WO2019059291A1 - 等速自在継手 - Google Patents

等速自在継手 Download PDF

Info

Publication number
WO2019059291A1
WO2019059291A1 PCT/JP2018/034857 JP2018034857W WO2019059291A1 WO 2019059291 A1 WO2019059291 A1 WO 2019059291A1 JP 2018034857 W JP2018034857 W JP 2018034857W WO 2019059291 A1 WO2019059291 A1 WO 2019059291A1
Authority
WO
WIPO (PCT)
Prior art keywords
power transmission
transmission shaft
joint member
constant velocity
inner joint
Prior art date
Application number
PCT/JP2018/034857
Other languages
English (en)
French (fr)
Inventor
雅司 船橋
真 友上
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to US16/643,899 priority Critical patent/US11493094B2/en
Publication of WO2019059291A1 publication Critical patent/WO2019059291A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/26Hooke's joints or other joints with an equivalent intermediate member to which each coupling part is pivotally or slidably connected
    • F16D3/30Hooke's joints or other joints with an equivalent intermediate member to which each coupling part is pivotally or slidably connected in which the coupling is specially adapted to constant velocity-ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D1/00Couplings for rigidly connecting two coaxial shafts or other movable machine elements
    • F16D1/10Quick-acting couplings in which the parts are connected by simply bringing them together axially
    • F16D1/108Quick-acting couplings in which the parts are connected by simply bringing them together axially having retaining means rotating with the coupling and acting by interengaging parts, i.e. positive coupling
    • F16D1/116Quick-acting couplings in which the parts are connected by simply bringing them together axially having retaining means rotating with the coupling and acting by interengaging parts, i.e. positive coupling the interengaging parts including a continuous or interrupted circumferential groove in the surface of one of the coupling parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/20Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
    • F16D3/22Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts
    • F16D3/223Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts
    • F16D3/224Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts the groove centre-lines in each coupling part lying on a sphere
    • F16D3/2245Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts the groove centre-lines in each coupling part lying on a sphere where the groove centres are offset from the joint centre
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/84Shrouds, e.g. casings, covers; Sealing means specially adapted therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/84Shrouds, e.g. casings, covers; Sealing means specially adapted therefor
    • F16D3/843Shrouds, e.g. casings, covers; Sealing means specially adapted therefor enclosed covers
    • F16D3/845Shrouds, e.g. casings, covers; Sealing means specially adapted therefor enclosed covers allowing relative movement of joint parts due to the flexing of the cover
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B2200/00Constructional details of connections not covered for in other groups of this subclass
    • F16B2200/69Redundant disconnection blocking means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D1/00Couplings for rigidly connecting two coaxial shafts or other movable machine elements
    • F16D1/10Quick-acting couplings in which the parts are connected by simply bringing them together axially
    • F16D2001/103Quick-acting couplings in which the parts are connected by simply bringing them together axially the torque is transmitted via splined connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/20Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
    • F16D3/22Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts
    • F16D3/223Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts
    • F16D2003/22313Details of the inner part of the core or means for attachment of the core on the shaft
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S464/00Rotary shafts, gudgeons, housings, and flexible couplings for rotary shafts
    • Y10S464/904Homokinetic coupling
    • Y10S464/906Torque transmitted via radially spaced balls

Definitions

  • the present invention relates to a constant velocity universal joint which is used in a power transmission system of an automobile or various industrial machines, and in particular, is incorporated into a propeller shaft of an automobile.
  • constant velocity universal joints which are used as means for transmitting rotational force from an engine of an automobile to wheels at constant speed
  • a fixed constant velocity universal joint and a sliding constant velocity universal joint.
  • These two constant velocity universal joints have a structure capable of connecting two shafts on the drive side and the driven side so that the two shafts can transmit rotational torque at a constant speed even at an operating angle.
  • a propeller shaft incorporated in an automobile needs to correspond to angular displacement and axial displacement due to a change in relative positional relationship between the transmission and the differential.
  • the propeller shaft is generally a fixed type constant velocity universal joint that allows only angular displacement on the transmission side, and a sliding type constant velocity universal joint that allows both axial displacement and angular displacement on the differential side. Equipped with a structure that connects both constant velocity universal joints by a propeller shaft.
  • the fixed type constant velocity universal joint comprises an outer joint member, an inner joint member, a plurality of balls and a cage.
  • a power transmission shaft which is an output shaft extending from the transmission, is coupled to an axial hole of the inner joint member so as to be capable of transmitting torque by spline fitting.
  • the power transmission shaft is secured to the inner joint member by a retaining ring.
  • the inner joint member of the constant velocity universal joint is extended to the power transmission shaft side in the axial direction, and a portion other than the spline fitting portion between the inner joint member and the power transmission shaft A structure in which the inner joint member and the power transmission shaft are fixed by a snap ring is provided.
  • connection structure disclosed in Patent Document 2 connects a drive sleeve to an inner joint member of a constant velocity universal joint in a torque transmittable manner by spline fitting, connects a drive nut to a power transmission shaft, and connects a drive nut to the drive sleeve.
  • Patent No. 5174153 gazette Patent No. 5818390
  • connection structure disclosed in Patent Document 1 in order to make it possible to separate the power transmission shaft and the inner joint member of the constant velocity universal joint while securing the pullout resistance of the power transmission shaft, chamfering on the retaining ring or retaining ring groove It will provide roundness.
  • the present invention is proposed in view of the above-mentioned subject, the place made as the purpose fixes the inner joint member and power transmission axis certainly with simple structure, and can be easily separated etc. It is in providing a quick universal joint.
  • the constant velocity universal joint includes an outer joint member and an inner joint member transmitting torque while permitting angular displacement between the outer joint member and the torque transmission member, and the inner joint member
  • the power transmission shaft is coupled in a torque transmittable manner, and a detachment mechanism is provided between the inner joint member and the power transmission shaft for attaching and detaching the power transmission shaft to the inner joint member.
  • the detaching mechanism in the present invention comprises a cylindrical member extrapolated to the power transmission shaft, and a fixing member accommodated radially movably in the cylindrical member;
  • the end of the boot is provided with an annular member disposed on the outer periphery of the cylindrical member so as to be axially movable, and the end of the boot closing the opening of the outer joint member is fastened to the power transmission shaft by the boot band.
  • the axial position of the annular member is regulated by the part.
  • the detaching mechanism of the present invention includes the cylindrical member, the fixing member and the annular member, the fixing member in the cylindrical member is radially moved by axial movement of the annular member, thereby to the power transmission shaft.
  • the fixing member is removable. By attaching and detaching the fixing member, the power transmission shaft and the inner joint member are fixed and separated.
  • the power transmission shaft and the inner joint member can be stably fixed. At the same time, it is possible to prevent the leakage of the lubricant sealed in the inside of the outer joint member and to prevent the entry of foreign matter from the outside.
  • the boot in the present invention constitutes a seal mechanism with a metal ring attached to the outer joint member, and a small diameter end clamped and fixed to the power transmission shaft and a large diameter end crimped and fixed to the metal ring It is desirable to have a structure.
  • the small diameter end of the boot constituting a part of the seal mechanism, the seal function for preventing the leakage of the lubricant and the entry of foreign matter, and the axial position of the annular member with respect to the power transmission shaft It also has a fixed function to regulate.
  • the recess be formed on the outer peripheral surface of the cylindrical member, and the end of the annular member be engaged with the step portion located on the inner joint member side of the recess.
  • the axial position of the annular member can be reliably restricted by sandwiching and fixing the annular member in the axial direction between the stepped portion of the recess of the cylindrical member and the end of the boot. can do.
  • the axial position of the annular member can be surely regulated by sandwiching and fixing the annular member in the axial direction between the end face of the inner joint member and the end of the boot. .
  • the detachment mechanism for attaching and detaching the power transmission shaft to and from the inner joint member is constituted by the cylindrical member, the fixing member and the annular member, the inner joint member and the power transmission shaft can be It can be fixed securely and easily separated. As a result, the degree of freedom in design of the desorption mechanism can be improved.
  • the axial position of the annular member is regulated at the end of the boot, thereby stably fixing the power transmission shaft and the inner joint member. Also, it is possible to simultaneously prevent the leakage of the lubricant and the entry of foreign matter, and the number of parts can be reduced, the cost of the constant velocity universal joint can be reduced, and the assemblability can be improved.
  • FIG. 3 is a cross-sectional view showing a state before inserting a power transmission shaft into an inner joint member in the detachment mechanism of FIG. 2;
  • FIG. 3 is a cross-sectional view showing a state before the inner joint member is fixed to the power transmission shaft in the detachment mechanism of FIG. 2;
  • FIG. 3 is a cross-sectional view showing a state after the inner joint member is fixed to the power transmission shaft in the detachment mechanism of FIG. 2;
  • FIG. 8 is a cross-sectional view showing the state before the power transmission shaft is inserted into the inner joint member in the detachment mechanism of FIG. 7;
  • FIG. 8 is a cross-sectional view showing a state before the inner joint member is fixed to the power transmission shaft in the detachment mechanism of FIG. 7.
  • FIG. 8 is a cross-sectional view showing a state after the inner joint member is fixed to the power transmission shaft in the detachment mechanism of FIG. 7.
  • the Zeppa type constant velocity universal joint which is one of fixed type constant velocity universal joints incorporated into a propeller shaft for an automobile, is exemplified, but undercut free as another fixed type constant velocity universal joint
  • the invention is also applicable to a mold constant velocity joint (UJ).
  • the present invention is also applicable to a double offset constant velocity universal joint (DOJ) as a sliding constant velocity universal joint, a cross groove constant velocity universal joint (LJ), a tripod constant velocity universal joint (TJ), and the like.
  • DOJ double offset constant velocity universal joint
  • LJ cross groove constant velocity universal joint
  • TJ tripod constant velocity universal joint
  • Propeller shafts incorporated in vehicles such as 4WD vehicles and FR vehicles need to cope with angular displacement and axial displacement due to changes in the relative positional relationship between the transmission and the differential.
  • the propeller shaft is generally a fixed type constant velocity universal joint that allows only angular displacement on the transmission side, and a sliding type constant velocity universal joint that allows both axial displacement and angular displacement on the differential side. Equipped with a constant velocity universal joint of the two connected by a steel propeller shaft.
  • the fixed type constant velocity universal joint 11 (hereinafter simply referred to as a constant velocity universal joint) of this embodiment is, as shown in FIG. 1, a plurality of outer joint members 12, an inner joint member 13, and a plurality of torque transmission members.
  • the ball 14 and the cage 15 constitute a main part.
  • arc-shaped track grooves 16 extending in the axial direction are formed at a plurality of circumferential positions of the spherical inner circumferential surface 17 at equal intervals.
  • a pipe-like propeller shaft 19 is coaxially coupled to one open end 18 of the outer joint member 12 such that it can transmit torque by friction welding or the like.
  • a seal plate 20 is attached to the open end portion 18 by press fitting so as to enclose a lubricant such as grease inside the outer joint member 12.
  • arc-shaped track grooves 21 extending in the axial direction to be paired with the track grooves 16 of the outer joint member 12 are formed at a plurality of circumferential positions of the spherical outer peripheral surface 22 at equal intervals.
  • a power transmission shaft 25 which is an output shaft extending from the transmission 24 is coupled to the shaft hole 23 of the inner joint member 13 so as to be able to transmit torque by spline fitting.
  • the power transmission shaft 25 is attachable to and detachable from the inner joint member 13 by a detaching mechanism 33.
  • the ball 14 is interposed between the track groove 16 of the outer joint member 12 and the track groove 21 of the inner joint member 13.
  • the ball 14 transmits rotational torque between the outer joint member 12 and the inner joint member 13.
  • the number of balls 14 may be six, eight or any other number.
  • the cage 15 is interposed between the inner circumferential surface 17 of the outer joint member 12 and the outer circumferential surface 22 of the inner joint member 13.
  • a plurality of pockets 26 for holding the balls 14 are formed at a plurality of circumferential positions at equal intervals.
  • the constant velocity universal joint 11 prevents leakage of the lubricant sealed in the inside of the outer joint member 12 and also prevents foreign matter from invading from the outside, so that a seal mechanism is provided between the outer joint member 12 and the power transmission shaft 25.
  • a seal mechanism is provided between the outer joint member 12 and the power transmission shaft 25.
  • the lubricity at the sliding portion inside the joint can be reduced during operation in which the power transmission shaft 25 rotates with respect to the outer joint member 12 while taking the operating angle. I try to secure it.
  • the above-mentioned seal mechanism 27 is constituted by the boot 28 made of rubber and the metal ring 29.
  • the boot 28 has a small diameter end 30 and a large diameter end 31 and has a U-shaped folded shape in the middle.
  • One end of the metal ring 29 is fixed to the outer peripheral surface of the open end 32 of the outer joint member 12 by press fitting, and the other end is fixed to the large diameter end 31 of the boot 28 by caulking.
  • An annular recessed groove 53 is formed on the outer peripheral surface of the large diameter portion 40 of the power transmission shaft 25.
  • the small diameter end portion 30 of the boot 28 is fitted in the annular recessed groove 53 of the power transmission shaft 25, and is fastened and fixed to the power transmission shaft 25 by a metal boot band 54.
  • the constant velocity universal joint 11 of this embodiment includes a desorption mechanism 33 having the following structure.
  • the detachable mechanism 33 of this embodiment is provided between the inner joint member 13 of the constant velocity universal joint 11 and the power transmission shaft 25 of the transmission 24, as shown in FIGS.
  • the main part is comprised by the retaining ring 35 which is a fixing member, the spherical body 36, and the annular member 37. As shown in FIG.
  • the inner joint member 13 and the power transmission shaft 25 can be reliably fixed and easily separated by the simple structure including the cylindrical member 34, the snap ring 35, the ball 36 and the annular member 37. it can. As a result, the degree of freedom in design of the desorption mechanism 33 can be improved.
  • the cylindrical member 34 is extrapolated to the power transmission shaft 25.
  • An annular locking groove 38 is provided on the outer peripheral surface of the transmission side end of the inner joint member 13, and an annular locking claw 39 is provided on the inner peripheral surface of the propeller shaft side end of the cylindrical member 34.
  • the inner joint member 13 and the cylindrical member 34 are connected by fitting the locking claws 39 of the cylindrical member 34 into the locking grooves 38 of the inner joint member 13.
  • the cylindrical member 34 is axially restricted in position by the step surface 41 of the large diameter portion 40 of the power transmission shaft 25 in a state of being connected to the inner joint member 13.
  • the cylindrical member 34 may be configured integrally with the inner joint member 13. By forming the tubular member 34 separately from the inner joint member 13, the tubular member 34 can be easily manufactured on the machined surface.
  • the material of the cylindrical member 34 is, for example, low carbon steel, brass, aluminum, resin, etc., which does not cause deformation or breakage of the locking claw 39 with required axial proof strength (for example, about 2000 N at maximum). If it is
  • thermoplastic resin such as nylon having high elasticity are most preferable.
  • the retaining ring 35 is a collapsible C-shaped member which is installed in the cylindrical member 34.
  • An annular recessed groove 43 is formed on the inner peripheral surface of the cylindrical member 34, and the retaining ring 35 is internally mounted on the tubular member 34 by fitting the retaining ring 35 in the recessed groove 43.
  • the entire retaining ring 35 is accommodated in the recessed groove 43 of the cylindrical member 34. Further, when the diameter of the retaining ring 35 is reduced, the outer peripheral side of the retaining ring 35 is partially accommodated in the recessed groove 43 of the cylindrical member 34.
  • annular recessed groove 45 is formed on the outer peripheral surface between the spline fitting portion 44 and the large diameter portion 40 of the power transmission shaft 25 in agreement with the axial position of the recessed groove 43 of the cylindrical member 34, The snap ring 35 is engaged with the power transmission shaft 25 by fitting the snap ring 35 in the diameter-reduced state into the recessed groove 45.
  • the retaining ring 35 When the diameter of the retaining ring 35 is expanded, the retaining ring 35 is not accommodated in the recessed groove 45 of the power transmission shaft 25. When the diameter of the retaining ring 35 is reduced, the inner peripheral side of the retaining ring 35 is a part of the recessed groove 45 of the power transmission shaft 25. It will be in the state of being accommodated.
  • the spherical body 36 is arranged radially movably with the retaining ring 35 at the radially outer side of the retaining ring 35.
  • Through holes 46 opened on the inner and outer peripheries of the cylindrical member 34 are formed at a plurality of locations in the circumferential direction of the cylindrical member 34, and the spheres 36 are disposed in the through holes 46.
  • the radially inner side of the spherical body 36 is brought into contact with the retaining ring 35, and the radially outer side of the spherical body 36 can be protruded and retracted with respect to the outer peripheral opening 47 of the through hole 46.
  • the number of spheres 36 is preferably three or more in order to reduce the diameter of the retaining ring 35 uniformly.
  • the retaining ring 35 is contracted by the radial inward movement of the spherical body 36. Make it diameter.
  • the retaining ring 35 is expanded in diameter by its elastic force by the radial outward movement of the spherical body 36.
  • the through hole 46 of the cylindrical member 34 reduces the diameter of the outer peripheral side opening 47 of the cylindrical member 34 so as to have an inner diameter slightly smaller than the outer diameter of the sphere 36.
  • the annular member 37 is disposed on the large diameter portion 40 of the power transmission shaft 25 and the outer peripheral surface of the cylindrical member 34 so as to be axially movable.
  • An annular recess 56 is formed on the outer peripheral surface of the cylindrical member 34, and a stepped portion 55 is provided on the propeller shaft side of the recess 56.
  • An annular member 37 is externally inserted in the recess 56 of the cylindrical member 34.
  • the propeller shaft side end of the annular member 37 is engaged with the step 55 of the recess 56 of the cylindrical member 34.
  • the transmission side end of the annular member 37 is locked to the inner end face 57 of the small diameter end 30 of the boot 28.
  • the axial position of the annular member 37 is restricted in a state where the annular member 37 is sandwiched between the step portion 55 of the recess 56 of the cylindrical member 34 and the inner end surface 57 of the small diameter end portion 30 of the boot 28.
  • the power transmission shaft 25 and the inner joint member 13 can be stably fixed. At the same time, it is possible to prevent the leakage of the lubricant sealed inside the outer joint member 12 and to prevent the entry of foreign matter from the outside.
  • the small diameter end portion 30 of the boot 28 constituting a part of the sealing mechanism 27 regulates the axial position of the annular member 37 with respect to the power transmission shaft 25 and the sealing function for preventing the leakage of lubricant and the entry of foreign matter. It has a fixed function.
  • a tapered portion 42 is provided on the inner diameter side of the propeller shaft side end portion of the annular member 37.
  • the retaining ring 35 is attached to and detached from the power transmission shaft 25 by radially moving the sphere 36 exposed from the outer peripheral surface of the cylindrical member 34 by axial movement of the annular member 37. It is possible.
  • the power transmission is performed in the following manner shown in FIGS. 3 to 5 by the detachment mechanism 33 including the cylindrical member 34, the retaining ring 35, the ball 36 and the annular member 37. Fixation and separation of the shaft 25 and the inner joint member 13 are performed.
  • FIG. 3 shows the state before inserting the power transmission shaft 25 into the inner joint member 13.
  • FIG. 4 shows the state before fixing the inner joint member 13 to the power transmission shaft 25.
  • FIG. 5 shows the inner joint member 13 with the power transmission shaft 25. Indicates the condition after fixing
  • the tubular member 34 is assembled to the inner joint member 13 by fitting the locking claws 39 of the tubular member 34 into the locking grooves 38 of the inner joint member 13.
  • the annular member 37 is extrapolated to the outer peripheral surface of the cylindrical member 34.
  • the sphere 36 is incorporated into the through hole 46 of the cylindrical member 34, and the retaining ring 35 is assembled to the recessed groove 43.
  • the snap ring 35 is accommodated in the recessed groove 43 of the cylindrical member 34 in a state of being expanded in diameter by its elastic force.
  • the retaining ring 35 in the expanded state does not drop off inward in the radial direction of the cylindrical member 34.
  • the ball 36 is pressed radially outward by the retaining ring 35, the ball 36 protrudes from the outer peripheral surface of the recess 56 of the cylindrical member 34 and is exposed.
  • the outer peripheral side opening 47 of the through hole 46 of the cylindrical member 34 is smaller in diameter than the outer diameter of the spherical body 36, the spherical body 36 is locked to the outer peripheral side opening 47 of the through hole 46 There is no possibility of falling off radially outward.
  • the power transmission shaft 25 is inserted into the shaft hole 23 of the inner joint member 13, and the inner joint member 13 and the power transmission shaft 25 are coupled by spline fitting so as to transmit torque. At this time, the power transmission shaft 25 is inserted until the step surface 41 of the large diameter portion 40 of the power transmission shaft 25 abuts on the transmission side end of the cylindrical member 34.
  • the retaining ring 35 is accommodated in the recessed groove 43 of the cylindrical member 34 by its elastic force, and therefore does not protrude from the inner peripheral surface of the cylindrical member 34. Therefore, since the insertion of the power transmission shaft 25 is not inhibited by the snap ring 35, the inner joint member 13 can be easily assembled to the power transmission shaft 25.
  • the recessed groove 45 of the power transmission shaft 25 is disposed at a position corresponding to the snap ring 35 accommodated in the recessed groove 43 of the cylindrical member 34.
  • the annular member 37 is slid toward the propeller shaft (see the white arrow in the figure).
  • the axial movement of the annular member 37 causes the spherical member 36 to protrude from the outer peripheral surface of the cylindrical member 34 and is exposed by the annular member 37 so as to be pushed radially inward of the through hole 46. At this time, the ball 36 is smoothly pushed along the tapered portion 42 of the annular member 37.
  • the propeller shaft side end of the annular member 37 abuts on the step portion 55 of the recess 56 of the cylindrical member 34.
  • the retaining ring 35 reduces its diameter against its elastic force. That is, the retaining ring 35 moves radially inward with the ball 36. The radially inward movement of the retaining ring 35 causes the inner peripheral side of the retaining ring 35 to fit in the recessed groove 45 of the power transmission shaft 25.
  • the small diameter end portion 30 of the boot 28 is fitted in the concave groove 53 of the power transmission shaft 25, and is tightened and fixed by the boot band 54.
  • the transmission side end of the annular member 37 abuts on the inner end face 57 of the small diameter end 30 of the boot 28 to restrict its axial position.
  • the inner end surface 57 of the small diameter end portion 30 of the boot 28 presses the annular member 37 by its elastic force, so that the annular member 37 is sandwiched between the step portion 55 of the recess 56 of the cylindrical member 34 It is fixed.
  • the inner peripheral side of the snap ring 35 is separated from the recessed groove 45 of the power transmission shaft 25, and the entire snap ring 35 is accommodated in the recessed groove 43 of the cylindrical member 34. The state in which 35 is locked to the power transmission shaft 25 is released.
  • annular locking groove 49 is provided on the outer peripheral surface of the propeller shaft side end of the cylindrical member 34, and the inside of the transmission side end of the inner joint member 13 is provided.
  • An annular locking claw 50 is provided on the circumferential surface. The cylindrical member 34 and the inner joint member 13 are connected by fitting the locking claws 50 of the inner joint member 13 into the locking grooves 49 of the cylindrical member 34.
  • the annular member 37 is disposed on the outer peripheral surface of the large diameter portion 40 of the power transmission shaft 25 and the outer peripheral surface of the cylindrical member 34 so as to be movable in the axial direction.
  • the annular member 37 has a thin portion 51 whose inner diameter at the propeller shaft side end is set larger than that on the transmission side.
  • the thin portion 51 which is the propeller shaft side end of the annular member 37 is engaged with the transmission side end face 52 of the inner joint member 13.
  • the transmission side end of the annular member 37 is locked to the inner end face 57 of the small diameter end 30 of the boot 28.
  • the axial position of the annular member 37 is restricted in a state in which the annular member 37 is sandwiched between the transmission side end surface 52 of the inner joint member 13 and the inner end surface 57 of the small diameter end 30 of the boot 28.
  • the power transmission shaft 25 and the inner joint member 13 can be stably fixed. At the same time, it is possible to prevent the leakage of the lubricant sealed inside the outer joint member 12 and to prevent the entry of foreign matter from the outside.
  • the small diameter end portion 30 of the boot 28 constituting a part of the sealing mechanism 27 regulates the axial position of the annular member 37 with respect to the power transmission shaft 25 and the sealing function for preventing the leakage of lubricant and the entry of foreign matter. It has a fixed function.
  • a spherical member 58 which is a fixing member is accommodated in the through hole 46 of the cylindrical member 34 so as to be movable in the radial direction.
  • the radial movement of the spherical body 58 allows the spherical body 58 to be protruded and retracted with respect to the inner peripheral opening 48 of the through hole 46 of the cylindrical member 34.
  • the number of balls 58 may be appropriately set according to the fixing force required to lock the cylindrical member 34 to the power transmission shaft 25.
  • the spherical body 58 moves inward in the radial direction.
  • the transmission shaft 25 is restrained. Further, when the power transmission shaft 25 and the inner joint member 13 are separated, the restriction of the power transmission shaft 25 by the spherical body 58 is released by the radial outward movement of the spherical body 58.
  • the through hole 46 of the cylindrical member 34 reduces the diameter of the inner peripheral opening 48 of the cylindrical member 34 so as to have an inner diameter slightly smaller than the outer diameter of the spherical body 58.
  • the spherical body 58 accommodated in the through hole 46 of the cylindrical member 34 is the inner diameter of the cylindrical member 34 by gravity or the like. It is prevented from falling out to the side.
  • a tapered portion 59 is provided on the transmission side of the thin portion 51 of the annular member 37.
  • the thin-walled portion 51 of the annular member 37 accommodates the spherical body 58 in which the restricted state of the outward movement in the radial direction is released. Thereby, the spherical body 58 is prevented from dropping out of the through hole 46 of the cylindrical member 34 in the radial direction.
  • the outer diameter of the spherical body 58 needs to be set to be larger than the radial dimension (the through hole depth dimension) of the through hole 46 of the cylindrical member 34. Thereby, the locking and disengagement of the ball 58 with respect to the power transmission shaft 25 can be reliably performed.
  • the spherical body 58 is removable from the power transmission shaft 25 by moving the spherical body 58 in the cylindrical member 34 in the radial direction by axial movement of the annular member 37.
  • the power transmission shaft 25 and the inner side in the following manner shown in FIGS. 8 to 10 by the detaching mechanism 33 composed of the cylindrical member 34, the sphere 58 and the annular member 37. Fixation and separation with the joint member 13 are performed. 8 to 10 show a state in which the spherical body 58 receives gravity from the upper side to the lower side.
  • FIG. 8 shows the state before inserting the power transmission shaft 25 into the inner joint member 13.
  • FIG. 9 shows the state before fixing the inner joint member 13 to the power transmission shaft 25.
  • FIG. 10 shows the inner joint member 13 with the power transmission shaft 25. Indicates the condition after fixing
  • the thin portion 51 of the annular member 37 is disposed so as to close the outer peripheral opening of the through hole 46 of the cylindrical member 34.
  • the spherical body 58 is not accommodated in the thin-walled portion 51 of the annular member 37 and is not dropped radially outward from the through hole 46 of the cylindrical member 34.
  • the spherical body 58 is locked to the inner peripheral side opening 48 of the through hole 46 There is no possibility of falling radially inward from the inner peripheral opening 48.
  • the power transmission shaft 25 is inserted into the shaft hole 23 of the inner joint member 13, and the inner joint member 13 and the power transmission shaft 25 are coupled by spline fitting so as to transmit torque.
  • the power transmission shaft 25 is inserted until the step surface 41 of the large diameter portion 40 of the power transmission shaft 25 abuts on the transmission side end of the cylindrical member 34.
  • the spherical body 58 is accommodated in the thin portion 51 of the annular member 37 and therefore does not protrude from the inner circumferential surface of the cylindrical member 34. Therefore, since the insertion of the power transmission shaft 25 is not inhibited by the ball 58, the inner joint member 13 can be easily assembled to the power transmission shaft 25.
  • the concave groove 45 of the power transmission shaft 25 is disposed at a position corresponding to the spherical body 58 exposed from the inner peripheral opening 48 of the through hole 46 of the cylindrical member 34 .
  • the annular member 37 is slid toward the propeller shaft (see the white arrow in the figure).
  • the axial movement of the annular member 37 causes the spherical member 58 projecting from the outer peripheral surface of the cylindrical member 34 to be pushed radially inward of the through hole 46 of the cylindrical member 34 by the annular member 37. At this time, the sphere 58 is smoothly pushed along the tapered portion 59 of the annular member 37.
  • the propeller shaft side end portion (the tip end portion of the thin portion 51) of the annular member 37 abuts on the transmission side end surface 52 of the inner joint member 13.
  • the spherical body 58 moved radially inward in the through hole 46 of the cylindrical member 34 is the inner circumferential opening 48 of the through hole 46. And fit into the recessed groove 45 of the power transmission shaft 25.
  • the power transmission shaft 25 and the inner joint member 13 are fixed via the cylindrical member 34 by the sphere 58 pushed by the annular member 37 being locked in the recessed groove 45 of the power transmission shaft 25. It will be done.
  • the small diameter end portion 30 of the boot 28 is fitted in the concave groove 53 of the power transmission shaft 25 and is fastened and fixed by the boot band 54 (see FIGS. 6 and 7).
  • the transmission side end of the annular member 37 abuts on the inner end face 57 of the small diameter end 30 of the boot 28 to restrict its axial position. Thereby, the fixation of the power transmission shaft 25 and the inner joint member 13 is completed. Since the inner end surface 57 of the small diameter end 30 of the boot 28 presses the annular member 37 by its elastic force, the annular member 37 is sandwiched between the transmission side end surface 52 of the inner joint member 13 and fixed. There is.

Abstract

外側継手部材12と、外側継手部材12との間でボール14を介して角度変位を許容しながらトルクを伝達する内側継手部材13とを備え、内側継手部材13に動力伝達軸25をトルク伝達可能に結合させ、内側継手部材13と動力伝達軸25との間に、内側継手部材13に対して動力伝達軸25を着脱する脱着機構33を設け、脱着機構33は、動力伝達軸25に外挿された筒状部材34と、筒状部材34に径方向移動可能に収容された止め輪35と、筒状部材34の外周に軸方向移動可能に配置された環状部材37とを備え、外側継手部材12の開口部32を閉塞するブーツ28の小径端部30をブーツバンド54により動力伝達軸25に締め付け固定することにより、ブーツ28の小径端部30で環状部材37の軸方向位置を規制する。

Description

等速自在継手
 本発明は、自動車や各種産業機械の動力伝達系に使用され、特に、自動車用プロペラシャフトに組み込まれる等速自在継手に関する。
 自動車のエンジンから車輪に回転力を等速で伝達する手段として使用される等速自在継手には、固定式等速自在継手と摺動式等速自在継手の二種がある。これら両者の等速自在継手は、駆動側と従動側の二軸を連結してその二軸が作動角をとっても等速で回転トルクを伝達し得る構造を備えている。
 自動車に組み込まれるプロペラシャフトは、トランスミッションとディファレンシャルとの相対位置関係の変化による角度変位と軸方向変位に対応する必要がある。
 そのため、プロペラシャフトは、一般的に、トランスミッション側に角度変位のみを許容する固定式等速自在継手を、ディファレンシャル側に軸方向変位および角度変位の両方を許容する摺動式等速自在継手をそれぞれ装備し、両者の等速自在継手をプロペラ軸で連結した構造を具備する。
 固定式等速自在継手は、外側継手部材、内側継手部材、複数のボールおよびケージを備えている。内側継手部材の軸孔には、トランスミッションから延びる出力軸である動力伝達軸がスプライン嵌合によりトルク伝達可能に連結されている。この動力伝達軸は、止め輪により内側継手部材に対して抜け止めされている。
 従来、このプロペラシャフトにおける動力伝達軸と等速自在継手との連結構造として、種々のものが提案されている(例えば、特許文献1,2参照)。
 特許文献1で開示された連結構造は、等速自在継手の内側継手部材を軸方向の動力伝達軸側に延設し、内側継手部材と動力伝達軸とのスプライン嵌合部分以外の部位で、内側継手部材と動力伝達軸とを止め輪で固定した構造を具備する。
 特許文献2で開示された連結構造は、等速自在継手の内側継手部材にドライブスリーブをスプライン嵌合によりトルク伝達可能に連結すると共に、動力伝達軸にドライブナットを連結し、ドライブスリーブにドライブナットを嵌合させた構造を具備する。
特許第5174153号公報 特許第5818390号公報
 ところで、プロペラシャフトの部品交換や保守点検のためには、トランスミッションの動力伝達軸に対して等速自在継手を着脱可能とする必要がある。前述の特許文献1,2で開示された動力伝達軸と等速自在継手との連結構造の場合、以下のような課題を持つ。
 特許文献1で開示された連結構造の場合、動力伝達軸の抜け耐力を確保しながら動力伝達軸と等速自在継手の内側継手部材とを分離可能にするため、止め輪や止め輪溝に面取りや丸みを設けることになる。
 しかしながら、止め輪による抜け止め性能を安定させるためには、止め輪や止め輪溝の面取り等の形状、寸法の設計および管理が非常に困難で、最適な形状、寸法の設計および管理が難しい。
 特許文献2で開示された連結構造の場合、等速自在継手の内側継手部材から延びるドライブスリーブに、動力伝達軸のドライブナットを嵌合させることにより、動力伝達軸に等速自在継手を確実に固定することができると共に、動力伝達軸から等速自在継手を容易に分離させることができる。
 しかしながら、ドライブスリーブおよびドライブナットからなる嵌合構造の場合、ドライブスリーブおよびドライブナットの部品が必要となる。その結果、プロペラシャフトにおける部品点数が増加し、プロペラシャフトのコストアップを招くことになる。
 そこで、本発明は前述の課題に鑑みて提案されたもので、その目的とするところは、簡素な構造でもって内側継手部材と動力伝達軸を確実に固定し、かつ、容易に分離し得る等速自在継手を提供することにある。
 本発明に係る等速自在継手は、外側継手部材と、その外側継手部材との間でトルク伝達部材を介して角度変位を許容しながらトルクを伝達する内側継手部材とを備え、その内側継手部材に動力伝達軸をトルク伝達可能に結合させ、内側継手部材と動力伝達軸との間に、内側継手部材に対して動力伝達軸を着脱する脱着機構を設けた構造を具備する。
 前述の目的を達成するための技術的手段として、本発明における脱着機構は、動力伝達軸に外挿された筒状部材と、その筒状部材に径方向移動可能に収容された固定部材と、筒状部材の外周に軸方向移動可能に配置された環状部材とを備え、外側継手部材の開口部を閉塞するブーツの端部をブーツバンドにより動力伝達軸に締め付け固定することにより、ブーツの端部で環状部材の軸方向位置を規制したことを特徴とする。
 本発明の脱着機構は、筒状部材、固定部材および環状部材を備えていることから、環状部材の軸方向移動により筒状部材内の固定部材を径方向移動させることで、動力伝達軸に対して固定部材を着脱可能とする。この固定部材の着脱により、動力伝達軸と内側継手部材との固定および分離が行われる。
 この動力伝達軸と内側継手部材との固定時、外側継手部材の開口部を閉塞するブーツの端部をブーツバンドにより動力伝達軸に締め付け固定することにより、そのブーツの端部で環状部材の軸方向位置を規制する。
 これにより、動力伝達軸と内側継手部材とを安定して固定することができる。同時に、外側継手部材の内部に封入された潤滑剤の漏洩を防ぐと共に外部からの異物侵入を防止することができる。
 本発明におけるブーツは、外側継手部材に取り付けられた金属環とでシール機構を構成し、動力伝達軸に締め付け固定された小径端部と、金属環に加締め固定された大径端部とを有する構造が望ましい。
 このような構造を採用すれば、シール機構の一部を構成するブーツの小径端部で、潤滑剤の漏洩および異物の侵入を防止するシール機能と、動力伝達軸に対する環状部材の軸方向位置を規制する固定機能とを兼ね備える。
 本発明において、筒状部材の外周面に凹所を形成し、凹所の内側継手部材側に位置する段差部に環状部材の端部を係止させた構造が望ましい。
 このような構造を採用すれば、筒状部材の凹所の段差部とブーツの端部との間に環状部材を軸方向で挟み込んで固定することにより、環状部材の軸方向位置を確実に規制することができる。
 本発明において、環状部材の端部を内側継手部材の端面に係止させた構造が望ましい。
 このような構造を採用すれば、内側継手部材の端面とブーツの端部との間に環状部材を軸方向で挟み込んで固定することにより、環状部材の軸方向位置を確実に規制することができる。
 本発明によれば、内側継手部材に対して動力伝達軸を着脱する脱着機構を、筒状部材、固定部材および環状部材で構成したことにより、簡素な構造でもって内側継手部材と動力伝達軸を確実に固定し、かつ、容易に分離することができる。その結果、脱着機構における設計の自由度を向上させることができる。
 また、ブーツの端部をブーツバンドにより動力伝達軸に締め付け固定することで、そのブーツの端部で環状部材の軸方向位置を規制したことにより、動力伝達軸と内側継手部材との安定した固定と、潤滑剤の漏洩および異物の侵入の防止とを同時に行うことができ、部品点数の削減、等速自在継手のコスト低減および組立性の向上が図れる。
本発明の実施形態で、等速自在継手の全体構成を示す断面図である。 図1の要部拡大断面図である。 図2の脱着機構において、内側継手部材に動力伝達軸を挿入する前の状態を示す断面図である。 図2の脱着機構において、動力伝達軸に内側継手部材を固定する前の状態を示す断面図である。 図2の脱着機構において、動力伝達軸に内側継手部材を固定した後の状態を示す断面図である。 本発明の他の実施形態で、等速自在継手の全体構成を示す断面図である。 図6の要部拡大断面図である。 図7の脱着機構において、内側継手部材に動力伝達軸を挿入する前の状態を示す断面図である。 図7の脱着機構において、動力伝達軸に内側継手部材を固定する前の状態を示す断面図である。 図7の脱着機構において、動力伝達軸に内側継手部材を固定した後の状態を示す断面図である。
 本発明に係る等速自在継手の実施形態を図面に基づいて以下に詳述する。
 以下の実施形態では、自動車用プロペラシャフトに組み込まれる固定式等速自在継手の一つであるツェッパ型等速自在継手(BJ)を例示するが、他の固定式等速自在継手としてアンダーカットフリー型等速自在継手(UJ)にも適用可能である。
 また、摺動式等速自在継手としてのダブルオフセット型等速自在継手(DOJ)、クロスグルーブ型等速自在継手(LJ)やトリポード型等速自在継手(TJ)などにも適用可能である。
 4WD車やFR車などの自動車に組み込まれるプロペラシャフトは、トランスミッションとディファレンシャルとの相対位置関係の変化による角度変位と軸方向変位に対応する必要がある。
 そのため、プロペラシャフトは、一般的に、トランスミッション側に角度変位のみを許容する固定式等速自在継手を、ディファレンシャル側に軸方向変位および角度変位の両方を許容する摺動式等速自在継手をそれぞれ装備し、両者の等速自在継手を鋼製のプロペラ軸で連結した構造を具備する。
 この実施形態の固定式等速自在継手11(以下、単に等速自在継手と称す)は、図1に示すように、外側継手部材12と、内側継手部材13と、トルク伝達部材である複数のボール14と、ケージ15とで主要部が構成されている。
 外側継手部材12は、軸方向に延びる円弧状トラック溝16が球面状内周面17の円周方向複数箇所に等間隔で形成されている。この外側継手部材12の一方の開口端部18には、パイプ状のプロペラ軸19が摩擦溶接などによりトルク伝達可能に同軸的に結合されている。また、この開口端部18には、外側継手部材12の内部にグリース等の潤滑剤を封入するため、シールプレート20が圧入嵌合により取り付けられている。
 内側継手部材13は、外側継手部材12のトラック溝16と対をなして軸方向に延びる円弧状トラック溝21が球面状外周面22の円周方向複数箇所に等間隔で形成されている。この内側継手部材13の軸孔23には、トランスミッション24から延びる出力軸である動力伝達軸25がスプライン嵌合によりトルク伝達可能に連結されている。この動力伝達軸25は、脱着機構33により内側継手部材13に対して着脱可能となっている。
 ボール14は、外側継手部材12のトラック溝16と内側継手部材13のトラック溝21との間に介在する。このボール14は、外側継手部材12と内側継手部材13との間で回転トルクを伝達する。ボール14は、6個、8個あるいはそれ以外であってもよく、その個数は任意である。
 ケージ15は、外側継手部材12の内周面17と内側継手部材13の外周面22との間に介在する。このケージ15は、ボール14を保持する複数のポケット26が円周方向複数箇所に等間隔で形成されている。
 この等速自在継手11では、プロペラ軸19により外側継手部材12と内側継手部材13との間に作動角が付与されると、ケージ15に保持されたボール14は、常にどの作動角においても、その作動角の二等分面内に維持される。
 その結果、外側継手部材12と内側継手部材13との間での等速性が確保される。外側継手部材12と内側継手部材13との間では、等速性が確保された状態で回転トルクがボール14を介して伝達される。
 この等速自在継手11は、外側継手部材12の内部に封入された潤滑剤の漏洩を防ぐと共に外部からの異物侵入を防止するため、外側継手部材12と動力伝達軸25との間にシール機構27を装着した構造を具備する。
 外側継手部材12の内部空間に潤滑剤を封入することにより、外側継手部材12に対して動力伝達軸25が作動角をとりながら回転する作動時において、継手内部の摺動部位での潤滑性を確保するようにしている。
 この等速自在継手11は、プロペラシャフトに組み込まれることから、高回転で作動角が小さい。このことから、前述のシール機構27は、ゴム製のブーツ28と金属環29とで構成されている。
 ブーツ28は、小径端部30と大径端部31を有して中間でU字状に折り返した形状をなす。金属環29は、一端部が外側継手部材12の開口端部32の外周面に圧入嵌合により固定され、他端部がブーツ28の大径端部31に加締めにより固定されている。
 動力伝達軸25の大径部40の外周面に環状凹溝53が形成されている。ブーツ28の小径端部30は、動力伝達軸25の環状凹溝53に嵌合され、金属製のブーツバンド54により動力伝達軸25に締め付け固定されている。
 等速自在継手11がプロペラ軸19に組み付けられたプロペラシャフトの部品交換や保守点検のためには、トランスミッション24の動力伝達軸25に対して等速自在継手11を着脱する脱着機構33が必要である。この実施形態の等速自在継手11は、以下のような構造の脱着機構33を具備する。
 この実施形態の脱着機構33は、図1および図2に示すように、等速自在継手11の内側継手部材13とトランスミッション24の動力伝達軸25との間に設けられ、筒状部材34と、固定部材である止め輪35と、球体36と、環状部材37とで主要部が構成されている。
 このように、筒状部材34、止め輪35、球体36および環状部材37からなる簡素な構造でもって、内側継手部材13と動力伝達軸25を確実に固定し、かつ、容易に分離することができる。その結果、脱着機構33における設計の自由度を向上させることができる。
 筒状部材34は、動力伝達軸25に外挿されている。内側継手部材13のトランスミッション側端部の外周面に環状の係止溝38を設けると共に、筒状部材34のプロペラ軸側端部の内周面に環状の係止爪39を設けている。
 内側継手部材13の係止溝38に筒状部材34の係止爪39を嵌合させることにより、内側継手部材13と筒状部材34とを連結している。筒状部材34は、内側継手部材13と連結された状態で、動力伝達軸25の大径部40の段差面41で軸方向に位置規制されている。
 この実施形態では、内側継手部材13と別体の筒状部材34を例示しているが、この筒状部材34は内側継手部材13と一体物で構成してもよい。筒状部材34を内側継手部材13と別体で構成することにより、加工面で筒状部材34の製作が容易である。
 この筒状部材34の材質としては、例えば、低炭素鋼、真鍮、アルミおよび樹脂などで、必要とする軸方向耐力(例えば、最大2000N程度)で係止爪39の変形や破損が発生しないものであればよい。
 また、止め輪35および球体36の組み込み性や、製作の容易性、加工コストを考慮すると、弾性が大きいナイロン等の熱可塑性樹脂の成型品が最も好ましい。
 止め輪35は、筒状部材34に内装された縮径可能なC字状部材である。筒状部材34の内周面に環状の凹溝43を形成し、この凹溝43に止め輪35を嵌合させることにより、止め輪35を筒状部材34に内装している。
 止め輪35の拡径時には、筒状部材34の凹溝43に止め輪35の全体が収容された状態となる。また、止め輪35の縮径時には、筒状部材34の凹溝43に止め輪35の外周側が部分的に収容された状態となる。
 一方、動力伝達軸25のスプライン嵌合部44と大径部40との間の外周面に、筒状部材34の凹溝43の軸方向位置と一致させて環状の凹溝45を形成し、この凹溝45に縮径状態の止め輪35を嵌め込むことで止め輪35を動力伝達軸25に係止させている。
 止め輪35の拡径時には、動力伝達軸25の凹溝45に止め輪35が収容されず、止め輪35の縮径時には、動力伝達軸25の凹溝45に止め輪35の内周側が部分的に収容された状態となる。
 球体36は、止め輪35の径方向外側で止め輪35と共に径方向移動可能に配置されている。筒状部材34の円周方向複数箇所に、筒状部材34の内外周に開口する貫通孔46を形成し、この貫通孔46に球体36を配置している。
 これにより、球体36の径方向内側を止め輪35に当接させると共に、球体36の径方向外側を貫通孔46の外周側開口部47に対して突出退入自在としている。なお、球体36の数は、止め輪35を均等に縮径させるために3個以上が好ましい。
 このように、球体36を筒状部材34の貫通孔46に配置することで、動力伝達軸25と内側継手部材13との固定時、球体36の径方向内側への移動により止め輪35を縮径させる。また、動力伝達軸25と内側継手部材13との分離時、球体36の径方向外側への移動により止め輪35をその弾性力により拡径させる。
 筒状部材34の貫通孔46は、筒状部材34の外周側開口部47を縮径させ、球体36の外径よりも若干小さい内径としている。
 図3に示すように、環状部材37により球体36が径方向外側で拘束されない状態の時、止め輪35の弾性力により球体36が径方向外側に移動して筒状部材34の外周面に露呈する。この時、球体36が筒状部材34の外側へ脱落することを防止している。
 環状部材37は、動力伝達軸25の大径部40および筒状部材34の外周面に軸方向移動可能に配置されている。筒状部材34の外周面に環状の凹所56が形成され、その凹所56のプロペラ軸側に段差部55が設けられている。この筒状部材34の凹所56に環状部材37が外挿されている。
 図1および図2に示すように、環状部材37のプロペラ軸側端部が筒状部材34の凹所56の段差部55に係止されている。環状部材37のトランスミッション側端部がブーツ28の小径端部30の内側端面57に係止されている。
 このように、環状部材37は、筒状部材34の凹所56の段差部55とブーツ28の小径端部30の内側端面57とに挟み込まれた状態で軸方向位置が規制されている。
 これにより、動力伝達軸25と内側継手部材13とを安定して固定することができる。同時に、外側継手部材12の内部に封入された潤滑剤の漏洩を防ぐと共に外部からの異物侵入を防止することできる。
 つまり、シール機構27の一部を構成するブーツ28の小径端部30は、潤滑剤の漏洩および異物の侵入を防止するシール機能と、動力伝達軸25に対する環状部材37の軸方向位置を規制する固定機能とを兼ね備える。
 その結果、環状部材37の軸方向位置を規制するための止め輪や、潤滑剤の漏洩および異物の侵入を防止するためのOリング等の別部品が不要となるので、部品点数の削減が図れ、等速自在継手11のコスト低減および組立性の向上が図れる。
 環状部材37のプロペラ軸側端部の内径側にはテーパ部42が設けられている。動力伝達軸25と内側継手部材13との固定時、環状部材37の軸方向移動により、テーパ部42に沿って球体36を径方向内側へスムーズに移動させることが可能となる。
 以上の構成からなる脱着機構33において、環状部材37の軸方向移動により筒状部材34の外周面から露呈する球体36を径方向移動させることにより、動力伝達軸25に対して止め輪35を着脱可能としている。
 つまり、この実施形態の等速自在継手11では、筒状部材34、止め輪35、球体36および環状部材37からなる脱着機構33により、図3~図5に示す以下の要領でもって、動力伝達軸25と内側継手部材13との固定および分離が行われる。
 図3は内側継手部材13に動力伝達軸25を挿入する前の状態、図4は動力伝達軸25に内側継手部材13を固定する前の状態、図5は動力伝達軸25に内側継手部材13を固定した後の状態を示す。
 まず、図3に示すように、内側継手部材13の係止溝38に筒状部材34の係止爪39を嵌合させることにより、内側継手部材13に筒状部材34を組み付ける。環状部材37は筒状部材34の外周面に外挿されている。
 この筒状部材34の貫通孔46に球体36を組み込むと共に凹溝43に止め輪35を組み付ける。この状態では、止め輪35がその弾性力により拡径した状態で筒状部材34の凹溝43に収容されている。拡径状態にある止め輪35は、筒状部材34の径方向内側へ脱落することはない。
 また、止め輪35により球体36を径方向外側に押圧していることから、球体36が筒状部材34の凹所56の外周面から突出して露呈している。この時、筒状部材34の貫通孔46の外周側開口部47が球体36の外径よりも縮径されていることから、球体36が貫通孔46の外周側開口部47に係止されるので径方向外側へ脱落することはない。
 次に、図4に示すように、内側継手部材13の軸孔23に動力伝達軸25を挿入し、内側継手部材13と動力伝達軸25とをスプライン嵌合によりトルク伝達可能に連結する。この時、筒状部材34のトランスミッション側端部に動力伝達軸25の大径部40の段差面41が当接するまで動力伝達軸25を挿入する。
 なお、動力伝達軸25の挿入が完了するまで、適宜の手段により、動力伝達軸25の挿入に伴う環状部材37の軸方向移動を規制し、環状部材37の固定状態を保持する。
 これにより、止め輪35がその弾性力により筒状部材34の凹溝43に収容されているので筒状部材34の内周面から突出しない。そのため、動力伝達軸25の挿入が止め輪35により阻害されないので、内側継手部材13を動力伝達軸25に組み付けることが容易となる。
 動力伝達軸25の挿入が完了した状態では、動力伝達軸25の凹溝45が、筒状部材34の凹溝43に収容された止め輪35と対応する位置に配置される。この状態で、環状部材37をプロペラ軸側に摺動させる(図中の白抜き矢印参照)。
 環状部材37の軸方向移動により、筒状部材34の外周面から突出して露呈する球体36は、環状部材37でもって貫通孔46の径方向内側へ押し込まれる。この時、環状部材37のテーパ部42に沿って球体36がスムーズに押し込まれる。
 そして、図5に示すように、環状部材37のプロペラ軸側端部が筒状部材34の凹所56の段差部55に当接する。一方、球体36が貫通孔46に押し込まれると、止め輪35がその弾性力に抗して縮径する。つまり、球体36と共に止め輪35は径方向内側へ移動する。止め輪35の径方向内側への移動により、止め輪35の内周側が動力伝達軸25の凹溝45に嵌合する。
 このようにして、環状部材37により球体36を介して押し込まれた止め輪35が筒状部材34の凹溝43と動力伝達軸25の凹溝45に係止される。つまり、止め輪35により、動力伝達軸25と内側継手部材13とが筒状部材34を介して固定される。
 その後、図1および2に示すように、ブーツ28の小径端部30を動力伝達軸25の凹溝53に嵌合させ、ブーツバンド54により締め付け固定する。環状部材37のトランスミッション側端部がブーツ28の小径端部30の内側端面57に当接してその軸方向位置が規制される。これにより、動力伝達軸25と内側継手部材13の固定を完了する。なお、ブーツ28の小径端部30の内側端面57は、その弾性力により環状部材37を押圧するので、環状部材37は、筒状部材34の凹所56の段差部55との間で挟み込んで固定されている。
 一方、動力伝達軸25と内側継手部材13との分離は、前述とは逆の操作により行われる。つまり、ブーツバンド54を緩めて動力伝達軸25の凹溝53からブーツ28の小径端部30を離脱させる(図5参照)。
 そして、環状部材37をトランスミッション側に摺動させる。この環状部材37の軸方向移動により、球体36を径方向内側に押し込んでいた環状部材37が球体36から離脱すると、止め輪35が弾性力により拡径し、球体36が筒状部材34の外周面から突出して露呈する(図4参照)。
 この止め輪35の拡径により、止め輪35の内周側が動力伝達軸25の凹溝45から外れ、止め輪35の全体が筒状部材34の凹溝43に収容された状態となり、止め輪35が動力伝達軸25に係止された状態が解除される。
 この状態から、動力伝達軸25のスプライン嵌合部44を内側継手部材13の軸孔23から引き抜くことにより(図3参照)、動力伝達軸25と内側継手部材13の分離が完了する。
 図1および図2に示す実施形態では、内側継手部材13の係止溝38に筒状部材34の係止爪39を嵌合させた構造、固定部材を止め輪35で構成した構造、環状部材37のプロペラ軸側端部を筒状部材34の凹所56の段差部55に係止させた構造を例示したが、図6および図7に示す脱着機構であってもよい。
 なお、図6および図7において、図1および図2と同一部分には同一参照符号を付して重複説明は省略する。
 この実施形態では、図6および図7に示すように、筒状部材34のプロペラ軸側端部の外周面に環状の係止溝49を設けると共に、内側継手部材13のトランスミッション側端部の内周面に環状の係止爪50を設けている。筒状部材34の係止溝49に内側継手部材13の係止爪50を嵌合させることにより、筒状部材34と内側継手部材13とを連結している。
 環状部材37は、動力伝達軸25の大径部40の外周面および筒状部材34の外周面に軸方向移動可能に配置されている。この環状部材37は、そのプロペラ軸側端部の内径がトランスミッション側よりも大きく設定された薄肉部51を有する。
 環状部材37のプロペラ軸側端部である薄肉部51は、内側継手部材13のトランスミッション側端面52に係止されている。環状部材37のトランスミッション側端部は、ブーツ28の小径端部30の内側端面57に係止されている。
 このように、環状部材37は、内側継手部材13のトランスミッション側端面52とブーツ28の小径端部30の内側端面57とに挟み込まれた状態で軸方向位置が規制されている。
 これにより、動力伝達軸25と内側継手部材13とを安定して固定することができる。同時に、外側継手部材12の内部に封入された潤滑剤の漏洩を防ぐと共に外部からの異物侵入を防止することできる。
 つまり、シール機構27の一部を構成するブーツ28の小径端部30は、潤滑剤の漏洩および異物の侵入を防止するシール機能と、動力伝達軸25に対する環状部材37の軸方向位置を規制する固定機能とを兼ね備える。
 その結果、環状部材37の軸方向位置を規制するための止め輪や、潤滑剤の漏洩および異物の侵入を防止するためのOリング等の別部品が不要となるので、部品点数の削減が図れ、等速自在継手11のコスト低減および組立性の向上が図れる。
 筒状部材34の貫通孔46に固定部材である球体58を径方向移動可能に収容している。球体58の径方向移動により、球体58を筒状部材34の貫通孔46の内周側開口部48に対して突出退入自在としている。なお、球体58の個数は、筒状部材34を動力伝達軸25に係止させる上で必要とする固定力により適宜設定すればよい。
 このように、球体58を筒状部材34の貫通孔46に収容することで、動力伝達軸25と内側継手部材13との固定時、球体58の径方向内側への移動により、球体58で動力伝達軸25を拘束する。また、動力伝達軸25と内側継手部材13との分離時、球体58の径方向外側への移動により、球体58による動力伝達軸25の拘束を解除する。
 筒状部材34の貫通孔46は、筒状部材34の内周側開口部48を縮径させ、球体58の外径よりも若干小さい内径としている。
 これにより、筒状部材34に動力伝達軸25が挿入されていない状態の時(図8参照)、筒状部材34の貫通孔46に収容された球体58が重力等により筒状部材34の内径側へ脱落することを防止している。
 図6および図7に示すように、環状部材37により球体58の径方向外側への移動が拘束された状態では、球体58が筒状部材34の内周面から突出する。この状態で、球体58が動力伝達軸25の凹溝45に嵌まり込むことで球体58を動力伝達軸25に係止させている。環状部材37による球体58の径方向外側への移動の拘束状態が解除された場合には、球体58が筒状部材34の内周面から突出しない。
 環状部材37の薄肉部51のトランスミッション側にはテーパ部59が設けられている。動力伝達軸25と内側継手部材13との固定時、環状部材37の軸方向移動により、テーパ部59に沿って球体58を径方向内側へスムーズに移動させることが可能となる。
 環状部材37の薄肉部51は、動力伝達軸25と内側継手部材13との分離時、径方向外側への移動の拘束状態が解除された球体58を収容する。これにより、その球体58が筒状部材34の貫通孔46から径方向外側へ脱落することを防止している。
 つまり、球体58の外径は、筒状部材34の貫通孔46の径方向寸法(貫通孔深さ寸法)よりも大きくなるように設定する必要がある。これにより、動力伝達軸25に対する球体58の係止および離脱を確実に行うことができる。
 以上の構成からなる脱着機構33において、環状部材37の軸方向移動により筒状部材34内の球体58を径方向移動させることにより、動力伝達軸25に対して球体58を着脱可能としている。
 つまり、この実施形態の等速自在継手11では、筒状部材34、球体58および環状部材37からなる脱着機構33により、図8~図10に示す以下の要領でもって、動力伝達軸25と内側継手部材13との固定および分離が行われる。なお、図8~図10は、球体58がその上方から下方に向けて重力を受けた状態を示している。
 図8は内側継手部材13に動力伝達軸25を挿入する前の状態、図9は動力伝達軸25に内側継手部材13を固定する前の状態、図10は動力伝達軸25に内側継手部材13を固定した後の状態を示す。
 まず、図8に示すように、筒状部材34の係止溝49に内側継手部材13の係止爪50を嵌合させることにより、内側継手部材13に筒状部材34を組み付ける。環状部材37は筒状部材34の外周面に外挿されている。
 この状態では、環状部材37の薄肉部51が筒状部材34の貫通孔46の外周側開口部を塞ぐように配置されている。これにより、球体58が環状部材37の薄肉部51に収容されて筒状部材34の貫通孔46から径方向外側へ脱落することはない。
 また、筒状部材34の貫通孔46の内周側開口部48が球体58の外径よりも縮径されていることから、球体58が貫通孔46の内周側開口部48に係止されてその内周側開口部48から径方向内側へ脱落することはない。
 次に、図9に示すように、内側継手部材13の軸孔23に動力伝達軸25を挿入し、内側継手部材13と動力伝達軸25とをスプライン嵌合によりトルク伝達可能に連結する。この時、筒状部材34のトランスミッション側端部に動力伝達軸25の大径部40の段差面41が当接するまで動力伝達軸25を挿入する。
 なお、動力伝達軸25の挿入が完了するまで、適宜の手段により、動力伝達軸25の挿入に伴う環状部材37の軸方向移動を規制し、環状部材37の固定状態を保持する。
 これにより、球体58が環状部材37の薄肉部51に収容されているので筒状部材34の内周面から突出しない。そのため、動力伝達軸25の挿入が球体58により阻害されないので、内側継手部材13を動力伝達軸25に組み付けることが容易となる。
 動力伝達軸25の挿入が完了した状態では、動力伝達軸25の凹溝45が、筒状部材34の貫通孔46の内周側開口部48から露呈する球体58と対応する位置に配置される。この状態で、環状部材37をプロペラ軸側に摺動させる(図中の白抜き矢印参照)。
 この環状部材37の軸方向移動により、筒状部材34の外周面から突出している球体58は、環状部材37でもって筒状部材34の貫通孔46の径方向内側へ押し込まれる。この時、環状部材37のテーパ部59に沿って球体58がスムーズに押し込まれる。
 そして、図10に示すように、環状部材37のプロペラ軸側端部(薄肉部51の先端部)が内側継手部材13のトランスミッション側端面52に当接する。一方、環状部材37により球体58の径方向外側への移動が拘束されるため、筒状部材34の貫通孔46内で径方向内側に移動した球体58が貫通孔46の内周側開口部48から突出して動力伝達軸25の凹溝45に嵌合する。
 このようにして、環状部材37で押し込まれた球体58が動力伝達軸25の凹溝45に係止されることにより、動力伝達軸25と内側継手部材13とが筒状部材34を介して固定されることになる。
 その後、ブーツ28の小径端部30を動力伝達軸25の凹溝53に嵌合させ、ブーツバンド54により締め付け固定する(図6および図7参照)。環状部材37のトランスミッション側端部がブーツ28の小径端部30の内側端面57に当接してその軸方向位置が規制される。これにより、動力伝達軸25と内側継手部材13の固定を完了する。なお、ブーツ28の小径端部30の内側端面57は、その弾性力により環状部材37を押圧するので、環状部材37は、内側継手部材13のトランスミッション側端面52との間で挟み込んで固定されている。
 一方、動力伝達軸25と内側継手部材13との分離は、前述とは逆の操作により行われる。つまり、ブーツバンド54を緩めて動力伝達軸25の凹溝53からブーツ28の小径端部30を離脱させる(図10参照)。
 そして、環状部材37をトランスミッション側に摺動させる。この環状部材37の軸方向移動により、球体58を径方向内側に押し込んでいた環状部材37が球体58から離脱すると、その球体58が貫通孔46内で径方向に自由に移動可能な状態となり、球体58が動力伝達軸25に係止された状態が解除される(図9参照)。
 この状態から、動力伝達軸25のスプライン嵌合部44を内側継手部材13の軸孔23から引き抜くことにより(図8参照)、動力伝達軸25と内側継手部材13の分離が完了する。
 本発明は前述した実施形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内において、さらに種々なる形態で実施し得ることは勿論のことであり、本発明の範囲は、請求の範囲によって示され、さらに請求の範囲に記載の均等の意味、および範囲内のすべての変更を含む。

Claims (4)

  1.  外側継手部材と、前記外側継手部材との間でトルク伝達部材を介して角度変位を許容しながらトルクを伝達する内側継手部材とを備え、前記内側継手部材に動力伝達軸をトルク伝達可能に結合させ、内側継手部材と前記動力伝達軸との間に、内側継手部材に対して動力伝達軸を着脱する脱着機構を設けた等速自在継手であって、
     前記脱着機構は、前記動力伝達軸に外挿された筒状部材と、前記筒状部材に径方向移動可能に収容された固定部材と、前記筒状部材の外周に軸方向移動可能に配置された環状部材とを備え、
     前記外側継手部材の開口部を閉塞するブーツの端部をブーツバンドにより前記動力伝達軸に締め付け固定することにより、前記ブーツの端部で前記環状部材の軸方向位置を規制したことを特徴とする等速自在継手。
  2.  前記ブーツは、前記外側継手部材に取り付けられた金属環とでシール機構を構成し、前記動力伝達軸に締め付け固定された小径端部と、前記金属環に加締め固定された大径端部とを有する請求項1に記載の等速自在継手。
  3.  前記筒状部材の外周面に凹所を形成し、前記凹所の内側継手部材側に位置する段差部に前記環状部材の端部を係止させた請求項1又は2に記載の等速自在継手。
  4.  前記環状部材の端部を前記内側継手部材の端面に係止させた請求項1又は2に記載の等速自在継手。
PCT/JP2018/034857 2017-09-22 2018-09-20 等速自在継手 WO2019059291A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/643,899 US11493094B2 (en) 2017-09-22 2018-09-20 Constant velocity universal joint

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-182312 2017-09-22
JP2017182312A JP2019056455A (ja) 2017-09-22 2017-09-22 等速自在継手

Publications (1)

Publication Number Publication Date
WO2019059291A1 true WO2019059291A1 (ja) 2019-03-28

Family

ID=65811228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/034857 WO2019059291A1 (ja) 2017-09-22 2018-09-20 等速自在継手

Country Status (3)

Country Link
US (1) US11493094B2 (ja)
JP (1) JP2019056455A (ja)
WO (1) WO2019059291A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115076248B (zh) * 2022-06-30 2023-07-25 岚图汽车科技有限公司 一种驱动轴结构

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009085380A (ja) * 2007-10-01 2009-04-23 Ntn Corp 等速自在継手
JP2013194895A (ja) * 2012-03-22 2013-09-30 Hitachi Automotive Systems Kyushu Ltd プロペラシャフト及びこのプロペラシャフトに用いられる等速ジョイント
WO2015192826A1 (de) * 2014-06-18 2015-12-23 Ifa-Technologies Gmbh Verbindungsanordnung zur axialsicherung einer welle-nabe-verbindung und verfahren zur axialsicherung einer welle-nabe-verbindung
WO2017134981A1 (ja) * 2016-02-04 2017-08-10 Ntn株式会社 等速自在継手

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI23979A (fi) * 1947-12-23 1949-10-10 Anordning vid styrningsmekanismen för framhjulen på motorfordon
US3903042A (en) 1974-06-11 1975-09-02 Celanese Corp Stabilized polyalkylene terephthalate resin composition
EP2167827B1 (de) 2007-06-18 2013-03-20 Shaft-Form-Engineering GmbH Verbindungsanordnung
DE102008009359B4 (de) * 2008-02-14 2009-11-05 Gkn Driveline Deutschland Gmbh Verbindungsanordnung zwischen einem Wellenzapfen und einem Gleichlaufdrehgelenk
US9284990B2 (en) 2013-05-23 2016-03-15 Dana Automotive Systems Group, Llc Direct pinion mount Rzeppa joint
JP6879775B2 (ja) * 2016-04-25 2021-06-02 Ntn株式会社 等速自在継手

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009085380A (ja) * 2007-10-01 2009-04-23 Ntn Corp 等速自在継手
JP2013194895A (ja) * 2012-03-22 2013-09-30 Hitachi Automotive Systems Kyushu Ltd プロペラシャフト及びこのプロペラシャフトに用いられる等速ジョイント
WO2015192826A1 (de) * 2014-06-18 2015-12-23 Ifa-Technologies Gmbh Verbindungsanordnung zur axialsicherung einer welle-nabe-verbindung und verfahren zur axialsicherung einer welle-nabe-verbindung
WO2017134981A1 (ja) * 2016-02-04 2017-08-10 Ntn株式会社 等速自在継手

Also Published As

Publication number Publication date
US11493094B2 (en) 2022-11-08
JP2019056455A (ja) 2019-04-11
US20200271168A1 (en) 2020-08-27

Similar Documents

Publication Publication Date Title
JP6211638B2 (ja) 等速自在継手
JP2003074580A (ja) 動力伝達装置
JP6879775B2 (ja) 等速自在継手
WO2019059291A1 (ja) 等速自在継手
US10533612B2 (en) Power transmission shaft
US8246475B2 (en) Constant velocity joint
US10422388B2 (en) Propeller shaft
JP2009085380A (ja) 等速自在継手
WO2019065715A1 (ja) 等速自在継手
US11105378B2 (en) Wheel drive unit for vehicle
JP2008281035A (ja) 等速自在継手のシャフト抜け止め構造
WO2017187947A1 (ja) 等速自在継手
JP6899663B2 (ja) 摺動式等速自在継手及びその製造方法
JP2017203538A (ja) 摺動式等速自在継手
WO2017195552A1 (ja) 摺動式等速自在継手及びその製造方法
JP2009127762A (ja) 等速自在継手
JP2010025207A (ja) 等速自在継手
JP6901241B2 (ja) 等速自在継手
US10875357B2 (en) Fixed constant velocity universal joint, and bearing device for wheels
JP2019007506A (ja) 等速自在継手
US11073179B2 (en) Sliding-type constant velocity universal joint and method for manufacturing same
JP2020079629A (ja) 等速自在継手
JP2020034063A (ja) 等速自在継手
JP2007225025A (ja) 等速自在継手の内側継手部材とシャフトの嵌合構造
JP2017082910A (ja) 等速自在継手

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18857624

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18857624

Country of ref document: EP

Kind code of ref document: A1