过控制用转移装置的拾取头阵列选择性拾起载体基板 1300上的合 格微元件 1201~1203。 在本实施例中, 微元件阵列具有 ΙΟμηι的间距, 其中, 每 个微元件具有 2μηι的间隔和 8μηι的最大宽度, 每个微元器件的顶表面具有近似 8 μηι的宽度, 对应的拾取头之用于接触微元件的表面的宽度为近似 8μηι或更小, 以免与相邻的微 LED器件非故意接触。 本发明的实施例不限于这些特定尺寸, 并且可以是任意适当的尺寸。
[0097] 参看图 24, 将微元件 1201~1203释放到接收基板 1400上。 该接收基板可以选用 汽车玻璃、 玻璃片、 柔性电子基底诸如有电路的柔性膜、 显示器背板、 太阳能 玻璃、 金属、 聚合物、 聚合物复合物, 以及玻璃纤维等。
[0098] 在本实施例中, 在转移装置接触微元件阵列吋, 先采有其自身的测试电路对微 元件进行测试, 获得微元件阵列的缺陷图案, 然后选择性拾取合格的微元件, 可以有效避免在微元件的转移过程将具有缺陷的微元件转印至诸如显示器背板 等终端应用接收基板。
[0099] 图 25显示了本发明第七个较佳实施例之一种微元件的转移方法的流程图, 其主 包括步骤 S310~S350, 其中步骤 S310~S330与前述步骤 S210~S230相同, 下面针对 步骤 S340-S350进行简单说明。 参看图 26, 通过控制用转移装置的拾取头阵列选 择性拾起载体基板 1300上的不合格微元件 1204; 参看图 27, 将不合格微元件 120 4释放至接收基板 1500上。 其中, 接收基板 1500可以为任意回收装置, 其用于回 收放置不合格的微元件。
[0100] 在本实施例中, 在微元件的转移前先采用转移装置的测试电路对微元件阵列进 行测试并将其转移至回收装置, 从而保留在载体基板上的微元件均为合格品, 预先排除了不合格微元件。
[0101] 图 28显示了本发明第八个较佳实施例之一种微元件的转移方法的流程图, 其主 包括步骤 S410~S450, 其中步骤 S410~S430与前述步骤 S210~S230基本相同, 下面 针对步骤 S440-S450进行简单说明。 参看图 29, 通过控制用转移装置的拾取头阵 列选择性拾起载体基板 1300上的微元件 1201-1204; 参看图 30, 通过控制选择性 地将不合格微元件 1204释放至第一接收基板 1500上; 参看图 31, 将合格的微元 件 1201~1203释放至接收第二基板 1400上。 其中第一接收基板 1500可以为任意回 收装置, 其用于回收放置不合格的微元件; 第二接收基板 1400可为柔性电子基 底诸如有电路的柔性膜、 显示器背板等。
[0102] 在本实施例中, 在步骤 S450中也可以先选择性地将合格微元件 1201~1203释放 至第二接收基板 1400上, 再将不合格的微元件 1204释放至接收第一基板 1500上
[0103] 图 32显示了本发明第九个较佳实施例之一种微元件的转移方法的流程图, 其主 包括步骤 S510~S570, 其中步骤 S510~S520与前述步骤 S210~S220基本相同, 下面 针对步骤 S530-S570进行简单说明。
[0104] 参看图 33, 采用转移装置的拾取头阵列选择性拾起载体基板 1300上的微元件 12 01-1204; 参看图 34, 将微元件 1201-1204释放至第二接收基板 1400上, 此吋转移 装置的拾取头继续保持接触微元件, 并使转移装置的测试电极与微元件的电极 接触; 参看图 35, 向测试电极施加电压, 各个微元件 1201~1204各自形成子测试 回路, 测试获得微元件的缺陷图案, 例如微元件 1201的光电参数不合格 (即为 缺陷微元件) , 微元件 1202~1204的光电参数合格; 参看图 36, 采用转移装置的 拾取头阵列选择性拾起第二接收基板 1400上的缺陷微元件 1201 ; 参看图 37, 将 缺陷微元件 1201释放至第一接收基板 1500。 其中第一接收基板 1500可以为任意 回收装置, 其用于回收放置不合格的微元件; 第二接收基板 1400可为柔性电子 基底诸如有电路的柔性膜、 显示器背板等。
[0105] 上述各实施例的拾取头阵列可以通过静电力、 范德华力、 真空吸附力拾取微元
件或释放微元件。 上述各实施例的微元件的转移方法均以图 1所公幵的转移装置 1100进行举例说明, 本发明并不以此为限, 对于不同电极结构的微元件可根据 需求选择不同结构的转移装置。
[0106] 上述各实施例的微元件的转移方法中可通过转移装置对微元件阵列进行多次的 测试及转印。
[0107] 上述各实施例的微元件的转移方法可以用于制作电子装置, 可以广泛用于电子 设备中, 该电子设备可以是手机、 平板电脑等。
[0108] 尽管已经描述本发明的示例性实施例, 但是理解的是, 本发明不应限于这些示 例性实施例而是本领域的技术人员能够在如下文的权利要求所要求的本发明的 精神和范围内进行各种变化和修改。
Claims
[权利要求 1] 微元件的转移装置, 包括:
基底衬底, 具有相对的两个表面;
拾取头阵列, 形成于所述基底衬底的第一表面上, 用于拾取或释放微 元件;
测试电路, 设置于所述基底衬底的内部或 /和表面上, 具有一系列子 测试电路, 每个子测试电路具有至少两个测试电极, 在所述转移装置 转移微元件过程中同吋测试该微元件的光电参数。
[权利要求 2] 根据权利要求 1所述的微元件的转移装置, 其特征在于: 所述每个子 测试电路的至少一个测试电极形成于所述拾取头之用于接触微元件的 表面, 在所述拾取头阵列接触微元件吋连接微元件的电极。
[权利要求 3] 根据权利要求 2所述的微元件的转移装置, 其特征在于: 所述每个子 测试电路分别具有一对测试电极。
[权利要求 4] 根据权利要求 2所述的微元件的转移装置, 其特征在于: 所述每个子 测试电路共用一个测试电极。
[权利要求 5] 根据权利要求 2所述的微元件的转移装置, 其特征在于: 所述测试电 路还包括一可伸缩电极, 其位于所述基底衬底的第一表面, 与形成于 所述拾取头之用于接触微元件的表面的测试电极构成子测试电路。
[权利要求 6] 根据权利要求 1所述的微元件的转移装置, 其特征在于: 还包括 CMO
S集成电路, 其位于所述基底衬底的第二表面, 与所述测试电路连接
[权利要求 7] 根据权利要求 6所述的微元件的转移装置, 其特征在于: 所述基底衬 底具有通孔结构, 所述测试电路贯穿所述通孔结构, 延伸至所述基底 衬底的第二表面。
[权利要求 8] 根据权利要求 6所述的微元件的转移装置, 其特征在于: 所述基底衬 底为硅基板, 所述 CMOS集成电路由所述 Si基板的一部分形成。
[权利要求 9] 根据权利要求 6所述的微元件的转移装置, 其特征在于: 所述 CMOS 集成电路为位于所述基底衬底之上的结构层。
[权利要求 10] 根据权利要求 1所述的微元件的转移装置, 其特征在于: 所述拾取头 阵列通过静电力、 范德华力、 真空吸附力拾起微元件。
[权利要求 11] 根据权利要求 1所述的微元件的转移装置, 其特征在于: 所述拾取头 具有一静力电极层和覆盖在该电极层上的介质层, 向所述电极层施加 吸附电压吋, 所述拾取头产生静电吸力, 拾起与其接触的微元件拾起
[权利要求 12] 根据权利要求 1所述的微元件的转移装置, 其特征在于: 所述拾取头 阵列的各个拾取头的表面设有仿生壁虎材料, 藉由仿生壁虎材料的粘 附能力吸附微元件。
[权利要求 13] 根据权利要求 1所述的微元件的转移装置, 其特征在于: 所述拾取头 阵列为一系列吸嘴阵列, 使用真空压力吸附微元件或释放微元件。
[权利要求 14] 根据权利要求 13所述的微元件的转移装置, 其特征在于: 还包括一腔 体、 若干真空路径及幵关组件, 所述吸嘴阵列通过所述若干真空路径 连通至该腔体, 并在相通处分别设置可幵 /关的阀门, 所述幵关组件 用于控制各真空路径的阀门的幵或关, 从而控制所述吸嘴使用真空压 力吸附或释放所需的微元件。
[权利要求 15] 根据权利要求 14所述的微元件的转移装置, 其特征在于: 所述幵关 组件包括 CMOS集成电路及与所述 CMOS集成电路连接的地址电极阵 歹 |J, 各个所述真空路径的阀门与所述地址电极阵列对应。
[权利要求 16] 根据权利要求 15所述的微元件的转移装置, 其特征在于: 所述阀门为
一可动的构件, 所述地址电极阵列由所述 CMOS集成电路用电压电位 选择性激励以产生致使相应的可动的构件朝向相应的地址电极偏斜或 靠近的静电吸引力, 以控制各真空路径的幵或关。
[权利要求 17] 根据权利要求 14所述的微元件的转移装置, 其特征在于: 所述真空路 径为一系列贯穿所述基底衬底的微孔结构, 其一端与所述腔体连通, 一端与所述吸嘴连接。
[权利要求 18] —种微元件的转移方法, 包括步骤:
提供一转移装置, 其包括基底衬底、 形成于该基底衬底表面上的拾取
头阵列以及设置于该基底衬底的内部或 /和表面上的测试电路, 该测 试电路具有一系列子测试电路, 每个子测试电路具有至少两个测试电 极;
将转移装置定位在被连接在载体基板上的微元件之上;
使测试电极与微元件的电极接触, 向测试电路施加测试电压形成测试 回路, 测试微元件, 获得载体基板上的微元件的缺陷图案。
[权利要求 19] 根据权利要求 18所述的微元件的转移方法, 包括下面步骤:
(1) 提供一转移装置, 其包括基底衬底、 形成于该基底衬底表面上 的拾取头阵列以及设置于该基底衬底的内部或 /和表面上的测试电路
, 该测试电路具有一系列子测试电路, 每个子测试电路具有至少两个 测试电极;
(2) 将转移装置定位在被连接在载体基板上的微元件之上;
(3) 使测试电极与微元件的电极接触, 向测试电路施加测试电压形 成测试回路, 测试微元件, 获得载体基板上的微元件的缺陷图案;
(4) 用所述转移装置的拾取头阵列, 拾起所述载体基板上的合格的 微元件;
(5) 将微元件释放到接收基板上。
[权利要求 20] 根据权利要求 18所述的微元件的转移方法, 包括下面步骤:
(1) 提供一转移装置, 其包括基底衬底、 形成于该基底衬底表面上 的拾取头阵列以及设置于该基底衬底的内部或 /和表面上的测试电路
, 该测试电路具有一系列子测试电路, 每个子测试电路具有至少两个 测试电极;
(2) 将转移装置定位在被连接在载体基板上的微元件之上;
(3) 使测试电极与微元件的电极接触, 向测试电路施加测试电压形 成测试回路, 测试微元件, 获得载体基板上的微元件的缺陷图案;
(4) 用所述转移装置的拾取头阵列, 拾起所述载体基板上的不合格 的微元件;
(5) 将所述不合格的微元件释放到接收基板上。
[权利要求 21] 根据权利要求 18所述的微元件的转移方法, 包括下面步骤:
( 1) 提供一转移装置, 其包括基底衬底、 形成于该基底衬底表面上 的拾取头阵列以及设置于该基底衬底的内部或 /和表面上的测试电路
, 该测试电路具有一系列子测试电路, 每个子测试电路具有至少两个 测试电极;
(2) 将转移装置定位在被连接在载体基板上的微元件之上;
(3) 使测试电极与微元件的电极接触, 向测试电路施加测试电压形 成测试回路, 测试微元件, 获得载体基板上的微元件的缺陷图案;
(4) 用所述转移装置的拾取头阵列, 拾起所述载体基板上的微元件
(5) 分别将不合格的微元件和合格的微元件释放到不同的接收基板
[权利要求 22] 根据权利要求 18所述的微元件的转移方法, 包括下面步骤:
( 1) 提供一转移装置, 其包括基底衬底、 形成于该基底衬底表面上 的拾取头阵列以及设置于该基底衬底的内部或 /和表面上的测试电路
, 该测试电路具有一系列子测试电路, 每个子测试电路具有至少两个 测试电极;
(2) 将转移装置定位在被连接在载体基板上的微元件之上;
(3) 用所述转移装置的拾取头阵列, 拾起所述载体基板上的微元件
(4) 将微元件释放到第一接收基板上;
(5) 使转移装置的测试电极与微元件的电极接触, 向测试电路施加 测试电压形成测试回路, 测试微元件, 获得第一接收基板上的微元件 的缺陷图案;
(6) 用所述转移装置的拾取头阵列, 拾起所述第一接收基板上的不 合格的微元件;
(7) 将所述不合格的微元件释放到第二接收基板上。
[权利要求 23] —种用于制作微元件装置的方法, 包括使用权利要求 18-22所述的任
意一种预先排除缺陷的微元件转移方法。
[权利要求 24] —种使用权利要求 23所述的方法制造的微元件装置。
[权利要求 25] —种电子设备, 包含权利要求 24所述的微元件装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/871,982 US10410893B2 (en) | 2016-11-04 | 2018-01-16 | Micro elements transfer device and method |
US16/522,641 US10622234B2 (en) | 2016-11-04 | 2019-07-25 | Micro elements transfer device and method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610961364.5A CN107039298B (zh) | 2016-11-04 | 2016-11-04 | 微元件的转移装置、转移方法、制造方法、装置和电子设备 |
CN201610961364.5 | 2016-11-04 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/871,982 Continuation US10410893B2 (en) | 2016-11-04 | 2018-01-16 | Micro elements transfer device and method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018082089A1 true WO2018082089A1 (zh) | 2018-05-11 |
Family
ID=59530298
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/104869 WO2018082089A1 (zh) | 2016-11-04 | 2016-11-07 | 微元件的转移装置、转移方法、制造方法、装置和电子设备 |
Country Status (4)
Country | Link |
---|---|
US (2) | US10410893B2 (zh) |
CN (1) | CN107039298B (zh) |
TW (7) | TWI670828B (zh) |
WO (1) | WO2018082089A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112967976A (zh) * | 2020-06-19 | 2021-06-15 | 重庆康佳光电技术研究院有限公司 | 一种巨量转移装置及转移方法 |
CN113301718A (zh) * | 2021-05-28 | 2021-08-24 | 淮南师范学院 | 一种微型电子元件焊接装置及其检修方法 |
Families Citing this family (63)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106229287B (zh) * | 2016-09-30 | 2019-04-05 | 厦门市三安光电科技有限公司 | 用于转移微元件的转置头及微元件的转移方法 |
CN107039298B (zh) * | 2016-11-04 | 2019-12-24 | 厦门市三安光电科技有限公司 | 微元件的转移装置、转移方法、制造方法、装置和电子设备 |
US10998352B2 (en) * | 2016-11-25 | 2021-05-04 | Vuereal Inc. | Integration of microdevices into system substrate |
US10978530B2 (en) | 2016-11-25 | 2021-04-13 | Vuereal Inc. | Integration of microdevices into system substrate |
US10916523B2 (en) | 2016-11-25 | 2021-02-09 | Vuereal Inc. | Microdevice transfer setup and integration of micro-devices into system substrate |
CN107818931B (zh) * | 2017-09-30 | 2021-10-19 | 厦门市三安光电科技有限公司 | 半导体微元件的转移方法及转移装置 |
US10615063B2 (en) * | 2017-11-08 | 2020-04-07 | Facebook Technologies, Llc | Vacuum pick-up head for semiconductor chips |
TWI626772B (zh) * | 2017-11-13 | 2018-06-11 | 友達光電股份有限公司 | 轉置裝置 |
CN109786307B (zh) * | 2017-11-15 | 2021-02-05 | 鸿富锦精密工业(深圳)有限公司 | 微型led显示面板的制备方法 |
KR102428029B1 (ko) * | 2017-12-20 | 2022-08-02 | (주)포인트엔지니어링 | 마이크로 led 전사헤드 |
TWI635785B (zh) | 2017-12-29 | 2018-09-11 | 宏碁股份有限公司 | 微元件轉移頭 |
CN110062573B (zh) * | 2018-01-18 | 2020-10-20 | 宏碁股份有限公司 | 微组件转移头 |
KR102427474B1 (ko) * | 2018-01-30 | 2022-08-01 | 한국전자기술연구원 | Led전사장치 및 전사방법 |
TWI636267B (zh) * | 2018-02-12 | 2018-09-21 | 友達光電股份有限公司 | 發光二極體的檢測方法 |
CN108417682B (zh) * | 2018-03-22 | 2020-03-20 | 厦门市三安光电科技有限公司 | 一种微型发光元件及其制作方法 |
US10707105B1 (en) * | 2018-03-29 | 2020-07-07 | Facebook Technologies, Llc | Selective shape memory alloy pick-up head |
KR20190114372A (ko) * | 2018-03-30 | 2019-10-10 | (주)포인트엔지니어링 | 마이크로 led 전사 시스템 |
CN108490341B (zh) * | 2018-03-30 | 2019-10-08 | 惠州雷通光电器件有限公司 | 微型芯片转移系统及方法 |
US11295972B2 (en) * | 2018-06-12 | 2022-04-05 | Korea Advanced Institute Of Science And Technology | Layout structure between substrate, micro-LED array and micro-vacuum module for micro-LED array transfer using micro-vacuum module, and method for manufacturing micro-LED display using the same |
US20190378749A1 (en) * | 2018-06-12 | 2019-12-12 | Korea Advanced Institute Of Science And Technology | Micro-vacuum module for semiconductor device transfer and method for transferring semiconductor device using the micro-vacuum module |
CN110648956A (zh) * | 2018-06-27 | 2020-01-03 | 普因特工程有限公司 | 微发光二极管转印头 |
KR20200005235A (ko) * | 2018-07-06 | 2020-01-15 | (주)포인트엔지니어링 | 마이크로 led 전사헤드 |
TWI677903B (zh) * | 2018-08-24 | 2019-11-21 | 王中林 | 巨量佈設晶片的方法 |
CN109256351B (zh) * | 2018-09-20 | 2021-06-08 | 南方科技大学 | 微型芯片的批量转移装置以及转移方法 |
CN111128819B (zh) * | 2018-10-31 | 2023-09-29 | 成都辰显光电有限公司 | 一种微器件转移装置及其制备方法 |
CN111128832B (zh) * | 2018-10-31 | 2021-10-22 | 成都辰显光电有限公司 | 微元件转移装置及其制造方法 |
CN111128833B (zh) * | 2018-10-31 | 2021-08-17 | 成都辰显光电有限公司 | 一种微元件的转移装置 |
CN111146132A (zh) * | 2018-11-06 | 2020-05-12 | 昆山工研院新型平板显示技术中心有限公司 | 一种微元件的转移装置及转移方法 |
CN111146131B (zh) * | 2018-11-06 | 2022-08-26 | 成都辰显光电有限公司 | 一种微元件的转移装置及转移方法 |
CN111244008A (zh) * | 2018-11-29 | 2020-06-05 | 昆山工研院新型平板显示技术中心有限公司 | 微元件的转移装置及其转移方法 |
CN111244009B (zh) * | 2018-11-29 | 2022-10-28 | 成都辰显光电有限公司 | 微元件的转移装置 |
CN111244011B (zh) * | 2018-11-29 | 2023-03-14 | 成都辰显光电有限公司 | 微元件的转移装置以及转移方法 |
CN111261568B (zh) * | 2018-11-30 | 2023-02-10 | 成都辰显光电有限公司 | 微元件的转移装置及其转移方法 |
CN111261572B (zh) * | 2018-11-30 | 2023-03-31 | 成都辰显光电有限公司 | 转移装置以及微元件的转移方法 |
CN111261569B (zh) * | 2018-11-30 | 2022-10-28 | 成都辰显光电有限公司 | 微元件的转移装置及其转移方法 |
EP3687271A1 (en) * | 2019-01-25 | 2020-07-29 | Mycronic AB | Eletrical verification of electronic components |
CN111830295B (zh) * | 2019-04-18 | 2023-04-21 | 成都辰显光电有限公司 | 一种测试微元件电气性能的装置 |
CN109927403B (zh) * | 2019-04-19 | 2021-06-29 | 成都辰显光电有限公司 | 一种转印装置、转印装置的制作方法和转印方法 |
US10916518B2 (en) * | 2019-04-22 | 2021-02-09 | Mikro Mesa Technology Co., Ltd. | Electrical binding structure and method of forming the same |
US11670531B2 (en) | 2019-04-25 | 2023-06-06 | Meta Platforms Technologies, Llc | Bridge pick-up head for transferring semiconductor devices |
TWI694611B (zh) * | 2019-05-01 | 2020-05-21 | 蔡東猛 | 微型發光二極體和影像感測元件測試和修復流程 |
US10714374B1 (en) * | 2019-05-09 | 2020-07-14 | X Display Company Technology Limited | High-precision printed structures |
CN112017988B (zh) * | 2019-05-31 | 2024-03-19 | 成都辰显光电有限公司 | 转移设备 |
US20210066547A1 (en) * | 2019-08-28 | 2021-03-04 | Tslc Corporation | Semiconductor Components And Semiconductor Structures And Methods Of Fabrication |
CN112557867B (zh) * | 2019-09-25 | 2023-05-30 | 成都辰显光电有限公司 | 检测装置及检测方法 |
CN112670201B (zh) * | 2019-10-15 | 2023-06-27 | 成都辰显光电有限公司 | 检测装置 |
CN110911436B (zh) * | 2019-12-03 | 2022-05-31 | 京东方科技集团股份有限公司 | 一种驱动背板、发光二极管的转移装置及转移方法 |
US11756810B1 (en) | 2019-12-27 | 2023-09-12 | Meta Platforms Technologies, Llc | Detection of force applied by pick-up tool for transferring semiconductor devices |
CN111244016B (zh) * | 2020-03-10 | 2022-10-18 | 深超光电(深圳)有限公司 | 转移装置、转移装置的制备方法、转移方法 |
US20240120231A1 (en) * | 2020-03-30 | 2024-04-11 | Vuereal Inc. | Offset alignment and repair in micro device transfer |
GB2593698B (en) * | 2020-03-30 | 2022-12-07 | Plessey Semiconductors Ltd | Monolithic electronic device |
US20230144191A1 (en) * | 2020-03-30 | 2023-05-11 | Vuereal Inc. | Offset alignment and repair in micro device transfer |
CN111146129B (zh) | 2020-04-03 | 2020-09-15 | Tcl华星光电技术有限公司 | 一种微型发光二极管转移装置、转移方法及显示装置 |
CN113782475A (zh) * | 2020-06-10 | 2021-12-10 | 佛山市国星光电股份有限公司 | Led芯片转移结构、其制作方法和芯片转移方法 |
JP7218405B2 (ja) * | 2020-08-18 | 2023-02-06 | 東レエンジニアリング株式会社 | チップ部品転写装置 |
CN111933627B (zh) * | 2020-09-14 | 2024-10-08 | 厦门乾照半导体科技有限公司 | 可测试及微转移的微元件及其制作、测试和转移方法、显示装置 |
US20220199449A1 (en) * | 2020-12-23 | 2022-06-23 | Intel Corporation | Carrier for microelectronic assemblies having direct bonding |
KR102505763B1 (ko) * | 2021-01-29 | 2023-03-02 | 고려대학교 산학협력단 | 자성 전사 장치와 자성 전자 장치의 제조 방법 |
TWI751071B (zh) * | 2021-04-14 | 2021-12-21 | 啟端光電股份有限公司 | 用以執行水平校準的轉移系統及其治具 |
CN113782480A (zh) * | 2021-09-08 | 2021-12-10 | 上海天马微电子有限公司 | 一种基板及微发光二极管的转移方法 |
KR20240065101A (ko) * | 2021-09-29 | 2024-05-14 | 뷰리얼 인크. | 마이크로 디바이스 카트리지 구조 |
CN114420802A (zh) * | 2021-12-27 | 2022-04-29 | 深圳市思坦科技有限公司 | 芯片转移装置及芯片转移方法 |
US11856710B2 (en) * | 2022-05-25 | 2023-12-26 | Innolux Corporation | Method of manufacturing an electronic device |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6313652B1 (en) * | 1997-12-26 | 2001-11-06 | Samsung Electronics Co., Ltd. | Test and burn-in apparatus, in-line system using the test and burn-in apparatus, and test method using the in-line system |
CN1755935A (zh) * | 2004-09-30 | 2006-04-05 | 精工爱普生株式会社 | 转移基板和半导体器件的方法 |
CN103372544A (zh) * | 2012-04-12 | 2013-10-30 | 未来产业株式会社 | 半导体元件分选系统 |
CN105263854A (zh) * | 2013-06-04 | 2016-01-20 | 勒克斯维科技公司 | 具有顺应性触件的微拾取阵列 |
CN105983538A (zh) * | 2015-01-28 | 2016-10-05 | 先进科技新加坡有限公司 | 一种高产能的测试分选机系统 |
Family Cites Families (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6400173B1 (en) * | 1999-11-19 | 2002-06-04 | Hitachi, Ltd. | Test system and manufacturing of semiconductor device |
TW567605B (en) * | 2001-09-06 | 2003-12-21 | Hitachi Ltd | Method for identifying semiconductor integrated circuit device, method for manufacturing semiconductor integrated circuit device, semiconductor integrated circuit device and semiconductor chip |
US6791161B2 (en) * | 2002-04-08 | 2004-09-14 | Fabtech, Inc. | Precision Zener diodes |
CN103199017B (zh) * | 2003-12-30 | 2016-08-03 | 飞兆半导体公司 | 形成掩埋导电层方法、材料厚度控制法、形成晶体管方法 |
CN104716170B (zh) * | 2004-06-04 | 2019-07-26 | 伊利诺伊大学评议会 | 用于制造并组装可印刷半导体元件的方法和设备 |
DE102005052055B3 (de) * | 2005-10-31 | 2007-04-26 | Advanced Micro Devices, Inc., Sunnyvale | Eingebettete Verformungsschicht in dünnen SOI-Transistoren und Verfahren zur Herstellung desselben |
TWI638583B (zh) * | 2007-09-27 | 2018-10-11 | 半導體能源研究所股份有限公司 | 發光元件,發光裝置,與電子設備 |
CN101499425A (zh) * | 2008-01-31 | 2009-08-05 | 力成科技股份有限公司 | 即取即测的晶片接合方法 |
KR101582503B1 (ko) * | 2008-05-12 | 2016-01-05 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 반도체 장치 및 반도체 장치의 제작 방법 |
CN101587850B (zh) * | 2008-05-21 | 2011-05-25 | 瑞鼎科技股份有限公司 | 承载结构以及测试装置 |
US8222710B2 (en) * | 2008-06-13 | 2012-07-17 | Taiwan Semiconductor Manufacturing Company, Ltd. | Sensor structure for optical performance enhancement |
US7964916B2 (en) * | 2009-04-14 | 2011-06-21 | Monolithic 3D Inc. | Method for fabrication of a semiconductor device and structure |
US8399183B2 (en) * | 2009-05-13 | 2013-03-19 | Synopsys, Inc. | Patterning a single integrated circuit layer using automatically-generated masks and multiple masking layers |
EP2449594B1 (en) * | 2009-06-30 | 2019-08-21 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing semiconductor device |
WO2011002046A1 (en) * | 2009-06-30 | 2011-01-06 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing semiconductor device |
US8294159B2 (en) * | 2009-10-12 | 2012-10-23 | Monolithic 3D Inc. | Method for fabrication of a semiconductor device and structure |
US8476145B2 (en) * | 2010-10-13 | 2013-07-02 | Monolithic 3D Inc. | Method of fabricating a semiconductor device and structure |
TW202315049A (zh) * | 2010-02-16 | 2023-04-01 | 凡 歐貝克 | 製造3d半導體晶圓的方法 |
US8604332B2 (en) * | 2010-03-04 | 2013-12-10 | Guardian Industries Corp. | Electronic devices including transparent conductive coatings including carbon nanotubes and nanowire composites, and methods of making the same |
JP4783868B1 (ja) * | 2010-03-17 | 2011-09-28 | 富士フイルム株式会社 | 固体撮像素子及びその製造方法並びに撮像装置 |
US8284593B2 (en) * | 2010-04-14 | 2012-10-09 | Freescale Semiconductor, Inc. | Multi-port memory having a variable number of used write ports |
US8921144B2 (en) * | 2010-06-25 | 2014-12-30 | International Business Machines Corporation | Planar cavity MEMS and related structures, methods of manufacture and design structures |
US8642416B2 (en) * | 2010-07-30 | 2014-02-04 | Monolithic 3D Inc. | Method of forming three dimensional integrated circuit devices using layer transfer technique |
JP5579035B2 (ja) * | 2010-11-30 | 2014-08-27 | 富士フイルム株式会社 | 重合性組成物、並びに、これを用いた感光層、永久パターン、ウエハレベルレンズ、固体撮像素子、及び、パターン形成方法 |
JP5477723B2 (ja) * | 2011-01-18 | 2014-04-23 | 日立金属株式会社 | 光電変換モジュール、及び、光電変換モジュールの製造方法 |
CN102117869B (zh) * | 2011-01-21 | 2013-12-11 | 厦门市三安光电科技有限公司 | 一种剥离发光二极管衬底的方法 |
US9029173B2 (en) * | 2011-10-18 | 2015-05-12 | Monolithic 3D Inc. | Method for fabrication of a semiconductor device and structure |
US8426227B1 (en) * | 2011-11-18 | 2013-04-23 | LuxVue Technology Corporation | Method of forming a micro light emitting diode array |
US20130129922A1 (en) * | 2011-11-21 | 2013-05-23 | Qualcomm Mems Technologies, Inc. | Batch processing for electromechanical systems and equipment for same |
US8610241B1 (en) * | 2012-06-12 | 2013-12-17 | Taiwan Semiconductor Manufacturing Company, Ltd. | Homo-junction diode structures using fin field effect transistor processing |
CN102931309B (zh) * | 2012-11-15 | 2015-04-01 | 安徽三安光电有限公司 | 一种倒装发光二极管及其制作方法 |
US9105714B2 (en) * | 2012-12-11 | 2015-08-11 | LuxVue Technology Corporation | Stabilization structure including sacrificial release layer and staging bollards |
US9147451B2 (en) * | 2013-03-20 | 2015-09-29 | Arm Limited | Memory device and method of controlling leakage current within such a memory device |
TWI495814B (zh) * | 2013-03-21 | 2015-08-11 | Sanyang Industry Co Ltd | Two-way valve |
JP6402017B2 (ja) * | 2013-12-26 | 2018-10-10 | 株式会社半導体エネルギー研究所 | 半導体装置 |
US9437793B2 (en) * | 2014-02-21 | 2016-09-06 | Xiamen Sanan Optoelectronics Technology Co., Ltd. | Package support, fabrication method and LED package |
US9698308B2 (en) * | 2014-06-18 | 2017-07-04 | X-Celeprint Limited | Micro assembled LED displays and lighting elements |
CN104409466B (zh) * | 2014-12-08 | 2017-08-18 | 厦门市三安光电科技有限公司 | 倒装高压发光器件及其制作方法 |
CN105789122B (zh) * | 2014-12-12 | 2019-05-03 | 财团法人工业技术研究院 | 光电元件的转移方法 |
KR101614370B1 (ko) * | 2015-04-07 | 2016-04-21 | 엘지전자 주식회사 | 반도체 발광소자, 반도체 발광소자의 이송 헤드, 및 반도체 발광소자를 이송하는 방법 |
US9966514B2 (en) * | 2015-07-02 | 2018-05-08 | Xiamen Sanan Optoelectronics Technology Co., Ltd. | Light emitting diode package structure and fabrication method |
EP3262694B1 (en) * | 2015-10-20 | 2019-08-21 | Goertek. Inc | Method for transferring micro-leds and method for manufacturing micro-led device |
EP3248226B1 (en) * | 2015-11-04 | 2020-02-26 | Goertek Inc. | Micro-led transferring method and manufacturing method of micro-led device |
GB2544335A (en) * | 2015-11-13 | 2017-05-17 | Oculus Vr Llc | A method and apparatus for use in the manufacture of a display element |
US11276600B2 (en) * | 2016-03-31 | 2022-03-15 | Mitsui Chemicals Tohcello, Inc. | Film for component manufacture and component manufacturing method |
CN107039298B (zh) * | 2016-11-04 | 2019-12-24 | 厦门市三安光电科技有限公司 | 微元件的转移装置、转移方法、制造方法、装置和电子设备 |
CN106601657B (zh) * | 2016-12-12 | 2019-12-17 | 厦门市三安光电科技有限公司 | 微元件的转移系统、转移方法、制造方法、装置和电子设备 |
US10453711B2 (en) * | 2017-05-31 | 2019-10-22 | Facebook Technologies, Llc | Fluidic pick-up head for small semiconductor devices |
-
2016
- 2016-11-04 CN CN201610961364.5A patent/CN107039298B/zh active Active
- 2016-11-07 WO PCT/CN2016/104869 patent/WO2018082089A1/zh active Application Filing
-
2017
- 2017-11-02 TW TW106137931A patent/TWI670828B/zh active
- 2017-11-02 TW TW108115541A patent/TWI690051B/zh active
- 2017-11-02 TW TW108115548A patent/TWI697093B/zh active
- 2017-11-02 TW TW108115544A patent/TWI690053B/zh active
- 2017-11-02 TW TW108115556A patent/TWI697095B/zh active
- 2017-11-02 TW TW108115543A patent/TWI690052B/zh active
- 2017-11-02 TW TW108115551A patent/TWI697094B/zh active
-
2018
- 2018-01-16 US US15/871,982 patent/US10410893B2/en active Active
-
2019
- 2019-07-25 US US16/522,641 patent/US10622234B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6313652B1 (en) * | 1997-12-26 | 2001-11-06 | Samsung Electronics Co., Ltd. | Test and burn-in apparatus, in-line system using the test and burn-in apparatus, and test method using the in-line system |
CN1755935A (zh) * | 2004-09-30 | 2006-04-05 | 精工爱普生株式会社 | 转移基板和半导体器件的方法 |
CN103372544A (zh) * | 2012-04-12 | 2013-10-30 | 未来产业株式会社 | 半导体元件分选系统 |
CN105263854A (zh) * | 2013-06-04 | 2016-01-20 | 勒克斯维科技公司 | 具有顺应性触件的微拾取阵列 |
CN105983538A (zh) * | 2015-01-28 | 2016-10-05 | 先进科技新加坡有限公司 | 一种高产能的测试分选机系统 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112967976A (zh) * | 2020-06-19 | 2021-06-15 | 重庆康佳光电技术研究院有限公司 | 一种巨量转移装置及转移方法 |
CN113301718A (zh) * | 2021-05-28 | 2021-08-24 | 淮南师范学院 | 一种微型电子元件焊接装置及其检修方法 |
Also Published As
Publication number | Publication date |
---|---|
TW201937686A (zh) | 2019-09-16 |
TW201937685A (zh) | 2019-09-16 |
TWI697093B (zh) | 2020-06-21 |
TWI690052B (zh) | 2020-04-01 |
TWI670828B (zh) | 2019-09-01 |
US20190348313A1 (en) | 2019-11-14 |
US10622234B2 (en) | 2020-04-14 |
CN107039298A (zh) | 2017-08-11 |
TW201937684A (zh) | 2019-09-16 |
TWI697094B (zh) | 2020-06-21 |
TWI690051B (zh) | 2020-04-01 |
TW201937683A (zh) | 2019-09-16 |
TW201937687A (zh) | 2019-09-16 |
US20180158706A1 (en) | 2018-06-07 |
TW201933577A (zh) | 2019-08-16 |
TWI690053B (zh) | 2020-04-01 |
TW201828452A (zh) | 2018-08-01 |
CN107039298B (zh) | 2019-12-24 |
US10410893B2 (en) | 2019-09-10 |
TWI697095B (zh) | 2020-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018082089A1 (zh) | 微元件的转移装置、转移方法、制造方法、装置和电子设备 | |
TWI696261B (zh) | 微元件的轉移系統、微元件的轉移方法及微元件裝置的製造方法 | |
TWI667691B (zh) | 用於轉移微元件的轉置頭及微元件的轉移方法 | |
US11631601B2 (en) | Transfer head for transferring micro element and transferring method of micro element | |
KR102284457B1 (ko) | 다이 픽업 모듈 및 이를 포함하는 다이 본딩 장치 | |
US20080025822A1 (en) | Device and method for handling an object of interest using a directional adhesive structure | |
KR102365660B1 (ko) | 다이 픽업 모듈 및 이를 포함하는 다이 본딩 장치 | |
CN111244007B (zh) | 一种微元件的转移装置 | |
WO2020107876A1 (zh) | 微元件的转移装置及其制造方法 | |
TWI535084B (zh) | 一種具壓電特性的橡膠材料薄膜結構與製造方法 | |
JP2004356242A (ja) | ピックアップ装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16920621 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16920621 Country of ref document: EP Kind code of ref document: A1 |