WO2020107876A1 - 微元件的转移装置及其制造方法 - Google Patents

微元件的转移装置及其制造方法 Download PDF

Info

Publication number
WO2020107876A1
WO2020107876A1 PCT/CN2019/092381 CN2019092381W WO2020107876A1 WO 2020107876 A1 WO2020107876 A1 WO 2020107876A1 CN 2019092381 W CN2019092381 W CN 2019092381W WO 2020107876 A1 WO2020107876 A1 WO 2020107876A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
vacuum suction
suction hole
vacuum
transfer device
Prior art date
Application number
PCT/CN2019/092381
Other languages
English (en)
French (fr)
Inventor
陈博
邢汝博
郭恩卿
韦冬
李晓伟
陈波
Original Assignee
昆山工研院新型平板显示技术中心有限公司
昆山国显光电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昆山工研院新型平板显示技术中心有限公司, 昆山国显光电有限公司 filed Critical 昆山工研院新型平板显示技术中心有限公司
Publication of WO2020107876A1 publication Critical patent/WO2020107876A1/zh
Priority to US17/144,474 priority Critical patent/US12027408B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6838Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping with gripping and holding devices using a vacuum; Bernoulli devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67144Apparatus for mounting on conductive members, e.g. leadframes or conductors on insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0095Post-treatment of devices, e.g. annealing, recrystallisation or short-circuit elimination

Definitions

  • the present application relates to the field of micro-element transfer technology, in particular to a micro-element transfer device and a manufacturing method thereof.
  • miniaturization of components has become one of the development trends.
  • the application of micro-LEDs in display devices that is, the integration of multiple micro-sized miniature light-emitting diodes (LEDs) on the display panel Liquid Emitting Diode
  • miniature light-emitting diodes have extremely high luminous efficiency and longevity. Therefore, more and more companies have begun to develop miniature light-emitting diode display panels, and miniature light-emitting diodes are expected to become the next generation display technology.
  • the present application provides a micro-element transfer device and a manufacturing method thereof to solve the problem that micro-element transfer cannot be achieved.
  • a micro-element transfer device including: a vacuum chamber, a vacuum space is formed in the vacuum chamber, and a plurality of vacuum suctions connecting the vacuum space and the outside are formed on the vacuum chamber Holes and vacuum suction holes are used to suck micro-elements; multiple movable masses are set in the vacuum chamber, each movable mass corresponds to a vacuum suction hole; multiple electrode assemblies are fixed in the vacuum chamber, each The electrode group corresponds to a vacuum suction hole; where the movable mass is suspended above the vacuum suction hole when the electrode assembly is not powered, and the vacuum suction hole is opened; when the electrode assembly is powered on, the movable mass is attracted by the electrode assembly Or repel and move to block the vacuum suction hole.
  • the vacuum chamber includes upper and lower walls disposed oppositely, and the plurality of vacuum suction holes are all formed on the lower wall.
  • the electrode assembly includes a closed electrode provided on the inner surface of the lower wall, the vacuum suction hole penetrates the closed electrode, and when the closed electrode is energized, the movable mass is adsorbed on the The vacuum suction hole is blocked on the closed electrode.
  • the electrode assembly further includes a via electrode, which is disposed opposite to the closed electrode, and is disposed on the inner surface of the upper wall, and when the via electrode is energized, the movable mass is adsorbed to the via electrode To open the vacuum suction hole.
  • a via electrode which is disposed opposite to the closed electrode, and is disposed on the inner surface of the upper wall, and when the via electrode is energized, the movable mass is adsorbed to the via electrode To open the vacuum suction hole.
  • the closed electrode includes a metal material
  • the via electrode includes a silicon material
  • the movable mass includes a silicon material
  • an insulating layer is provided on the surfaces of the closed electrode and the via electrode.
  • the electrode assembly includes a closed electrode provided on the inner surface of the upper wall, corresponding to the vacuum suction hole, and when the closed electrode is energized, the movable mass repels the closed electrode The bottom is sealed in the vacuum suction hole.
  • the electrode assembly further includes: a via electrode, which is disposed opposite to the closed electrode, is disposed on an inner surface of the lower wall, and the vacuum suction hole penetrates the via electrode, and when the via electrode is energized, Under the repulsion of the via electrode, the movable mass opens the vacuum suction hole.
  • a via electrode which is disposed opposite to the closed electrode, is disposed on an inner surface of the lower wall, and the vacuum suction hole penetrates the via electrode, and when the via electrode is energized, Under the repulsion of the via electrode, the movable mass opens the vacuum suction hole.
  • an insulating layer is provided on the surfaces of the closed electrode and the via electrode.
  • a fixed seat is provided in the vacuum chamber, and the movable mass is connected to the fixed seat by a cantilever beam to be suspended above the vacuum suction hole.
  • one of the movable masses is connected to one of the fixed seats through one of the cantilever beams; or, one of the movable masses is connected to one of the two fixed seats through two of the cantilever beams between.
  • the number of the fixed seats is at least two, and a connecting beam is provided between at least two of the fixed seats, and the movable mass is connected to the connecting beam through the cantilever beam to be suspended Above the vacuum suction hole.
  • the movable masses are connected to each other through a connecting beam to form a mesh structure, and are connected in a vacuum cavity, and each of the movable masses is suspended above a vacuum suction hole.
  • the plurality of vacuum suction hole arrays are provided.
  • another aspect of the present application provides a method for manufacturing a micro-element transfer device, including: providing a first silicon wafer, the first silicon wafer including a first substrate layer and a first top silicon layer Etching the first top silicon layer to form a first shallow cavity and retaining a fixing seat formed in the first shallow cavity; patterning the etched first top layer silicon to obtain a via electrode; providing A second silicon wafer, the second silicon wafer is bonded to the fixing base, and is not in contact with the via electrode; the second silicon wafer is patterned to form a connection on the fixing base A cantilever beam and a movable mass connected to the cantilever beam; providing a third silicon wafer, etching the third silicon wafer to form a second shallow cavity; sputtering metal in the second shallow cavity to form a closure Electrodes; bonding the third silicon wafer to the first silicon wafer and the second silicon wafer, the second shallow cavity facing the first shallow cavity; etching the third silicon wafer To form a vacuum suction
  • sputtering metal in the second shallow cavity before forming the closed electrode includes: forming an insulating layer in the second shallow cavity to isolate the third silicon wafer and the closed electrode; After sputtering a metal in the second shallow cavity to form a closed electrode, the method includes: forming an insulating layer on the closed electrode.
  • the depth of the first shallow cavity is 1 ⁇ m to 10 ⁇ m
  • the depth of the second shallow cavity is 1 ⁇ m to 10 ⁇ m.
  • the transfer device of the micro-component of the present application is provided with a movable mass suspended above the vacuum suction hole, and the movement of the movable mass is controlled by the electrode assembly to block or open the vacuum suction hole, and the opened one can be adsorbed Micro-elements, and then realize the transfer of micro-elements.
  • part of the movable mass moves to block the vacuum suction holes, and other unblocked vacuum suction holes can selectively absorb and transfer micro-elements, so this application can be achieved Selective transfer of micro-elements.
  • FIG. 1 is a schematic structural diagram of an embodiment of a micro-device transfer device of the present application
  • FIG. 2 is a schematic structural view of another embodiment of a micro-element transfer device of the present application.
  • FIG. 3 is a schematic structural diagram of yet another embodiment of a micro-element transfer device of the present application.
  • FIG. 4 is a schematic diagram of selectively absorbing microelements of the embodiment of the transfer device shown in FIG. 3;
  • FIG. 5 is a schematic structural diagram of an arrangement manner of movable masses in the embodiment of the transfer device shown in FIG. 3;
  • FIG. 6 is a structural schematic diagram of another arrangement manner of movable masses in the embodiment of the transfer device shown in FIG. 3;
  • FIG. 7 is a schematic structural diagram of still another arrangement manner of movable masses in the embodiment of the transfer device shown in FIG. 3;
  • FIG. 8 is a structural schematic diagram of yet another arrangement manner of movable masses in the embodiment of the transfer device shown in FIG. 3;
  • FIG. 9 is a schematic flow chart of the manufacturing process of the transfer device shown in FIG. 3;
  • FIG. 10 is a schematic diagram of the manufacturing process of the flow shown in FIG. 9.
  • the transfer device of the present application is used to realize the transfer of microelements. Taking the miniature light-emitting diode display panel as an example, the transfer device of the present application can realize the transfer of miniature light-emitting diodes, and can further realize the selective transfer of batches of miniature light-emitting diodes. Other micro-elements with the same micro-features as the miniature light-emitting diodes can be transferred using the transfer device of the present application. Miniature light-emitting diodes are the microelements described in this application, which are used to realize the self-luminescence of pixels in the display panel, and one microelement is used as a pixel.
  • the number of pixels is generally tens of thousands, so There are also thousands of micro-elements corresponding to the display panels.
  • the transfer device proposed in this application is provided with a movable mass suspended above the vacuum suction hole, and the movement of each movable mass is controlled by an electrode assembly, so as to block or open the vacuum suction hole and realize the suction of the micro-component Transfer; further, the transfer device of the present application can selectively control part of the electrode assembly to be energized, so that part of the movable mass moves to block some vacuum suction holes, and other unblocked vacuum suction holes can correspond to The micro-elements are sucked and transferred, and then the selective sucking and transferring of multiple micro-elements is realized.
  • FIG. 1 is a schematic structural view of an embodiment of a micro-device transfer device of the present application.
  • the transfer device 100 of this embodiment includes a vacuum chamber 11, a plurality of movable masses 12 and a plurality of electrode assemblies 13.
  • a vacuum space 111 is formed in the vacuum chamber 11, that is, a vacuum pump is connected to the vacuum chamber 11, so that a vacuum space 111 is formed inside the vacuum chamber 11.
  • a plurality of vacuum suction holes 112 communicating with the vacuum space and the outside are formed on the vacuum chamber 11. When the vacuum pump 11 draws the vacuum chamber 11 to form the vacuum space, the vacuum suction holes 112 can suck micro-elements.
  • a plurality of movable masses 12 are disposed in the vacuum chamber 11, that is, connected to the vacuum chamber 11 and located in the vacuum space 111.
  • Each movable mass 12 is disposed corresponding to a vacuum suction hole 112, that is, one movable mass Block 12 is used to control the opening and closing of a vacuum suction hole 112.
  • a plurality of electrode assemblies 13 are also fixed in the vacuum chamber 11, and each electrode assembly 13 is disposed corresponding to a vacuum suction hole 112, that is, one electrode assembly 13 correspondingly controls the opening and closing of one vacuum suction hole 112.
  • the control to realize the opening and closing of the vacuum suction hole 112 is realized by conducting the discharge control of the electrode assembly 13, when the electrode assembly 13 is not energized, the movable mass 12 is suspended above the vacuum suction hole 112, the movable mass 12 is It is suspended in the air and does not block the vacuum suction hole 112. At this time, the vacuum suction hole 112 communicates with the vacuum chamber 11, that is, the vacuum suction hole 112 is in an open state, and can absorb micro-components.
  • the electrode assembly 13 When the electrode assembly 13 is energized, the movable mass 12 is attracted or repelled by the electrode assembly 13 to move to block the vacuum suction hole 112; the electrode assembly 13 may be a sheet-shaped conductive material, and the movable mass 12 may also correspond It is a sheet-shaped conductive material. When the electrode assembly 13 is energized, the electrode assembly 13 generates static electricity and generates an electrostatic adsorption force on the movable mass 12. The electrode assembly 13 may also be a conductive coil, and the movable mass 12 may correspond to a sheet magnet. When the electrode assembly 13 is energized, the electrode assembly 13 forms a magnetic field, which may generate an adsorption or repulsive force on the movable mass 12.
  • the transfer device 100 of the present application is also connected or internally provided with a control circuit, so as to realize the energization control of the electrode assembly 13.
  • each electrode assembly When transferring the micro-elements, the discharge and discharge of each electrode assembly can be controlled to control the opening and blocking of the vacuum suction hole 112 by each movable mass 12, so as to realize the selective transfer of the micro-elements.
  • the vacuum chamber 11 adopts the structure of a square box, including an upper wall 113 and a lower wall 114 oppositely arranged, and a plurality of vacuum suction holes 112 are all provided on the lower wall 114,
  • the multiple vacuum suction holes 112 are also arranged in an array corresponding to the arrangement of the Micro-LEDs.
  • the electrode assembly 13 includes a closed electrode 131.
  • the closed electrode 131 is disposed on the inner surface of the lower wall 114, and a vacuum suction hole 112 penetrates the closed electrode 131.
  • the closed electrode 131 is controlled to be energized, the movable mass 12 is adsorbed to the closed electrode 131 The upper part is suspended from the vacuum suction hole 112 and moved to close the vacuum suction hole 112.
  • the closed electrode 131 is controlled to discharge to the ground, the closed electrode 131 has no adsorption force on the movable mass 12, and the movable mass 12 can be restored to the state suspended on the vacuum suction hole 112, that is, the vacuum suction hole 112 is opened.
  • a closed electrode, the electrostatic adsorption of the closed electrode, and the suspended state of the movable mass 12 are used to control the opening and closing of the vacuum suction hole 112, thereby achieving selective suction transfer of the micro-elements.
  • FIG. 2 is a schematic structural diagram of another embodiment of a micro-element transfer device of the present application.
  • the closed electrode 131 is provided on the inner surface of the upper wall 113 corresponding to the vacuum suction hole 112.
  • the movable mass 12 moves to the vacuum suction hole 112 under the repulsion of the closed electrode 131 and blocks the vacuum ⁇ 112 ⁇ Suction holes 112.
  • the closed electrode 131 When the discharge of the closed electrode 131 is controlled, the closed electrode 131 has no repelling effect on the movable mass 12, and the movable mass 12 can be restored to the state suspended on the vacuum suction hole 112, that is, the vacuum suction hole 112 is opened.
  • FIG. 3 is a schematic structural diagram of another embodiment of the micro-device transfer device of the present application.
  • the electrode assembly 13 further includes a via electrode 132 disposed opposite to the closed electrode 131.
  • the closed electrode 131 is provided on the inner surface of the lower wall 114, and the via electrode 132 is provided on the inner surface of the upper wall 113.
  • the electrode repulsive force is used for control, the closed electrode 131 is provided on the inner surface of the upper wall 113 and the via electrode 132 is provided on the inner surface of the lower wall 114.
  • the electrode attraction force is used to realize the control.
  • the control of the vacuum suction hole 112 can be combined with FIG. 4. FIG.
  • the closed electrode 131 a is provided on the inner surface of the lower wall 114, and the via electrode 132 a is provided on the inner surface of the upper wall 113.
  • the movable mass 12a is adsorbed on the closed electrode 131a to block the vacuum suction hole 112a. At this time, the vacuum suction hole 112a cannot absorb the micro-device 200.
  • control via electrode 132b When the control via electrode 132b is energized and the closed electrode 131b is not energized, the movable mass 12b is attracted to the via electrode 132b, and the vacuum suction hole 112b is opened, and the vacuum suction hole 112b can absorb the micro-component 200.
  • the control method using the electrode repulsion force is similar to that shown in FIG. 3 and will not be described in detail.
  • both the movable mass 12 and the electrode assembly 13 can use silicon material or metal material, and the metal material can specifically be silver, platinum, zinc, tungsten, Molybdenum and other materials.
  • the element made of silicon material is thicker than that of the metal material, so the electrode penetrated by the vacuum suction hole 112b can be preferably made of metal material.
  • the closed electrode 131 is a metal material
  • the via electrode 132 is a silicon material
  • the movable mass 12 is also a silicon material.
  • the movable mass 12 and the via electrode 132 preferentially select a low-resistance silicon material. At this time, the low-power electricity can be applied to the via electrode 132 to realize its adsorption to the movable mass 12.
  • An insulating layer is further provided on the surfaces of the closed electrode 131 and the via electrode 132.
  • the insulating layer can be used to prevent the loss of charge on the closed electrode 132 and the via electrode 132.
  • the insulating layer is made of insulating materials such as alumina and magnesium oxide.
  • the movable masses 12 can be connected to each other to form a mesh structure to achieve the suspended setting, or cantilever beam to achieve the suspended setting, such as shown in Figures 5-8, Figures 5-8 are the transfer shown in Figure 3
  • Figures 5-8 are the transfer shown in Figure 3
  • FIG. 5 The structural schematic diagram of the four setting modes of the movable mass in the device embodiment.
  • a fixed base 115 is provided in the vacuum chamber 11, and the movable mass 12 is connected to the fixed base 115 through a cantilever beam 14, and then can be suspended above the vacuum suction hole 112.
  • the fixing base 115 may be fixedly disposed on the upper wall 113 or the lower wall 114, and may be specifically disposed in a remaining position between the electrode assemblies 13.
  • the movable mass 12 connected to the fixed base 115 and located at the free end of the cantilever beam 14 is disposed corresponding to the electrode assembly 13.
  • the electrode assembly 13 adsorbing the movable mass 12 as an example, when the electrode assembly 13 is energized, a force is exerted on the movable mass 12, the movable mass 12 is adsorbed, the cantilever beam 14 has a certain elasticity, and the movable mass 12 It can be completely adsorbed on the electrode assembly 13, thereby blocking the vacuum suction hole 112; and when the electrode assembly 13 is not energized or grounded, the charge on the electrode assembly 13 is lost, which has no force on the movable mass 12, the movable mass The block 12 can be restored to be suspended above the vacuum suction hole 112 under the elastic force of the cantilever beam 14, and then the vacuum suction hole 112 is opened.
  • FIG. 6 and FIG. 5 are similar in structure, in which a movable mass 12 is connected between two fixed seats 115 through two cantilever beams 14. Similarly, when the electrode assembly 13 is energized, a force is exerted on the movable mass 12 to attract the movable mass 12 to the electrode assembly 13, thereby closing the vacuum suction hole 112; when the electrode assembly 13 is not energized or grounded, The charge loss on the electrode assembly 13 has no force on the movable mass 12, and the movable mass 12 resumes to be suspended above the vacuum suction hole 112 under the elastic force of the cantilever beam 14, so that the vacuum suction hole 112 is in an open state.
  • the structural stability in Figure 6 is high, which can improve the adsorption stability and thus the transfer efficiency.
  • a common fixed seat 115 is provided, and a connecting beam 15 is provided between the two fixed seats 115, and the movable mass 12 is connected to the connecting beam 15 through the cantilever beam 14 without too many fixed seats.
  • a plurality of movable masses 12 are connected to each other by a connecting beam 15 to form a mesh structure, and are integrally connected in the vacuum chamber 11.
  • Each movable mass 12 is suspended on a vacuum suction hole 112. Similar to the principle of FIG. 5, the electrode assembly 13 is also controlled to open and close the vacuum suction hole 112.
  • FIG. 9 is a schematic flowchart of the manufacturing process of the embodiment of the transfer device shown in FIG. 3, and FIG. 10 is a schematic diagram of the manufacturing process of the process shown in FIG. 9.
  • the manufacturing process includes the following steps.
  • S101 Provide a first silicon wafer, and form a via electrode on the first silicon wafer.
  • the first silicon wafer 31 may be an SOI silicon wafer, including a substrate layer 311 and a top silicon 312, as shown in FIG. 10a, the thickness of the top silicon 312 is 1 ⁇ m-50 ⁇ m, and the resistivity is less than 1 ⁇ *cm.
  • the top silicon 312 can be used to form a via electrode.
  • the top silicon 312 is etched to form a shallow cavity and retain a fixed seat (not shown) formed in the shallow cavity. The depth of the shallow cavity is 1 ⁇ m to 10 ⁇ m Figure 10b.
  • an insulating layer may be formed on the via electrode 3121.
  • S102 Provide a second silicon wafer, and bond the second silicon wafer to the first silicon wafer.
  • the first silicon wafer and the second silicon wafer are directly bonded to tightly bond the two; specifically, the two silicon wafers are subjected to surface polishing treatment, and are immersed in a solution having OH groups; then The polished surfaces of the two are bonded together; the bonded silicon wafer is then subjected to high temperature treatment in oxygen or nitrogen for several hours to form a good bond.
  • the second silicon wafer 32 may also be an SOI silicon wafer. After bonding with the first silicon wafer 31, the substrate layer in the SOI silicon wafer is removed, leaving the top layer of silicon. Similarly, the thickness of the second silicon wafer 32 is 1 ⁇ m to 100 ⁇ m , The resistivity is less than 1 ⁇ *cm.
  • the second silicon wafer 32 is bonded to the fixing seat in the first silicon wafer 31 and does not contact the via electrode 3121, as shown in FIG. 10d. Therefore, after the second silicon wafer 32 is patterned, the second silicon wafer can be used to form a cantilever beam (not shown) connected to the fixed base and a movable mass 321, the movable mass 321 and the via electrode 3121 does not touch, as shown in Figure 10e.
  • S104 Provide a third silicon wafer, and form a closed electrode on the third silicon wafer.
  • the third silicon wafer 33 may be an SOI silicon wafer, and the thickness of the top silicon layer may be 5 ⁇ m to 100 ⁇ m. Since the top silicon layer of the silicon wafer is not used to manufacture a closed electrode, there is no requirement for its resistivity. In the subsequent steps, vacuum suction holes need to be formed on the top silicon of the silicon wafer, so the thickness of the top silicon is larger than that of the other two silicon wafers.
  • the top silicon layer is etched to form a shallow cavity with a depth of 1 ⁇ m to 10 ⁇ m, as shown in FIG. 10f.
  • the metal is sputtered in the shallow cavity to form the closed electrode 331 and the metal wiring.
  • an insulating layer needs to be formed in the shallow cavity to isolate the closed electrode 331 made of silicon and metal on the top layer.
  • an insulating layer may be formed on the closed electrode 331.
  • step S105 Bond the third silicon wafer after completing step S104 with the first silicon wafer and the second silicon wafer after completing step S103, and form a vacuum suction hole on the third silicon wafer.
  • the closed electrode 331 also does not contact the movable mass 321.
  • the third silicon wafer 33 is deep silicon etched to form a vacuum suction hole 332, as shown in FIG. 9h. If the third silicon wafer 33 is an SOI silicon wafer, the substrate layer needs to be removed after bonding. In the finally obtained transfer device 300, the movable mass 321 is suspended above the vacuum suction hole.
  • a control circuit is connected to the via electrode 3121 and the closing electrode 331 to selectively energize, thereby controlling the movement of the movable mass 321, and realizing the opening and closing control of the vacuum suction hole 332, Then, the selective absorption and transfer of the micro-elements is realized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Micromachines (AREA)

Abstract

本申请提供了一种微元件的转移装置及其制造方法,转移装置包括真空腔体,真空腔体内形成有真空空间,真空腔体上形成有连通真空空间和外界的多个真空吸孔;真空吸孔用于吸取微元件;多个可动质量块,设置于真空腔体内,每一可动质量块对应一真空吸孔设置;多个电极组件,固定于真空腔体内,每一电极组对应一真空吸孔设置;其中,在电极组件未通电时,可动质量块悬置于真空吸孔上方,且打开真空吸孔;在电极组件通电时,可动质量块被电极组件吸引或排斥而移动,以封堵真空吸孔。本申请微元件转移装置可控制每个真空吸孔的打开关闭,以实现对微元件的转移。

Description

微元件的转移装置及其制造方法
【技术领域】
本申请涉及微元件的转移技术领域,特别是涉及一种微元件的转移装置及其制造方法。
【背景技术】
人们日常生活所使用的设备中,元件微小化成为发展趋势之一,例如在显示设备中应用微型发光二极管(Micro-LED),即在显示面板上集成多个微小尺寸的微型发光二极管(LED,Liquid Emitting Diode),微型发光二极管具有极高的发光效率和寿命,因此,越来越多的企业开始研发微型发光二极管显示面板,微型发光二极管有希望成为下一代显示技术。
由于制备工艺的限制,其无法很好地实现微型元件的转移。
【发明内容】
本申请提供一种微元件的转移装置及其制造方法,以解决无法实现微元件的转移问题。
为解决上述技术问题,本申请的一方面提供一种微元件的转移装置,包括:真空腔体,真空腔体内形成有真空空间,真空腔体上形成有连通真空空间和外界的多个真空吸孔,真空吸孔用于吸取微元件;多个可动质量块,设置于真空腔体内,每一可动质量块对应一真空吸孔设置;多个电极组件,固定于真空腔体内,每一电极组对应一真空吸孔设置;其中,在电极组件未通电时,可动质量块悬置于真空吸孔上方,且打开真空吸孔;在电极组件通电时,可动质量块被电极组件吸引或排斥而移动,以封堵真空吸孔。
可选地,所述真空腔体包括相对设置的上壁和下壁,所述多个真空吸孔均形成在所述下壁上。
可选地,所述电极组件包括闭合电极,设置在所述下壁内表面,所述真空吸孔贯穿所述闭合电极,在所述闭合电极通电时,所述可动质量块吸附于所述闭合电极上,封堵所述真空吸孔。
可选地,所述电极组件进一步包括通路电极,与所述闭合电极相对设置,设置在所述上壁内表面,在所述通路电极通电时,所述可动质量块吸附于所述通路电极,打开所述真空吸孔。
可选地,所述闭合电极包括金属材料,所述通路电极包括硅材料,所述可动质量块包括硅材料。
可选地,所述闭合电极和所述通路电极表面均设置有绝缘层。
可选地,所述电极组件包括闭合电极,设置在所述上壁内表面,对应所述真空吸孔设置,在所述闭合电极通电时,所述可动质量块在所述闭合电极的排斥下封堵于所述真空吸孔。
可选地,所述电极组件进一步包括:通路电极,与所述闭合电极相对设置,设置在所述下壁内表面,所述真空吸孔贯穿所述通路电极,在所述通路电极通电时,所述可动质量块在所述通路电极的排斥下,打开所述真空吸孔。
可选地,所述闭合电极和所述通路电极表面均设置有绝缘层。
可选地,所述真空腔体内设置有固定座,所述可动质量块通过悬臂梁连接于所述固定座以悬置于所述真空吸孔上方。
可选地,一个所述可动质量块通过一个所述悬臂梁连接于一个所述固定座;或者,一个所述可动质量块通过两个所述悬臂梁连接于两个所述固定座之间。
可选地,所述固定座的数量为至少两个,至少两个所述固定座之间设置有连接梁,所述可动质量块通过所述悬臂梁连接于所述连接梁以悬置于所述真空吸孔上方。
可选地,所述可动质量块通过连接梁相互连接构成网状结构,连接于真空腔体中,每一所述可动质量块悬置于一真空吸孔上方。
可选地,所述多个真空吸孔阵列设置。
为解决上述技术问题,本申请的另一方面提供一种微元件转移装置的制造方法,包括:提供第一硅片,所述第一硅片包括第一衬底层和第一顶层硅,对所述第一顶层硅进行刻蚀,形成第一浅腔和保留形成在所述第一浅腔中的固定座;对刻蚀后的所述第一顶层硅进行图案化处理,得到通路电极;提供第二硅片,将所述第二硅片和所述固定座键合,且与所述通路电极不接触;对所述第二硅片进行图案化处理,形成连接在所述固定座上的悬臂梁以及连接所述悬臂梁的可动质量块;提供第三硅片,对所述第三硅片进行刻蚀形成第二浅腔;在所述第二浅腔中溅射金属,形成闭合电极;将所述第三硅片和所述第一硅片及所述第二硅片键合,所述第二浅腔朝向所述第一浅腔;对所述第三硅片进行刻蚀,形成真空吸孔,所述可动质量块悬置于所述真空吸孔上方。
可选地,在所述第二浅腔中溅射金属,形成闭合电极之前包括:在所述第二浅腔中形成绝缘层,以隔离所述第三硅片和所述闭合电极;在所述第二浅腔中溅射金属,形成闭合电极之后包括:在所述闭合电极上形成绝缘层。
可选地,所述第一浅腔的深度为1μm~10μm,所述第二浅腔的深度为1μm~10μm。
根据本申请提供的微元件的转移装置及其制造方法带来的有益效果包括:
(1)本申请微元件的转移装置设置悬置于真空吸孔上方的可动质量块,通过电极组件来控制可动质量块的移动,以封堵或打开真空吸孔,打开的即可吸附微元件,继而实现对微元件的转移。
(2)通过选择性的控制部分电极组件通电,使得部分可动质量块移动以封堵真空吸孔,其他未封堵的真空吸孔可对微元件选择性的吸取转移,因而本申请可实现对微元件的选择性吸取转移。
【附图说明】
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请微元件的转移装置一实施例的结构示意图;
图2是本申请微元件的转移装置另一实施例的结构示意图;
图3是本申请微元件的转移装置又一实施例的结构示意图;
图4是图3所示转移装置实施例选择性吸取微元件的示意图;
图5是图3所示转移装置实施例中可动质量块的一种设置方式的结构示意图;
图6是图3所示转移装置实施例中可动质量块的另一种设置方式的结构示意图;
图7是图3所示转移装置实施例中可动质量块的又一种设置方式的结构示意图;
图8是图3所示转移装置实施例中可动质量块的又一种设置方式的结构示意图;
图9是图3所示转移装置的制造工艺的流程示意图;
图10是图9所示流程的制造过程示意图。
【具体实施方式】
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的转移装置用于实现微元件的转移,以微型发光二极管显示面板为例,本申请转移装置能够实现微型发光二极管的转移,进一步能够实现批量的微型发光二极管的选择性转移。其他与微型发光二极管有相同微小特征的微元件均可采用本申请的转移装置实现转移。微型发光二极管即本申请所述的微元件,在显示面板中用于实现像素的自发光,一个微元件用作一个像素点,在当前显示面板中,像素点个数一般成千上万,因而对应在显示面板上所设置的微元件也有成千上万个。本申请提出的转移装置中设置悬置于真空吸孔上方的可动质量块,通过电极组件来控制每个可动质量块的移动,从而封堵或打开真空吸孔,实现对微元件的吸取转移;进一步地,本申请转移装置中可选择性的控制部分电极组件通电,从而使部分可动质量块移动以封堵部分真空吸孔,其他未封堵的真空吸孔则可对其对应的微元件进行吸取转移,继而实现多个微元件的选择性吸取转移。
具体来说,请参阅图1,图1是本申请微元件的转移装置一实施例的结构示意图。本实施例转移装置100包括真空腔体11、多个可动质量块12和多个电极组件13。
其中,真空腔体11内形成有真空空间111,即真空腔体11连接有真空泵,以使得真空腔体11内部形成真空空间111。真空腔体11上则形成有联通真空空间和外界的多个真空吸孔112,当真空泵抽取真空腔体11使真空腔体11形成真空空间时,可通过该真空吸孔112吸取微元件。
多个可动质量块12设置于真空腔体11内,即连接于真空腔体11内,位于真空空间111中,每一可动质量块12对应一真空吸孔112设置,即一个可动质量块12用于控制一个真空吸孔112的打开关闭。
多个电极组件13也固定于真空腔体11内,每一电极组件13对应一真空吸孔112设置,也即一个电极组件13对应控制一个真空吸孔112的打开关闭。
实现真空吸孔112打开关闭的控制是通过对电极组件13进行通放电控制实现的,在电极组件13未通电时,可动质量块12悬置在真空吸孔112上方,可动质量块12为悬空设置,并未堵塞真空吸孔112,此时真空吸孔112连通真空腔体11,即真空吸孔112处于打开状态,可吸取微元件。
在电极组件13通电时,可动质量块12则被电极组件13吸引或排斥而发生移动,以封堵真空吸孔112;电极组件13可以是片状导电材料,可动质量块12也可对应为片状导电材料,当电极组件13通电时,电极组件13产生静电,对可动质量块12产生静电吸附作用力。电极组件13还可是导电线圈,可动质量块12可对应为片状磁铁,当电极组件13通电时,电极组件13形成磁场,可对可动质量块12产生吸附或排斥作用力。本申请转移装置100还连接有或内部设置有控制电路,以实现对电极组件13的通电控制。
在实现对微元件的转移时,可通过控制每个电极组件的通放电,以控制每个可动质量块12对真空吸孔112的打开封堵,从而实现对微元件的选择性吸取转移。
具体来说,在图1所示实施例中,真空腔体11采用方形箱体的结构,包括相对设置的上壁113和下壁114,多个真空吸孔112均设置在下壁114上,且当转移装置100应用于Micro-LED的转移时,多个真空吸孔112也对应Micro-LED的排列方式呈阵列排布。
电极组件13包括闭合电极131,图1中闭合电极131设置在下壁114内表面,且真空吸孔112贯穿闭合电极131,当控制闭合电极131通电时,可动质量块12被吸附至闭合电极131上,即由悬置在真空吸孔112上,移动到封堵真空吸孔112。当控制闭合电极131接地放电时,闭合电极131对可动质量块12没有吸附作用力,此时可动质量块12可恢复到悬置于真空吸孔112上的状态即打开真空吸孔112。该实施例利用一个闭合电极、该闭合电极的静电吸附作用、以及可动质量块12的悬置状态来控制真空吸孔112的打开关闭,继而实现微元件选择性的吸取转移。
除了可利用闭合电极131的吸引力,还可利用电极排斥力,例如图2所示,图2是本申请微元件的转移装置另一实施例的结构示意图。其中,将闭合电极131对应真空吸孔112设置在上壁113内表面,当控制闭合电极131通电时,可动质量块12则在闭合电极131的排斥下移动至真空吸孔112且封堵真空吸孔112。而当控制闭合电极131放电时,闭合电极131对可动质量块12没有排斥作用,此时可动质量块12则可恢复到悬置于真空吸孔112上的状态即打开真空吸孔112。
当电极组件13不通电时,可动质量块121会自然悬置于真空吸孔112上方,图1和图2所示实施例均利用了自然悬置的状态来对应在吸取转移微元件时控制真空吸孔开启的情况。但在该情况下真空吸取微元件时,真空吸孔处可能出现气流造成可动质量块121的运动,导致真空吸孔无法稳定的处于打开状态。对此,本申请进一步提出一实施例,请参阅图3,图3是本申请微元件的转移装置又一实施例的结构示意图。
图3所示实施例中,电极组件13进一步包括通路电极132,与闭合电极131相对设置。当利用电极吸引力实现控制时,闭合电极131设置在下壁114内表面,通路电极132则设置在上壁113内表面。当利用电极排斥力实现控制时,闭合电极131设置在上壁113内表面,通路电极132设置在下壁114内表面。
图3所示实施例中利用电极吸引力实现控制,对真空吸孔112的控制可结合图4,图4是图3所示转移装置实施例选择性吸取微元件的示意图。
图4中闭合电极131a设置在下壁114内表面,通路电极132a设置在上壁113内表面。当控制闭合电极131a通电,通路电极132a不通电时,可动质量块12a吸附于闭合电极131a上,以封堵真空吸孔112a,此时,该真空吸孔112a无法吸取微元件200。当控制通路电极132b通电时,闭合电极131b不通电时,可动质量块12b吸附于通路电极132b上,打开真空吸孔112b,该真空吸孔112b可吸取微元件200。利用电极排斥力实现控制的方式与图3所示的类似,具体不再赘述。
上述利用电极组件13吸引力实现可动质量块12移动的实施例中,可动质量块12和电极组件13均可采用硅材料或金属材料,金属材料具体可以是银、铂、锌、钨、钼等材料。一般来说,硅材料制得的元件相较于金属材料的要厚,因而对于被真空吸孔112b贯穿的电极可优先采用金属材料制成。例如图3所示的实施例中,闭合电极131为金属材料,通路电极132为硅材料,可动质量块12也为硅材料。其中,可动质量块12和通路电极132优先选用低阻硅材料,此时,对通路电极132通低功率的电即可实现其对可动质量块12的吸附。
在闭合电极131和通路电极132表面还设置有绝缘层,绝缘层可用于防止闭合电极132和通路电极132上的电荷流失,具体来说,绝缘层选用氧化铝、氧化镁等绝缘材料。
上述实施例中,可动质量块12可相互连接构成网状结构实现悬空设置,也可通过悬臂梁实现悬空设置,例如图5-图8所示,图5-图8是图3所示转移装置实施例中可动质量块的四种设置方式的结构示意图。图5中真空腔体11中设置有固定座115,可动质量块12通过悬臂梁14连接到该固定座115,继而可实现悬置于真空吸孔112上方。其中,固定座115可固定设置于上壁113或下壁114,具体可设置在电极组件13之间的剩余位置。连接于固定座115上,位于悬臂梁14自由端的可动质量块12则对应电极组件13设置。以电极组件13吸附可动质量块12为例,当电极组件13通电时,对可动质量块12产生作用力,可动质量块12被吸附,悬臂梁14具有一定弹性,可动质量块12可完全吸附在电极组件13上,从而封堵真空吸孔112;而当电极组件13不通电或接地时,电极组件13上的电荷流失,其对可动质量块12没有作用力,可动质量块12可在悬臂梁14的弹力作用下恢复悬置到真空吸孔112的上方,继而使真空吸孔112处于打开状态。
图6与图5结构类似,其中一个可动质量块12通过两个悬臂梁14连接于两个固定座115之间。同样,在电极组件13通电时,对可动质量块12产生作用力,将可动质量块12吸附在电极组件13上,从而封堵真空吸孔112;当电极组件13未通电或接地时,电极组件13上电荷流失,对可动质量块12没有作用力,可动质量块12在悬臂梁14的弹力作用下恢复悬置到真空吸孔112上方,使真空吸孔112处于打开状态。图6中的结构稳定性高,可提升吸附稳定性,进而提升转移效率。
在图7中则是设置公共的固定座115,而在两固定座115之间设置连接梁15,可动质量块12则通过悬臂梁14连接到连接梁15上,不用设置过多的固定座,简化工艺。
图8中多个可动质量块12通过连接梁15相互连接构成网状结构,且整体连接在真空腔体11中,每个可动质量块12悬置于一真空吸孔112上。与图5原理类似,也由电极组件13控制实现真空吸孔112的打开关闭。
对于实现了选择性吸取转移微元件的本申请转移装置,以图3所示实施例为例,下面介绍该转移装置的制造方法。请参阅图9和图10,图9是图3所示转移装置实施例制造工艺的流程示意图,图10是图9所示流程的制造过程示意图。制造过程包括以下步骤。
S101:提供第一硅片,在第一硅片上形成通路电极。
具体来说,该第一硅片31可以是SOI硅片,包括衬底层311和顶层硅312,如图10a,该顶层硅312的厚度为1μm~50μm,电阻率小于1Ω*cm。本步骤S101可利用顶层硅312形成通路电极,首先,对顶层硅312进行刻蚀,形成浅腔及保留形成在浅腔中的固定座(图未示),浅腔深度为1μm~10μm,如图10b。其次,对刻蚀后的顶层硅312进行图案化处理,得到通路电极3121,如图10c;其中,固定座厚度为顶层硅312原厚度,通路电极3121厚度为顶层硅312刻蚀后的厚度。最后,还可在通路电极3121上形成绝缘层。
S102:提供第二硅片,将第二硅片与第一硅片键合。
本步骤S102中将第一硅片和第二硅片直接键合,使二者紧密结合;具体的将两硅片进行表面抛光处理,将其放入具有OH基团的溶液中浸泡;然后将二者的抛光面贴合在一起;再将贴合好的硅片在氧气或氮气中进行数小时的高温处理,从而形成良好的键合。
S103:对第二硅片进行图案化处理,形成可动质量块。
该第二硅片32也可以是SOI硅片,在与第一硅片31键合后,去除该SOI硅片中的衬底层,保留顶层硅,同样第二硅片32的厚度为1μm~100μm,电阻率小于1Ω*cm。
具体来说,第二硅片32与第一硅片31中的固定座键合,且与通路电极3121不接触,如图10d。因而在对第二硅片32进行图案化处理后,可利用第二硅片形成连接在固定座上的悬臂梁(图未示)以及可动质量块321,该可动质量块321与通路电极3121不接触,如图10e。
S104:提供第三硅片,在第三硅片上形成闭合电极。
该第三硅片33可以是SOI硅片,顶层硅厚度可以是5μm~100μm,由于该硅片的顶层硅不用做制造闭合电极,因而对其电阻率没有要求。而后续步骤中需要在该硅片的顶层硅上形成真空吸孔,因而顶层硅的厚度较其他两个硅片大。
对于本步骤S104,首先,对顶层硅进行刻蚀形成浅腔,浅腔深度为1μm~10μm,如图10f。其次,在浅腔中溅射金属,以形成闭合电极331及金属布线,如图10g,在溅射金属之前,还需在浅腔中形成绝缘层以隔离顶层硅及金属材质的闭合电极331。最后,还可在闭合电极331上形成绝缘层。
S105:将完成步骤S104后的第三硅片与完成步骤S103后的第一硅片和第二硅片键合,并在第三硅片上形成真空吸孔。
键合后,由于第三硅片33上的浅腔处理,因而闭合电极331也不接触可动质量块321。在本步骤S105中对第三硅片33进行深硅刻蚀,形成真空吸孔332,如图9h。若第三硅片33为SOI硅片,在键合后,还需去除衬底层。最终得到的转移装置300中,可动质量块321即悬置于真空吸孔上方。
采用上述制造方法制得的转移装置中,利用一控制电路连接至通路电极3121和闭合电极331选择性的通电,从而控制可动质量块321的运动,实现对真空吸孔332的打开关闭控制,继而实现微元件的选择性吸取转移。
以上所述仅为本申请的实施方式,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (17)

  1. 一种微元件的转移装置,包括:
    真空腔体,所述真空腔体内形成有真空空间,所述真空腔体上形成有连通所述真空空间和外界的多个真空吸孔;所述真空吸孔用于吸取所述微元件;
    多个可动质量块,设置于所述真空腔体内,每一个所述可动质量块对应一个所述真空吸孔设置;
    多个电极组件,固定于所述真空腔体内,每一个所述电极组对应一个所述真空吸孔设置;
    其中,在所述电极组件未通电时,所述可动质量块悬置于所述真空吸孔上方,且打开所述真空吸孔;在所述电极组件通电时,所述可动质量块被所述电极组件吸引或排斥而移动,以封堵所述真空吸孔。
  2. 根据权利要求1所述的转移装置,其中,所述真空腔体包括相对设置的上壁和下壁,所述多个真空吸孔均形成在所述下壁上。
  3. 根据权利要求2所述的转移装置,其中,所述电极组件包括闭合电极,设置在所述下壁内表面,所述真空吸孔贯穿所述闭合电极,在所述闭合电极通电时,所述可动质量块吸附于所述闭合电极上,封堵所述真空吸孔。
  4. 根据权利要求3所述的转移装置,其中,所述电极组件进一步包括通路电极,与所述闭合电极相对设置,设置在所述上壁内表面,在所述通路电极通电时,所述可动质量块吸附于所述通路电极,打开所述真空吸孔。
  5. 根据权利要求4所述的转移装置,其中,所述闭合电极包括金属材料,所述通路电极包括硅材料,所述可动质量块包括硅材料。
  6. 根据权利要求4所述的转移装置,其中,所述闭合电极和所述通路电极表面均设置有绝缘层。
  7. 根据权利要求2所述的转移装置,其中,所述电极组件包括闭合电极,设置在所述上壁内表面,对应所述真空吸孔设置,在所述闭合电极通电时,所述可动质量块在所述闭合电极的排斥下封堵于所述真空吸孔。
  8. 根据权利要求7所述的转移装置,其中,所述电极组件进一步包括:通路电极,与所述闭合电极相对设置,设置在所述下壁内表面,所述真空吸孔贯穿所述通路电极,在所述通路电极通电时,所述可动质量块在所述通路电极的排斥下,打开所述真空吸孔。
  9. 根据权利要求8所述的转移装置,其中,所述闭合电极和所述通路电极表面均设置有绝缘层。
  10. 根据权利要求1所述的转移装置,其中,所述真空腔体内设置有固定座,所述可动质量块通过悬臂梁连接于所述固定座以悬置于所述真空吸孔上方。
  11. 根据权利要求10所述的转移装置,其中,一个所述可动质量块通过一个所述悬臂梁连接于一个所述固定座;或者,一个所述可动质量块通过两个所述悬臂梁连接于两个所述固定座之间。
  12. 根据权利要求10所述的转移装置,其中,所述固定座的数量为至少两个,至少两个所述固定座之间设置有连接梁,所述可动质量块通过所述悬臂梁连接于所述连接梁以悬置于所述真空吸孔上方。
  13. 根据权利要求1所述的转移装置,其中,所述可动质量块通过连接梁相互连接构成网状结构,连接于真空腔体中,每一所述可动质量块悬置于一真空吸孔上方。
  14. 根据权利要求1所述的转移装置,其中,所述多个真空吸孔阵列设置。
  15. 一种微元件转移装置的制造方法,其中,所述制造方法包括:
    提供第一硅片,所述第一硅片包括第一衬底层和第一顶层硅,对所述第一顶层硅进行刻蚀,形成第一浅腔和保留形成在所述第一浅腔中的固定座;
    对刻蚀后的所述第一顶层硅进行图案化处理,得到通路电极;
    提供第二硅片,将所述第二硅片和所述固定座键合,且与所述通路电极不接触;
    对所述第二硅片进行图案化处理,形成连接在所述固定座上的悬臂梁以及连接所述悬臂梁的可动质量块;
    提供第三硅片,对所述第三硅片进行刻蚀形成第二浅腔;
    在所述第二浅腔中溅射金属,形成闭合电极;
    将所述第三硅片和所述第一硅片及第二硅片键合,所述第二浅腔朝向所述第一浅腔;
    对所述第三硅片进行刻蚀,形成真空吸孔,所述可动质量块悬置于所述真空吸孔上方。
  16. 根据权利要求15所述的制造方法,其中,在所述第二浅腔中溅射金属,形成闭合电极之前包括:
    在所述第二浅腔中形成绝缘层,以隔离所述第三硅片和所述闭合电极;
    在所述第二浅腔中溅射金属,形成闭合电极之后包括:
    在所述闭合电极上形成绝缘层。
  17. 根据权利要求15所述的制造方法,其中,所述第一浅腔的深度为1μm~10μm,所述第二浅腔的深度为1μm~10μm。
PCT/CN2019/092381 2018-11-29 2019-06-21 微元件的转移装置及其制造方法 WO2020107876A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/144,474 US12027408B2 (en) 2018-11-29 2021-01-08 Transfer device of micro-elements and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811446283.7 2018-11-29
CN201811446283.7A CN111244009B (zh) 2018-11-29 2018-11-29 微元件的转移装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/144,474 Continuation US12027408B2 (en) 2018-11-29 2021-01-08 Transfer device of micro-elements and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2020107876A1 true WO2020107876A1 (zh) 2020-06-04

Family

ID=70854307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/092381 WO2020107876A1 (zh) 2018-11-29 2019-06-21 微元件的转移装置及其制造方法

Country Status (3)

Country Link
US (1) US12027408B2 (zh)
CN (1) CN111244009B (zh)
WO (1) WO2020107876A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112992759B (zh) * 2020-10-16 2022-04-19 重庆康佳光电技术研究院有限公司 一种器件转移设备及其制备方法、器件转移方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000264428A (ja) * 1999-03-18 2000-09-26 Ntn Corp 振動式微小部品供給装置
US20150028362A1 (en) * 2013-07-26 2015-01-29 LuxVue Technology Corporation Adhesive wafer bonding with controlled thickness variation
CN106229287A (zh) * 2016-09-30 2016-12-14 厦门市三安光电科技有限公司 用于转移微元件的转置头及微元件的转移方法
CN106449498A (zh) * 2016-09-30 2017-02-22 厦门市三安光电科技有限公司 用于转移微元件的转置头及微元件的转移方法
CN107026124A (zh) * 2014-11-27 2017-08-08 广州硅芯电子科技有限公司 制造微型led显示器的方法和微型led显示器
CN107039298A (zh) * 2016-11-04 2017-08-11 厦门市三安光电科技有限公司 微元件的转移装置、转移方法、制造方法、装置和电子设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2072199C (en) * 1991-06-24 1997-11-11 Fumihiro Kasano Electrostatic relay
JP2001223236A (ja) * 2000-02-10 2001-08-17 Ueno Seiki Kk 金属ボール移載装置
CN207116403U (zh) * 2017-04-21 2018-03-16 厦门市三安光电科技有限公司 一种用于微元件转移的转置头

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000264428A (ja) * 1999-03-18 2000-09-26 Ntn Corp 振動式微小部品供給装置
US20150028362A1 (en) * 2013-07-26 2015-01-29 LuxVue Technology Corporation Adhesive wafer bonding with controlled thickness variation
CN107026124A (zh) * 2014-11-27 2017-08-08 广州硅芯电子科技有限公司 制造微型led显示器的方法和微型led显示器
CN106229287A (zh) * 2016-09-30 2016-12-14 厦门市三安光电科技有限公司 用于转移微元件的转置头及微元件的转移方法
CN106449498A (zh) * 2016-09-30 2017-02-22 厦门市三安光电科技有限公司 用于转移微元件的转置头及微元件的转移方法
CN107039298A (zh) * 2016-11-04 2017-08-11 厦门市三安光电科技有限公司 微元件的转移装置、转移方法、制造方法、装置和电子设备

Also Published As

Publication number Publication date
CN111244009A (zh) 2020-06-05
US20210134649A1 (en) 2021-05-06
CN111244009B (zh) 2022-10-28
US12027408B2 (en) 2024-07-02

Similar Documents

Publication Publication Date Title
TWI697093B (zh) 微元件的轉移方法、微元件裝置的製造方法、微元件裝置及電子設備
TWI667691B (zh) 用於轉移微元件的轉置頭及微元件的轉移方法
CN110061106A (zh) 芯片、目标基板、制造方法、芯片转移方法及显示装置
CN110034061B (zh) 芯片转移方法、芯片及目标基板
CN110228784B (zh) Mems阵列系统和操纵物体的方法
US11631601B2 (en) Transfer head for transferring micro element and transferring method of micro element
CN109927403B (zh) 一种转印装置、转印装置的制作方法和转印方法
JP6600060B2 (ja) マイクロコンポーネントデバイスの大量配列方法およびシステム
KR102563694B1 (ko) 마이크로 요소의 이송 장치
CN111128832B (zh) 微元件转移装置及其制造方法
KR102587706B1 (ko) 마이크로 요소의 이송 장치 및 이송 방법
WO2020107876A1 (zh) 微元件的转移装置及其制造方法
WO2020096638A1 (en) Holding chucks having compartmentalized holding cavities and uses for such holding chucks
JP4763380B2 (ja) 吸着装置の製造方法
CN110349899A (zh) 微发光二极管吸附体
JP5312549B2 (ja) 吸着装置
CN114125672A (zh) 数字式mems扬声器装置
CN110228787A (zh) Mems元件及微型物体的操控方法
JP2007053152A (ja) 吸着装置、真空処理装置
JP2011181940A (ja) 吸着装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19888769

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19888769

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19888769

Country of ref document: EP

Kind code of ref document: A1