WO2019061817A1 - 改性氧化石墨烯再生纤维素复合纤维及其制备方法 - Google Patents

改性氧化石墨烯再生纤维素复合纤维及其制备方法 Download PDF

Info

Publication number
WO2019061817A1
WO2019061817A1 PCT/CN2017/114698 CN2017114698W WO2019061817A1 WO 2019061817 A1 WO2019061817 A1 WO 2019061817A1 CN 2017114698 W CN2017114698 W CN 2017114698W WO 2019061817 A1 WO2019061817 A1 WO 2019061817A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene oxide
modified graphene
regenerated cellulose
solution
composite fiber
Prior art date
Application number
PCT/CN2017/114698
Other languages
English (en)
French (fr)
Inventor
沙嫣
沙晓林
Original Assignee
南通强生石墨烯科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南通强生石墨烯科技有限公司 filed Critical 南通强生石墨烯科技有限公司
Publication of WO2019061817A1 publication Critical patent/WO2019061817A1/zh

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F2/00Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof
    • D01F2/06Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof from viscose
    • D01F2/08Composition of the spinning solution or the bath

Definitions

  • the invention belongs to the technical field of regenerated cellulose materials, and relates to a modified graphene oxide regenerated cellulose composite fiber and a preparation method thereof.
  • Regenerated cellulose fiber is a widely used cellulose fiber, which has good mechanical properties and hygroscopicity, but does not have functionality.
  • the traditional functional regenerated cellulose fiber is mainly realized by adding an auxiliary agent to the regenerated cellulose fiber or by modifying the fiber, and the regenerated cellulose fiber prepared by the method is not resistant to water washing and post-treatment. The pollution is more serious, so the application of regenerated cellulose fiber is limited.
  • Graphene is a two-dimensional material in which carbon atoms are arranged in a hexagonal shape.
  • Graphene oxide has a carboxyl group, an epoxy group, a hydroxyl group and the like in the surface layer of graphene. Since the preparation process of graphene oxide is relatively simple, the raw material cost is low, and in the actual operation, graphene oxide is less likely to agglomerate than graphene, and thus can be widely used in large-scale industrial production.
  • CN103046151A discloses a graphene blended regenerated cellulose fiber which is prepared by mixing a graphene oxide solution with a regenerated cellulose solution, molding by a viscose wet spinning process, and then reducing.
  • the viscose fiber obtained by the method has a slight improvement in strength, and the dry breaking strength is up to 2.62 cN/dtex, and the wet breaking strength is 1.54 cN/dtex.
  • the graphene regenerated cellulose fiber is prepared by first preparing the graphene oxide to regenerate the cellulose fiber, and then reducing the method, and there may be problems such as insufficient reduction and generation of reducing waste liquid.
  • a method for preparing a viscose fiber is disclosed in the patent document CN104328523A, specifically to introduce unoxidized graphene having a layer number of not more than 10 layers into a viscose liquid or a viscose liquid semi-finished product, and the obtained viscose fiber has a fracture strength.
  • the graphene is washed with alkali, acid and water, and additional waste liquid may be generated, and after the dispersion of the graphene aqueous solution is prepared, if the dispersion is insufficient, the graphene particles are excessively large, resulting in excessive production.
  • the phenomenon of re-agglomeration causes problems such as difficulty in spinning and clogging of the spinning holes.
  • the present invention provides a modified graphene oxide regenerated cellulose composite fiber and a preparation method thereof.
  • the modified graphene oxide solution was prepared, and the modified graphene oxide solution was treated by microcapsule technology to improve the dispersibility of the modified graphene oxide.
  • the viscose spinning process was used to prepare a regenerated cellulose composite with outstanding antibacterial function. Fibers extend the range of applications for regenerated cellulose fibers.
  • the present invention provides a modified graphene oxide regenerated cellulose composite fiber comprising the following components of mass fraction:
  • the ratio of the solid content of the cellulose in the regenerated cellulose pulp treatment liquid to the solid content of the modified graphene oxide in the modified graphene oxide solution is 100:0.01 to 5.
  • the modified graphene oxide solution has a concentration of modified graphene oxide of 1 to 10 mg/ml.
  • the method for preparing the modified graphene oxide solution comprises the following steps:
  • step S2 the solution treated in step S1 is treated by microcapsule technology.
  • step S1 the modifier and the alkaline agent are added in an amount of 1% by weight of the solution, respectively.
  • the method for preparing the modified graphene oxide powder adopts the Hummers method, and specifically includes the following steps:
  • reaction temperature is not higher than 25 ° C, stirring for 15 min; then warming to 30 ⁇ 40 ° C, continue to stir for 1 h;
  • the temperature is raised to 90 ° C after the end of the stirring, adding deionized water and H 2 O 2 to carry out the reaction;
  • the solution in the reaction flask is ultrasonicated, and then filtered, washed, dried, and pulverized to obtain a modified graphene oxide powder.
  • the modifier is one or more of polyvinyl alcohol, polyethylene glycol, sodium lignosulfonate and polyvinylpyrrolidone;
  • the alkaline reagent is ammonia water, potassium hydroxide, One or more of sodium hydroxide, malononitrile sulfonate, and potassium salt.
  • the modified graphene oxide powder has a particle diameter of less than 5 ⁇ m; in step S2, micro-micro The microcapsule particles obtained after the capsule base treatment have a particle diameter of less than 3 ⁇ m.
  • the particle size of the modified graphene oxide powder should not be too large, otherwise the graphene will be unevenly dispersed in the regenerated cellulose fiber, and the spinning difficulty is increased.
  • the regenerated cellulose pulp treatment liquid is prepared by the following method:
  • the regenerated cellulose pulp is mixed with the sodium hydroxide solution, stirred uniformly, and then subjected to pressing, aging and yellowing treatment; that is, the mass ratio of the regenerated cellulose pulp to the sodium hydroxide solution is 1:2 to 4
  • the mass fraction of the sodium hydroxide solution is 20 to 40%.
  • the pressure of the pressing treatment is 2-6 kpa, and the pressing time is 30 min;
  • the old processing is specifically: the temperature is 20-25 ° C, the treatment is 5-8 h, then the temperature is raised to 30-35 ° C, and the treatment is 2 to 4 h.
  • the yellowing treatment is specifically: the temperature is 20-22 ° C, the treatment is 30-50 min, then the temperature is raised to 25-30 ° C, and the treatment is 20-40 min.
  • the invention also provides a preparation method of modified graphene oxide regenerated cellulose composite fiber, comprising the following steps:
  • the present invention has the following beneficial effects:
  • the modified graphene oxide regenerated cellulose composite fiber prepared by the invention has the excellent antibacterial property of the modified graphene oxide on the basis of ensuring the original performance of the regenerated cellulose fiber, and the function is resistant to water washing, A separate post-treatment process is required, which is safe and environmentally friendly, and better meets the current requirements for functional, comfortable and healthy textiles.
  • the invention firstly prepares a modified graphene oxide solution, and secondly, ultrasonically treats the modified graphene oxide solution and performs microcapsule technology treatment, thereby enhancing the dispersibility of the modified graphene oxide and reducing its agglomeration phenomenon, and finally, according to a certain ratio.
  • the modified graphene oxide regenerated cellulose composite fiber is prepared by adding a modified wet spinning process to the regenerated cellulose pulp.
  • the composite fiber prepared by the method has excellent antibacterial property, and the antibacterial rate of Escherichia coli, Staphylococcus aureus and Candida albicans reaches 99.9%.
  • the graphene regenerated cellulose composite fiber prepared by the method has the advantages of simple and easy operation, low cost and high economic benefit, and is suitable for large-scale industrial production.
  • This embodiment provides a method for preparing modified graphene oxide, comprising the following steps:
  • the modified graphene oxide is prepared by the Hummers method.
  • Step 2 drying using a freeze dryer to obtain sponge-like modified graphene oxide.
  • the modified graphene oxide is pulverized in a jet mill, the pulverization time is 2 to 4 hours, and the modified graphene oxide particle diameter D90 is less than 5 ⁇ m.
  • This embodiment provides a method for preparing a modified graphene oxide regenerated cellulose composite fiber, and the specific operation steps are as follows:
  • Step 1 The modified graphene oxide powder prepared in Example 1 was dissolved in deionized water, and an aqueous solution having a concentration of 1 mg/ml was disposed, and a modifier and an alkaline reagent were added in a ratio of 1% to adjust the solution to neutrality. Or weakly alkaline. Then, it is ultrasonicated for 30 min to 60 min to make it uniformly dispersed; then the solution is treated by microcapsule technology, and the obtained microcapsule particles have a particle diameter of less than 3 ⁇ m.
  • Step 2 Preparation of regenerated cellulose pulp treatment liquid: Weigh 500g of regenerated cellulose pulp, mix according to mass ratio 1: (2 ⁇ 4) and mass fraction of 20% ⁇ 40% sodium hydroxide solution, stir the mixer for 60min, Make it completely mixed; put it into the press and press it, set the pressure to 2 ⁇ 6kpa, press time is 30min; the pulp will be processed by old age, the old temperature is 20 ⁇ 25°C, the time is 5 ⁇ 8h, the temperature will be Increase to 30 ⁇ 35 ° C, aging time is 2 ⁇ 4h; after the completion of the old into yellowing, yellowing temperature 20 ⁇ 22 ° C, yellowing time 30 ⁇ 50min; then the temperature is raised to 25 ⁇ 30 ° C, yellowing time 20 ⁇ 40min.
  • Step 3 The modified graphene oxide solution prepared in the first step is heated to 25 to 30 ° C, and thoroughly mixed with the regenerated cellulose pulp treatment liquid prepared in the second step, the stirring time of the mixer is 30 to 60 minutes, and the temperature is raised to 38 °. At 40 ° C, for 10-15 min, the mass percentage of the modified graphene oxide solution and the regenerated cellulose pulp treatment liquid are 15% and 85%, respectively, wherein the modified graphene oxide solid content and the regenerated cellulose pulp The solid content of cellulose in the treatment liquid The ratio is 5%:1; finally, the prepared cellulose pulp is spun to prepare modified graphene oxide regenerated cellulose composite fiber.
  • the present embodiment provides a method for preparing a modified graphene oxide regenerated cellulose composite fiber, and the specific operation steps are basically the same as those in the second embodiment, except that in step 1, an aqueous solution having a concentration of 5 mg/ml is disposed; In the third step, the mass percentage of the modified graphene oxide solution and the regenerated cellulose pulp treatment liquid are 5% and 95%, respectively, wherein the modified graphene oxide solid content and the regenerated cellulose pulp treatment liquid are in the treatment liquid.
  • the ratio of cellulose solids content was 2%:1.
  • the present embodiment provides a method for preparing a modified graphene oxide-regenerated cellulose composite fiber, and the specific operation steps are basically the same as those in the second embodiment, except that in step 1, an aqueous solution having a concentration of 10 mg/ml is disposed; In the third step, the mass percentage of the modified graphene oxide solution and the regenerated cellulose pulp treatment solution are 1% and 99%, respectively, wherein the modified graphene oxide solid content and the regenerated cellulose pulp treatment liquid are in the treatment liquid.
  • the ratio of cellulose solids content was 0.01%:1.
  • the present comparative example provides a preparation method of the modified graphene oxide regenerated cellulose composite fiber, and the specific operation steps are basically the same as those in the second embodiment, except that in the first step, the comparative example does not perform microcapsule technology on the solution. deal with.
  • the present comparative example provides a preparation method of the modified graphene oxide regenerated cellulose composite fiber, and the specific operation steps are basically the same as those in the embodiment 2, except that the third step is: the modified graphite oxide prepared in the first step
  • the olefin solution is heated to 25-30 ° C, and is fully mixed with the regenerated cellulose pulp treatment liquid prepared in the second step, and the stirring time of the mixer is 30 to 60 min, and then spinning, thereby obtaining the modified graphene oxide regenerated cellulose composite. fiber.
  • the present comparative example provides a preparation method of the modified graphene oxide regenerated cellulose composite fiber, and the specific operation steps are basically the same as those in the embodiment 2, except that in the third step, the modified graphene oxide solution and the modified graphene oxide solution are The regenerated cellulose pulp treatment liquid is thoroughly mixed, and after stirring by a stirrer, the temperature is raised to 30 to 32 ° C, and the treatment is carried out for 20 to 25 minutes.
  • the present comparative example provides a preparation method of graphene regenerated cellulose composite fiber, and the specific operation steps are basically the same as those in the second embodiment, except that in the first step, the raw material used in the comparison is unoxidized graphene powder. .
  • the present comparative example provides a preparation method of modified graphene oxide regenerated cellulose composite fiber, and the specific operation steps are basically the same as those in the second embodiment, except that in step 1, the modified graphene oxide used in the comparison is used.
  • the powder was prepared by the Brodie method.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Artificial Filaments (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

一种改性氧化石墨烯再生纤维素复合纤维及其制备方法,所述再生纤维素复合纤维包括:再生纤维素浆粕处理液85~99%;改性氧化石墨烯溶液0.1~15%;所述再生纤维素浆粕处理液中纤维素的固含量与改性氧化石墨烯溶液中改性氧化石墨烯的固含量之比为100:0.01~5。通过制备改性氧化石墨烯溶液,并采用微胶囊技术处理改性氧化石墨烯溶液,提高改性氧化石墨烯分散性,最后采用再生纤维素纺丝工艺制备。该改性氧化石墨烯再生纤维素复合纤维,在保证再生纤维素纤维原性能的基础上,使其发挥出改性氧化石墨烯优良的抗菌、防螨、远红外、抗紫外等性能,其功能性耐水洗,不需单独后处理工艺,安全环保,更好的满足当前人们对功能性、舒适性、健康纺织品的要求。

Description

改性氧化石墨烯再生纤维素复合纤维及其制备方法 技术领域
本发明属于再生纤维素材料技术领域,涉及一种改性氧化石墨烯再生纤维素复合纤维及其制备方法。
背景技术
再生纤维素纤维是一种用途较为广泛的纤维素纤维,本身具有良好的力学性能、吸湿性,但是并不具备功能性。传统的功能性再生纤维素纤维主要是通过在再生纤维素纤维中添加助剂或者通过对纤维改性进行实现,而这种方法制备的再生纤维素纤维,其功能性不耐水洗,后处理造成的污染较为严重,因此使再生纤维素纤维应用受到一定限制。
石墨烯是一种有碳原子按六边形排列而成的二维材料,氧化石墨烯在石墨烯的表层具有羧基,环氧基,羟基等含氧基团修饰。由于氧化石墨烯制备工艺较简单,原材料成本低廉,同时在实际操作时氧化石墨烯与石墨烯相比更不易团聚,因此可广泛应用于大规模工业生产中。
现有技术中,CN103046151A公开一种石墨烯共混再生纤维素纤维,其利用氧化石墨烯溶液与再生纤维素溶液混合、通过粘胶湿法纺丝工艺成型后,再经还原制备而成。该方法获得的粘胶纤维在强度方面略有提高,其干断裂强度最高达到2.62cN/dtex,湿断裂强度达到1.54cN/dtex。但该方法中采用先制备氧化石墨烯再生纤维素纤维,而后再还原的方法制备石墨烯再生纤维素纤维,可能会存在还原不充分,且产生还原废液等问题。
专利文献CN104328523A中公开了一种粘胶纤维的制备方法,具体为向粘胶液或者粘胶液半成品中引入层数不高于10层的未氧化石墨烯,获得的粘胶纤维在断裂强度方面有大幅度提升。但该方法制备石墨烯过程中采用碱、酸、水洗涤石墨烯,可能会产生额外废液,且制备石墨烯水溶液过程中分散后,若分散不充分,则会使石墨烯颗粒物过大,产生再团聚现象,造成纺丝困难,堵塞纺丝孔等问题。
发明内容
针对现有技术的不足,本发明的提供一种改性氧化石墨烯再生纤维素复合纤维及其制备方法。通过制备改性氧化石墨烯溶液,并采用微胶囊技术处理改性氧化石墨烯溶液,提高改性氧化石墨烯分散性,最后采用粘胶纺丝工艺制备出具有突出的抗菌功能的再生纤维素复合纤维,扩展了再生纤维素纤维的应用范围。
本发明的目的是通过以下技术方案实现的:
本发明提供了一种改性氧化石墨烯再生纤维素复合纤维,包括以下质量分数的各组分:
再生纤维素浆粕处理液          85~99%;
改性氧化石墨烯溶液            0.1~15%;
所述再生纤维素浆粕处理液中纤维素的固含量与改性氧化石墨烯溶液中改性氧化石墨烯的固含量之比为100:0.01~5。
优选地,所述改性氧化石墨烯溶液中改性氧化石墨烯的浓度为1~10mg/ml。
优选地,所述改性氧化石墨烯溶液的制备方法包括以下步骤:
S1、将改性氧化石墨烯粉体溶于去离子水中,配置成水溶液,然后加入改性剂和碱性试剂,将溶液调整至中性或弱碱性后,进行超声处理,以减少团聚,降低改性氧化石墨烯粒径尺寸;
S2、将经步骤S1处理后的溶液采用微胶囊技术处理,即可。
优选地,步骤S1中,所述改性剂和碱性试剂的加入量分别为溶液重量的1%。
优选地,所述改性氧化石墨烯粉体的制备方法采用Hummers法,具体包括以下步骤:
A1、向反应瓶中加入98%的浓H2SO4;然后分别称取石墨粉和NaNO3加入到反应瓶中,搅拌30min;
A2、再向反应瓶中加入KMnO4,控制反应温度不高于25℃,搅拌15min;然后升温到30~40℃,继续搅拌1h;
A3、搅拌结束将温度升温至90℃,加入去离子水和H2O2进行反应;
A4、反应结束后,将反应瓶中的溶液进行超声处理,然后过滤、洗涤、干燥、粉碎,得到改性氧化石墨烯粉体。
优选地,所述改性剂为聚乙烯醇、聚乙二醇、木质素磺酸钠、聚乙烯吡络烷酮中的一种或几种;所述碱性试剂为氨水,氢氧化钾,氢氧化钠、丙二腈磺酸盐、钾盐中的一种或几种。
优选地,步骤S1中,所述改性氧化石墨烯粉体的粒径小于5μm;步骤S2中,经微 胶囊基础处理后所得的微胶囊微粒粒径小于3μm。所述改性氧化石墨烯粉体的粒径不宜过大,否则将会造成石墨烯在再生纤维素纤维中分散不匀,纺丝难度增大。
优选地,所述再生纤维素浆粕处理液采用以下方法制备:
将再生纤维素浆粕与氢氧化钠溶液混合,搅拌均匀,然后进行压榨、老成和黄化处理,即得;所述再生纤维素浆粕与氢氧化钠溶液的质量比为1:2~4;所述氢氧化钠溶液的质量分数为20~40%。
优选地,所述压榨处理的压力为2~6kpa,压榨时间为30min;老成处理具体为:温度为20~25℃,处理为5~8h,然后温度升至30~35℃,处理2~4h;所述黄化处理具体为:温度为20~22℃,处理为30~50min,然后温度升至25~30℃,处理20~40min。
本发明还提供了一种改性氧化石墨烯再生纤维素复合纤维的制备方法,包括以下步骤:
将改性氧化石墨烯溶液升温至25~30℃,与纤维素浆粕处理液充分搅拌混合,将温度升至38~40℃,处理10~15min(此过程为微胶囊释放阶段),然后进行纺丝,即得所述改性氧化石墨烯再生纤维素复合纤维。
与现有技术相比,本发明具有如下的有益效果:
1、本发明制备的改性氧化石墨烯再生纤维素复合纤维,在保证再生纤维素纤维原性能的基础上,使其发挥出改性氧化石墨烯优良的抗菌性能,其功能性耐水洗,不需单独后处理工艺,安全环保,更好的满足当前人们对功能性、舒适性、健康纺织品的要求。
2、本发明首先制备了改性氧化石墨烯溶液,其次将改性氧化石墨烯溶液超声处理并进行微胶囊技术处理,增强了改性氧化石墨烯分散性及减少其团聚现象,最后按一定比例添加到再生纤维素浆粕中,利用改进的湿法纺丝工艺制备改性氧化石墨烯再生纤维素复合纤维。该方法制备的复合纤维抗菌性能优良,其中大肠杆菌、金黄色葡萄球菌、白色念珠菌抑菌率达到99.9%。
3、本方法制备的石墨烯再生纤维素复合纤维,工艺简单易操作,成本低廉,经济效益高,适合大规模工业化生产。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于 本发明的保护范围。
实施例1
本实施例提供了一种改性氧化石墨烯的制备方法,包括以下步骤:
步骤一,采用Hummers法制备改性氧化石墨烯。
向1000反应瓶中加入200mL 98%的浓H2SO4;分别称取5g石墨粉和2g NaNO3的固体,将其加入到反应瓶中,开启搅拌器搅拌30min;搅拌结束后加入KMnO4 15g,控制反应温度不高于25℃,搅拌15min;水浴锅升温到30~40℃,继续搅拌约1h;搅拌结束将水浴锅的温度升温至90℃,将300ml去离子水滴入溶液中;同时量取100mL 30%的H2O2,加入到溶液中,溶液从棕黑色变成鲜亮的黄色。继续搅拌10min,将溶液倒入烧杯中,超声30min;最后用1000ml的5.5%的稀盐酸过滤,然后再用去离子水充分过滤直至滤液中无硫酸根离子为止;
步骤二:采用冷冻干燥机进行干燥,得到海绵状改性氧化石墨烯。将获得改性氧化石墨烯放入气流粉碎机粉碎,粉碎时间为2~4小时,改性氧化石墨烯粒径D90小于5μm。
实施例2
本实施例提供了一种改性氧化石墨烯再生纤维素复合纤维的制备方法,具体操作步骤如下:
步骤一:将实施例1制备的改性氧化石墨烯粉体溶于去离子水中,配置浓度为1mg/ml的水溶液,并1%比例添加改性剂及碱性试剂,将溶液调整至中性或弱碱性。然后将其超声30min~60min,使其分散均匀;然后将溶液采用微胶囊技术处理,所得的微胶囊微粒粒径小于3μm。
步骤二:制备再生纤维素浆粕处理液:称取500g再生纤维素浆粕,按照质量比1:(2~4)与质量分数为20%~40%氢氧化钠溶液混合,搅拌机搅拌60min,使其完全混合;将其放入压榨机中压榨,设定压力为2~6kpa,压榨时间为30min;将浆粕进行老成处理,老成温度为20~25℃,时间为5~8h,将温度升至30~35℃,老化时间为2~4h;老成完成后进行黄化,黄化温度20~22℃,黄化时间30~50min;然后将温度升至25~30℃,黄化时间20~40min。
步骤三:将步骤一制备的改性氧化石墨烯溶液升温至25~30℃,与步骤二制备的再生纤维素浆粕处理液充分混合,搅拌机搅拌时间为30~60min,将温度升至38~40℃,处理10~15min,所述改性氧化石墨烯溶液与再生纤维素浆粕处理液的质量百分含量分别为15%和85%,其中改性氧化石墨烯固含量与再生纤维素浆粕处理液中纤维素固含量的 比例为5%:1;最终将制备的纤维素浆粕进行纺丝,制备改性氧化石墨烯再生纤维素复合纤维。
实施例3
本实施例提供了一种改性氧化石墨烯再生纤维素复合纤维的制备方法,具体操作步骤与实施例2基本相同,不同之处仅在于:步骤一中,配置浓度为5mg/ml的水溶液;步骤三中,所述改性氧化石墨烯溶液与再生纤维素浆粕处理液的质量百分含量分别为5%和95%,其中改性氧化石墨烯固含量与再生纤维素浆粕处理液中纤维素固含量的比例为2%:1。
实施例4
本实施例提供了一种改性氧化石墨烯再生纤维素复合纤维的制备方法,具体操作步骤与实施例2基本相同,不同之处仅在于:步骤一中,配置浓度为10mg/ml的水溶液;步骤三中,所述改性氧化石墨烯溶液与再生纤维素浆粕处理液的质量百分含量分别为1%和99%,其中改性氧化石墨烯固含量与再生纤维素浆粕处理液中纤维素固含量的比例为0.01%:1。
对比例1
本对比例提供了一种改性氧化石墨烯再生纤维素复合纤维的制备方法,具体操作步骤与实施例2基本相同,不同之处仅在于:步骤一中,本对比例不对溶液进行微胶囊技术处理。
对比例2
本对比例提供了一种改性氧化石墨烯再生纤维素复合纤维的制备方法,具体操作步骤与实施例2基本相同,不同之处仅在于:步骤三为:将步骤一制备的改性氧化石墨烯溶液升温至25~30℃,与步骤二制备的再生纤维素浆粕处理液充分混合,搅拌机搅拌时间为30~60min,然后进行纺丝,即得所述改性氧化石墨烯再生纤维素复合纤维。
对比例3
本对比例提供了一种改性氧化石墨烯再生纤维素复合纤维的制备方法,具体操作步骤与实施例2基本相同,不同之处仅在于:步骤三中,所述改性氧化石墨烯溶液与再生纤维素浆粕处理液充分混合,搅拌机搅拌后,将温度升至30~32℃,处理20~25min。
对比例4
本对比例提供了一种石墨烯再生纤维素复合纤维的制备方法,具体操作步骤与实施例2基本相同,不同之处仅在于:步骤一中,本对比采用的原料为未氧化石墨烯粉体。
对比例5
本对比例提供了一种改性氧化石墨烯再生纤维素复合纤维的制备方法,具体操作步骤与实施例2基本相同,不同之处仅在于:步骤一中,本对比采用的改性氧化石墨烯粉末为通过Brodie法制备。
效果验证:
将实施例2-4和对比例1-4制备的改性氧化石墨烯再生纤维素复合纤维进行性能测试,其结果如表1所示。
表1
Figure PCTCN2017114698-appb-000001
本发明具体应用途径很多,以上所述仅是本发明的优选实施方式。应当指出,以上实施例仅用于说明本发明,而并不用于限制本发明的保护范围。对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进,这些改进也应视为本发明的保护范围。

Claims (10)

  1. 一种改性氧化石墨烯再生纤维素复合纤维,其特征在于,包括以下质量分数的各组分:
    再生纤维素浆粕处理液          85~99%;
    改性氧化石墨烯溶液           0.1~15%;
    所述再生纤维素浆粕处理液中纤维素的固含量与改性氧化石墨烯溶液中改性氧化石墨烯的固含量之比为100:0.01~5。
  2. 根据权利要求1所述的改性氧化石墨烯再生纤维素复合纤维,其特征在于,所述改性氧化石墨烯溶液中改性氧化石墨烯的浓度为1~10mg/ml。
  3. 根据权利要求1或2所述的改性氧化石墨烯再生纤维素复合纤维,其特征在于,所述改性氧化石墨烯溶液的制备方法包括以下步骤:
    S1、将改性氧化石墨烯粉体溶于去离子水中,配置成水溶液,然后加入改性剂和碱性试剂,将溶液调整至中性或弱碱性后,进行超声处理;
    S2、将经步骤S1处理后的溶液采用微胶囊技术处理,即可。
  4. 根据权利要求3所述的改性氧化石墨烯再生纤维素复合纤维,其特征在于,步骤S1中,所述改性剂和碱性试剂的加入量分别为溶液重量的1%。
  5. 根据权利要求3任所述的改性氧化石墨烯再生纤维素复合纤维,其特征在于,所述改性氧化石墨烯粉体的制备方法采用Hummers法,具体包括以下步骤:
    A1、向反应瓶中加入98%的浓H2SO4;然后分别称取石墨粉和NaNO3加入到反应瓶中,搅拌30min;
    A2、再向反应瓶中加入KMnO4,控制反应温度不高于25℃,搅拌15min;然后升温到30~40℃,继续搅拌1h;
    A3、搅拌结束将温度升温至90℃,加入去离子水和H2O2进行反应;
    A4、反应结束后,将反应瓶中的溶液进行超声处理,然后过滤、洗涤、干燥、粉碎,得到改性氧化石墨烯粉体。
  6. 根据权利要求3或4所述的石墨烯再生纤维素复合纤维,其特征在于,所述改性剂为聚乙烯醇、聚乙二醇、木质素磺酸钠、聚乙烯吡络烷酮、丙二腈磺酸盐、钾盐中的一种或几种;所述碱性试剂为氨水,氢氧化钾,氢氧化钠中的一种或几种。
  7. 根据权利要求3所述的石墨烯再生纤维素复合纤维,其特征在于,步骤S1中,所 述改性氧化石墨烯粉体的粒径小于5μm;步骤S2中,经微胶囊基础处理后所得的微胶囊微粒粒径小于3μm。
  8. 根据权利要求1所述的改性氧化石墨烯再生纤维素复合纤维,其特征在于,所述再生纤维素浆粕处理液采用以下方法制备:
    将再生纤维素浆粕与氢氧化钠溶液混合,搅拌均匀,然后进行压榨、老成和黄化处理,即得;所述再生纤维素浆粕与氢氧化钠溶液的质量比为1:2~4;所述氢氧化钠溶液的质量分数为20~40%。
  9. 根据权利要求1所述的改性氧化石墨烯再生纤维素复合纤维,其特征在于,所述压榨处理的压力为2~6kpa,压榨时间为30min;老成处理具体为:温度为20~25℃,处理为5~8h,然后温度升至30~35℃,处理2~4h;所述黄化处理具体为:温度为20~22℃,处理为30~50min,然后温度升至25~30℃,处理20~40min。
  10. 一种根据权利要求1-9任一项所述的改性氧化石墨烯再生纤维素复合纤维的制备方法,其特征在于,包括以下步骤:
    将改性氧化石墨烯溶液升温至25~30℃,与再生纤维素浆粕处理液充分搅拌混合,将温度升至38~40℃,处理10~15min,然后进行纺丝,即得所述改性氧化石墨烯再生纤维素复合纤维。
PCT/CN2017/114698 2017-09-26 2017-12-06 改性氧化石墨烯再生纤维素复合纤维及其制备方法 WO2019061817A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710884919.5A CN107723820B (zh) 2017-09-26 2017-09-26 改性氧化石墨烯再生纤维素复合纤维及其制备方法
CN201710884919.5 2017-09-26

Publications (1)

Publication Number Publication Date
WO2019061817A1 true WO2019061817A1 (zh) 2019-04-04

Family

ID=61207017

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/114698 WO2019061817A1 (zh) 2017-09-26 2017-12-06 改性氧化石墨烯再生纤维素复合纤维及其制备方法

Country Status (2)

Country Link
CN (1) CN107723820B (zh)
WO (1) WO2019061817A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108992356A (zh) * 2018-09-11 2018-12-14 南通强生石墨烯科技有限公司 一种含石墨烯的护臀膏及其制备方法
CN109837604A (zh) * 2019-01-08 2019-06-04 常州兴烯石墨烯科技有限公司 一种白石墨烯再生纤维素复合纤维及其制备方法
CN110172747A (zh) * 2019-05-07 2019-08-27 常州兴烯石墨烯科技有限公司 一种金色氧化石墨烯再生纤维素复合纤维及其制备方法
CN113718361A (zh) * 2021-09-18 2021-11-30 南通强生石墨烯科技有限公司 一种石墨烯负离子再生纤维素复合纤维及其制备方法
CN115652464A (zh) * 2022-10-10 2023-01-31 南通强生新材料科技股份有限公司 一种石墨烯抗极寒手套及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015087868A1 (ja) * 2013-12-10 2015-06-18 国立大学法人東京大学 セルロース繊維及びその製造方法、微細セルロース繊維分散体及びその製造方法、並びに微細セルロース繊維の製造方法
CN105506765A (zh) * 2015-11-20 2016-04-20 济南圣泉集团股份有限公司 一种功能性再生纤维素纤维及其制备方法和应用
WO2016078523A1 (zh) * 2014-11-20 2016-05-26 济南圣泉集团股份有限公司 包含石墨烯的粘胶纤维及其制备方法
CN106149083A (zh) * 2015-04-02 2016-11-23 恒天海龙股份有限公司 一种熔融法制备的功能性石墨烯纤维素纤维及其制备方法
CN106884210A (zh) * 2017-03-09 2017-06-23 江苏工程职业技术学院 一种石墨烯天丝复合纤维及其制备方法
CN106906531A (zh) * 2017-02-21 2017-06-30 南通强生石墨烯科技有限公司 石墨烯‑丝素蛋白功能性纤维的制备方法
CN107099100A (zh) * 2017-03-15 2017-08-29 国网山东省电力公司日照供电公司 一种基于微胶囊导入技术的电缆用屏蔽材料的制备方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102489259B (zh) * 2011-11-10 2013-08-21 河南大学 氧化石墨烯/纤维素复合材料及其制备方法和应用
CN103611432B (zh) * 2013-12-17 2016-03-09 哈尔滨工业大学 一种聚合物/石墨烯纳米复合膜的制备方法
CN105017565B (zh) * 2015-07-01 2018-06-26 青岛科技大学 一种氧化石墨烯壳材包覆硫磺微胶囊的制备方法
CN106591985A (zh) * 2015-10-20 2017-04-26 聚隆纤维股份有限公司 制备石墨烯掺混天然纤维素纤维的方法
CN105603554B (zh) * 2016-01-18 2017-10-31 恒天海龙(潍坊)新材料有限责任公司 一种石墨烯功能化纤维素纤维及其制备方法
CN105622983B (zh) * 2016-02-26 2018-03-06 内蒙古石墨烯材料研究院 一种导热塑料专用石墨烯微片的制备方法
CN105860936A (zh) * 2016-04-08 2016-08-17 吉林建筑大学 一种氧化石墨烯分散型复合相变储能微胶囊及制备方法
CN105969317B (zh) * 2016-06-07 2019-09-03 四川大学 一种具有高热导率高焓值的脲醛树脂石蜡微胶囊材料及制备方法
CN106367831A (zh) * 2016-08-30 2017-02-01 江苏金太阳纺织科技股份有限公司 一种抗菌除臭再生纤维素纤维的制备方法
CN106566303A (zh) * 2016-10-21 2017-04-19 成都新柯力化工科技有限公司 一种用于水性防腐涂料的石墨烯微片及其制备方法
CN106957635A (zh) * 2017-04-06 2017-07-18 上海电力学院 复合纳米铜和纳米石墨烯片的微胶囊相变颗粒及制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015087868A1 (ja) * 2013-12-10 2015-06-18 国立大学法人東京大学 セルロース繊維及びその製造方法、微細セルロース繊維分散体及びその製造方法、並びに微細セルロース繊維の製造方法
WO2016078523A1 (zh) * 2014-11-20 2016-05-26 济南圣泉集团股份有限公司 包含石墨烯的粘胶纤维及其制备方法
CN106149083A (zh) * 2015-04-02 2016-11-23 恒天海龙股份有限公司 一种熔融法制备的功能性石墨烯纤维素纤维及其制备方法
CN105506765A (zh) * 2015-11-20 2016-04-20 济南圣泉集团股份有限公司 一种功能性再生纤维素纤维及其制备方法和应用
CN106906531A (zh) * 2017-02-21 2017-06-30 南通强生石墨烯科技有限公司 石墨烯‑丝素蛋白功能性纤维的制备方法
CN106884210A (zh) * 2017-03-09 2017-06-23 江苏工程职业技术学院 一种石墨烯天丝复合纤维及其制备方法
CN107099100A (zh) * 2017-03-15 2017-08-29 国网山东省电力公司日照供电公司 一种基于微胶囊导入技术的电缆用屏蔽材料的制备方法

Also Published As

Publication number Publication date
CN107723820B (zh) 2020-11-17
CN107723820A (zh) 2018-02-23

Similar Documents

Publication Publication Date Title
WO2019061817A1 (zh) 改性氧化石墨烯再生纤维素复合纤维及其制备方法
CN105603554B (zh) 一种石墨烯功能化纤维素纤维及其制备方法
CN105968852B (zh) 防紫外辐射的木质素基氧化锌复合颗粒及制备方法和应用
CN103588886B (zh) 一种易水分散纳米微晶纤维素及其制备方法
CN104059245B (zh) 种子沉积法制备新型橡胶硫化活性剂
CN107486135B (zh) 一种膨润土包覆四氧化三铁纳米材料及其制备方法和应用
CN108940374A (zh) 纤维复合膜催化剂的制备方法及应用
CN106905437B (zh) 高耐热可再分散粉体纤维素纳米晶及其制备方法
CN109943101B (zh) 一种耐高温超细活性碳酸钙的制备方法
CN104045100A (zh) 一种氢氧化铝的制备方法
CN103933949A (zh) 一种碳纳米管/壳聚糖介孔球形复合材料及其制备方法
CN111019288A (zh) 一种减少植物提取物流失的abs复合塑料制品的制备方法
JP7056987B1 (ja) パルプ化黒液を原料として両親媒性リグニンナノ材料を調製する方法、両親媒性リグニンナノ材料、スラッジ洗浄剤
CN106835345A (zh) 一种纳米纤维素复合pva材料及其制备方法、应用
CN108411470B (zh) 一种石墨烯双功能针织面料
WO2017084542A1 (zh) 一种功能性再生纤维素纤维及其制备方法和应用
CN112679129A (zh) 一种高强度耐腐蚀碳纳米管改性混凝土及其制备方法
CN111560660A (zh) 制备白石墨烯再生纤维素复合纤维的方法及其制备的纤维
CN112522802A (zh) 一种抗紫外抗菌丙纶长丝及其制备方法
US20080234477A1 (en) Method for preparing chitosan nano-particles
CN102020794B (zh) 纳米碳酸钙与丁苯橡胶组合物及其制备方法
CN102504283B (zh) 一种木质素磺酸盐微小凝胶的制备方法
CN106752100A (zh) 一种复合碱木质素聚氧乙烯醚活性剂改性的形貌可控纳米碳酸钙粉体及其制备方法
CN103556276B (zh) 一种光敏变色竹炭粘胶纤维及其制备方法
CN115058787B (zh) 一种抗菌抗病毒凉感纤维的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17927822

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17927822

Country of ref document: EP

Kind code of ref document: A1