WO2019059720A2 - 액정 배향용 필름의 제조방법 - Google Patents

액정 배향용 필름의 제조방법 Download PDF

Info

Publication number
WO2019059720A2
WO2019059720A2 PCT/KR2018/011264 KR2018011264W WO2019059720A2 WO 2019059720 A2 WO2019059720 A2 WO 2019059720A2 KR 2018011264 W KR2018011264 W KR 2018011264W WO 2019059720 A2 WO2019059720 A2 WO 2019059720A2
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
film
crystal alignment
alignment film
pulse laser
Prior art date
Application number
PCT/KR2018/011264
Other languages
English (en)
French (fr)
Other versions
WO2019059720A3 (ko
Inventor
박정호
신부건
허은규
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US16/646,411 priority Critical patent/US11428992B2/en
Priority to JP2020514198A priority patent/JP7019892B2/ja
Priority to EP18859694.4A priority patent/EP3670186B1/en
Priority to CN201880061246.6A priority patent/CN111107995B/zh
Publication of WO2019059720A2 publication Critical patent/WO2019059720A2/ko
Publication of WO2019059720A3 publication Critical patent/WO2019059720A3/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/0074Production of other optical elements not provided for in B29D11/00009- B29D11/0073
    • B29D11/00788Producing optical films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0008Electrical discharge treatment, e.g. corona, plasma treatment; wave energy or particle radiation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0626Energy control of the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/362Laser etching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/16Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating
    • B32B37/20Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating involving the assembly of continuous webs only
    • B32B37/203One or more of the layers being plastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/10Removing layers, or parts of layers, mechanically or chemically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B2038/0052Other operations not otherwise provided for
    • B32B2038/0068Changing crystal orientation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2310/00Treatment by energy or chemical effects
    • B32B2310/08Treatment by energy or chemical effects by wave energy or particle radiation
    • B32B2310/0806Treatment by energy or chemical effects by wave energy or particle radiation using electromagnetic radiation
    • B32B2310/0843Treatment by energy or chemical effects by wave energy or particle radiation using electromagnetic radiation using laser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/202LCD, i.e. liquid crystal displays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133792Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by etching
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/02Materials and properties organic material
    • G02F2202/022Materials and properties organic material polymeric
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/28Adhesive materials or arrangements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/48Variable attenuator

Definitions

  • the present invention relates to a process for producing a liquid crystal alignment film.
  • the film for a liquid crystal discoloration element has a structure in which a conductive film is introduced on a substrate and a dielectric film, a photo-alignment film having an electro-optical function on the conductive film, And a form of a liquid crystal orientation film.
  • the liquid crystal discoloring element films provided on the upper and lower sides with respect to the liquid crystal are manufactured by a conventional roll-to-roll (R2R) based continuous process.
  • the conductive film included in the film for a liquid crystal discoloration element can be formed by forming a transparent and conductive metal oxide film layer on the base film to form an electrical field for controlling the orientation of the liquid crystal, And the liquid crystal alignment layer can impart an alignment function to the liquid crystal.
  • the liquid crystal alignment film in order to adhere the upper and lower liquid crystal coloring-element film to each other with the liquid crystal as a center, the liquid crystal alignment film must have an excellent adhesion with a sealant provided between the upper and lower liquid crystal coloring-element film, A method of selectively removing the liquid crystal alignment film to expose the conductive film has been further demanded.
  • wet etching such as treatment of an organic solvent has been used.
  • wet etching not only hinders the efficiency of the continuous process but also increases the economic and environmental There was a problem.
  • the liquid crystal alignment layer may be formed by patterning (photolithography, inkjet, slot dye, screen printing, etc.) patterning process is used to form the liquid crystal alignment layer.
  • the process of forming the liquid crystal alignment layer has a problem in that it is not compatible with a continuous process based on a roll-to-roll process.
  • the step of forming the liquid crystal alignment film has a problem that the manufacturing process equipment for ensuring process equipment for large-area (large-area) manufacturing from a small liquid crystal device to a flexible device increases in cost and productivity is lowered.
  • liquid crystal alignment film specifically, a method for producing a film for a liquid crystal discoloration element, which can reduce manufacturing cost through development of a processing process compliant with a continuous roll-to-roll process .
  • the present invention is intended to provide a process for producing a liquid crystal alignment film.
  • a method of manufacturing a liquid crystal display device comprising: preparing a multilayered structure including a substrate, a conductive film, a liquid crystal alignment film, and a protective film sequentially; Etching a region of the liquid crystal alignment film by irradiating a pulse laser to the multilayer structure side; And removing the protective film to expose a region of the conductive film, wherein the pulse laser is irradiated in the direction of the liquid crystal alignment film from the protective film.
  • One embodiment of the present invention has the advantage of being compatible with a roll-to-roll continuous process. Specifically, one embodiment of the present invention does not involve the step of washing an etch residue by using an organic solvent, so it is compatible with a continuous process, and is environmentally friendly and economical.
  • the liquid crystal alignment film produced according to one embodiment of the present invention is advantageous in that it can minimize the damage of the conductive film and maximize the blocking property of moisture and / or bubbles according to external environment change.
  • the manufacturing method of a liquid crystal alignment film produced according to an embodiment of the present invention has an advantage of minimizing the amount of the etched liquid crystal alignment film residue present on the conductive film.
  • the liquid crystal alignment film produced according to one embodiment of the present invention has an advantage of high adhesion to a sealing material.
  • FIG. 1 is a schematic view of a method of manufacturing a liquid crystal alignment film according to an embodiment of the present invention.
  • FIG. 2 is a plan view of a liquid crystal alignment film according to an embodiment of the present invention.
  • FIG 3 is a view showing a multilayer structure irradiated with a pulse laser according to an embodiment of the present invention, a process of removing a protective film from the multilayer structure, and a digital camera image of the liquid crystal alignment film and the protective film.
  • FIG. 4 is a schematic view of a method of manufacturing a liquid crystal discoloration element using a liquid crystal alignment film manufactured according to an embodiment of the present invention.
  • FIG. 11 is a schematic view of a specimen used in a high temperature / high humidity durability test and a digital camera image thereof.
  • step or step
  • step used to the extent that it is used throughout the specification does not mean “step for.
  • a method of manufacturing a liquid crystal display device comprising: preparing a multilayered structure including a substrate, a conductive film, a liquid crystal alignment film, and a protective film sequentially; Etching a region of the liquid crystal alignment film by irradiating a pulse laser to the multilayer structure side; And removing the protective film to expose a region of the conductive film, wherein the pulse laser is irradiated in the direction of the liquid crystal alignment film from the protective film.
  • the method for manufacturing a liquid crystal alignment film includes a step of preparing a multilayered structure in which a substrate, a conductive film, a liquid crystal alignment film, and a protective film are sequentially provided.
  • the multi-layer structure may comprise a substrate.
  • the substrate may be a polymer substrate.
  • the polymer base material may be at least one selected from the group consisting of polyethylene terephthalate (PET), ethylene vinyl acetate (EVA), cyclic olefin polymer (COP), cyclic olefin copolymer ), Polyacrylate (PAC), polycarbonate (PC), polyethylene (PE), polymethylmethacrylate (PMMA), polyetheretherketone (PEEK), polyethylene naphthalate at least one of polyethylenenaphthalate (PEN), polyetherimide (PEI), polyimide (PI), triacetylcellulose (TAC), MMA (methyl methacrylate) and fluorine resin.
  • the kind of the polymer substrate is not limited, and it may be selected as a polymer having a warp property, as long as it is known in the art
  • the multilayered structure includes the polymeric substrate, thereby ensuring mechanical durability and structural variability of the liquid crystal alignment film.
  • the multilayered structure includes the polymeric base material, so that the bending property of the liquid crystal alignment film can be realized.
  • the thickness of the base material may be 50 ⁇ or more and 200 ⁇ or less, specifically 70 ⁇ or more and 200 ⁇ or less, 50 ⁇ or more and 150 ⁇ or less, or 70 ⁇ or more and 150 ⁇ or less, Specifically, it may be 90 ⁇ ⁇ or more and 150 ⁇ ⁇ or less, 70 ⁇ ⁇ or more and 110 ⁇ ⁇ or less, or 90 ⁇ ⁇ or more and 110 ⁇ ⁇ or less.
  • the multilayered structure may include a conductive film provided on the substrate.
  • the substrate is a polymer substrate
  • the liquid crystal alignment film can simultaneously realize durability and structural flexibility.
  • the polymer substrate is generally not low in moisture permeability, moisture and / or air bubbles are permeated by external environmental changes.
  • the electrical conductivity of the liquid crystal orientation film can be ensured, and moisture and / The bubble blocking property can be easily secured.
  • the conductive film can form an electric field for controlling the orientation of the liquid crystal that can be applied on the liquid crystal alignment film, has electrical conductivity capable of transferring electric charges supplied from the outside, and has a high surface energy As the metal oxide film, a high adhesive force with the sealing material can be realized.
  • the conductive film has a property of blocking moisture and / or air bubbles due to changes in external environment such as high temperature and high humidity.
  • the conductive film may include at least one of a conductive polymer, a conductive metal, and a conductive metal oxide, and may specifically include at least one of a conductive metal and a conductive metal oxide.
  • the conductive film may include at least one metal, a metal oxide, or an alloy material of gold, silver, nickel, copper, and palladium.
  • the conductive film ITO (indium tin oxide), AZO (antimony-doped zinc oxide), ATO (antimony-doped tin oxide), SnO, RuO 2, IrO 2 and Or the like.
  • the present invention is not limited to the types of the materials included in the conductive film, but it is possible to form an electric field for controlling moisture and / or air bubbles, control the orientation of the liquid crystal, Materials with good adhesion can be used without limitation.
  • the conductive film may be provided to have transparency, and a conductive film having transparency can be realized by applying various materials and forming methods known in the art.
  • the thickness of the conductive film may be 20 nm or more and 100 nm or less, specifically 30 nm or more and 100 nm or less, 20 nm or more and 80 nm or less, or 30 nm or more and 80 nm or less, Specifically, it may be 40 nm or more and 80 nm or less, 30 nm or more and 70 nm or less, or 40 nm or more and 70 nm or less.
  • the present invention is not limited thereto, and the thickness of the conductive film can be appropriately controlled according to the conditions of the pulse laser irradiated to the multilayer structure.
  • the conductive film Since the conductive film has a thickness much smaller than the thickness of the substrate, the conductive film may be damaged during the etching of the liquid crystal alignment film that may be provided on the conductive film. In addition, when the conductive film is damaged, there may arise a problem that blocking properties of moisture and / or bubbles of the liquid crystal alignment film can not be realized. Therefore, the damage of the conductive film should be minimized, so that the barrier property of moisture and / or bubbles may be maximized according to changes in the external environment of the liquid crystal alignment film.
  • the method for manufacturing a liquid crystal alignment film according to an embodiment of the present invention can minimize the damage of the conductive film by the pulse laser irradiation by providing the protective film on the liquid crystal alignment film included in the multilayered structure.
  • the protective film on the liquid crystal alignment film included in the multilayered structure.
  • the multilayered structure may include a liquid crystal alignment layer provided on the conductive film. Since the liquid crystal alignment film is provided on the conductive film, the alignment of the liquid crystal applied on the liquid crystal alignment film can be controlled.
  • the liquid crystal alignment layer may include at least one of a photo alignment layer and a rubbing alignment layer.
  • the liquid crystal alignment layer may have a structure in which the photo alignment layer and the rubbing alignment layer are laminated.
  • the orientation of the liquid crystal that can be coated on the liquid crystal alignment layer can be controlled through light irradiation.
  • the orientation of the liquid crystal that can be coated on the liquid crystal alignment film can be controlled through a rubbing process of rotating the rollers on the liquid crystal alignment film.
  • the photo alignment layer may include a photo aligning compound.
  • the photo-orienting compound may be in an aligned state so as to have a directivity.
  • the photo-aligning compound is orientatedly ordered in a predetermined direction through irradiation of light, and is capable of aligning adjacent liquid crystal compounds or the like in the aligned state, and is selected without limitation as long as it is known in the art .
  • the rubbing alignment layer may exist in an aligned state so as to be oriented.
  • the rubbing alignment layer is a material that is aligned in a predetermined direction through a rubbing process and aligns adjoining liquid crystal compounds or the like in a predetermined direction in the alignment state, and may include any materials known in the art without limitation.
  • the thickness of the liquid crystal alignment layer may be 50 nm or more and 300 nm or less, specifically 70 nm or more and 300 nm or less, 50 nm or more and 200 nm or less, or 70 nm or more and 200 nm or less, Specifically, it may be 90 nm or more and 200 nm or less, 70 nm or more and 110 nm or less, or 90 nm or more and 110 nm or less.
  • the present invention is not limited thereto, and the thickness of the liquid crystal alignment layer can be appropriately controlled according to the conditions of the pulse laser irradiated to the multilayer structure.
  • the liquid crystal alignment layer has a thickness that is relatively thinner than the thickness of the substrate, damage to the conductive layer is minimized during the process of etching the liquid crystal alignment layer through pulsed laser irradiation. Thereby maximizing the barrier properties of moisture and / or air bubbles.
  • the liquid crystal alignment layer has a problem that the barrier property of moisture and / or bubbles of the liquid crystal alignment film is deteriorated due to a low adhesive force with the sealant. Specifically, when the liquid crystal coloring device including the liquid crystal alignment film is produced due to the low adhesive force with the sealing material, the liquid crystal alignment film is not smoothly adhered to the liquid crystal alignment film, Water and / or air bubbles are inflowed from the outside.
  • a part of the alignment film is etched by pulse laser irradiation to remove etching residue of the alignment film,
  • the liquid crystal can be applied to other areas of the alignment film that are not etched. Accordingly, it is possible to improve the barrier property of moisture and / or bubbles of the liquid crystal coloring element formed by joining the two or more liquid crystal alignment films together.
  • the multilayered structure may include a protective film provided on the liquid crystal alignment layer.
  • the protective film minimizes the damage of the conductive film by the pulse laser irradiation, and the etching residual of the liquid crystal alignment film provided on the conductive film The water can be sufficiently released.
  • the liquid crystal alignment layer and the conductive layer have a thickness smaller than that of the substrate, when a pulsed laser is irradiated in a process of etching a region of the liquid crystal alignment layer, not only the liquid crystal alignment layer, . More specifically, when the liquid crystal alignment film includes a polymer substrate, external moisture and / or bubbles may flow into the liquid crystal side of the alignment film as the conductive film is damaged.
  • the method for manufacturing a liquid crystal alignment film according to an embodiment of the present invention even when one region of the liquid crystal alignment film is etched through irradiation of the pulse laser by providing a protective film on the liquid crystal alignment film, The damage of the conductive film provided under one region of the liquid crystal alignment film can be minimized. Further, since the protective film is provided on the liquid crystal alignment layer, the etch residue of the liquid crystal alignment layer, which is etched through one region through the irradiation of the pulse laser, can be transferred and removed to the protective film.
  • a conventional method for producing a liquid crystal alignment film includes a method in which a patterned liquid crystal alignment film is provided on the conductive film so as to have a liquid crystal alignment film in which one region of the conductive film is exposed, a method in which a protective film is removed, A method of cutting the liquid crystal alignment film or a method of dissolving the liquid crystal alignment film using an organic solvent or the like after removing the protective film was used.
  • the conventional method is incompatible with the continuous process of the roll-to-roll method as described above, and the conductive film is damaged and the economical efficiency can not be secured.
  • the method for manufacturing a liquid crystal alignment film according to one embodiment of the present invention can minimize the damage of the conductive film by providing the protective film on the liquid crystal alignment film, and can remove the etching residue of the liquid crystal alignment film There is an advantage that economical efficiency is ensured in the process because no separate process is carried out.
  • the light transmittance of the protective film at a wavelength of 343 nm may be 50% or more, specifically 70% or more.
  • the present invention is not limited thereto, and the light transmittance of the protective film can be appropriately controlled according to the conditions of the pulse laser irradiated to the multilayer structure.
  • the light transmittance of the protective film at the wavelength of 343 nm is such that when the pulsed laser having a wavelength of 343 nm is irradiated, the amount of light transmitted through the protective film It may be a ratio of light quantity.
  • the protective film may comprise at least one of polyethylene terephthalate, polyethylene, polyolefin and ethylene vinyl acetate.
  • the thickness of the protective film is 20 ⁇ ⁇ or more and 60 ⁇ ⁇ or less, 20 ⁇ ⁇ to 50 ⁇ ⁇ , 30 ⁇ ⁇ to 60 ⁇ ⁇ , 30 ⁇ ⁇ to 50 ⁇ ⁇ , 30 ⁇ ⁇ to 45 ⁇ ⁇ , 35 mu m or more and 50 mu m or less, or 35 mu m or more and 45 mu m or less.
  • the present invention is not limited thereto, and the thickness of the protective film may be appropriately adjusted according to the conditions of the pulse laser irradiated to the multilayer structure.
  • the protective film has a thickness greater than that of the liquid crystal alignment film and the conductive film, when the pulse laser for etching the liquid crystal alignment film is irradiated, And a pulse laser having an energy enough to etch the liquid crystal alignment film but not damage the conductive film can be irradiated.
  • the multilayered structure may further include an adhesive layer between the protective film and the liquid crystal alignment layer.
  • the multilayer structure including the adhesive layer may include a substrate, a conductive film, a liquid crystal alignment layer, an adhesive layer, and a protective film sequentially.
  • the adhesive layer may be in contact with the upper surface of the liquid crystal alignment film and the lower surface of the protective film.
  • the pulsed laser can be irradiated to a multilayered structure in which a substrate, a conductive film, a liquid crystal alignment film, an adhesive layer, and a protective film are sequentially provided.
  • the adhesive layer in the process of removing / peeling the protective film after the pulse laser irradiation, may cause the etching residue of the liquid crystal alignment film to be removed or peeled from the conductive film.
  • the adhesive layer is in contact with the etching residue of the liquid crystal alignment layer and the protective film, and as the protective film is removed / peeled, the etching residue in contact with the adhesive layer can be removed / peeled at the same time.
  • the thickness of the pressure-sensitive adhesive layer may be 5 ⁇ ⁇ or more and 20 ⁇ ⁇ or less, 5 ⁇ ⁇ or more and 15 ⁇ ⁇ or less, 10 ⁇ ⁇ or more and 20 ⁇ ⁇ or less, or 10 ⁇ ⁇ or more and 15 ⁇ ⁇ or less.
  • the present invention is not limited thereto, and the thickness of the adhesive layer may be appropriately adjusted according to the conditions of the pulse laser irradiated to the multilayer structure.
  • the adhesive layer may include at least one of an acrylic adhesive, a natural rubber adhesive, a synthetic rubber adhesive, and a silicone adhesive.
  • the multilayered structure may further include two or more mutually spaced spacers between the conductive film and the liquid crystal alignment film.
  • the spacer may be impregnated between the conductive film and the liquid crystal alignment film.
  • the multilayered structure further includes a spacer so that even if the step of compressing at least two liquid crystal alignment films is performed in the process of manufacturing the liquid crystal coloring device including the liquid crystal alignment film, Can be maintained constant.
  • the spacer may be a Bead Spacer (B / S) or a Column Spacer (C / S).
  • the bead spacer may mean a spherical spacer in the form of a bead
  • the column spacer may mean a spacer in the form of a column.
  • the multilayer structure when the spacer is a column spacer, may be in the form of a substrate, a conductive film, a column spacer, a liquid crystal alignment layer, and a protective film sequentially.
  • the liquid crystal alignment layer may include a photo alignment layer and a rubbing alignment layer sequentially, and the bead spacer may be provided between the photo alignment layer and the rubbing alignment layer. That is, when the spacer is a bead spacer, the multilayer structure may be in the form of a substrate, a conductive film, a photo alignment layer, a bead spacer, a rubbing orientation layer, and a protective film sequentially.
  • the method for manufacturing a liquid crystal alignment film includes a step of irradiating a pulse laser on the side of the multilayer structure to etch one region of the liquid crystal alignment film.
  • the step of etching one region of the liquid crystal alignment film includes providing an etch mask on the protective film, irradiating a pulse laser to a region of the protective film exposed by the etch mask Lt; / RTI >
  • a pulsed laser may refer to a pulsed laser known in the art, and specifically a pulsed laser, i.e., a laser with temporal oscillation and quiescence.
  • the pulse laser may be a pico second laser, specifically a picosecond pulse laser.
  • a picosecond laser may mean a laser with a pulse width of pico (10 -12 ) seconds.
  • the pulse width may mean a time interval at which the amplitude becomes half of the rise time and fall time of the pulse of the pulse laser.
  • the wavelength of the pulsed laser is in the range of from 10 nm to 400 nm, more preferably from 10 nm to 100 nm, from 100 to 280 nm, from 280 nm to 320 nm, from 320 nm or more and 400 nm or less, or 343 nm. That is, the pulse laser may be a microwave ultraviolet laser.
  • the laser of the infrared wavelength is irradiated instead of the microwave ultraviolet laser, not only the liquid crystal alignment layer but also the conductive film may be peeled off.
  • the interface may be peeled off due to the difference in thermal expansion coefficient between the conductive film and the substrate.
  • the conductive film is not peeled, damage of the conductive film can be minimized, and only the liquid crystal alignment layer can be selectively etched.
  • the maximum pulse energy of the pulse laser is 50 ⁇ J or more and 100 ⁇ J or less, and the pulse energy of the pulse laser may be 5% or more and 15% or less of the maximum pulse energy.
  • the maximum pulse energy of the pulse laser is 50 ⁇ J or more and 100 ⁇ J or less, 50 ⁇ J or more and 90 ⁇ J or less, 50 ⁇ J or more and 80 ⁇ J or less, 60 ⁇ J or more and 100 ⁇ J or less, 60 ⁇ J or more and 90 ⁇ J or less, ⁇ J or less, 70 ⁇ J or more and 100 ⁇ J or less, 70 ⁇ J or more and 90 ⁇ J or less, 70 ⁇ J or more and 80 ⁇ J or less, or 75 ⁇ J.
  • the maximum pulse energy of the pulse laser is not limited to the above-mentioned range, but can be appropriately adjusted according to the thickness and / or properties of the substrate, the conductive film, the liquid crystal alignment film, the adhesive layer and the protective film.
  • the pulse energy of the pulse laser is 5% to 15%, 5% to 12%, 8% to 15%, or 8% to 12% ≪ / RTI >
  • the present invention is not limited thereto, and the pulse energy of the pulse laser can be appropriately adjusted according to the thickness and / or physical properties of the substrate, the conductive film, the liquid crystal alignment film, the adhesive layer, and the protective film.
  • the frequency of the pulse laser is 10 kHz or more and 400 kHz or less, 10 kHz or more and 300 kHz or less, 100 kHz or more and 400 kHz or less, 100 kHz or more and 300 kHz or less, 100 kHz or more and 250 kHz or less, 150 kHz to 300 kHz, 150 kHz to 250 kHz, or 200 kHz.
  • the present invention is not limited thereto, and can be suitably controlled according to the thickness and / or properties of the substrate, the conductive film, the liquid crystal alignment film, the adhesive layer, and the protective film.
  • the spot interval of the pulse laser may be 10 ⁇ or more and 100 ⁇ or less, 10 ⁇ or more and 75 ⁇ or less, 10 ⁇ or more and 50 ⁇ or less, or 10 ⁇ or more and 15 ⁇ or less.
  • the present invention is not limited thereto, and can be suitably controlled according to the thickness and / or properties of the substrate, the conductive film, the liquid crystal alignment film, the adhesive layer, and the protective film.
  • the spot interval of the pulse laser may mean a distance between points where the pulse laser is irradiated.
  • the present invention is not limited thereto, and can be suitably controlled according to the thickness and / or properties of the substrate, the conductive film, the liquid crystal alignment film, the adhesive layer, and the protective film.
  • the irradiation speed of the pulse laser is 0.1 m / s or more and 10 m / s or less, 0.1 m / s or more and 7 m / s or less, 0.5 m / less than 5 m / s, more than 1 m / s less than 7 m / s, less than 1 m / s less than 5 m / s, or less than 3.5 m / s have.
  • the present invention is not limited thereto, and can be suitably controlled according to the thickness and / or properties of the substrate, the conductive film, the liquid crystal alignment film, the adhesive layer, and the protective film.
  • the pulse laser may be irradiated in the direction of the liquid crystal alignment film in the protective film.
  • the pulse laser can be irradiated while focusing on the surface of the liquid crystal alignment film adjacent to the protective film.
  • the pulse laser is irradiated with a focus on the surface of the liquid crystal alignment film adjacent to the protective film so that the pulse laser can be irradiated through the protective film and thereby the damage of the conductive film can be prevented.
  • the pulse energy can be filtered by the protective film according to the focus of the pulsed laser, and the liquid crystal alignment layer can be etched by the pulsed laser having the filtered pulse energy.
  • the liquid crystal alignment film irradiated with the pulse laser can be uniformly etched, thereby minimizing the damage of the conductive film.
  • the pulse laser may be irradiated on the side of the multi-layer structure without the protective film or on the side of the multi-layer structure including the protective film, not on the side of the multi-layer structure from which the protective film is removed, May be removed after the pulse laser is irradiated to the multilayer structure side.
  • the pulsed laser is irradiated on the side of the multilayer structure from which the protective film is removed, there may occur a problem that not only the liquid crystal alignment layer but also the conductive film are damaged by irradiation with the pulse laser.
  • the pulsed laser may be irradiated over a whole area of the liquid crystal alignment film to be etched, rather than at both ends of one region of the liquid crystal alignment film to be etched.
  • the pulsed laser When the pulsed laser is irradiated only to both ends of one region of the liquid crystal alignment film to cut the liquid crystal alignment film, in order to remove one region of the liquid crystal alignment film, the pulse laser transmits both the protective film and the liquid crystal alignment film And when the pulse laser is irradiated through the liquid crystal alignment film, the conductive film may be damaged. Further, in the case where the pulsed laser is irradiated only to both ends of one region of the liquid crystal alignment film, a separate process for removing the residues of the liquid crystal alignment film is required, so that the manufacture of a liquid crystal discoloration element including the liquid crystal alignment film There is a possibility that the process becomes complicated.
  • one region of the liquid crystal alignment film is etched without transmitting the pulse laser through the liquid crystal alignment film
  • the etching residue of the liquid crystal alignment film can be peeled off or removed together with peeling or removing of the protective film, so that the manufacturing process of the liquid crystal coloring film including the liquid crystal alignment film can be simplified.
  • the method for manufacturing a liquid crystal alignment film includes removing the protective film to expose a region of the conductive film. And a liquid crystal alignment layer having a region where the etching residue of the liquid crystal alignment layer is removed by exposing one region of the conductive film.
  • the liquid crystal alignment film may include a substrate, a conductive film, and a liquid crystal alignment film sequentially having an exposed region of the conductive film.
  • the liquid crystal alignment layer may include a region in which etching residue of the liquid crystal alignment layer etched according to the irradiation of the pulse laser is removed.
  • the step of exposing one region of the conductive film may be performed by removing the protective film together with the remnants of the liquid crystal alignment film etched by the pulse laser irradiation.
  • the step of exposing one region of the conductive film may be performed by the pulse laser irradiation and removing the protective film together with the remnant of the liquid crystal alignment film in contact with the adhesive layer. Accordingly, one region of the conductive film from which the etching residue of the liquid crystal alignment layer is removed can be exposed to the outside.
  • the sealing material in the manufacturing process of the liquid crystal coloring element including the liquid crystal alignment film, may be applied onto one region of the conductive film exposed to the outside.
  • the conductive film has better adhesion to the sealing material than the liquid crystal alignment film, excellent moisture and / or bubble blocking characteristics of the liquid crystal coloring device manufactured by sticking two or more of the liquid crystal alignment films can be realized.
  • liquid crystal may be coated on the liquid crystal alignment layer where the conductive film is not exposed.
  • FIG. 1 is a schematic view of a method of manufacturing a liquid crystal alignment film according to an embodiment of the present invention.
  • a multilayered structure 100 in which a substrate 10, a conductive film 20, a liquid crystal orientation film 30 and a protective film 40 are sequentially provided is prepared, and the multilayered structure ( 100 can be irradiated with the pulse laser 200.
  • the pulse laser 200 may be irradiated through the protective film 40 and focused on the surface of the liquid crystal alignment layer 30 adjacent to the protective film 40.
  • the liquid crystal alignment layer etched portion 31 may be formed by irradiation of the pulse laser 200.
  • the liquid crystal alignment film 110 has the liquid crystal alignment film 30 (hereinafter, referred to as " liquid crystal alignment film ") having the regions in which the substrate 10, the conductive film 20, May be sequentially provided.
  • FIG. 2 is a plan view of a liquid crystal alignment film according to an embodiment of the present invention.
  • FIG. 2 is only one example of various embodiments of the present invention, and the liquid crystal orientation film of the present invention is not limited to that shown in FIG.
  • a relatively bright region indicates a liquid crystal alignment layer
  • a relatively dark region indicates a region where the etching residue of the liquid crystal alignment layer is removed to expose the conductive layer.
  • Fig. 3 shows a digital camera image at some stage of the method for producing a liquid crystal alignment film according to one embodiment of the present invention.
  • Fig. 3 (a) shows a digital camera image of a multi-layer structure in which a pulse laser is irradiated and a protective film is not removed
  • Fig. 3 (b) Shows a digital camera image of the multilayered structure and the protective film after removal of the protective film.
  • a portion indicated by an arrow (?) Represents one region of the liquid crystal alignment film that is etched by irradiation with the pulse laser.
  • the liquid crystal alignment film according to one embodiment of the present invention shows that the etching residue of the liquid crystal alignment film etched by laser irradiation is removed in contact with the protective film .
  • the liquid crystal alignment film produced according to one embodiment of the present invention can be used as a film for a liquid crystal discoloration element.
  • the liquid crystal alignment film may include a substrate, a conductive film, and a liquid crystal alignment layer having a region in which the conductive film is exposed.
  • the liquid crystal alignment film may be one produced by the above-described method for producing a liquid crystal alignment film. Further, the liquid crystal alignment film can be applied to a film for a liquid crystal discoloration element.
  • Each of the substrate, the conductive film and the liquid crystal alignment film of the liquid crystal alignment film according to one embodiment of the present invention may be the same as the substrate, the conductive film and the liquid crystal alignment film in the method for producing a liquid crystal alignment film.
  • An embodiment of the present invention provides a method of manufacturing a liquid crystal discoloration element including the liquid crystal alignment film.
  • one embodiment of the present invention includes: preparing the liquid crystal alignment film as an upper film and a lower film; Applying a sealant on the exposed conductive film of one region of the lower film; Applying a liquid crystal on a liquid crystal alignment layer from which one region of the lower film has not been removed; And attaching the upper film and the lower film on the lower film, and bonding the lower film and the upper film to each other.
  • the sealing material and the liquid crystal may be selected from those generally known in the art as a sealing material and a liquid crystal, respectively, and the kind thereof is not limited / limited.
  • FIG. 4 is a schematic view of a method of manufacturing a liquid crystal discoloration element according to an embodiment of the present invention.
  • the liquid crystal discoloration element is prepared by preparing a liquid crystal alignment film according to an embodiment of the present invention as an upper film and a lower film, and a sealing material is formed on the conductive film on which one region of the lower film is exposed, Applying liquid crystal on a liquid crystal alignment film on which one region of the conductive film of the film has not been removed, and attaching the lower film and the upper film to each other.
  • Layer structure in which a substrate, a conductive film, a photo alignment layer, a bead spacer, a rubbing orientation layer, an adhesive layer, and a protective film were sequentially formed.
  • Example 1-1 to Example 3-4 Laser irradiation after removal of protective film
  • a pulse laser having the information shown in Table 2 below was focused on the rubbing alignment film contacting with the protective film, and the pulse laser was irradiated in the direction of the rubbing alignment film from the protective film to the multilayered structure of any one of Production Examples 1 to 3, And the rubbing alignment film was etched.
  • the protective film of the multi-layer structure on which the rubbing alignment film was etched was peeled off to prepare a liquid crystal alignment film.
  • Pulsed laser irradiation equipment Trumicro 5050, Trumpf, picosecond laser Maximum pulse energy ( ⁇ J) 75 Wavelength (nm) 343 Frequency (kHz) 200 Etching interval ( ⁇ ) 15 Investigation speed (m / s) 3.5 Focal length 160
  • Multi-layer structure Pulse energy Example 1-1 Production Example 1 8% of maximum pulse energy Examples 1-2 Production Example 1 9% of maximum pulse energy Example 1-3 Production Example 1 10% of maximum pulse energy Examples 1-4 Production Example 1 11% of maximum pulse energy Example 2-1 Production Example 2 10% of maximum pulse energy Example 2-2 Production Example 2 11% of maximum pulse energy Example 2-3 Production Example 2 12% of maximum pulse energy Example 3-1 Production Example 3 8% of maximum pulse energy Example 3-2 Production Example 3 9% of maximum pulse energy Example 3-3 Production Example 3 10% of maximum pulse energy Example 3-4 Production Example 3 11% of maximum pulse energy
  • the protective film of the multilayered structure of any one of Production Examples 1 to 3 was removed and a pulsed laser of the same information as in Table 2 was irradiated with focus on the rubbing alignment film by controlling the pulse energy.
  • the alignment residue was removed using a commercially available adhesive tape (3M).
  • Multi-layer structure Pulse energy Comparative Example 1-1 Production Example 1 6% of maximum pulse energy Comparative Example 1-2 Production Example 1 7% of maximum pulse energy Comparative Example 1-3 Production Example 1 8% of maximum pulse energy Comparative Example 1-4 Production Example 1 9% of maximum pulse energy Comparative Example 2-1 Production Example 2 6% of maximum pulse energy Comparative Example 2-2 Production Example 2 7% of maximum pulse energy Comparative Example 2-3 Production Example 2 8% of maximum pulse energy Comparative Example 2-4 Production Example 2 9% of maximum pulse energy Comparative Example 3-1 Production Example 3 6% of maximum pulse energy Comparative Example 3-2 Production Example 3 7% of maximum pulse energy Comparative Example 3-3 Production Example 3 8% of maximum pulse energy Comparative Example 3-4 Production Example 3 9% of maximum pulse energy
  • the protective film of the multi-layered structure in Production Example 3 was removed, and a pulsed laser with an infrared wavelength shown in Table 5 below was irradiated directly onto the rubbing alignment film.
  • the etching residue of the alignment film was removed by using toluene, A film was prepared.
  • Fig. 5 shows an optical microscope image of the conductive film surface and the adhesion surface of the protective film of Examples 1-1 to 1-3.
  • FIGS. 5 (a) and 5 (b) specifically show an optical microscope image of the conductive film surface of Example 1-1 and the adhesion surface of the protective film
  • FIGS. 5 (c) and 5 (E) and (f) are optical microscope images of the conductive film surface and the adhesion surface of the protective film of Examples 1-3, respectively.
  • the area indicated by the arrow (?) In FIG. 5 represents the etching residue of the rubbing alignment film which is etched by the irradiation of the pulse laser and transferred to the protective film.
  • the etching residue of the rubbing alignment film etched in FIGS. 5A, 5C and 5E is transferred onto the bonding surface of the protective film according to FIGS. 5B, 5D and 5F .
  • FIGS. 6 (a) and 6 (b) specifically show optical microscope images of the conductive film surface and the adhesion surface of the protective film of Example 2-1
  • FIGS. 6 (c) and (E) and (f) are optical microscope images of the conductive film surface and the adhesion surface of the protective film of Example 2-3, respectively.
  • the area indicated by an arrow (?) In FIG. 6 represents the etching residue of the rubbing alignment film which is etched by the irradiation of the pulse laser and transferred to the protective film.
  • the area indicated by a circle corresponds to a column spacer.
  • Figs. 7 (a) and 7 (b) show optical microscope images of the conductive film surface and the adhesion surface of the protective film of Example 3-1
  • (E) and (f) are optical microscope images of the conductive film surface and the adhesion surface of the protective film of Example 3-3, respectively.
  • FIG. 7 shows the etching residue of the rubbing alignment film and the photo alignment film which are etched by the pulse laser irradiation and transferred to the protective film.
  • the area indicated by a dark circle corresponds to a bead spacer.
  • 8 (a), 8 (b) and 8 (c) specifically show an optical microscope image of the surface of the conductive film of the liquid crystal alignment film according to Comparative Example 1-2, Comparative Example 1-3 and Comparative Example 1-4, .
  • the upper portion shows a region where the rubbing alignment film is not etched and the lower portion shows a region where the rubbing alignment film is etched, with reference to the center line of each of FIGS. 8A, 8B and 8C.
  • the conductive film is damaged due to irradiation of the pulse laser through a region indicated by a relatively dark dot below the center line although there is a difference in degree depending on the pulse energy of the pulsed laser to be irradiated.
  • FIGS. 9 (a) and 9 (b) show optical microscope images of the surface of the conductive film of the liquid crystal alignment film according to Comparative Example 2-3 and Comparative Example 2-4, respectively.
  • 9A and 9B the upper portion shows a region where the rubbing alignment film is not etched, and the lower portion shows a region where the rubbing alignment film is etched.
  • the protective film is removed irrespective of the shape of the multilayer structure, and when the laser is irradiated directly on the surface of the liquid crystal alignment film, I could confirm.
  • the upper part shows the area irradiated with the pulse laser
  • the lower part shows the area where the pulse laser is not irradiated.
  • the greater the sheet resistance value the greater the degree of damage to the conductive film.
  • the degree of damage of the conductive film increases in the case where the pulse laser having the same pulse energy is irradiated, the column spacer is provided, the bead spacer is provided, and the spacer is not provided.
  • the two liquid crystal aligning films were used as an upper film and a lower film, a sealing material was applied to a portion where the conductive film of the lower film was exposed, and liquid crystal was applied to a portion of the liquid crystal alignment film where the conductive film was not exposed.
  • the upper film was provided on the sealing material and the lower film to which the liquid crystal was applied, and the sample was bonded to produce a sample.
  • FIG. 1 A schematic view of the specimen used in the experiment and a digital camera image thereof are shown in Fig.
  • Fig. 11 (a) is a schematic view of the above specimen
  • Fig. 11 (b) is a digital camera image of the specimen according to Examples 1-4 and 3-4.
  • the specimens according to Examples 1-4 and 3-4 were left for about 70 hours at a temperature of 60 DEG C and a relative humidity of 90% and the specimen according to Comparative Example 4 was heated at a temperature of 60 DEG C and a relative humidity of 90 % For about 300 hours to perform a high temperature / high humidity durability test.
  • FIG. 12A corresponds to the example 1-4
  • FIG. 12B corresponds to the digital camera image of the evaluation result of the high temperature and high humidity durability test of the example 3-4.
  • test piece prepared using the liquid crystal alignment film produced according to the embodiment of the present invention does not generate bubbles even under high temperature and high humidity conditions.
  • FIG. 13 shows a digital camera image before and after the evaluation of the specimen for evaluation of high-temperature, high-humidity durability test of Comparative Example 4.
  • FIG. 13 (a) shows a digital camera image of a specimen for evaluation of high temperature and high humidity endurance test of Comparative Example 4 after evaluation, and (b) after evaluation.
  • the bubbles are generated when the conductive film having the bubble blocking property is damaged. Therefore, it can be confirmed that the film for orienting the liquid crystal according to one embodiment of the present invention has minimized damage to the conductive film.
  • an ultraviolet ultraviolet laser unit in a picosecond unit is irradiated to produce a liquid crystal alignment film in which the damage of the conductive film is minimized .
  • the liquid crystal discoloration device including the liquid crystal alignment film thus manufactured is confirmed to have minimized damage to the conductive film by blocking moisture and / or air bubbles from entering the device under the conditions of high temperature and high humidity. I could.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Manufacturing & Machinery (AREA)
  • Liquid Crystal (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)

Abstract

본 발명은 연속 공정에 부합되는 액정 배향용 필름의 제조방법에 관한 것이다.

Description

액정 배향용 필름의 제조방법
본 명세서는 2017년 9월 25일에 한국특허청에 제출된 한국 특허 출원 제10-2017-0123422호의 출원일의 이익을 주장하며, 그 내용 전부는 본 발명에 포함된다.
본 발명은 액정 배향용 필름의 제조방법에 관한 것이다.
디스플레이, 스마트 윈도우 또는 선루프와 같은 플렉서블 전자 소자 제품에 적용될 수 있는 액정 변색 소자에 대한 연구가 지속되고 있다.
특히, 액정 변색 소자용 필름은 기재 상부에 전도성 막이 도입되고, 전도성 막 상·하부에 유전필름, 전기적(electrical) 또는 전기광학적(electro-optical) 기능을 갖는 광배향 필름, 갭 스페이서 등이 구비된 액정 배향용 필름의 형태를 포함한다. 또한, 액정을 중심으로 상하부에 구비된 액정 변색 소자용 필름은 기존의 롤-투-롤(Roll-to-Roll; R2R) 기반의 연속 공정으로 제작된다.
상기 액정 변색 소자용 필름에 포함되는 전도성 막은 기재 필름 상부에 투명하고 전도성을 갖는 금속 산화막 층이 형성되어 액정의 배향을 제어하기 위한 전계(electrical-field)를 형성할 수 있을 뿐만 아니라, 고온·고습 조건에서 발생하는 기포를 차단(gas barrier)할 수 있으며, 상기 액정 배향막은 액정에 배향 기능을 부여할 수 있다.
상기 액정 변색 소자용 필름을 제품 용도에 맞게 가공하는 단계에서, 전기적 단락(short-circuit) 및 재단 등의 공정도 중요하지만, 액정을 중심으로 상·하부에 구비된 액정 변색 소자용 필름의 접착성 및 내구성을 부여하는 공정이 특히 중요하다.
또한, 상기 액정을 중심으로 한 상·하부 액정 변색 소자용 필름 간의 합착을 위해서는, 상기 액정 배향막이 상기 상하부 액정 변색 소자용 필름 사이에 구비되는 밀봉재(sealant)와의 우수한 접착력을 가져야 하지만, 상기 액정 배향막이 상기 밀봉재와의 우수한 접착력을 가지지 못하는 경우, 상기 액정 배향막을 선택적으로 제거하여 상기 전도성 막을 노출시키는 공정이 추가적으로 요구되었다.
이는 전도성 막에 포함되는 금속 산화물을 기반으로 하는 투명 전극의 전도성뿐만 아니라, 밀봉재와의 우수한 접착 특성 및 고온 고습의 임계적 환경에서 플라스틱 기재 내에서 발생할 수 있는 기포(Outgassing)의 차단 특성 역시 활용하고자 하는 것이다.
종래 상기 액정 배향막을 선택적으로 제거하는 방법으로서, 유기 용제를 처리하는 등의 습식 식각을 이용하였으나, 상기 습식 식각은 연속 공정의 효율을 저해할 뿐 아니라, 상기 유기 용제의 사용에 따른 경제적, 환경적 문제점이 있었다.
또한, 디스플레이 장치의 내구성 향상을 위해서는 상기 액정 배향막이 내화학성 및 고온 안정성을 위한 경화 물성이 요구되는 최근의 기술적 추세임을 감안할 때, 상기 습식 공정을 대체할 수 있는 공정의 개발이 필요한 실정이다.
상기 유기 용제 사용에 따른 문제점을 해결하기 위하여, 이미 형성된 액정 배향막을 제거하는 것이 아닌, 포토리소그래피(photolithography), 잉크젯(inkjet), 슬롯 다이(slot dye), 스크린 프린팅(screen printing) 등의 패터닝(patterning) 공정을 이용하여 상기 액정 배향막을 형성하는 방법이 시도된 바 있다.
다만, 상기 액정 배향막을 형성하는 공정은 롤-투-롤 기반의 연속 공정에 부합하기 않는 문제점이 있었다. 구체적으로, 상기 액정 배향막을 형성하는 공정은 소형 액정 소자에서 유연 소자로의 대면적화(大面積化)를 위한 공정 설비를 확보하기 위한 제조 공정 설비의 가격이 높아지고, 생산성이 저하되는 문제점이 있다.
이에, 단순하면서도, 롤-투-롤 연속 공정에 부합되는 가공 공정의 개발을 통하여 제조비용을 절감할 수 있는 액정 배향용 필름, 구체적으로 액정 변색 소자용 필름의 제조 방법에 대한 연구가 필요한 실정이다.
[선행기술문헌]
[특허문헌]
일본 특허공개공보 JP 1997-266234 A
본 발명은 액정 배향용 필름의 제조방법을 제공하고자 한다.
다만, 본 발명이 해결하고자 하는 과제는 상기 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 하기의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 실시상태는, 기재, 전도성 막, 액정 배향막 및 보호필름이 순차적으로 구비된 다층 구조체를 준비하는 단계; 상기 다층 구조체 측에 펄스 레이저를 조사하여, 상기 액정 배향막의 일 영역을 식각하는 단계; 및 상기 보호필름을 제거하여, 상기 전도성 막의 일 영역을 노출시키는 단계;를 포함하고, 상기 펄스 레이저는 상기 보호필름에서 상기 액정 배향막 방향으로 조사되는 것인 액정 배향용 필름의 제조방법을 제공한다.
본 발명의 일 실시상태는, 롤-투-롤 연속 공정에 부합되는 장점이 있다. 구체적으로, 본 발명의 일 실시상태는 유기 용제를 이용하여 별도의 식각 잔여물을 세척하는 공정을 수반하지 않으므로, 연속 공정에 부합되고, 친환경적이며, 경제적인 장점이 있다.
본 발명의 일 실시상태에 따라 제조된 액정 배향용 필름은, 전도성 막의 손상을 최소화하여 외부 환경 변화에 따른 수분 및/또는 기포의 차단 특성을 최대화한 액정 변색 소자를 제공할 수 있는 장점이 있다.
본 발명의 일 실시상태에 따른 제조된 액정 배향용 필름의 제조방법은, 전도성 막 상에 존재하는 식각된 액정 배향막 잔여물의 양을 최소화한 장점이 있다.
본 발명의 일 실시상태에 따라 제조된 액정 배향용 필름은, 밀봉재와의 접착력이 높은 장점이 있다.
도 1은 본 발명의 일 실시상태에 따른 액정 배향용 필름의 제조방법의 모식도를 나타낸 것이다.
도 2는 본 발명의 일 실시상태에 따른 액정 배향용 필름의 평면도를 나타낸 것이다.
도 3은 본 발명의 일 실시상태에 따라 펄스 레이저가 조사된 다층 구조체, 상기 다층 구조체에서 보호필름을 제거하는 과정, 상기 액정 배향용 필름 및 상기 보호필름의 디지털 카메라 화상을 나타낸 것이다.
도 4는 본 발명의 일 실시상태에 따라 제조된 액정 배향용 필름을 이용한 액정 변색 소자의 제조방법의 모식도를 나타낸 것이다.
도 5는 실시예 1-1 내지 실시예 1-3의 액정 배향용 필름 표면 및 보호필름 표면의 광학현미경 화상을 나타낸 것이다.
도 6은 실시예 2-1 내지 실시예 2-3의 액정 배향용 필름 표면 및 보호필름 표면의 광학현미경 화상을 나타낸 것이다.
도 7은 실시예 3-1 내지 실시예 3-3의 액정 배향용 필름 표면 및 보호필름 표면의 광학현미경 화상을 나타낸 것이다.
도 8은 비교예 1-2 내지 비교예 1-4의 액정 배향용 필름 표면의 광학현미경 화상을 나타낸 것이다.
도 9는 비교예 2-3 내지 비교예 2-4의 액정 배향용 필름 표면의 광학현미경 화상을 나타낸 것이다.
도 10은 비교예 3-1 내지 비교예 3-4의 액정 배향용 필름 표면의 광학현미경 화상을 나타낸 것이다.
도 11은 고온·고습 내구성 실험시 사용된 시편의 모식도 및 이의 디지털 카메라 화상을 나타낸 것이다.
도 12는 실시예 1-4 및 실시예 3-4의 고온·고습 내구성 평가 결과의 디지털 카메라 화상을 나타낸 것이다.
도 13 은 비교예 4의 고온·고습 내구성 평가 결과의 디지털 카메라 화상을 나타낸 것이다.
본원 명세서 전체에서, 어떤 부재가 다른 부재 "상에" 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.
본원 명세서 전체에서, 어떤 부분이 어떤 구성 요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
본원 명세서 전체에서 사용되는 정도의 용어 "~(하는) 단계" 또는 "~의 단계"는 "~를 위한 단계"를 의미하지 않는다.
이하, 본 명세서에 대하여 더욱 상세하게 설명한다.
본 발명의 일 실시상태는, 기재, 전도성 막, 액정 배향막 및 보호필름이 순차적으로 구비된 다층 구조체를 준비하는 단계; 상기 다층 구조체 측에 펄스 레이저를 조사하여, 상기 액정 배향막의 일 영역을 식각하는 단계; 및 상기 보호필름을 제거하여, 상기 전도성 막의 일 영역을 노출시키는 단계;를 포함하고, 상기 펄스 레이저는 상기 보호필름에서 상기 액정 배향막 방향으로 조사되는 것인 액정 배향용 필름의 제조방법을 제공한다.
이하에서는, 상기 제조방법의 각 단계별로 상세하게 설명하기로 한다.
다층 구조체를 준비하는 단계
본 발명의 일 실시상태에 따르면, 상기 액정 배향용 필름의 제조방법은 기재, 전도성 막, 액정 배향막 및 보호필름이 순차적으로 구비된 다층 구조체를 준비하는 단계를 포함한다.
본 발명의 일 실시상태에 따르면, 상기 다층 구조체는 기재를 포함할 수 있다. 상기 기재는 고분자 기재일 수 있다. 구체적으로, 상기 고분자 기재는 폴리에틸렌테레프탈레이트(polyethyleneterephtalate, PET), 에틸렌 비닐 아세테이트(ethylene vinyl acetate, EVA), 사이클릭 올레핀 중합체(cyclic olefin polymer, COP), 사이클릭 올레핀 공중합체(cyclic olefin copolymer, COC), 폴리아크릴레이트(polyacrylate, PAC), 폴리카보네이트(polycarbonate, PC), 폴리에틸렌(polyethylene, PE), 폴리메틸메타크릴레이트(polymethylmethacrylate, PMMA), 폴리에테르에테르케톤(polyetheretherketon, PEEK), 폴리에틸렌나프탈레이트(polyethylenenaphthalate, PEN), 폴리에테르이미드(polyetherimide, PEI), 폴리이미드(polyimide, PI), 트리아세틸셀룰로오스(triacetylcellulose, TAC), MMA(methyl methacrylate) 및 불소계 수지 중 적어도 하나를 포함할 수 있다. 다만, 상기 고분자 기재의 종류를 한정하는 것은 아니고, 휨 특성을 가지는 고분자로서, 당업계에 알려진 것이라면 제한 없이 선택될 수 있다
본 발명의 일 실시상태에 따르면, 상기 다층 구조체는 상기 고분자 기재를 포함함으로써, 상기 액정 배향용 필름의 기계적 내구성 및 구조적 가변성을 확보할 수 있다. 구체적으로, 상기 다층 구조체가 상기 고분자 기재를 포함함으로써, 상기 액정 배향용 필름의 휨 특성을 구현할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 기재의 두께는 50 ㎛ 이상 200 ㎛ 이하일 수 있고, 구체적으로 70 ㎛ 이상 200 ㎛ 이하, 50 ㎛ 이상 150 ㎛ 이하, 또는 70 ㎛ 이상 150 ㎛ 이하일 수 있으며, 보다 구체적으로 90 ㎛ 이상 150 ㎛ 이하, 70 ㎛ 이상 110 ㎛ 이하, 또는 90 ㎛ 이상 110 ㎛ 이하일 수 있다. 상기 기재의 두께를 전술한 범위로 조절함으로써, 제조되는 액정 배향용 필름의 내구성 및 휨 특성을 동시에 구현할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 다층 구조체는 상기 기재 상에 구비되는 전도성 막을 포함할 수 있다. 상기 기재가 고분자 기재인 경우, 상기 액정 배향용 필름이 내구성 및 구조적 가변성을 동시에 구현하도록 할 수 있다. 다만, 상기 고분자 기재는 일반적으로 투습성이 낮지 않기 때문에 외부의 환경 변화에 의한 수분 및/또는 기포가 투과되는 문제점이 있었다.
반면, 본 발명의 일 실시상태에 따르면, 상기 다층 구조체의 기재 상에 무기물 기반의 전도성 막을 구비함으로써, 상기 액정 배향용 필름의 전기적 전도성을 확보할 수 있으며, 외부의 환경 변화에 의한 수분 및/또는 기포의 차단 특성을 용이하게 확보할 수 있다.
구체적으로, 상기 전도성 막은 상기 액정 배향막 상부에 도포될 수 있는 액정의 배향을 제어하기 위한 전계를 형성할 수 있고, 외부로부터 공급된 전하를 전달할 수 있는 전기적 전도성이 있으며, 높은 표면 에너지를 가질 수 있는 금속 산화막으로서, 밀봉재와의 높은 접착력을 구현할 수 있다. 또한, 상기 전도성 막은 고온·고습 등의 외부 환경 변화에 따른 수분 및/또는 기포를 차단할 수 있는 특성이 있다.
본 발명의 일 실시상태에 따르면, 상기 전도성 막은 전도성 고분자, 전도성 금속 및 전도성 금속 산화물 중 적어도 하나를 포함할 수 있으며, 구체적으로 전도성 금속 및 전도성 금속 산화물 중 적어도 하나를 포함할 수 있다.
구체적으로, 상기 전도성 막은 금, 은, 니켈, 구리 및 팔라듐 중 적어도 하나의 금속, 금속 산화물 또는 합금 물질을 포함할 수 있다. 또한, 상기 전도성 막은 ITO(indium tin oxide), AZO(antimony-doped zinc oxide), ATO(antimony-doped tin oxide), SnO, RuO2, 및 IrO2 중 적어도 하나를 포함할 수 있다. 다만, 상기 전도성 막에 포함되는 물질의 종류를 한정하는 것은 아니며, 수분 및/또는 기포를 차단할 수 있고, 액정의 배향을 제어하기 위한 전계를 형성할 수 있으며, 전하를 공급할 수 있고, 밀봉재와의 접착력이 우수한 물질을 제한 없이 사용할 수 있다.
또한, 상기 전도성 막은 투명성을 갖도록 구비될 수 있으며, 당업계에 알려진 다양한 소재 및 형성방법을 적용하여, 투명성을 가지는 전도성 막을 구현할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 전도성 막의 두께는 20 nm 이상 100 nm 이하일 수 있고, 구체적으로 30 nm 이상 100 nm 이하, 20 nm 이상 80 nm 이하, 또는 30 nm 이상 80 nm 이하일 수 있으며, 보다 구체적으로 40 nm 이상 80 nm 이하, 30 nm 이상 70 nm 이하, 또는 40 nm 이상 70 nm 이하일 수 있다. 다만, 이에 한정되는 것은 아니며, 상기 다층 구조체에 조사되는 펄스 레이저의 조건에 따라 상기 전도성 막의 두께를 적절하게 조절할 수 있다.
상기 전도성 막은 상기 기재의 두께보다 매우 얇은 두께를 가지므로, 상기 전도성 막 상에 구비될 수 있는 상기 액정 배향막을 식각하는 과정에서, 상기 전도성 막이 손상되는 문제점이 발생할 수 있다. 또한, 상기 전도성 막이 손상되는 경우, 상기 액정 배향용 필름 수분 및/또는 기포의 차단 특성을 구현할 수 없는 문제점이 발생할 수 있다. 따라서, 상기 전도성 막의 손상을 최소화하여야, 상기 액정 배향용 필름의 외부 환경 변화에 따른 수분 및/또는 기포의 차단 특성을 최대화할 수 있다.
이에, 본 발명의 일 실시상태에 따른 액정 배향용 필름의 제조방법은, 상기 다층 구조체에 포함된 액정 배향막 상부에 보호필름을 구비함으로써, 상기 펄스 레이저 조사에 의한 전도성 막의 손상을 최소화할 수 있다. 이를 통해, 전술한 문제점이 발생되는 것을 효과적으로 방지할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 다층 구조체는 상기 전도성 막 상에 구비되는 액정 배향막을 포함할 수 있다. 상기 전도성 막 상에 액정 배향막이 구비됨으로써, 상기 액정 배향막 상에 도포되는 액정의 배향이 제어될 수 있다.
본 발명의 일 실시상태에 따르면, 상기 액정 배향막은 광배향막 및 러빙(rubbing) 배향막 중 적어도 하나를 포함할 수 있다. 또한, 상기 액정 배향막은 상기 광배향막 및 러빙 배향막이 적층된 구조로 구비될 수 있다.
본 발명의 일 실시상태에 따르면, 상기 광배향막의 경우에는 광조사를 통해, 액정 배향막 상에 도포될 수 있는 액정의 배향을 제어할 수 있다. 또한, 상기 러빙 배향막의 경우에는 상기 액정 배향막 상에 롤러를 회전시키는 러빙(rubbing) 공정을 통해, 상기 액정 배향막 상에 도포될 수 있는 액정의 배향을 제어할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 광배향막은 광배향성 화합물을 포함할 수 있다. 상기 광배향성 화합물은 방향성을 가지도록 정렬된 상태로 존재할 수 있다. 또한, 상기 광배향성 화합물은 광의 조사를 통하여 소정 방향으로 정렬(orientationally ordered)되고, 상기 정렬 상태에서 인접하는 액정 화합물 등을 일정한 방향으로 배향시킬 수 있는 화합물로서, 당업계에 알려진 것이라면 제한 없이 선택될 수 있다.
본 발명의 일 실시상태에 따르면, 상기 러빙 배향막은 방향성을 가지도록 정렬된 상태로 존재할 수 있다. 또한, 상기 러빙 배향막은 러빙 공정을 통하여 소정 방향으로 정렬되고, 상기 정렬 상태에서 인접하는 액정 화합물 등을 일정한 방향으로 배향시킬 수 있는 물질로서, 당업계에 알려진 것이라면 제한 없이 포함할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 액정 배향막의 두께는 50 nm 이상 300 nm 이하일 수 있고, 구체적으로 70 nm 이상 300 nm 이하, 50 nm 이상 200 nm 이하 또는 70 nm 이상 200 nm 이하일 수 있으며, 보다 구체적으로 90 nm 이상 200 nm 이하, 70 nm 이상 110 nm 이하, 또는 90 nm 이상 110 nm 이하일 수 있다. 다만, 이에 한정되는 것은 아니며, 상기 다층 구조체에 조사되는 펄스 레이저의 조건에 따라 상기 액정 배향막의 두께를 적절하게 조절할 수 있다.
상기 액정 배향막은 상기 기재의 두께보다 상대적으로 얇은 두께를 가지므로, 펄스 레이저 조사를 통하여 상기 액정 배향막을 식각하는 과정에서, 상기 전도성 막의 손상을 최소화하여야, 상기 액정 배향용 필름의 외부 환경 변화에 따른 수분 및/또는 기포의 차단 특성을 최대화할 수 있다.
전술한 바와 같이, 상기 액정 배향막은 밀봉재와의 낮은 접착력으로 인하여 액정 배향용 필름의 수분 및/또는 기포의 차단성이 저하되는 문제가 있었다. 구체적으로, 상기 액정 배향막은 밀봉재와의 낮은 접착력 때문에, 상기 액정 배향용 필름을 포함하는 액정 변색 소자를 제조한 경우, 상기 액정 배향용 필름 간 합착이 원활하게 이루어지지 않아, 외부 환경 변화에 따라 외부로부터 수분 및/또는 기포가 유입되는 문제점이 있었다.
반면, 본 발명의 일 실시상태에 따른 액정 배향용 필름의 제조방법은 펄스 레이저 조사를 통하여 상기 배향막의 일 영역을 식각하여 상기 배향막의 식각 잔여물을 제거하고, 일 영역이 노출되는 상기 전도성 막의 상부에 밀봉재를 도포하며, 식각되지 않은 상기 배향막의 다른 영역에는 액정을 도포할 수 있다. 이를 통해, 상기 액정 배향용 필름을 상부 및 하부로 포함하고, 상기 2 이상의 액정 배향용 필름이 합착되어 형성된 액정 변색 소자의 수분 및/또는 기포의 차단성을 향상시킬 수 있다.
본 발명의 일 실시상태에 따르면, 상기 다층 구조체는 상기 액정 배향막 상에 구비되는 보호필름을 포함할 수 있다. 펄스 레이저를 조사하여 상기 액정 배향막의 일 영역을 식각하는 과정에서, 상기 보호필름은 상기 펄스 레이저 조사에 의한 상기 전도성 막의 손상을 최소화함과 동시에, 상기 전도성 막 상에 구비된 상기 액정 배향막의 식각 잔여물이 충분히 박리되도록 할 수 있다.
구체적으로, 전술한 바와 같이 상기 액정 배향막 및 상기 전도성 막은 상기 기재보다 얇은 두께를 가지므로, 상기 액정 배향막의 일 영역을 식각하는 과정에서 펄스 레이저를 조사하는 경우, 상기 액정 배향막뿐 아니라 상기 전도성 막이 손상되는 문제점이 있었다. 보다 구체적으로, 상기 액정 배향용 필름이 고분자 기재를 포함하는 경우, 상기 전도성 막이 손상됨에 따라 외부의 수분 및/또는 기포가 배향막 상에 구비된 액정 측에 유입되는 문제점이 있었다.
반면, 본 발명의 일 실시상태에 따른 액정 배향용 필름의 제조방법은 상기 액정 배향막 상에 보호필름을 구비함으로써, 상기 펄스 레이저의 조사를 통하여 상기 액정 배향막의 일 영역을 식각하는 경우에도, 상기 식각된 액정 배향막의 일 영역 하부에 구비된 상기 전도성 막의 손상을 최소화할 수 있다. 또한, 상기 액정 배향막 상에 보호필름이 구비됨에 따라, 펄스 레이저의 조사를 통하여 일 영역이 식각된 액정 배향막의 식각 잔여물을 상기 보호필름으로 전사(transfer) 및 제거시킬 수 있다.
종래의 액정 배향용 필름의 제조방법은 전도성 막의 일 영역이 노출된 액정 배향막을 구비하기 위하여, 패터닝된 액정 배향막을 상기 전도성 막 상에 구비하는 방법, 보호필름을 제거한 후 액정 배향막에 직접 레이저를 조사하여 액정 배향막을 절단하는 방법 또는 보호필름을 제거한 후 유기 용제 등을 이용하여 액정 배향막을 녹여내는 방법을 사용하였다.
다만, 종래의 방법은 전술한 바와 같이 롤-투-롤 방식의 연속 공정에는 부합되지 못하고, 전도성 막이 손상되며, 경제성을 확보하지 못한 문제점이 있었다.
이에 본 발명의 일 실시상태에 따른 액정 배향용 필름의 제조방법은 상기 액정 배향막 상에 보호필름을 구비함으로써, 전도성 막의 손상을 최소화할 수 있고, 펄스 레이저 조사에 따른 액정 배향막 식각 잔여물을 제거하는 별도의 공정을 수반하지 않아 공정상 경제성을 확보한 장점이 있다.
본 발명의 일 실시상태에 따르면, 상기 보호필름의 343 nm 파장에서의 광투과도는 50 % 이상, 구체적으로 70 % 이상일 수 있다. 다만, 이에 한정되는 것은 아니며, 상기 다층 구조체에 조사되는 펄스 레이저의 조건에 따라 상기 보호필름의 광투과도를 적절하게 조절할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 343 nm 파장에서의 상기 보호필름의 광투과도는, 343 nm 의 파장을 갖는 펄스 레이저를 조사하는 경우, 보호필름에 조사되는 광량에 대한 상기 보호필름을 투과하는 광량의 비를 의미하는 것일 수 있다.
본 발명의 일 실시상태에 따르면, 상기 보호필름은 폴리에틸렌테레프탈레이트, 폴레에틸렌, 폴리올레핀 및 에틸렌비닐 아세테이트 중 적어도 하나를 포함할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 보호필름의 두께는 20 ㎛ 이상 60 ㎛ 이하, 20 ㎛ 이상 50 ㎛ 이하, 30 ㎛ 이상 60 ㎛ 이하, 30 ㎛ 이상 50 ㎛ 이하, 30 ㎛ 이상 45 ㎛ 이하, 35㎛ 이상 50 ㎛ 이하, 또는 35 ㎛ 이상 45 ㎛ 이하일 수 있다. 다만, 이에 한정되는 것은 아니며, 상기 다층 구조체에 조사되는 펄스 레이저의 조건에 따라 상기 보호필름의 두께를 적절하게 조절할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 보호필름은 상기 액정 배향막 및 상기 전도성 막 보다 두꺼운 두께를 가지므로, 상기 액정 배향막을 식각하기 위한 펄스 레이저가 조사되는 경우, 상기 펄스 레이저가 상기 범위의 두께를 갖는 보호필름을 투과하며, 상기 액정 배향막의 식각이 가능하면서도 상기 전도성 막을 손상시키지 않는 정도의 에너지를 갖는 펄스 레이저가 조사될 수 있다.
본 발명의 일 실시상태에 따르면, 상기 다층 구조체는 상기 보호필름 및 상기 액정 배향막 사이에 점착층을 더 포함할 수 있다. 구체적으로, 상기 점착층을 포함함에 따라 상기 다층 구조체는 기재, 전도성 막, 액정 배향막, 점착층 및 보호필름이 순차적으로 구비되는 것일 수 있다. 또한, 상기 점착층은 상기 액정 배향막의 상부 면 및 상기 보호필름의 하부 면에 접하는 것일 수 있다. 또한, 상기 펄스 레이저는 기재, 전도성 막, 액정 배향막, 점착층 및 보호필름이 순차적으로 구비된 다층 구조체에 조사될 수 있다.
본 발명의 일 실시상태에 따르면, 상기 점착층은 상기 펄스 레이저 조사 후, 상기 보호필름을 제거/박리하는 과정에서, 상기 액정 배향막의 식각 잔여물이 상기 전도성 막으로부터 제거 또는 박리되게 할 수 있다. 구체적으로, 상기 점착층은 액정 배향막의 식각 잔여물, 및 상기 보호필름과 접하고 있으며, 상기 보호필름이 제거/박리됨에 따라, 상기 점착층에 접하는 상기 식각 잔여물이 동시에 제거/박리될 수 있다.
본 발명의 일 실시상태에 따르면, 상기 점착층의 두께는 5 ㎛ 이상 20 ㎛ 이하, 5 ㎛ 이상 15 ㎛ 이하, 10 ㎛ 이상 20 ㎛ 이하, 또는 10 ㎛ 이상 15 ㎛ 이하일 수 있다. 다만, 이에 한정되는 것은 아니며, 상기 다층 구조체에 조사되는 펄스 레이저의 조건에 따라 상기 점착층의 두께를 적절하게 조절할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 점착층은 아크릴계, 천연 고무계, 합성 고무계 및 실리콘계 중 적어도 하나의 점착제를 포함할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 다층 구조체는 상기 전도성 막 및 상기 액정 배향막 사이에 2 이상의 서로 이격된 스페이서를 더 포함할 수 있다. 또한, 상기 스페이서는 상기 전도성 막과 상기 액정 배향막 사이에 함침되는 것일 수 있다. 상기 다층 구조체가 스페이서를 더 포함함으로써, 이후 상기 액정 배향용 필름을 포함하는 액정 변색 소자를 제조하는 과정에서, 2 이상의 상기 액정 배향용 필름을 압착하는 공정을 수행하더라도, 상기 전도성 막과 상기 액정 배향막 사이의 간격을 일정하게 유지할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 스페이서는 비드스페이서(Bead Spacer, B/S) 또는 칼럼스페이서(Column Spacer, C/S)일 수 있다. 구체적으로, 상기 비드스페이서는 구슬(Bead) 형태인 구형의 스페이서를 의미할 수 있고, 상기 칼럼스페이서는 기둥(column) 형태의 스페이서를 의미할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 스페이서가 칼럼스페이서인 경우, 상기 다층 구조체는 기재, 전도성 막, 칼럼스페이서, 액정 배향막 및 보호필름이 순차적으로 구비된 형태일 수 있다.
또한, 상기 스페이서가 비드스페이서인 경우, 상기 액정 배향막은 광배향막 및 러빙 배향막이 순차적으로 구비된 것일 수 있고, 상기 비드스페이서는 상기 광배향막 및 러빙 배향막 사이에 구비되는 것일 수 있다. 즉, 상기 스페이서가 비드스페이서인 경우, 상기 다층 구조체는 기재, 전도성 막, 광배향막, 비드스페이서, 러빙 배향막 및 보호필름이 순차적으로 구비된 형태일 수 있다.
액정 배향막의 일 영역을 식각하는 단계
본 발명의 일 실시상태에 따르면, 상기 액정 배향용 필름의 제조방법은 상기 다층 구조체 측에 펄스 레이저를 조사하여, 상기 액정 배향막의 일 영역을 식각하는 단계를 포함한다.
본 발명의 일 실시상태에 따르면, 상기 액정 배향막의 일 영역을 식각하는 단계는 상기 보호필름 상에 식각 마스크를 구비한 후, 상기 식각 마스크에 의하여 상기 보호필름이 노출되는 영역에 펄스 레이저를 조사하는 것일 수 있다. 본 명세서에서, 펄스 레이저는 당업계에서 알려진 펄스 레이저를 의미할 수 있으며, 구체적으로 펄스 형태의 레이저, 즉 시간적으로 발진 및 정지가 있는 레이저를 의미할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 펄스 레이저는 피코 초(pico second) 레이저, 구체적으로 피코 초 펄스 레이저일 수 있다. 본 명세서에서 피코 초 레이저는 펄스 폭이 피코(pico, 10-12)초 단위인 레이저를 의미할 수 있다. 구체적으로, 상기 펄스 폭은 펄스 레이저의 펄스의 상승 시간과 하강 시간에서 진폭이 절반이 되는 시각의 간격을 의미할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 펄스 레이저의 파장은 자외선 영역의 파장, 구체적으로 10 nm 이상 400 nm 이하, 10 nm 이상 100 nm 이하, 100 이상 280 nm 이하, 280 nm 이상 320 nm 이하, 320 nm 이상 400 nm 이하, 또는 343 nm 일 수 있다. 즉, 상기 펄스 레이저는 초단파 자외선 레이저일 수 있다.
상기 초단파 자외선 레이저 대신 적외선 파장의 레이저를 조사하는 경우, 상기 액정 배향막뿐 아니라, 상기 전도성 막 역시 박리되는 문제점이 발생할 수 있다. 구체적으로, 상기 다층 구조체에 적외선 파장, 구체적으로 장파장 적외선 레이저를 조사하는 경우, 전도성 막과 기재 사이의 열팽창률 차이에 의하여 계면이 박리되는 문제점이 발생할 수 있다.
반면, 본 발명의 일 실시상태에 따르면, 상기 다층 구조체에 초단파 자외선 레이저를 조사함으로써, 상기 전도성 막은 박리되지 않고, 상기 전도성 막의 손상을 최소화할 수 있으며, 상기 액정 배향막만 선택적으로 식각할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 펄스 레이저의 최대 펄스 에너지는 50 μJ 이상 100 μJ 이하이고, 상기 펄스 레이저의 펄스 에너지는 상기 최대 펄스 에너지의 5 % 이상 15 % 이하일 수 있다. 구체적으로, 상기 펄스 레이저의 최대 펄스 에너지는 50 μJ 이상 100 μJ 이하, 50 μJ 이상 90 μJ 이하, 50 μJ 이상 80 μJ 이하, 60 μJ 이상 100 μJ 이하, 60 μJ 이상 90 μJ 이하, 60 μJ 이상 80 μJ 이하, 70 μJ 이상 100 μJ 이하, 70 μJ 이상 90 μJ 이하, 70 μJ 이상 80 μJ 이하, 또는 75 μJ 일 수 있다. 다만, 상기 펄스 레이저의 최대 펄스 에너지를 전술한 범위로 한정하는 것은 아니고, 상기 기재, 전도성 막, 액정 배향막, 점착층 및 보호필름의 두께 및/또는 물성에 따라 적절하게 조절될 수 있다.
또한, 본 발명의 일 실시상태에 따르면, 상기 펄스 레이저의 펄스 에너지는 상기 최대 펄스 에너지의 5 % 이상 15 % 이하, 5 % 이상 12 % 이하, 8 % 이상 15 % 이하, 또는 8 % 이상 12 % 이하일 수 있다. 다만, 이에 한정되는 것은 아니며, 전술한 기재, 전도성 막, 액정 배향막, 점착층 및 보호필름의 두께 및/또는 물성에 따라 상기 펄스 레이저의 펄스 에너지는 적절하게 조절될 수 있다.
본 발명의 일 실시상태에 따르면, 상기 펄스 레이저의 주파수는 10 kHz 이상 400 kHz 이하, 10 kHz 이상 300 kHz 이하, 100 kHz 이상 400 kHz 이하, 100 kHz 이상 300 kHz 이하, 100 kHz 이상 250 kHz 이하, 150 kHz이상 300 kHz 이하, 150 kHz 이상 250 kHz 이하, 또는 200 kHz 일 수 있다. 다만, 이에 한정되는 것은 아니며, 전술한 기재, 전도성 막, 액정 배향막, 점착층 및 보호필름의 두께 및/또는 물성에 따라 적절하게 조절될 수 있다.
본 발명의 일 실시상태에 따르면, 상기 펄스 레이저의 스폿 간격은 10㎛ 이상 100 ㎛ 이하, 10 ㎛ 이상 75 ㎛ 이하, 10 ㎛ 이상 50 ㎛ 이하, 또는 10 ㎛ 이상 15 ㎛ 이하일 수 있다. 다만, 이에 한정되는 것은 아니며, 전술한 기재, 전도성 막, 액정 배향막, 점착층 및 보호필름의 두께 및/또는 물성에 따라 적절하게 조절될 수 있다.
본 명세서에서, 상기 펄스 레이저의 스폿 간격은 상기 펄스 레이저가 조사되는 지점 간의 거리를 의미할 수 있다. 다만, 이에 한정되는 것은 아니며, 전술한 기재, 전도성 막, 액정 배향막, 점착층 및 보호필름의 두께 및/또는 물성에 따라 적절하게 조절될 수 있다.
본 발명의 일 실시상태에 따르면, 상기 펄스 레이저의 조사 속도는 0.1 m/s 이상 10 m/s 이하, 0.1 m/s 이상 7 m/s 이하, 0.5 m/s 이상 10 m/s 이하, 0.5 m/s 이상 7 m/s 이하, 0.5 m/s 이상 5 m/s 이하, 1 m/s 이상 7 m/s 이하, 1 m/s 이상 5 m/s 이하, 또는 3.5 m/s 일 수 있다. 다만, 이에 한정되는 것은 아니며, 전술한 기재, 전도성 막, 액정 배향막, 점착층 및 보호필름의 두께 및/또는 물성에 따라 적절하게 조절될 수 있다.
본 발명의 일 실시상태에 따르면, 상기 펄스 레이저는 상기 보호필름에서 상기 액정 배향막 방향으로 조사되는 것일 수 있다. 또한, 상기 펄스 레이저는 상기 보호필름에 인접한 상기 액정 배향막의 표면에 초점을 맞추어 조사될 수 있다. 상기 펄스 레이저가 상기 보호필름에 인접한 상기 액정 배향막의 표면에 초점을 맞추어 조사됨으로써, 상기 펄스 레이저는 상기 보호필름을 투과하여 조사될 수 있으며, 이로써 상기 전도성 막의 손상을 방지할 수 있다.
구체적으로, 상기 펄스 레이저가 조사되는 초점에 따라 상기 보호필름에 의하여 펄스 에너지가 여과될 수 있고, 여과된 펄스 에너지를 가지는 펄스 레이저에 의하여 상기 액정 배향막이 식각될 수 있다. 또한, 상기 펄스 레이저가 조사되는 상기 액정 배향막이 균일하게 식각될 수 있고, 이에 따른 상기 전도성 막의 손상을 최소화할 수 있다.
또한, 상기 펄스 레이저는 상기 보호필름이 구비되지 않은 다층 구조체 또는 상기 보호필름이 제거된 다층 구조체 측에 조사되는 것이 아니고, 상기 보호필름을 포함하는 다층 구조체 측에 조사되는 것일 수 있으며, 상기 보호필름은 상기 다층 구조체 측에 상기 펄스 레이저가 조사된 후 제거되는 것일 수 있다. 상기 보호필름이 제거된 다층 구조체 측에 상기 펄스 레이저가 조사되는 경우, 상기 액정 배향막뿐 아니라, 상기 전도성 막까지 상기 펄스 레이저의 조사에 의하여 손상되는 문제점이 발생할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 펄스 레이저는 식각하고자 하는 상기 액정 배향막의 일 영역의 양측 말단이 아닌, 식각하고자 하는 상기 액정 배향막의 일 영역 전체에 조사되는 것일 수 있다.
상기 펄스 레이저가 상기 액정 배향막의 일 영역의 양측 말단에만 조사되어, 상기 액정 배향막을 절단하는 경우, 상기 액정 배향막의 일 영역을 제거하기 위해서는 상기 펄스 레이저가 상기 보호필름 및 상기 액정 배향막을 모두 투과하여 조사되어야 하고, 상기 펄스 레이저가 상기 액정 배향막을 투과하며 조사되는 경우, 상기 전도성 막이 손상되는 문제점이 발생할 수 있다. 또한, 상기 펄스 레이저가 상기 액정 배향막의 일 영역의 양측 말단에만 조사되는 경우, 상기 액정 배향막의 잔여물을 제거하기 위한 별도의 공정이 요구되어, 상기 액정 배향용 필름을 포함하는 액정 변색 소자의 제조공정이 복잡해지는 문제점이 발생할 수 있다.
반면, 본 발명의 일 실시상태와 같이 상기 펄스 레이저를 식각하고자 하는 상기 액정 배향막의 일 영역 전체에 조사하는 경우, 상기 펄스 레이저가 상기 액정 배향막을 투과하지 않고서도 상기 액정 배향막의 일 영역을 식각할 수 있고, 상기 보호필름을 박리 또는 제거하면서 상기 액정 배향막의 식각 잔여물을 함께 박리 또는 제거할 수 있으므로, 상기 액정 배향용 필름을 포함하는 액정 변색 소자의 제조공정을 단순화할 수 있다.
전도성 막의 일 영역을 노출시키는 단계
본 발명의 일 실시상태에 따르면 상기 액정 배향용 필름의 제조방법은 상기 보호필름을 제거하여, 상기 전도성 막의 일 영역을 노출시키는 단계를 포함한다. 상기 전도성 막의 일 영역이 노출됨으로써, 액정 배향막의 식각 잔여물이 제거된 영역을 갖는 액정 배향막이 구비될 수 있다.
구체적으로, 상기 전도성 막의 일 영역을 노출시킴으로써, 상기 액정 배향용 필름은 기재, 전도성 막 및 상기 전도성 막이 노출된 영역을 갖는 액정 배향막이 순차적으로 구비된 것일 수 있다. 또한, 상기 액정 배향막은 상기 펄스 레이저의 조사에 따라 식각된 액정 배향막의 식각 잔여물이 제거된 영역을 포함하는 것일 수 있다.
본 발명의 일 실시상태에 따르면, 상기 전도성 막의 일 영역을 노출시키는 단계는 상기 펄스 레이저 조사에 의하여 식각된 상기 액정 배향막의 잔여물과 함께 상기 보호필름을 제거하여 수행되는 것일 수 있다.
구체적으로, 상기 전도성 막의 일 영역을 노출시키는 단계는 상기 펄스 레이저 조사에 의하여 식각되고, 상기 점착층에 접하는 상기 액정 배향막의 잔여물과 함께 상기 보호필름을 제거하여 수행되는 것일 수 있다. 이에 따라, 액정 배향막의 식각 잔여물이 제거된 상기 전도성 막의 일 영역이 외부로 노출될 수 있다.
본 발명의 일 실시상태에 따르면, 상기 액정 배향용 필름을 포함하는 액정 변색 소자의 제조 과정에서, 상기 외부로 노출된 전도성 막의 일 영역 상에 밀봉재가 도포될 수 있다.
전술한 바와 같이 상기 전도성 막은 상기 액정 배향막보다 밀봉재와의 접착력이 우수하므로, 2 이상의 상기 액정 배향용 필름을 합착하여 제조되는 액정 변색 소자의 우수한 수분 및/또는 기포 차단 특성을 구현할 수 있다.
또한, 상기 전도성 막이 노출되지 않는 상기 액정 배향막 상에는 액정이 도포될 수 있다.
도 1 은 본 발명의 일 실시상태에 따른 액정 배향용 필름의 제조방법의 모식도를 나타낸 것이다. 도 1의 (a)를 참고하면, 기재(10), 전도성 막(20), 액정 배향막(30) 및 보호필름(40)이 순차적으로 구비된 다층 구조체(100)가 준비되고, 상기 다층 구조체(100) 측에 펄스 레이저(200)가 조사될 수 있다. 구체적으로, 상기 펄스 레이저(200)는 상기 보호필름(40)을 투과하고, 상기 보호필름(40)에 인접한 상기 액정 배향막(30)의 표면에 초점을 맞추어 조사될 수 있다. 상기 펄스 레이저(200)의 조사에 따라, 상기 액정 배향막 식각 부분(31)이 형성될 수 있다.
또한, 도 1의 (a)에 따르면, 상기 보호필름(40)에 접하고 상기 펄스 레이저(200)에 의하여 형성된 액정 배향막 식각 부분(31)은, 상기 보호필름(40)의 제거 또는 박리시 상기 보호필름(40)에 접하여, 다층 구조체(100) 로부터 제거될 수 있다.
그 결과, 본 발명의 일 실시상태에 따른 액정 배향용 필름(110)은, 상기 기재(10), 상기 전도성 막(20) 및 상기 전도성 막(20)이 노출되는 영역을 갖는 상기 액정 배향막(30)이 순차적으로 구비된 형태일 수 있다.
도 2는 본 발명의 일 실시상태에 따른 액정 배향용 필름의 평면도를 나타낸 것이다. 다만, 도 2는 본 발명의 다양한 실시상태 중 하나의 예시에 불과하며, 본 발명의 액정 배향용 필름은 도 2 에 나타난 것으로 제한되는 것은 아니다.
도 2 에 따르면, 상대적으로 밝은 영역은 액정 배향막을 나타낸 것이고, 상대적으로 어두운 영역은 상기 액정 배향막의 식각 잔여물이 제거되어, 상기 전도성 막이 노출된 일 영역을 나타낸 것이다.
본 발명의 일 실시상태에 따른 액정 배향용 필름의 제조방법의 일부 단계의 디지털 카메라 화상을 도 3에 나타내었다.
도 3의 (a)는 펄스 레이저가 조사되고, 보호필름이 제거되지 않은 다층 구조체의 디지털 카메라 화상을 나타낸 것이고, (b)는 보호필름을 제거하는 과정의 디지털 카메라 화상을 나타낸 것이며, (c)는 보호필름 제거 후의 다층 구조체 및 보호필름의 디지털 카메라 화상을 나타낸 것이다.
또한, 도 3에서 화살표(→)로 나타낸 부분은 상기 펄스 레이저의 조사로 식각되는 액정 배향막의 일 영역을 나타낸 것이다.
도 3에 따르면, 본 발명의 일 실시상태에 따른 액정 배향용 필름의 제조방법에 따라 제조된 액정 배향용 필름은 레이저 조사에 의하여 식각된 액정 배향막의 식각 잔여물이 보호필름에 접하여 제거되는 것을 확인할 수 있다.
본 발명의 일 실시상태에 따라 제조된 액정 배향용 필름은 액정 변색 소자용 필름으로 사용될 수 있다.
본 발명의 일 실시상태는, 액정 배향용 필름을 제공한다. 구체적으로, 상기 액정 배향용 필름은 기재, 전도성 막 및 상기 전도성 막이 노출되는 영역을 갖는 액정 배향막이 순차적으로 구비된 것일 수 있다. 또한, 상기 액정 배향용 필름은 전술한 액정 배향용 필름의 제조방법에 의해 제조된 것일 수 있다. 또한, 상기 액정 배향용 필름은 액정 변색 소자용 필름에 적용될 수 있다.
본 발명의 일 실시상태에 따른 상기 액정 배향용 필름의 기재, 전도성 막 및 액정 배향막 각각은, 상기 액정 배향용 필름의 제조방법에서의 기재, 전도성 막 및 액정 배향막과 동일할 수 있다.
본 발명의 일 실시상태는, 상기 액정 배향용 필름을 포함하는 액정 변색 소자의 제조방법을 제공한다. 구체적으로, 본 발명의 일 실시상태는, 상기 액정 배향용 필름을 상부필름 및 하부필름으로 준비하는 단계; 상기 하부필름의 일 영역이 노출된 전도성 막 상에 밀봉재를 도포하는 단계; 상기 하부 필름의 일 영역이 제거되지 않은 액정 배향막 상에 액정을 도포하는 단계; 및 상기 하부필름 상에 상기 상부필름을 구비하고, 상기 하부필름과 상기 상부필름을 합착하는 단계;를 포함하는 액정 변색 소자의 제조방법을 제공한다.
본 발명의 일 실시상태에 따르면, 상기 밀봉재 및 상기 액정은 각각 밀봉재 및 액정으로서, 당업계에서 알려진 일반적인 것으로부터 선택되는 것일 수 있고, 그 종류가 제한/한정 되는 것은 아니다.
본 발명의 일 실시상태에 따른 액정 변색 소자의 제조방법의 모식도를 도 4 에 나타내었다.
도 4에 따르면, 상기 액정 변색 소자는, 본 발명의 일 실시상태에 따른 액정 배향용 필름을 상부필름 및 하부필름으로 준비하고, 상기 하부필름의 일 영역이 노출된 전도성 막 상에는 밀봉재를, 상기 하부필름의 전도성 막의 일 영역이 제거되지 않은 액정 배향막 상에는 액정을 도포하며, 상기 하부필름과 상기 상부필름을 서로 합착함으로써 제조되는 것일 수 있다.
[부호의 설명]
10: 기재
20: 전도성 막
30: 액정 배향막
31: 액정 배향막 식각 부분
40: 보호필름
100: 다층 구조체
110: 액정 배향용 필름
200: 펄스 레이저
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 기술하는 실시예들에 한정되는 것으로 해석되지 않는다. 본 명세서의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.
[ 제조예 - 다층 구조체의 제조]
제조예 1 - Clear 시편
기재, 전도성 막, 러빙 배향막, 점착층 및 보호필름이 순차적으로 구비된 다층 구조체를 제조하였다.
제조예 2 - C/S 시편
기재, 전도성 막, 칼럼스페이서, 러빙 배향막, 점착층 및 보호필름이 순차적으로 구비된 다층 구조체를 제조하였다.
제조예 3 - B/S 시편
기재, 전도성 막, 광배향막, 비드스페이서, 러빙 배향막, 점착층 및 보호필름이 순차적으로 구비된 다층 구조체를 제조하였다.
상기 제조예 1 내지 제조예 3 의 구체적인 정보는 하기 표 1 과 같다.
Figure PCTKR2018011264-appb-T000001
* COP: Cyclo Olefin Polymer* PC: Polycarbonate
* ITO: Indium Tin Oxide
* PI: Polyimide
* PET: Polyethylene Terephthalate
[ 실시예 1-1 내지 실시예 3-4 - 보호필름 미제거 후 레이저 조사]
제조예 1 내지 제조예 3 중 어느 하나의 다층 구조체에 하기 표 2 와 같은 정보의 펄스 레이저를 상기 상기 보호필름에 접하는 상기 러빙 배향막에 초점을 맞추어, 상기 보호필름에서 상기 러빙 배향막 방향으로, 펄스 레이저의 펄스 에너지를 조절하며 조사하며 상기 러빙 배향막을 식각하였다.
상기 러빙 배향막이 식각된 다층 구조체의 보호필름을 박리하여 액정 배향용 필름을 제조하였다.
펄스 레이저 조사 장비 Trumicro 5050, Trumpf社, picosecond laser
최대 펄스 에너지(μJ) 75
파장(nm) 343
주파수(kHz) 200
식각 간격(㎛) 15
조사 속도(m/s) 3.5
초점거리 160
실시예 1-1 내지 실시예 3-4 의 구체적인 정보는 하기 표 3 과 같다.
다층 구조체 펄스 에너지
실시예 1-1 제조예 1 최대 펄스 에너지의 8 %
실시예 1-2 제조예 1 최대 펄스 에너지의 9 %
실시예 1-3 제조예 1 최대 펄스 에너지의 10 %
실시예 1-4 제조예 1 최대 펄스 에너지의 11 %
실시예 2-1 제조예 2 최대 펄스 에너지의 10 %
실시예 2-2 제조예 2 최대 펄스 에너지의 11 %
실시예 2-3 제조예 2 최대 펄스 에너지의 12 %
실시예 3-1 제조예 3 최대 펄스 에너지의 8 %
실시예 3-2 제조예 3 최대 펄스 에너지의 9 %
실시예 3-3 제조예 3 최대 펄스 에너지의 10 %
실시예 3-4 제조예 3 최대 펄스 에너지의 11 %
[ 비교예 1-1 내지 비교예 3-4 - 보호필름 제거 후 레이저 조사]
제조예 1 내지 제조예 3 중 어느 하나의 다층 구조체의 보호필름을 제거하고, 상기 표 2 와 같은 정보의 펄스 레이저를 펄스 에너지를 조절하여 상기 러빙 배향막에 직접 초점을 맞추어 조사하였다.
상기 펄스 레이저 조사후, 시판되는 점착 테이프(3M社製)를 이용하여 배향 잔여물을 제거하였다.
비교예 1-1 내지 비교예 3-4 의 구체적인 정보는 하기 표 4 와 같다.
다층 구조체 펄스 에너지
비교예 1-1 제조예 1 최대 펄스 에너지의 6 %
비교예 1-2 제조예 1 최대 펄스 에너지의 7 %
비교예 1-3 제조예 1 최대 펄스 에너지의 8 %
비교예 1-4 제조예 1 최대 펄스 에너지의 9 %
비교예 2-1 제조예 2 최대 펄스 에너지의 6 %
비교예 2-2 제조예 2 최대 펄스 에너지의 7 %
비교예 2-3 제조예 2 최대 펄스 에너지의 8 %
비교예 2-4 제조예 2 최대 펄스 에너지의 9 %
비교예 3-1 제조예 3 최대 펄스 에너지의 6 %
비교예 3-2 제조예 3 최대 펄스 에너지의 7 %
비교예 3-3 제조예 3 최대 펄스 에너지의 8 %
비교예 3-4 제조예 3 최대 펄스 에너지의 9 %
[ 비교예 4 - 보호필름 제거 및 적외선 파장 레이저 조사]
제조예 3 에 다른 다층 구조체의 보호필름을 제거하고, 하기 표 5 에 따른 적외선 파장의 펄스 레이저를 상기 러빙 배향막에 직접 초점을 맞추어 조사하고, 배향막 식각 잔여물을 톨루엔을 이용하여 제거하여 액정 배향용 필름을 제조하였다.
레이저 조사 장비 redENERGY G4, SPI Laser社
출력(W) 50
파장(nm) 1064
주파수(kHz) 40
조사 속도(mm/s) 2,000
스폿 크기(㎛) 40
식각 간격(㎛) 38
오버랩(%) 25
[ 실험예 1 - 보호필름에의 배향막 잔여물 전사 여부 평가]
실시예 1-1 내지 실시예 1-3, 실시예 2-1 내지 실시예 2-3 및 실시예 3-1 내지 실시예 3-3 에 따른 액정 배향용 필름의 전도성 막 표면 및 상기 보호필름의 상기 다층 구조체에의 접착면을 광학현미경(BX51M, 올림푸스社)을 이용하여 촬영하고, 상기 광학현미경 화상을 도 5 내지 도 7 에 나타내었다.
도 5는 실시예 1-1 내지 실시예 1-3 의 전도성 막 표면 및 보호필름의 접착면의 광학현미경 화상을 나타낸 것이다.
구체적으로 도 5 의 (a) 및 (b) 는 각각 실시예 1-1 의 전도성 막 표면 및 보호필름의 접착면의 광학현미경 화상을, (c) 및 (d) 는 각각 실시예 1-2 의 전도성 막 표면 및 보호필름의 접착면의 광학현미경 화상을, (e) 및 (f) 는 각각 실시예 1-3 의 전도성 막 표면 및 보호필름의 접착면의 광학현미경 화상을 나타낸 것이다.
도 5에서 화살표(→)로 표시되는 영역은 펄스 레이저의 조사로 식각되고, 보호필름으로 전사되는 러빙 배향막의 식각 잔여물을 나타낸 것이다.
구체적으로 도 5의 (a), (c) 및 (e) 에서 식각되는 러빙 배향막의 식각 잔여물은 도 5의 (b), (d) 및 (f) 에 따라 보호필름의 접착면에 전사되는 것을 확인할 수 있었다.
도 5에 따르면, 상기 펄스 레이저의 펄스 에너지가 증가함에 따라 식각되는 정도에 차이가 있으나, 다층 구조체의 러빙 배향막의 식각 잔여물이 보호필름의 표면으로 전사되는 것을 확인할 수 있으며, 전도성 막 표면의 패턴이 균일하게 유지됨에 따라, 상기 펄스 레이저의 조사에 의하여도 전도성 막의 손상이 최소화되는 것을 확인할 수 있었다.
도 6은 실시예 2-1 내지 실시예 2-3 의 전도성 막 표면 및 보호필름의 접착면의 광학현미경 화상을 나타낸 것이다.
구체적으로 도 6의 (a) 및 (b) 는 각각 실시예 2-1 의 전도성 막 표면 및 보호필름의 접착면의 광학현미경 화상을, (c) 및 (d) 는 각각 실시예 2-2 의 전도성 막 표면 및 보호필름의 접착면의 광학현미경 화상을, (e) 및 (f) 는 각각 실시예 2-3 의 전도성 막 표면 및 보호필름의 접착면의 광학현미경 화상을 나타낸 것이다.
도 6에서 화살표(→)로 표시되는 영역은 펄스 레이저의 조사로 식각되고 보호필름으로 전사되는 러빙 배향막의 식각 잔여물을 나타낸 것이다. 또한, 도 6 에서 원형으로 표시되는 영역은 칼럼스페이서에 해당한다.
도 6의 (a), (c), (e) 에 따르면, 펄스 레이저의 펄스 에너지가 증가함에 따라 식각되는 정도의 차이가 있으나, 다층 구조체의 러빙 배향막의 식각 잔여물이 보호필름의 표면으로 전사되는 것을 확인할 수 있었다. 또한, 상기 식각 잔여물에 해당하는 부분은 도 6 의 (b), (d) 및 (f) 에 따라 보호필름의 접착면에 전사되는 것을 확인할 수 있었다.
나아가, 도 6에 따르면, 러빙 배향막의 컬럼스페이서에 인접하는 영역은 보호필름과 접하지 않게 되어, 보호필름을 박리하더라도 보호필름에 액정 배향막 식각 잔여물이 전사되지 않음을 확인할 수 있었다. 다만, 상기 전도성 막 표면의 패턴이 균일하게 유지됨에 따라, 상기 펄스 레이저의 조사에 의하여도 전도성 막의 손상이 최소화되는 것을 확인할 수 있었다.
도 7은 실시예 3-1 내지 실시예 3-3 의 전도성 막 표면 및 보호필름의 접착면의 광학현미경 화상을 나타낸 것이다.
구체적으로 도 7의 (a) 및 (b) 는 각각 실시예 3-1 의 전도성 막 표면 및 보호필름의 접착면의 광학현미경 화상을, (c) 및 (d) 는 각각 실시예 3-2 의 전도성 막 표면 및 보호필름의 접착면의 광학현미경 화상을, (e) 및 (f) 는 각각 실시예 3-3 의 전도성 막 표면 및 보호필름의 접착면의 광학현미경 화상을 나타낸 것이다.
도 7에서 화살표(→)로 표시되는 영역은 펄스 레이저의 조사로 식각되고, 보호필름으로 전사되는 러빙 배향막 및 광배향막의 식각 잔여물을 나타낸 것이다. 또한, 도 7 에서 어두운 원형으로 표시되는 영역은 비드스페이서에 해당한다.
도 7의 (a), (c) 및 (e)에 따르면 상기 펄스 레이저 조사에 의하여 식각되고 상기 보호필름에 전사되는 영역이 상기 펄스 레이저가 조사되는 영역과 일치하지 않는 것을 통하여, 전도성 막 상부의 광배향막과, 비드스페이서 상부의 배향막이 동시에 박리되는 것을 확인할 수 있었다.
나아가 도 7의 (b), (d) 및 (f) 에 따라 상기 펄스 레이저 조사에 의한 식각 잔여물이 보호필름에 전사되는 것을 확인할 수 있었다.
도 5 내지 도 7에 대한 내용을 종합하여 보면, 보호필름을 제거하지 않고 펄스 레이저를 조사하는 경우, 전도성 막의 손상을 최소화할 수 있음과 동시에 액정 배향막의 부분적 식각이 가능할 수 있으며, 상기 액정 배향막과 상기 전도성 막 사이에 별도의 스페이서가 구비되더라도 마찬가지임을 확인할 수 있었다. 또한, 상기 액정 배향막의 부분적 식각에 따른 액정 배향막의 잔여물은 상기 보호필름에 전사되어 박리가 가능한 것을 확인할 수 있었다.
[ 실험예 2 - 비교예의 전도성 표면 손상여부 평가]
비교예 1-2 내지 비교예 1-4, 비교예 2-3 내지 비교예 2-4 및 비교예 3-1 내지 비교예 3-4에 따른 액정 배향용 필름의 전도성 막 표면을 광학현미경(BX51M, 올림푸스社)을 이용하여 촬영하고, 상기 광학현미경 화상을 도 8 내지 도 10 에 나타내었다.
비교예 1-2 내지 비교예 1-4에 따른 액정 배향용 필름의 전도성 막 표면의 광학현미경 화상을 도 8에 나타내었다.
구체적으로 도 8의 (a), (b) 및 (c) 는 각각 비교예 1-2, 비교예 1-3 및 비교예 1-4에 따른 액정 배향용 필름의 전도성 막 표면의 광학현미경 화상을 나타낸 것이다. 도 8의 (a), (b) 및 (c) 각각의 중앙의 선을 기준으로 상부는 러빙 배향막이 식각되지 않은 영역을, 하부는 러빙 배향막이 식각된 영역을 나타낸 것이다.
또한, 도 8에서 화살표(→)로 표시된 영역을 통하여 펄스 레이저가 조사된 전도성 막 표면이 손상된 것을 확인할 수 있었다.
도 8에 따르면, 조사되는 펄스 레이저의 펄스 에너지에 따른 정도의 차이는 있으나, 중앙의 선 하부의 상대적으로 어두운 점으로 표시되는 영역을 통하여 상기 펄스 레이저의 조사로 인하여 전도성 막이 손상된 것을 확인할 수 있었다.
특히, 도 8의 (c) 에 나타난 우측 중앙부의 액정 배향막의 식각 잔여물이 하부로 돌출된 것을 통하여, 펄스 레이저 조사 전 보호필름을 제거하는 경우, 상기 펄스 레이저의 조사 후 점착테이프를 이용하더라도 식각 잔여물이 제대로 제거되지 않는 문제점이 발생한 것을 확인할 수 있었다.
비교예 2-3 내지 비교예 2-4 에 따른 액정 배향용 필름의 전도성 막 표면의 광학현미경 화상을 도 9에 나타내었다.
구체적으로 도 9의 (a) 및 (b) 는 각각 비교예 2-3 및 비교예 2-4 에 따른 액정 배향용 필름의 전도성 막 표면의 광학현미경 화상을 나타낸 것이다. 도 9 의 (a) 및 (b) 각각의 중앙의 선을 기준으로 상부는 러빙 배향막이 식각되지 않은 영역을, 하부는 러빙 배향막이 식각된 영역을 나타낸 것이다.
특히, 도 9에서 화살표(→)로 표시된 영역을 통하여 펄스 레이저가 조사된 전도성 막 표면이 손상된 것을 확인할 수 있었다.
특히, 도 9의 (b) 우측 하부에 칼럼스페이서에 해당하는 영역이 나타난 것을 통하여, 다층 구조체의 형상과 무관하게 보호필름을 제거하고 직접 액정 배향막 표면에 레이저를 조사하는 경우 전도성 막의 손상이 일어나는 것을 확인할 수 있었다.
비교예 3-1 내지 비교예 3-4 에 따른 액정 배향용 필름의 전도성 막 표면의 광학현미경 화상을 도 10에 나타내었다.
구체적으로, 도 10의 (a), (b), (c) 및 (d) 은 각각 비교예 3-1, 비교예 3-2, 비교예 3-3 및 비교예 3-4 에 따른 액정 배향용 필름의 전도성 막 표면의 광학현미경 화상을 나타낸 것이다.
도 10의 (a) 내지 (d) 각각의 중앙의 선을 기준으로 상부는 펄스 레이저가 조사된 영역을, 하부는 펄스 레이저가 조사되지 않은 영역을 나타낸 것이다.
도 10의 (a) 내지 (d) 에 따르면, 액정 배향막이 제거되는 영역과 펄스 레이저가 조사된 영역이 일치하지 않는 것을 통하여, 러빙 배향막 및 광배향막이 동시에 제거되는 것을 확인할 수 있었다.
또한, 정도의 차이는 있지만, 도 10에서 화살표(→)로 표시된 영역을 통하여 펄스 레이저가 조사된 전도성 막 표면이 손상된 것을 확인할 수 있었다.
또한, 도 10에는 나타나지 않았지만, 별도의 비드스페이서가 구비되더라도, 보호필름을 제거하고 직접 액정 배향막 표면에 레이저를 조사하는 경우 전도성 막이 손상되는 것을 확인할 수 있었다.
도 8 내지 도 10의 내용을 종합하여보면, 도 8 내지 도 10에서 화살표로 나타낸 부분을 통하여, 펄스 레이저가 조사된 다층 구조체의 종류와 무관하게, 보호필름을 제거한 후 펄스 레이저를 조사하는 경우, 상기 펄스 레이저의 조사에 의하여 전도성 막의 손상이 일어나는 것을 확인할 수 있었다.
이하에서는, 상기 전도성 막의 손상의 정도를 보다 구체적으로 나타내기 위하여, 이를 정량화한 실험에 대한 내용을 설명한다.
[ 실험예 3 - 4 침 측정법]
비교예 1-1 내지 비교예 1-4, 비교예 2-1 내지 비교예 2-4 및 비교예 3-1 내지 비교예 3-4에 따른 액정 배향용 필름의 전도성 막 표면에 4 개의 탐침을 사용하여, 각각의 면저항을 측정하였고, 3 회의 측정 값의 평균 값을 하기 표 6 에 나타내었다.
구분 면저항(Ω/sq)
비교예 1-1 253.0
비교예 1-2 506.8
비교예 1-3 690.4
비교예 1-4 1025.6
비교예 2-1 148.1
비교예 2-2 141.7
비교예 2-3 168.9
비교예 2-4 229.4
비교예 3-1 241.5
비교예 3-2 242.6
비교예 3-3 505.2
비교예 3-4 753.3
구체적으로, 면저항 값이 클 수록, 전도성 막의 손상 정도가 큰 것을 의미할 수 있다.
상기 표 6 에 따르면, 조사되는 펄스 레이저의 펄스 에너지가 증가할수록 면저항 값이 증가하므로, 조사되는 펄스 레이저의 펄스 에너지가 증가함에 따라 전도성 막이 손상되는 정도가 큰 것을 확인할 수 있었다.
또한, 펄스 레이저가 조사되는 다층 구조체의 종류(제조예 1 내지 제조예 3)에 따라 전도성 막이 손상되는 정도가 상이한 것을 확인할 수 있었다.
상기 내용을 종합하여 보면, 펄스 레이저 조사 전에 보호필름을 제거하는 경우, 전도성 막의 손상이 발생하고, 조사되는 펄스 레이저의 펄스 에너지가 증가할수록 전도성 막이 손상되는 정도가 크며, 펄스 레이저가 조사되는 다층 구조체의 종류에 따라 전도성 막의 손상 정도가 상이한 것을 확인할 수 있었다.
구체적으로, 동일한 펄스 에너지를 갖는 펄스 레이저가 조사되는 경우, 칼럼스페이서가 구비되는 경우, 비드스페이서가 구비되는 경우 및 스페이서가 구비되지 않는 경우 순으로 전도성 막의 손상 정도가 증가하는 것을 확인할 수 있었다.
이하에서는, 보호필름을 제거하지 않고 펄스 레이저를 조사하는 경우 전도성 막의 손상이 최소화 된 것을 나타내기 위한 고온·고습 내구성 평가에 대하여 설명한다.
[ 실험예 4 - 고온·고습 내구성 평가]
실시예 1-4, 실시예 3-4 및 비교예 4에 따른 액정 배향용 필름을 각각 두장씩 준비하였다.
상기 두장의 액정 배향용 필름을 각각 상부필름 및 하부필름으로하고, 상기 하부필름의 전도성 막이 노출된 부분에 밀봉재를 도포하고, 전도성 막이 노출되지 않은 액정 배향막 부분에는 액정을 도포하였다.
상기 밀봉재 및 액정이 도포된 하부필름 상에 상부필름을 구비하고, 합착하여 시편을 제조하였다.
상기 실험시 사용된 시편의 모식도 및 이의 디지털 카메라 화상을 도 11 에 나타내었다.
도 11 (a)는 상기 시편의 모식도이고, 도 11 의 (b) 는 실시예 1-4 및 실시예 3-4 에 따른 시편의 디지털 카메라 화상이다.
도 11 (a)에서 화살표로 나타낸 부분이 펄스 레이저에 의하여 액정 배향막이 식각된 영역에 해당한다.
실시예 1-4 및 실시예 3-4에 따른 시편은 60 ℃ 의 온도, 상대습도 90 %의 조건에서 약 70 시간동안 방치하고, 상기 비교예 4에 따른 시편은 60 ℃의 온도, 상대습도 90 %의 조건에서 약 300 시간동안 방치하여, 고온·고습 내구성 실험을 수행하였다.
실시예 1-4 및 실시예 3-4의 고온·고습 내구성 실험 평가 결과의 디지털 카메라 화상을 도 12에 나타내었다. 구체적으로, 도 12의 (a) 는 실시예 1-4, (b)는 실시예 3-4의 고온·고습 내구성 실험 평가 결과의 디지털 카메라 화상에 해당한다.
도 12에 따르면, 본 발명의 일 실시상태에 따라 제조된 액정 배향용 필름을 이용하여 제조된 시편은 고온·고습 조건 하에서도 기포가 발생하지 않는 것을 확인할 수 있었다.
비교예 4의 고온·고습 내구성 실험 평가용 시편의 평가 전/후의 디지털 카메라 화상을 도 13 에 나타내었다. 구체적으로, 도 13 (a)는 평가 전, (b) 는 평가 후의 비교예 4의 고온·고습 내구성 실험 평가용 시편의 디지털 카메라 화상을 나타낸 것이다.
한편, 도 13에 따르면, 보호필름을 제거한 후 레이저를 조사하고, 상기 레이저가 적외선의 장파장 레이저인 비교예 4 의 액정 배향용 필름을 이용하여 제조된 시편은 고온·고습 조건 하에서 기포가 발생하는 것을 확인할 수 있었다.
상기 내용을 종합하여 보면, 상기 기포는 기포 차단 특성을 갖는 전도성 막이 손상되는 경우 발생하는 것이므로, 본 발명의 일 실시상태에 따라 제조된 액정 배향용 필름은 전도성 막의 손상이 최소화 된 것임을 확인할 수 있었다.
즉, 상기 내용을 통하여, 보호필름을 제거하지 않고, 보호필름에 인접하는 액정 배향막 표면에 초점을 맞추어, 피코 초 단위의 초단파 자외선 레이저를 조사하여야 전도성 막의 손상이 최소화된 액정 배향용 필름을 제조할 수 있음을 확인할 수 있었다.
또한, 이에 따라 제조된 액정 배향용 필름을 포함하는 액정 변색 소자는 고온·고습의 조건 하에서도 외부 환경 변화에 따른 수분 및/또는 기포의 유입이 차단되는 것을 통하여 상기 전도성 막의 손상이 최소화 된 것을 확인할 수 있었다.

Claims (13)

  1. 기재, 전도성 막, 액정 배향막 및 보호필름이 순차적으로 구비된 다층 구조체를 준비하는 단계;
    상기 다층 구조체 측에 펄스 레이저를 조사하여, 상기 액정 배향막의 일 영역을 식각하는 단계; 및
    상기 보호필름을 제거하여, 상기 전도성 막의 일 영역을 노출시키는 단계;를 포함하고,
    상기 펄스 레이저는 상기 보호필름에서 상기 액정 배향막 방향으로 조사되는 액정 배향용 필름의 제조방법.
  2. 청구항 1에 있어서,
    상기 기재는 고분자 기재인 액정 배향용 필름의 제조방법.
  3. 청구항 1 에 있어서,
    상기 보호필름의 343 nm 파장에서의 광 투과도는 50 % 이상인 액정 배향용 필름의 제조방법.
  4. 청구항 1에 있어서,
    상기 전도성 막의 일 영역을 노출시키는 단계;는 상기 펄스 레이저 조사에 의하여 식각된 상기 액정 배향막의 잔여물과 함께 상기 보호필름을 제거하여 수행되는 액정 배향용 필름의 제조방법.
  5. 청구항 1에 있어서,
    상기 다층 구조체는 상기 보호필름 및 상기 액정 배향막 사이에 점착층을 더 포함하는 액정 배향용 필름의 제조방법.
  6. 청구항 1에 있어서,
    상기 다층 구조체는 상기 전도성 막 및 상기 액정 배향막 사이에 2 이상의 서로 이격된 스페이서를 더 포함하는 액정 배향용 필름의 제조방법.
  7. 청구항 6에 있어서,
    상기 스페이서는 컬럼스페이서 또는 비드스페이서인 액정 배향용 필름의 제조방법.
  8. 청구항 1에 있어서,
    상기 펄스 레이저는 상기 보호필름에 인접한 상기 액정 배향막의 표면에 초점을 맞추어 조사되는 액정 배향용 필름의 제조방법.
  9. 청구항 1에 있어서,
    상기 펄스 레이저는 피코 초 레이저인 액정 배향용 필름의 제조방법.
  10. 청구항 1에 있어서,
    상기 펄스 레이저의 최대 펄스 에너지는 50 μJ 이상 100 μJ 이하이고,
    상기 펄스 레이저의 펄스 에너지는 상기 최대 펄스 에너지의 5 % 이상 15 % 이하인 액정 배향용 필름의 제조방법.
  11. 청구항 1에 있어서,
    상기 펄스 레이저의 주파수는 10 kHz 이상 400 kHz 이하인 액정 배향용 필름의 제조방법.
  12. 청구항 1에 있어서,
    상기 펄스 레이저의 스폿 간격은 10 ㎛ 이상 100 ㎛ 이하인 것인 액정 배향용 필름의 제조방법.
  13. 청구항 1 에 있어서,
    상기 펄스 레이저의 조사 속도는 0.1 m/s 이상 10 m/s 이하인 것인 액정 배향용 필름의 제조방법.
PCT/KR2018/011264 2017-09-25 2018-09-21 액정 배향용 필름의 제조방법 WO2019059720A2 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/646,411 US11428992B2 (en) 2017-09-25 2018-09-21 Method for manufacturing liquid crystal aligning film
JP2020514198A JP7019892B2 (ja) 2017-09-25 2018-09-21 液晶配向用フィルムの製造方法
EP18859694.4A EP3670186B1 (en) 2017-09-25 2018-09-21 Method for producing liquid crystal orientation film
CN201880061246.6A CN111107995B (zh) 2017-09-25 2018-09-21 用于制造液晶取向膜的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170123422A KR102178118B1 (ko) 2017-09-25 2017-09-25 액정 배향용 필름의 제조방법
KR10-2017-0123422 2017-09-25

Publications (2)

Publication Number Publication Date
WO2019059720A2 true WO2019059720A2 (ko) 2019-03-28
WO2019059720A3 WO2019059720A3 (ko) 2019-05-09

Family

ID=65810455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/011264 WO2019059720A2 (ko) 2017-09-25 2018-09-21 액정 배향용 필름의 제조방법

Country Status (6)

Country Link
US (1) US11428992B2 (ko)
EP (1) EP3670186B1 (ko)
JP (1) JP7019892B2 (ko)
KR (1) KR102178118B1 (ko)
CN (1) CN111107995B (ko)
WO (1) WO2019059720A2 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018012490A1 (ja) * 2016-07-15 2018-01-18 シャープ株式会社 走査アンテナ、及び走査アンテナの製造方法
JP2019125908A (ja) * 2018-01-16 2019-07-25 シャープ株式会社 液晶セル、及び走査アンテナ

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09266234A (ja) 1996-11-05 1997-10-07 Nitto Denko Corp テープキャリヤーの製法
KR20170123422A (ko) 2016-04-29 2017-11-08 (주)넥스리얼 적외선 마커와 영상분석기술을 이용한 감시대상 분류 및 선별적 방문자 계수 시스템

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02310525A (ja) 1989-05-26 1990-12-26 Toshiba Corp 液晶表示器の製造方法
US6099786A (en) * 1996-02-23 2000-08-08 Prime View International Co. Method of making accurate dimension alignment film for LCD
JPH11223819A (ja) 1998-02-09 1999-08-17 Toshiba Corp 液晶表示装置の製造方法
JP4320504B2 (ja) * 2000-08-03 2009-08-26 Jsr株式会社 液晶配向剤、液晶配向膜の形成方法および液晶表示素子
JP2003294950A (ja) 2002-02-01 2003-10-15 Dainippon Printing Co Ltd 液晶膜のパターニング方法
JP2004184791A (ja) * 2002-12-05 2004-07-02 Nitto Denko Corp 光学素子、その製造方法及び液晶表示装置
JP2005059064A (ja) 2003-08-13 2005-03-10 Toshiba Corp 加工方法及び半導体装置の製造方法
KR20050023560A (ko) 2003-08-28 2005-03-10 엘지.필립스 엘시디 주식회사 액정표시패널 및 그 배향막 재생방법
JP4685346B2 (ja) 2003-12-25 2011-05-18 日東電工株式会社 レーザー加工用保護シートを用いたレーザー加工品の製造方法
WO2005063435A1 (ja) 2003-12-25 2005-07-14 Nitto Denko Corporation レーザー加工用保護シート及びレーザー加工品の製造方法
JP4854060B2 (ja) * 2004-12-24 2012-01-11 日東電工株式会社 レーザー加工用保護シートを用いたレーザー加工品の製造方法
KR20060097195A (ko) * 2005-03-04 2006-09-14 삼성전자주식회사 액정표시장치의 배향막 제조 방법 및 이에 사용되는 배향막식각 장치
JP2007212666A (ja) 2006-02-08 2007-08-23 Sony Corp 配向膜のパターニング方法
US20080018841A1 (en) 2006-07-24 2008-01-24 Samsung Electronics Co., Ltd. Methods and apparatus for forming LCD alignment films
KR20080009533A (ko) * 2006-07-24 2008-01-29 삼성전자주식회사 액정 표시 장치의 배향막 제조 방법 및 이를 이용해 제조된액정 표시 장치
KR101380227B1 (ko) 2007-11-21 2014-04-02 엘지디스플레이 주식회사 배향물질층 패터닝 방법 및 이를 이용한 액정패널 제조방법
JP5322474B2 (ja) * 2008-03-28 2013-10-23 スタンレー電気株式会社 液晶表示素子の製造方法
KR101500684B1 (ko) 2008-04-17 2015-03-10 삼성디스플레이 주식회사 캐리어 기판 및 이를 이용한 가요성 표시 장치의 제조 방법
KR102074422B1 (ko) 2013-10-10 2020-02-07 삼성디스플레이 주식회사 액정 표시 장치 및 그 제조 방법
JP6390898B2 (ja) 2014-08-22 2018-09-19 アイシン精機株式会社 基板の製造方法、加工対象物の切断方法、及び、レーザ加工装置
KR101738981B1 (ko) 2015-06-11 2017-05-26 참엔지니어링(주) 리페어 방법 및 리페어 장치

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09266234A (ja) 1996-11-05 1997-10-07 Nitto Denko Corp テープキャリヤーの製法
KR20170123422A (ko) 2016-04-29 2017-11-08 (주)넥스리얼 적외선 마커와 영상분석기술을 이용한 감시대상 분류 및 선별적 방문자 계수 시스템

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3670186A4

Also Published As

Publication number Publication date
US11428992B2 (en) 2022-08-30
WO2019059720A3 (ko) 2019-05-09
EP3670186A4 (en) 2020-08-26
KR20190034869A (ko) 2019-04-03
JP2020534564A (ja) 2020-11-26
JP7019892B2 (ja) 2022-02-16
US20200271975A1 (en) 2020-08-27
CN111107995B (zh) 2022-03-18
EP3670186A2 (en) 2020-06-24
KR102178118B1 (ko) 2020-11-13
EP3670186B1 (en) 2022-11-09
CN111107995A (zh) 2020-05-05

Similar Documents

Publication Publication Date Title
WO2020166986A1 (en) Display module having glass substrate on which side wirings are formed and manufacturing method of the same
WO2015147552A1 (ko) 국지적 탈색 영역을 포함하는 편광 부재의 제조 방법, 편광 부재 롤의 제조 방법 및 매엽형 편광 부재의 제조 방법
WO2018212443A1 (ko) 스트레처블 전자 소자 및 그의 제조 방법
WO2016003105A1 (ko) 국지적으로 편광 해소 영역을 갖는 편광판 제조방법, 이를 이용하여 제조된 편광판
WO2018230940A1 (ko) 신축성 기판 구조체 및 그 제조방법, 신축성 디스플레이 및 그 제조방법 그리고 신축성 디스플레이 사용방법
WO2014137192A2 (ko) 금속 세선을 포함하는 투명 기판 및 그 제조 방법
WO2016036194A1 (ko) 광 제어 장치, 광 제어 장치의 제조 방법 및 광 제어 장치를 포함하는 표시 장치
WO2018034411A1 (ko) 필름 터치 센서 및 필름 터치 센서용 구조체
EP3847699A1 (en) Display module having glass substrate on which side wirings are formed and manufacturing method of the same
WO2016043497A2 (ko) 광 제어 장치, 광 제어 장치의 제조 방법 및 광 제어 장치를 포함하는 표시 장치
WO2017119761A1 (ko) 필름 터치 센서 및 이의 제조 방법
WO2022005124A1 (ko) 광 경로 제어 부재 및 이를 포함하는 디스플레이 장치
WO2013094969A2 (ko) 편광판 및 이를 구비한 화상표시장치
WO2021221358A1 (ko) 광 경로 제어 부재 및 이를 포함하는 디스플레이 장치
WO2019059720A2 (ko) 액정 배향용 필름의 제조방법
WO2019198907A1 (ko) 표시 장치 및 표시 장치의 제조 방법
WO2017119764A1 (ko) 필름 터치 센서 및 이의 제조 방법
WO2021145619A1 (ko) 광 경로 제어 부재 및 이를 포함하는 디스플레이 장치
WO2021230541A1 (ko) 광 경로 제어 부재 및 이를 포함하는 디스플레이 장치
WO2018004228A1 (ko) 지문센싱 장치 및 이를 포함하는 터치 디바이스
WO2016153184A1 (ko) 필름 터치 센서 및 이의 제조 방법
WO2021020802A1 (ko) 광 경로 제어 부재 및 이를 포함하는 표시 장치
WO2019235753A1 (ko) 터치 센서 모듈, 이를 포함하는 윈도우 적층체 및 이를 포함하는 화상 표시 장치
WO2017078247A1 (ko) 필름 터치 센서
WO2014129821A1 (ko) 디스플레이 장치용 패키징 필름

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18859694

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2020514198

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018859694

Country of ref document: EP

Effective date: 20200318

NENP Non-entry into the national phase

Ref country code: DE