WO2019059208A1 - 弾性波フィルタ装置及びマルチプレクサ - Google Patents

弾性波フィルタ装置及びマルチプレクサ Download PDF

Info

Publication number
WO2019059208A1
WO2019059208A1 PCT/JP2018/034582 JP2018034582W WO2019059208A1 WO 2019059208 A1 WO2019059208 A1 WO 2019059208A1 JP 2018034582 W JP2018034582 W JP 2018034582W WO 2019059208 A1 WO2019059208 A1 WO 2019059208A1
Authority
WO
WIPO (PCT)
Prior art keywords
elastic wave
sound velocity
arm resonator
region
series arm
Prior art date
Application number
PCT/JP2018/034582
Other languages
English (en)
French (fr)
Inventor
克也 大門
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to KR1020207005949A priority Critical patent/KR102345526B1/ko
Priority to JP2019543658A priority patent/JP6806265B2/ja
Priority to CN201880060290.5A priority patent/CN111095795B/zh
Publication of WO2019059208A1 publication Critical patent/WO2019059208A1/ja
Priority to US16/813,788 priority patent/US11251777B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6489Compensation of undesirable effects
    • H03H9/6496Reducing ripple in transfer characteristic
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • H03H9/02559Characteristics of substrate, e.g. cutting angles of lithium niobate or lithium-tantalate substrates
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • H03H9/02574Characteristics of substrate, e.g. cutting angles of combined substrates, multilayered substrates, piezoelectrical layers on not-piezoelectrical substrate
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02818Means for compensation or elimination of undesirable effects
    • H03H9/02858Means for compensation or elimination of undesirable effects of wave front distortion
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02818Means for compensation or elimination of undesirable effects
    • H03H9/02881Means for compensation or elimination of undesirable effects of diffraction of wave beam
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02992Details of bus bars, contact pads or other electrical connections for finger electrodes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • H03H9/14538Formation
    • H03H9/14541Multilayer finger or busbar electrode
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • H03H9/14544Transducers of particular shape or position
    • H03H9/14547Fan shaped; Tilted; Shifted; Slanted; Tapered; Arched; Stepped finger transducers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • H03H9/14544Transducers of particular shape or position
    • H03H9/14558Slanted, tapered or fan shaped transducers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • H03H9/14544Transducers of particular shape or position
    • H03H9/1457Transducers having different finger widths
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/25Constructional features of resonators using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezoelectric or electrostrictive material
    • H03H9/542Filters comprising resonators of piezoelectric or electrostrictive material including passive elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6423Means for obtaining a particular transfer characteristic
    • H03H9/6433Coupled resonator filters
    • H03H9/6483Ladder SAW filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/70Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H9/72Networks using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02818Means for compensation or elimination of undesirable effects
    • H03H9/02866Means for compensation or elimination of undesirable effects of bulk wave excitation and reflections
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • H03H9/14544Transducers of particular shape or position
    • H03H9/14573Arrow type transducers

Definitions

  • the present invention relates to an elastic wave filter device and a multiplexer.
  • Patent Document 1 listed below discloses an example of an elastic wave device.
  • This elastic wave device has a laminated body in which a high sound velocity film, a low sound velocity film, and a piezoelectric film are laminated in this order on a supporting substrate, and an IDT electrode provided on the piezoelectric film.
  • the elastic wave device having the above-mentioned laminate can increase the Q value, it has a problem that transverse mode ripple occurs.
  • an IDT electrode in order to suppress a transverse mode ripple, is used as a slant type IDT electrode.
  • the inclined IDT electrodes are an envelope that is a virtual line formed by connecting the tips of a plurality of electrode fingers connected to one bus bar, and the tips of a plurality of electrode fingers connected to the other bus bar
  • An envelope, which is a virtual line formed by connecting, is an IDT electrode that extends obliquely with respect to the elastic wave propagation direction.
  • the IDT electrode is an inclined IDT electrode
  • the stop band is a region in which the wavelength of the elastic wave becomes constant by confining the elastic wave in the metal grating of the periodic structure.
  • the energy of the elastic wave can be efficiently confined to the piezoelectric film side, and the stop band response also becomes large, which becomes a problem.
  • An object of the present invention is to provide an elastic wave filter device and a multiplexer capable of efficiently confining energy of elastic waves on the piezoelectric layer side and suppressing a response due to the upper end of the stop band. is there.
  • An elastic wave filter device comprises a piezoelectric layer, a high sound velocity member in which the sound velocity of a bulk wave propagating is faster than the sound velocity of an elastic wave propagating in the piezoelectric layer, the high sound velocity member, and the piezoelectric material.
  • a low sound velocity film provided between the body layer and the bulk wave propagating at a speed lower than that of the bulk wave propagating on the piezoelectric layer, and provided on the piezoelectric layer;
  • a plurality of elastic wave resonators including a plurality of IDT electrodes including a first IDT electrode and a second IDT electrode, and the high sound velocity member, the low sound velocity film, the piezoelectric layer, and the plurality of IDT electrodes.
  • At least one series arm resonator unit wherein the plurality of elastic wave resonators are arranged in a series arm connecting an antenna end and a signal end other than the antenna end; the series arm and a ground potential Placed on parallel arms connecting
  • the series arm resonator unit and the parallel arm resonator unit each have at least one elastic wave resonator, and the series arm resonance unit is disposed in at least one parallel arm resonator unit.
  • the elastic wave resonator of the series arm resonator portion disposed closest to the antenna end among the child portions and the elastic wave resonator in the parallel arm resonator portion disposed closest to the antenna end At least one has the first IDT electrode, and the other elastic wave resonators have the second IDT electrode, and the first IDT electrode faces the first bus bar and the second A bus bar, a plurality of first electrode fingers whose one end is connected to the first bus bar, and one end which is connected to the second bus bar, and are inserted between the plurality of first electrode fingers
  • Have a plurality of second electrode fingers and A portion where the first electrode finger and the second electrode finger overlap in the elastic wave propagation direction is a crossover region, and the crossover region is located on the center side in the direction orthogonal to the elastic wave propagation direction.
  • a first low sound velocity region having a central region, disposed in the intersection region on the first bus bar side of the central region, and having a lower speed of sound than the velocity of sound in the central region; And a second low sound velocity area having a lower speed of sound than the speed of sound in the central area, and the first IDT electrode is disposed in the central area.
  • a first high sound velocity area and a second high sound velocity area are provided in which the sound velocity is higher than the sound velocity, and the first high sound velocity area is in the elastic wave propagation direction of the first low sound velocity area.
  • the second high sound velocity region is disposed outside the second low sound velocity region in the direction orthogonal to the elastic wave propagation direction, and the second IDT electrodes are arranged between the two.
  • a first envelope having a plurality of third electrode fingers and a plurality of fourth electrode fingers being inserted, which is a virtual line formed by connecting the tips of the plurality of third electrode fingers is
  • the elastic wave resonator of the series arm resonator portion disposed closest to the antenna end and the parallel arm resonance disposed closest to the antenna end Both of the elastic wave resonators in the daughter part have the first IDT electrode. In this case, the response due to the upper end of the stop band can be further suppressed.
  • the high sound velocity member is a support substrate.
  • the high sound velocity member is a high sound velocity film
  • a support substrate is further provided, the space between the support substrate and the low sound velocity film A high sound velocity membrane is provided.
  • the ladder-type filter includes a plurality of series arm resonators and a plurality of parallel arm resonators.
  • the multiplexer according to the present invention is commonly connected to the antenna terminal together with the elastic wave filter device and the elastic wave filter device according to the present invention, which are connected to the antenna terminal and the antenna terminal. And at least one band pass filter having a pass band different from that of the elastic wave filter device.
  • an elastic wave filter device and a multiplexer capable of efficiently confining energy of elastic waves on the piezoelectric layer side and suppressing a response due to the upper end of the stop band. it can.
  • FIG. 1 is a circuit diagram of an elastic wave filter device according to a first embodiment of the present invention.
  • FIG. 2 is a schematic front cross-sectional view schematically showing the series arm resonator section and the other series arm resonator section arranged closest to the antenna end in the first embodiment of the present invention.
  • FIG. 3 is a schematic plan view showing the electrode structure of the series arm resonator portion disposed closest to the antenna end in the first embodiment of the present invention.
  • FIG. 4 is a schematic plan view showing an electrode structure of a series arm resonator portion having a second IDT electrode according to the first embodiment of the present invention.
  • FIG. 5 is a diagram showing impedance characteristics of the elastic wave resonator having the inclined IDT electrode according to the first embodiment of the present invention.
  • FIG. 6 is a diagram showing the impedance characteristic of the elastic wave resonator utilizing the piston mode in the first embodiment of the present invention.
  • FIG. 7 is a diagram showing return loss of an elastic wave resonator having inclined type IDT electrodes and an elastic wave resonator using a piston mode in the first embodiment of the present invention.
  • FIG. 8 is a diagram showing the relationship between the position of the elastic wave resonator in the circuit and the amount of change in return loss in the first embodiment of the present invention.
  • FIG. 9 is a schematic plan view showing an electrode structure of a series arm resonator portion other than the series arm resonator portion disposed closest to the antenna end in a modification of the first embodiment of the present invention.
  • FIG. 10 is a schematic front cross-sectional view schematically showing the series arm resonator section and the other series arm resonator section arranged closest to the antenna end in the second embodiment of the present invention.
  • FIG. 11 is a schematic view of a multiplexer according to a third embodiment of the present invention.
  • FIG. 1 is a circuit diagram of an elastic wave filter device according to a first embodiment of the present invention.
  • the elastic wave filter device 1 of the present embodiment is a ladder type filter having a plurality of series arm resonators and a plurality of parallel arms resonators.
  • Each of the plurality of series arm resonator units and the plurality of parallel arm resonator units includes an elastic wave resonator.
  • a series arm resonator section S1 In a series arm connecting the antenna end X and the signal end Y other than the antenna end X, a series arm resonator section S1, a series arm resonator section S2, a series arm resonator section S3, a series arm resonator section S4, and a series arm resonance Child portion S5 is arranged.
  • the series arm resonator section disposed closest to the antenna end X is the series arm resonator section S1.
  • the plurality of parallel arm resonator units are respectively disposed in parallel arms connecting the series arm and the ground potential. More specifically, a parallel arm resonator unit P1 is connected between a connection point between the series arm resonator unit S1 and the series arm resonator unit S2 and the ground potential. The parallel arm resonator portion P2 is connected between the connection point between the series arm resonator portion S2 and the series arm resonator portion S3 and the ground potential. The parallel arm resonator portion P3 is connected between the connection point between the series arm resonator portion S3 and the series arm resonator portion S4 and the ground potential.
  • a parallel arm resonator unit P4 is connected between a connection point between the series arm resonator unit S4 and the series arm resonator unit S5 and the ground potential.
  • the parallel arm resonator portion disposed closest to the antenna end X is the parallel arm resonator portion P1.
  • Each of the series arm resonators S1 to S5 and the parallel arm resonators P1 to P5 is formed of one elastic wave resonator.
  • the series arm resonator unit may be configured of a plurality of elastic wave resonators connected in series with each other.
  • the plurality of elastic wave resonators may be series-divided elastic wave resonators.
  • the parallel arm resonator unit may be configured of a plurality of elastic wave resonators connected in parallel to each other.
  • the parallel arm resonator unit is configured of a plurality of elastic wave resonators, the plurality of elastic wave resonators may be elastic wave resonators divided in parallel.
  • An inductor L1 is connected between a connection point between the antenna end X and the series arm resonator unit S1 and the ground potential.
  • An inductor L2 is connected between a connection point between the series arm resonator unit S5 and the signal end Y and the ground potential.
  • the inductor L1 and the inductor L2 are inductors for impedance adjustment.
  • the inductor L1 and the inductor L2 may not be provided.
  • FIG. 2 is a schematic front cross-sectional view schematically showing the series arm resonator section and the other series arm resonator section arranged closest to the antenna end in the first embodiment.
  • the series arm resonator unit S 1 and the series arm resonator unit S 2 have a support substrate 2.
  • a low sound velocity film 4 is provided on the support substrate 2.
  • a piezoelectric layer 5 is provided on the low sound velocity film 4.
  • the low sound velocity film 4 is a film in which the sound velocity of the bulk wave propagating is slower than the sound velocity of the bulk wave propagating in the piezoelectric layer 5.
  • the piezoelectric layer 5 is made of LiTaO 3 having a cut angle of 50 ° Y in the present embodiment.
  • the cut angle of the piezoelectric layer 5 is not limited to the above.
  • Piezoelectric layer 5 may be made of LiTaO 3 other piezoelectric single crystal and appropriate piezoelectric ceramics such as LiNbO 3.
  • the low sound velocity film 4 is made of silicon oxide in the present embodiment. More specifically, silicon oxide is represented by SiO x , and the low sound velocity film 4 is composed of SiO 2 .
  • the low sound velocity film 4 may be made of silicon oxide in which x is a number other than two.
  • the low sound velocity film 4 may be made of, for example, a material containing glass, silicon oxynitride, tantalum oxide or a compound obtained by adding fluorine or carbon or boron to silicon oxide as a main component.
  • the material of the low sound velocity film 4 may be a material having a relatively low sound velocity.
  • the support substrate 2 is made of a high sound velocity material in which the sound velocity of the bulk wave propagating is faster than the sound velocity of the elastic wave propagating in the piezoelectric layer 5. More specifically, the support substrate 2 is made of Si.
  • the high sound velocity material constituting the support substrate 2 may be, for example, a material containing aluminum nitride, aluminum oxide, silicon carbide, silicon oxynitride, a DLC film, or diamond as a main component.
  • the high sound velocity material may be a relatively high sound velocity material.
  • the elastic wave filter device 1 has the laminated body 6 in which the support substrate 2 made of the high sound velocity member, the low sound velocity film 4 and the piezoelectric layer 5 are stacked in this order.
  • a plurality of elastic wave resonators other than the series arm resonator portion S1 and the series arm resonator portion S2 of the elastic wave filter device 1 are also configured in the piezoelectric layer 5.
  • a plurality of IDT electrodes including a first IDT electrode 8 and a second IDT electrode 18 are provided on the piezoelectric layer 5.
  • the first IDT electrode 8 and the second IDT electrode 18 are formed of a laminated metal film in which an AlCu layer is laminated on a Ti layer.
  • the AlCu layer in the present embodiment is made of an alloy containing 1% by mass of Cu in Al.
  • the materials of the first IDT electrode 8 and the second IDT electrode 18 are not limited to the above.
  • the first IDT electrode 8 and the second IDT electrode 18 may be made of a single layer metal film.
  • the series arm resonator unit S ⁇ b> 1 has a first IDT electrode 8.
  • the series arm resonator portion S1 has reflectors 9A and 9B disposed on both sides of the first IDT electrode 8 in the elastic wave propagation direction.
  • the series arm resonator unit S1 is an elastic wave resonator using a piston mode.
  • the parallel arm resonator portion P1 disposed closest to the antenna end X shown in FIG. 1 is also an elastic wave resonator utilizing a piston mode configured in the same manner as the serial arm resonator portion S1.
  • the series arm resonator portion S1 and the parallel arm resonator portion P1 may have different design parameters in accordance with the desired filter characteristics.
  • the series arm resonator portion S2 has a second IDT electrode 18, and reflectors 19A and 19B disposed on both sides of the second IDT electrode 18 in the elastic wave propagation direction.
  • the second IDT electrode 18 is a tilted IDT electrode.
  • the plurality of elastic wave resonators other than the series arm resonator unit S1 and the parallel arm resonator unit P1 illustrated in FIG. 1 are configured in the same manner as the series arm resonator unit S2.
  • the series arm resonator section S3, the series arm resonator section S4, the series arm resonator section S5, the parallel arm resonator section P2, the parallel arm resonator section P3 and the parallel arm resonator section P4 are also IDT electrode 18, reflector 19A and reflector 19B.
  • the elastic wave resonators other than the series arm resonator portion S1 and the parallel arm resonator portion P1 may have different design parameters according to the desired filter characteristics.
  • the reflector 9A and the reflector 9B of the series arm resonator portion S1 and the parallel arm resonator portion P1 are made of the same material as that of the first IDT electrode 8.
  • the reflectors 19A and reflectors 19B of the plurality of elastic wave resonators other than the series arm resonator portion S1 and the parallel arm resonator portion P1 are made of the same material as the material forming the second IDT electrode 18.
  • protection is provided on the piezoelectric layer 5 so as to cover the first IDT electrode 8, the second IDT electrode 18, the reflector 9A, the reflector 9B, the reflector 19A and the reflector 19B.
  • a membrane 7 is provided.
  • the protective film 7 is not particularly limited, but is made of SiO 2 in the present embodiment.
  • the feature of this embodiment is to have the following configuration. 1) It has the said laminated body 6. 2) An elastic wave resonator constituting the series arm resonator portion S1 disposed closest to the antenna end X and a parallel arm resonator portion P1 disposed closest to the antenna end X shown in FIG.
  • the elastic wave resonator being used is an elastic wave resonator utilizing a piston mode.
  • Another elastic wave resonator has a tilted second IDT electrode 18. The energy of elastic waves can be efficiently confined to the side of the piezoelectric layer 5 by having the laminated body 6 in which the supporting substrate 2 made of a high sound velocity member, the low sound velocity film 4 and the piezoelectric layer 5 are stacked in this order. it can.
  • the series arm resonator portion S1 and the parallel arm resonator portion P1 are elastic wave resonators utilizing a piston mode, and the other elastic wave resonators have the inclined second IDT electrodes 18.
  • the response due to the upper end of the stop band can be effectively suppressed.
  • details of the effect of suppressing the response caused by the upper end of the stop band will be described together with the specific configurations of the first IDT electrode 8 and the second IDT electrode 18.
  • the response caused by the upper end of the stop band is referred to as a stop band response.
  • FIG. 3 is a schematic plan view showing the electrode structure of the series arm resonator portion disposed closest to the antenna end in the first embodiment.
  • the first IDT electrode 8 has a first bus bar 12a and a second bus bar 13a which face each other.
  • the first IDT electrode 8 has a plurality of first electrode fingers 12 b whose one end is connected to the first bus bar 12 a.
  • the first IDT electrode 8 has a plurality of second electrode fingers 13 b whose one end is connected to the second bus bar 13 a.
  • the plurality of first electrode fingers 12 b and the plurality of second electrode fingers 13 b are mutually inserted.
  • a portion where the first electrode finger 12 b and the second electrode finger 13 b overlap in the elastic wave propagation direction is a crossover region A.
  • the crossover area A has a central area B located on the center side in the direction orthogonal to the elastic wave propagation direction.
  • the crossover area A includes a first edge area C1 disposed on the first bus bar 12a side of the central area B and a second edge area C2 disposed on the second bus bar 13a side of the central area B.
  • the plurality of first electrode fingers 12 b have a wide portion 12 c and a wide portion 12 d that are wider than the other portions in the first edge region C 1 and the second edge region C 2.
  • the plurality of second electrode fingers 13 b have a wide portion 13 d and a wide portion 13 c whose widths are wider than the other portions in the first edge region C 1 and the second edge region C 2.
  • the first electrode finger 12b and the second electrode finger 13b have the wide portion 12c and the wide portion 13d, so that the speed of sound is slower than the speed of sound in the central region B in the first edge region C1.
  • a first low sound velocity region is provided.
  • the first electrode finger 12b and the second electrode finger 13b have the wide portion 12d and the wide portion 13c, in the second edge region C2, the sound velocity is slower than the sound velocity in the central region B.
  • a low sound velocity region of 2 is provided.
  • a mass addition film is provided on the first electrode finger 12b and the second electrode finger 13b in the first edge region C1 and the second edge region C2, so that the first low sound velocity region and the second low energy region are obtained.
  • a second low sound velocity region may be configured. Even if the first low sound velocity region and the second low sound velocity region are configured by having the wide portion 12c, the wide portion 12d, the wide portion 13c, and the wide portion 13d and by providing the mass addition film Good.
  • the first IDT electrode 8 has a first outer region D1 disposed outside the first edge region C1 in the direction orthogonal to the elastic wave propagation direction. Furthermore, the first IDT electrode 8 has a second outer region D2 disposed outside in the direction orthogonal to the elastic wave propagation direction of the second edge region C2. In the present embodiment, the first outer region D1 is located between the first edge region C1 and the first bus bar 12a. The second outer region D2 is located between the second edge region C2 and the second bus bar 13a.
  • the sound velocity in the first outer region D1 and the second outer region D2 is faster than the sound velocity in the central region B. It is V1 ⁇ V3 when the sound speed of the elastic wave in 1st outer side area
  • region D2 is set to V3.
  • the first high sound velocity region is provided in the first outer region D1
  • the second high sound velocity region is provided in the second outer region D2.
  • each sound velocity is V2 ⁇ V1 ⁇ V3.
  • the relationship between each sound velocity as described above is shown in FIG. Note that the speed of sound is higher as it goes to the left in FIG.
  • a first low sound velocity region and a second low sound velocity region are disposed outside the central region B in the direction orthogonal to the elastic wave propagation direction.
  • a first high sound velocity region and a second high sound velocity region are disposed outside in a direction orthogonal to the elastic wave propagation direction of the first low sound velocity region and the second low sound velocity region.
  • the series arm resonator unit S1 utilizes the piston mode, and can suppress spurious and stop band responses due to the transverse mode.
  • FIG. 4 is a schematic plan view showing an electrode structure of a series arm resonator portion having a second IDT electrode in the first embodiment.
  • the second IDT electrode 18 has a third bus bar 14a and a fourth bus bar 15a which face each other.
  • the second IDT electrode 18 has a plurality of third electrode fingers 14 b whose one end is connected to the third bus bar 14 a.
  • the second IDT electrode 18 has a plurality of fourth electrode fingers 15 b whose one end is connected to the fourth bus bar 15 a.
  • the plurality of third electrode fingers 14 b and the plurality of fourth electrode fingers 15 b are mutually inserted.
  • a first envelope E1 which is a virtual line formed by connecting the tips of the plurality of third electrode fingers 14b, extends obliquely with respect to the elastic wave propagation direction.
  • a second envelope F1 which is a virtual line formed by connecting the tips of the plurality of fourth electrode fingers 15b extends obliquely with respect to the elastic wave propagation direction.
  • the second IDT electrode 18 is an inclined IDT electrode in which a first envelope E1 and a second envelope F1 extend with an inclination with respect to the elastic wave propagation direction.
  • the inclination angle at which the direction in which the first envelope E1 and the second envelope F1 extend is inclined with respect to the elastic wave propagation direction is not particularly limited, but in the present embodiment, the inclination angle is 5 °.
  • the configuration of the elastic wave filter device 1 according to the first embodiment is as follows.
  • First IDT electrode and second IDT electrode thickness 2 nm of Ti layer, thickness 162 nm of AlCu layer Piezoelectric layer: Material LiTaO 3 , cut angle 50 °, thickness 600 nm Low sound velocity film: Material SiO 2 , thickness 670 nm Supporting substrate: Material Si, thickness 200 ⁇ m Protective film: Material SiO 2 , thickness 25 nm
  • the smaller the inclination angle the smaller the stop band response.
  • the transverse mode causes spurious.
  • the series arm resonator portion S1 and the parallel arm resonator portion P1 disposed closest to the antenna end X shown in FIG. 1 are elastic wave resonators utilizing a piston mode, and a plurality of other resonators are used.
  • the IDT electrodes of the elastic wave resonator are inclined IDT electrodes.
  • FIG. 5 is a diagram showing the impedance characteristic of the elastic wave resonator having the inclined IDT electrode in the first embodiment.
  • FIG. 6 is a view showing the impedance characteristic of the elastic wave resonator utilizing the piston mode in the first embodiment.
  • FIG. 7 is a diagram showing return loss of an elastic wave resonator having an inclined IDT electrode and an elastic wave resonator utilizing a piston mode in the first embodiment.
  • the solid line shows the result of the elastic wave resonator having the inclined IDT electrode
  • the broken line shows the result of the elastic wave resonator utilizing the piston mode.
  • FIG. 8 shows the amount of change in return loss of each elastic wave resonator in the elastic wave filter device 1 as viewed from the antenna end side.
  • the amount of change in return loss is the difference between the return loss of each elastic wave resonator shown in FIG. 1 and the return loss of the series arm resonator unit S5.
  • FIG. 8 shows the amount of change in return loss of each elastic wave resonator at 4000 MHz.
  • FIG. 8 is a diagram showing the relationship between the position of the elastic wave resonator in the circuit and the amount of change in return loss in the first embodiment.
  • the horizontal axis in FIG. 8 indicates the respective elastic wave resonators in numbers from the left in the order in which the positions where the elastic wave resonators are arranged are close to the antenna end.
  • Each reference numeral in FIG. 8 corresponds to the reference numeral of each series arm resonator unit and each parallel arm resonator unit shown in FIG.
  • the amount of change in return loss of the series arm resonator portion S1 disposed closest to the antenna end and the parallel arm resonator portion P1 disposed closest to the antenna end is another elastic wave resonator. It can be seen that the amount of change in return loss is significantly larger. The amount of change in return loss decreases with distance from the antenna end.
  • the series arm resonator unit S1 and the parallel arm resonator unit P1 having a large amount of change in return loss can be used. There is. Therefore, in the elastic wave filter device 1, the stop band response can be suppressed more effectively.
  • the series arm resonator portion S1 and the parallel arm resonator portion P1 can sufficiently suppress the spurious due to the transverse mode, and each of the other elastic wave resonators can further suppress the spurious.
  • the inclination angle of the second IDT electrode which is the inclined IDT electrode is preferably 0.4 ° or more and 15 ° or less.
  • the elastic wave resonators of the series arm resonator portion S1 arranged closest to the antenna end and the elastic wave resonators of the parallel arm resonator portion P1 arranged closest to the antenna end is shown in FIG. It is sufficient to have the first IDT electrode 8 shown. Also in this case, since at least one of the elastic wave resonators in which the change amount of the return loss is large is the elastic wave resonator utilizing the piston mode, the stop band response can be effectively suppressed. In addition, since the laminate 6 is provided, energy of elastic waves can be efficiently confined to the piezoelectric layer 5 side.
  • the elastic wave resonators of the series arm resonator portion disposed closest to the antenna end have a plurality of elastic wave resonators
  • all the elastic wave resonators of the series arm resonator portion are first
  • the stop band response can be effectively suppressed by having the IDT electrode 8 of
  • all elastic wave resonators in the parallel arm resonator portion are used as the first IDT electrodes 8. By having it, the stop band response can be effectively suppressed.
  • the series arm resonator section when the series arm resonator section is disposed closer to the antenna end X than the parallel arm, it is sufficient to have a plurality of series arm resonator sections. In this case, at least the elastic wave resonator of the series arm resonator portion which is not arranged closest to the antenna end X may have the second IDT electrode.
  • the parallel arm when the parallel arm is disposed closer to the antenna end X than the series arm resonator portion, it is sufficient to have a plurality of parallel arms in which the parallel wedge resonator portion is disposed. In this case, at least the elastic wave resonator in the parallel arm resonator portion which is not arranged closest to the antenna end X may have the second IDT electrode.
  • an IDT electrode shown in FIG. 9 below may be used.
  • FIG. 9 is a schematic plan view showing an electrode structure of a series arm resonator portion other than the series arm resonator portion disposed closest to the antenna end in the modification of the first embodiment.
  • the second IDT electrode and reflector are shown schematically by adding two diagonals to the polygon.
  • the planar shape of the second IDT electrode 28 in this modification is approximately a rhombus.
  • the first envelope E2 and the second envelope F2 of the second IDT electrode 28 have a portion extending obliquely with respect to the elastic wave propagation direction and a portion extending parallel to the elastic wave propagation direction.
  • the directions in which the first envelope E2 and the second envelope F2 extend may be changed.
  • FIG. 10 is a schematic front cross-sectional view schematically showing the series arm resonator section and the other series arm resonator section arranged closest to the antenna end in the second embodiment.
  • the present embodiment differs from the first embodiment in that the high sound velocity member in the stacked body 36 is a high sound velocity film 33.
  • the high sound velocity film 33 is provided between the support substrate 2 and the low sound velocity film 4.
  • the high sound velocity film 33 is made of a high sound velocity material similar to that of the support substrate 2 in the first embodiment.
  • the elastic wave filter device of the present embodiment has the same configuration as the elastic wave filter device 1 of the first embodiment except for the above point.
  • the material constituting the support substrate 2 is not limited to the high sound velocity material.
  • the series arm resonator portion S1 disposed closest to the antenna end and the parallel arm resonator portion disposed closest to the antenna end are elastic wave resonators utilizing the piston mode.
  • the remaining plurality of elastic wave resonators are elastic wave resonators having inclined IDT electrodes.
  • the elastic wave filter device of the present embodiment has the above-mentioned laminated body 36. Therefore, also in the present embodiment, as in the first embodiment, the energy of elastic waves can be efficiently confined to the piezoelectric layer 5 side, and the stop band response can be effectively suppressed.
  • FIG. 11 is a schematic view of a multiplexer according to the third embodiment.
  • the multiplexer 40 has an antenna terminal 46 connected to the antenna.
  • the multiplexer 40 includes a first band pass filter 41A, a second band pass filter 41B, and a third band pass filter 41C, which are commonly connected to the antenna terminal 46.
  • the first band pass filter 41A is a filter device having the same configuration as the elastic wave filter device 1 of the first embodiment.
  • the pass bands of the first band pass filter 41A, the second band pass filter 41B, and the third band pass filter 41C are different from each other.
  • the multiplexer 40 also has other filter devices commonly connected to the antenna terminal 46, other than the first band pass filter 41A, the second band pass filter 41B, and the third band pass filter 41C.
  • the number of filter devices included in the multiplexer 40 is not particularly limited.
  • the multiplexer 40 may have at least one band pass filter having a different pass band from the first band pass filter 41A and the first band pass filter 41A.
  • the energy of elastic waves can be efficiently confined to the piezoelectric layer side, and the stop band response is effectively suppressed. can do.
  • the spurious due to the transverse mode can also be suppressed.
  • the filter characteristics of the second band pass filter 41B and the third band pass filter 41C commonly connected to the antenna terminal 46 together with the first band pass filter 41A can be improved.
  • Reference Signs List 1 elastic wave filter device 2 support substrate 4 low sound velocity film 5 piezoelectric layer 6 laminate 7 protective film 8 first IDT electrode 9A, 9B reflector 12a first bus bar 12b first First electrode finger 12c, 12d: wide portion 13a: second bus bar 13b: second electrode finger 13c, 13d: wide portion 14a: third bus bar 14b: third electrode finger 15a: fourth bus bar 15b Fourth electrode finger 18: second IDT electrode 19A, 19B: reflector 28: second IDT electrode 33: high sound velocity film 36: laminated body 40: multiplexers 41A to 41C: first, second, third Band pass filter 46: Antenna terminals P1 to P4: Parallel arm resonators S1 to S5: Series arm resonators

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

弾性波のエネルギーを圧電体層側に効率的に閉じ込めることができ、かつストップバンド上端に起因するレスポンスを抑制することができる、弾性波フィルタ装置を提供する。 弾性波フィルタ装置1は、圧電体層と、高音速部材と、高音速部材と圧電体層との間に設けられた低音速膜と、圧電体層上に設けられた第1,第2のIDT電極を含む複数のIDT電極とを備える。高音速部材、低音速膜、圧電体層及び複数のIDT電極により、複数の弾性波共振子が構成されている。直列腕共振子部のうち、最もアンテナ端X側に配置された直列腕共振子部S1の弾性波共振子及び最もアンテナ端X側に配置された並列碗共振子部P1における弾性波共振子のうち少なくとも一方が、第1,第2の電極指を有する第1のIDT電極を有し、残りの弾性波共振子が第3,第4の電極指を有する第2のIDT電極を有する。第1のIDT電極において、弾性波伝搬方向に直交する方向に沿い、中央領域、第1,第2の低音速領域及び第1,第2の高音速領域がこの順序で配置されている。第2のIDT電極の複数の第3,第4の電極指の先端を結ぶことにより形成される第1,第2の包絡線が、弾性波伝搬方向に対して傾斜して延びている。

Description

弾性波フィルタ装置及びマルチプレクサ
 本発明は、弾性波フィルタ装置及びマルチプレクサに関する。
 従来、弾性波装置は、携帯電話機のフィルタなどに広く用いられている。下記の特許文献1には弾性波装置の一例が開示されている。この弾性波装置は、支持基板上に、高音速膜、低音速膜、圧電膜がこの順序で積層された積層体と、圧電膜上に設けられたIDT電極とを有する。上記積層体を有する弾性波装置はQ値を高め得るが、横モードリップルが生じるという問題がある。
 特許文献1においては、横モードリップルを抑制するために、IDT電極を傾斜型のIDT電極としている。傾斜型のIDT電極とは、一方のバスバーに接続された複数の電極指の先端を結ぶことにより形成される仮想線である包絡線と、他方のバスバーに接続された複数の電極指の先端を結ぶことにより形成される仮想線である包絡線とが、弾性波伝搬方向に対し傾斜して延びるIDT電極である。
国際公開第2015/098756号
 しかし、特許文献1に記載のように、IDT電極を傾斜型のIDT電極とすると、上記包絡線が弾性波伝搬方向に対し傾斜している角度が大きいほど、ストップバンド上端に起因するレスポンス(ストップバンドレスポンス)は大きくなる。なお、ストップバンドとは、弾性波が周期構造の金属グレーティングに閉じ込められることにより、弾性波の波長が一定となる領域をいう。特に、上記積層体を有する弾性波装置は、圧電膜側に弾性波のエネルギーを効率的に閉じ込め得るため、ストップバンドレスポンスも大きくなり、問題となる。
 本発明の目的は、弾性波のエネルギーを圧電体層側に効率的に閉じ込めることができ、かつストップバンド上端に起因するレスポンスを抑制することができる、弾性波フィルタ装置及びマルチプレクサを提供することにある。
 本発明に係る弾性波フィルタ装置は、圧電体層と、前記圧電体層を伝搬する弾性波の音速よりも伝搬するバルク波の音速が高速である高音速部材と、前記高音速部材と前記圧電体層との間に設けられており、前記圧電体層を伝搬するバルク波の音速よりも伝搬するバルク波の音速が低速である低音速膜と、前記圧電体層上に設けられており、第1のIDT電極及び第2のIDT電極を含む複数のIDT電極とを備え、前記高音速部材、前記低音速膜、前記圧電体層及び前記複数のIDT電極により、複数の弾性波共振子が構成されており、前記複数の弾性波共振子が、アンテナ端と前記アンテナ端以外の信号端とを結ぶ直列腕に配置された、少なくとも1つの直列腕共振子部と、前記直列腕とグラウンド電位とを結ぶ並列腕に配置された、少なくとも1つの並列腕共振子部とに配置されており、前記直列腕共振子部及び前記並列腕共振子部は、それぞれ、少なくとも1個の前記弾性波共振子を有し、前記直列腕共振子部のうち、最も前記アンテナ端側に配置された前記直列腕共振子部の前記弾性波共振子及び最も前記アンテナ端側に配置された前記並列腕共振子部における前記弾性波共振子のうち少なくとも一方が前記第1のIDT電極を有し、残りの前記弾性波共振子が前記第2のIDT電極を有し、前記第1のIDT電極が、互いに対向する第1のバスバー及び第2のバスバーと、前記第1のバスバーに一端が接続された複数の第1の電極指と、前記第2のバスバーに一端が接続されており、かつ前記複数の第1の電極指と間挿し合っている複数の第2の電極指とを有し、前記第1の電極指と前記第2の電極指とが弾性波伝搬方向において重なり合っている部分が交叉領域であり、前記交叉領域が、弾性波伝搬方向に直交する方向における中央側に位置している中央領域を有し、前記交叉領域において、前記中央領域の前記第1のバスバー側に配置されており、かつ前記中央領域における音速より音速が低速である第1の低音速領域と、前記中央領域の前記第2のバスバー側に配置されており、かつ前記中央領域における音速より音速が低速である第2の低音速領域とが設けられており、前記第1のIDT電極において、前記中央領域における音速より音速が高速である第1の高音速領域と、第2の高音速領域とが設けられており、前記第1の高音速領域が前記第1の低音速領域の、弾性波伝搬方向に直交する方向における外側に配置されており、前記第2の高音速領域が前記第2の低音速領域の、弾性波伝搬方向に直交する方向における外側に配置されており、前記第2のIDT電極が互いに間挿し合っている複数の第3の電極指及び複数の第4の電極指を有し、前記複数の第3の電極指の先端を結ぶことにより形成される仮想線である第1の包絡線が、弾性波伝搬方向に対して傾斜して延びており、前記複数の第4の電極指の先端を結ぶことにより形成される仮想線である第2の包絡線が、弾性波伝搬方向に対して傾斜して延びている。
 本発明に係る弾性波フィルタ装置のある特定の局面では、最も前記アンテナ端側に配置された前記直列腕共振子部の前記弾性波共振子及び最も前記アンテナ端側に配置された前記並列腕共振子部における前記弾性波共振子の両方が前記第1のIDT電極を有する。この場合には、ストップバンド上端に起因するレスポンスをより一層抑制することができる。
 本発明に係る弾性波フィルタ装置の他の特定の局面では、前記高音速部材が支持基板である。
 本発明に係る弾性波フィルタ装置のさらに他の特定の局面では、前記高音速部材が高音速膜であり、支持基板がさらに備えられており、前記支持基板と前記低音速膜との間に前記高音速膜が設けられている。
 本発明に係る弾性波フィルタ装置のさらに他の特定の局面では、前記直列腕共振子部を複数有し、前記並列腕共振子部を複数有するラダー型フィルタである。
 本発明に係るマルチプレクサは、アンテナに接続されるアンテナ端子と、前記アンテナ端子に接続されている、本発明に従い構成された弾性波フィルタ装置と、前記弾性波フィルタ装置と共に前記アンテナ端子に共通接続されており、かつ前記弾性波フィルタ装置とは通過帯域が異なる少なくとも1つの帯域通過型フィルタとを備える。
 本発明によれば、弾性波のエネルギーを圧電体層側に効率的に閉じ込めることができ、かつストップバンド上端に起因するレスポンスを抑制することができる、弾性波フィルタ装置及びマルチプレクサを提供することができる。
図1は、本発明の第1の実施形態に係る弾性波フィルタ装置の回路図である。 図2は、本発明の第1の実施形態における最もアンテナ端側に配置された直列腕共振子部及び他の直列腕共振子部を模式的に並べて示す模式的正面断面図である。 図3は、本発明の第1の実施形態における最もアンテナ端側に配置された直列腕共振子部の電極構造を示す模式的平面図である。 図4は、本発明の第1の実施形態における第2のIDT電極を有する直列腕共振子部の電極構造を示す模式的平面図である。 図5は、本発明の第1の実施形態における傾斜型のIDT電極を有する弾性波共振子のインピーダンス特性を示す図である。 図6は、本発明の第1の実施形態におけるピストンモードを利用する弾性波共振子のインピーダンス特性を示す図である。 図7は、本発明の第1の実施形態における、傾斜型のIDT電極を有する弾性波共振子及びピストンモードを利用する弾性波共振子のリターンロスを示す図である。 図8は、本発明の第1の実施形態における、回路内における弾性波共振子の位置とリターンロスの変化量との関係を示す図である。 図9は、本発明の第1の実施形態の変形例における、最もアンテナ端側に配置された直列腕共振子部以外の直列腕共振子部の電極構造を示す略図的平面図である。 図10は、本発明の第2の実施形態における最もアンテナ端側に配置された直列腕共振子部及び他の直列腕共振子部を模式的に並べて示す模式的正面断面図である。 図11は、本発明の第3の実施形態に係るマルチプレクサの模式図である。
 以下、図面を参照しつつ、本発明の具体的な実施形態を説明することにより、本発明を明らかにする。
 なお、本明細書に記載の各実施形態は、例示的なものであり、異なる実施形態間において、構成の部分的な置換または組み合わせが可能であることを指摘しておく。
 図1は、本発明の第1の実施形態に係る弾性波フィルタ装置の回路図である。
 本実施形態の弾性波フィルタ装置1は、複数の直列腕共振子部及び複数の並列腕共振子部を有するラダー型フィルタである。複数の直列腕共振子部及び複数の並列腕共振子部はいずれも弾性波共振子を備える。
 アンテナ端Xとアンテナ端X以外の信号端Yとを結ぶ直列腕に、直列腕共振子部S1、直列腕共振子部S2、直列腕共振子部S3、直列腕共振子部S4及び直列腕共振子部S5が配置されている。最もアンテナ端X側に配置された直列腕共振子部は、直列腕共振子部S1である。
 複数の並列腕共振子部は、上記直列腕とグラウンド電位とを結ぶ並列腕にそれぞれ配置されている。より具体的には、直列腕共振子部S1と直列腕共振子部S2との間の接続点とグラウンド電位との間に、並列腕共振子部P1が接続されている。直列腕共振子部S2と直列腕共振子部S3との間の接続点とグラウンド電位との間に、並列腕共振子部P2が接続されている。直列腕共振子部S3と直列腕共振子部S4との間の接続点とグラウンド電位との間に、並列腕共振子部P3が接続されている。直列腕共振子部S4と直列腕共振子部S5との間の接続点とグラウンド電位との間に、並列腕共振子部P4が接続されている。最もアンテナ端X側に配置された並列腕共振子部は、並列腕共振子部P1である。
 直列腕共振子部S1~S5および並列腕共振子部P1~P5は、それぞれ1つの弾性波共振子で構成されている。なお、直列腕共振子部は、互いに直列に接続された複数の弾性波共振子により構成されていてもよい。直列腕共振子部が複数の弾性波共振子により構成されている場合、該複数の弾性波共振子は、直列分割された弾性波共振子であってもよい。また、並列腕共振子部は、互いに並列に接続された複数の弾性波共振子により構成されていてもよい。並列腕共振子部が複数の弾性波共振子により構成されている場合、該複数の弾性波共振子は、並列分割された弾性波共振子であってもよい。
 アンテナ端Xと直列腕共振子部S1との間の接続点とグラウンド電位との間には、インダクタL1が接続されている。直列腕共振子部S5と信号端Yとの間の接続点とグラウンド電位との間には、インダクタL2が接続されている。インダクタL1及びインダクタL2はインピーダンス調整用のインダクタである。なお、インダクタL1及びインダクタL2は設けられていなくともよい。
 以下において、弾性波共振子の具体的な構成を説明する。
 図2は、第1の実施形態における最もアンテナ端側に配置された直列腕共振子部及び他の直列腕共振子部を模式的に並べて示す模式的正面断面図である。
 直列腕共振子部S1及び直列腕共振子部S2は支持基板2を有する。支持基板2上には低音速膜4が設けられている。低音速膜4上には圧電体層5が設けられている。ここで、低音速膜4とは、圧電体層5を伝搬するバルク波の音速よりも伝搬するバルク波の音速が低速である膜である。
 圧電体層5は、本実施形態では、カット角50°YのLiTaOからなる。なお、圧電体層5のカット角は上記に限定されない。圧電体層5は、LiNbOなどのLiTaO以外の圧電単結晶や適宜の圧電セラミックスからなっていてもよい。
 低音速膜4は、本実施形態では、酸化ケイ素からなる。より具体的には、酸化ケイ素はSiOにより表され、低音速膜4はSiOからなる。なお、低音速膜4は、xが2以外の数である酸化ケイ素からなっていてもよい。あるいは、低音速膜4は、例えば、ガラス、酸窒化ケイ素、酸化タンタルまたは酸化ケイ素にフッ素、炭素やホウ素を加えた化合物を主成分とする材料などからなっていてもよい。低音速膜4の材料は、相対的に低音速な材料であればよい。
 支持基板2は、本実施形態では、圧電体層5を伝搬する弾性波の音速よりも伝搬するバルク波の音速が高速である高音速材料からなる。より具体的には、支持基板2はSiからなる。なお、支持基板2を構成する高音速材料は、例えば、窒化アルミニウム、酸化アルミニウム、炭化ケイ素、酸窒化ケイ素、DLC膜またはダイヤモンドを主成分とする材料などであってもよい。なお、高音速材料は、相対的に高音速な材料であればよい。
 このように、弾性波フィルタ装置1は、高音速部材からなる支持基板2、低音速膜4及び圧電体層5がこの順序で積層された積層体6を有する。弾性波フィルタ装置1の直列腕共振子部S1及び直列腕共振子部S2以外の複数の弾性波共振子も、圧電体層5において構成されている。
 圧電体層5上には、第1のIDT電極8及び第2のIDT電極18を含む複数のIDT電極が設けられている。IDT電極に交流電圧を印加すると、弾性波が励振される。第1のIDT電極8及び第2のIDT電極18は、Ti層上にAlCu層が積層された積層金属膜からなる。本実施形態における上記AlCu層は、Al中にCuを1質量%含む合金からなる。なお、第1のIDT電極8及び第2のIDT電極18の材料は上記に限定されない。第1のIDT電極8及び第2のIDT電極18は、単層の金属膜からなっていてもよい。
 図2に示すように、直列腕共振子部S1は第1のIDT電極8を有する。直列腕共振子部S1は、第1のIDT電極8の弾性波伝搬方向両側に配置された反射器9A及び反射器9Bを有する。詳細は後述するが、直列腕共振子部S1はピストンモードを利用する弾性波共振子である。図1に示す、最もアンテナ端X側に配置された並列腕共振子部P1も、直列腕共振子部S1と同様に構成されたピストンモードを利用する弾性波共振子である。なお、直列腕共振子部S1及び並列腕共振子部P1は、所望されるフィルタ特性に応じて設計パラメータを異ならせてもよい。
 他方、直列腕共振子部S2は、第2のIDT電極18と、第2のIDT電極18の弾性波伝搬方向両側に配置された反射器19A及び反射器19Bとを有する。詳細は後述するが、第2のIDT電極18は傾斜型のIDT電極である。直列腕共振子部S1及び図1に示す並列腕共振子部P1以外の複数の弾性波共振子は、直列腕共振子部S2と同様に構成されている。より具体的には、直列腕共振子部S3、直列腕共振子部S4、直列腕共振子部S5、並列腕共振子部P2、並列腕共振子部P3及び並列腕共振子部P4も、第2のIDT電極18、反射器19A及び反射器19Bを有する。なお、直列腕共振子部S1及び並列腕共振子部P1以外の各弾性波共振子は、所望されるフィルタ特性に応じて設計パラメータを異ならせてもよい。
 本実施形態では、直列腕共振子部S1及び並列腕共振子部P1の反射器9A及び反射器9Bは、第1のIDT電極8を構成する材料と同様の材料からなる。直列腕共振子部S1及び並列腕共振子部P1以外の複数の弾性波共振子の反射器19A及び反射器19Bは、第2のIDT電極18を構成する材料と同様の材料からなる。
 図2に示すように、圧電体層5上には、第1のIDT電極8、第2のIDT電極18、反射器9A、反射器9B、反射器19A及び反射器19Bを覆うように、保護膜7が設けられている。保護膜7は、特に限定されないが、本実施形態ではSiOからなる。
 本実施形態の特徴は、以下の構成を有することにある。1)上記積層体6を有する。2)図1に示す、最もアンテナ端X側に配置された直列腕共振子部S1を構成している弾性波共振子及び最もアンテナ端X側に配置された並列腕共振子部P1を構成している弾性波共振子がピストンモードを利用する弾性波共振子である。3)他の弾性波共振子が傾斜型の第2のIDT電極18を有する。高音速部材からなる支持基板2、低音速膜4及び圧電体層5がこの順序で積層された積層体6を有することにより、弾性波のエネルギーを圧電体層5側に効率的に閉じ込めることができる。加えて、直列腕共振子部S1及び並列腕共振子部P1がピストンモードを利用する弾性波共振子であり、かつ他の弾性波共振子が傾斜型の第2のIDT電極18を有することにより、ストップバンド上端に起因するレスポンスを効果的に抑制することができる。以下において、第1のIDT電極8及び第2のIDT電極18の具体的な構成と共に、ストップバンド上端に起因するレスポンスを抑制する効果の詳細を説明する。なお、本明細書においては、ストップバンド上端に起因するレスポンスをストップバンドレスポンスと記載する。
 図3は、第1の実施形態における最もアンテナ端側に配置された直列腕共振子部の電極構造を示す模式的平面図である。
 第1のIDT電極8は、互いに対向し合う第1のバスバー12a及び第2のバスバー13aを有する。第1のIDT電極8は、第1のバスバー12aに一端が接続されている、複数の第1の電極指12bを有する。さらに、第1のIDT電極8は、第2のバスバー13aに一端が接続されている、複数の第2の電極指13bを有する。複数の第1の電極指12bと複数の第2の電極指13bとは、互いに間挿し合っている。
 第1のIDT電極8において、第1の電極指12bと第2の電極指13bとが弾性波伝搬方向において重なり合っている部分は、交叉領域Aである。交叉領域Aは、弾性波伝搬方向に直交する方向における中央側に位置している中央領域Bを有する。
 交叉領域Aは、中央領域Bの第1のバスバー12a側に配置されている第1のエッジ領域C1と、中央領域Bの第2のバスバー13a側に配置されている第2のエッジ領域C2とを有する。複数の第1の電極指12bは、第1のエッジ領域C1及び第2のエッジ領域C2において、他の部分よりも幅が広くなっている幅広部12c及び幅広部12dを有する。同様に、複数の第2の電極指13bは、第1のエッジ領域C1及び第2のエッジ領域C2において、他の部分よりも幅が広くなっている幅広部13d及び幅広部13cを有する。本実施形態では、第1の電極指12b及び第2の電極指13bが幅広部12c及び幅広部13dを有することにより、第1のエッジ領域C1において、中央領域Bにおける音速よりも音速が低速である第1の低音速領域が設けられている。同様に、第1の電極指12b及び第2の電極指13bが幅広部12d及び幅広部13cを有することにより、第2のエッジ領域C2において、中央領域Bにおける音速よりも音速が低速である第2の低音速領域が設けられている。ここで、中央領域Bにおける音速をV1とし、第1の低音速領域及び第2の低音速領域における音速をV2としたときに、V2<V1である。
 なお、第1のエッジ領域C1及び第2のエッジ領域C2において、第1の電極指12b及び第2の電極指13b上に質量付加膜が設けられていることにより、第1の低音速領域及び第2の低音速領域が構成されていてもよい。幅広部12c、幅広部12d、幅広部13c及び幅広部13dを有し、かつ質量付加膜が設けられていることにより、第1の低音速領域及び第2の低音速領域が構成されていてもよい。
 第1のIDT電極8は、第1のエッジ領域C1の、弾性波伝搬方向に直交する方向における外側に配置されている第1の外側領域D1を有する。さらに、第1のIDT電極8は、第2のエッジ領域C2の弾性波伝搬方向に直交する方向における外側に配置されている第2の外側領域D2を有する。本実施形態では、第1の外側領域D1は、第1のエッジ領域C1と第1のバスバー12aとの間に位置している。第2の外側領域D2は、第2のエッジ領域C2と第2のバスバー13aとの間に位置している。
 第1の外側領域D1においては、第1の電極指12b及び第2の電極指13bのうち第1の電極指12bのみが設けられている。第2の外側領域D2においては、第1の電極指12b及び第2の電極指13bのうち第2の電極指13bのみが設けられている。それによって、中央領域Bにおける音速よりも第1の外側領域D1及び第2の外側領域D2における音速が高速になっている。第1の外側領域D1及び第2の外側領域D2における弾性波の音速をV3としたときに、V1<V3である。このように、第1の外側領域D1において第1の高音速領域が設けられており、第2の外側領域D2において第2の高音速領域が設けられている。
 各音速の関係は、V2<V1<V3となっている。上記のような各音速の関係を図3に示す。なお、図3における左側に向かうにつれて音速が高速であることを示す。
 第1のIDT電極8においては、中央領域Bの弾性波伝搬方向に直交する方向における外側に、第1の低音速領域及び第2の低音速領域が配置されている。第1の低音速領域及び第2の低音速領域の弾性波伝搬方向に直交する方向おける外側に、第1の高音速領域及び第2の高音速領域が配置されている。このように、直列腕共振子部S1はピストンモードを利用しており、横モードによるスプリアス及びストップバンドレスポンスを抑制することができる。
 図4は、第1の実施形態における第2のIDT電極を有する直列腕共振子部の電極構造を示す模式的平面図である。
 第2のIDT電極18は、互いに対向し合う第3のバスバー14a及び第4のバスバー15aを有する。第2のIDT電極18は、第3のバスバー14aに一端が接続されている、複数の第3の電極指14bを有する。さらに、第2のIDT電極18は、第4のバスバー15aに一端が接続されている、複数の第4の電極指15bを有する。複数の第3の電極指14bと複数の第4の電極指15bとは、互いに間挿し合っている。
 複数の第3の電極指14bの先端を結ぶことにより形成される仮想線である第1の包絡線E1は、弾性波伝搬方向に対して傾斜して延びている。同様に、複数の第4の電極指15bの先端を結ぶことにより形成される仮想線である第2の包絡線F1は、弾性波伝搬方向に対して傾斜して延びている。それによって、直列腕共振子部S2において、ストップバンドレスポンスを抑制することができる。第2のIDT電極18は、第1の包絡線E1及び第2の包絡線F1が弾性波伝搬方向に対して傾斜して延びている傾斜型のIDT電極である。第1の包絡線E1及び第2の包絡線F1が延びる方向が弾性波伝搬方向に対して傾斜している傾斜角度は特に限定されないが、本実施形態では、傾斜角度は5°である。
 ここで、第1の実施形態の弾性波フィルタ装置1の構成は以下の通りとなる。
 第1のIDT電極及び第2のIDT電極:Ti層の厚み2nm、AlCu層の厚み162nm
 圧電体層:材料LiTaO、カット角50°、厚み600nm
 低音速膜:材料SiO、厚み670nm
 支持基板:材料Si、厚み200μm
 保護膜:材料SiO、厚み25nm
 傾斜型のIDT電極においては、傾斜角度が小さいほど、ストップバンドレスポンスは小さくなる。しかしながら、傾斜角度が小さいと、横モードによるスプリアスが生じる。本実施形態においては、図1に示す、最もアンテナ端X側に配置された直列腕共振子部S1及び並列腕共振子部P1がピストンモードを利用する弾性波共振子であり、他の複数の弾性波共振子のIDT電極は傾斜型のIDT電極である。それによって、横モードによるスプリアスを効果的に抑制することができ、かつストップバンドレスポンスを効果的に抑制することができる。これを下記の図5~図8を用いて、以下において説明する。
 図5は、第1の実施形態における傾斜型のIDT電極を有する弾性波共振子のインピーダンス特性を示す図である。図6は、第1の実施形態におけるピストンモードを利用する弾性波共振子のインピーダンス特性を示す図である。
 図5中の矢印Gで示すように、傾斜型のIDT電極である第2のIDT電極を有する弾性波共振子においては、ストップバンドレスポンスが生じていることがわかる。これに対して、図6に示すように、ピストンモードを利用する弾性波共振子においては、矢印Hで示すように、ストップバンドレスポンスは抑制されていることがわかる。
 図7は、第1の実施形態における、傾斜型のIDT電極を有する弾性波共振子及びピストンモードを利用する弾性波共振子のリターンロスを示す図である。図7においては、実線が傾斜型のIDT電極を有する弾性波共振子の結果を示し、破線がピストンモードを利用する弾性波共振子の結果を示す。
 図7中の矢印G及び矢印Hで示すように、ストップバンドレスポンスは、図5及び図6に示した結果と同様に、ピストンモードを利用する弾性波共振子において抑制されている。他方、図7中の矢印Iで示すように、ピストンモードを利用する弾性波共振子において、横モードによるスプリアスは十分に抑制されている。さらに、傾斜型のIDT電極においては、横モードによるスプリアスがより一層抑制されていることがわかる。
 ここで、弾性波フィルタ装置1における各弾性波共振子の、アンテナ端側から見たリターンロスの変化量を下記の図8に示す。なお、リターンロスの変化量とは、図1に示した各弾性波共振子のリターンロスと、直列腕共振子部S5のリターンロスとの差である。図8においては、4000MHzにおける各弾性波共振子のリターンロスの変化量を示す。
 図8は、第1の実施形態における、回路内における弾性波共振子の位置とリターンロスの変化量との関係を示す図である。図8における横軸は、左側から、弾性波共振子が配置された位置がアンテナ端に近い順序の番号で各弾性波共振子を示している。図8中の各符号は、図1に示した各直列腕共振子部及び各並列腕共振子部の符号に対応している。
 図8に示すように、最もアンテナ端側に配置された直列腕共振子部S1及び最もアンテナ端側に配置された並列腕共振子部P1のリターンロスの変化量が、他の弾性波共振子のリターンロスの変化量よりも大幅に大きいことがわかる。リターンロスの変化量は、アンテナ端から離れるほど小さくなっている。本実施形態においては、リターンロスの変化量が大きい直列腕共振子部S1及び並列腕共振子部P1を、ストップバンドレスポンスをより一層抑制することができる、ピストンモードを利用する弾性波共振子としている。従って、弾性波フィルタ装置1においては、ストップバンドレスポンスをより一層効果的に抑制することができる。
 さらに、直列腕共振子部S1及び並列腕共振子部P1は横モードによるスプリアスを十分に抑制することができ、他の各弾性波共振子は、上記スプリアスをより一層抑制することができる、傾斜型の第2のIDT電極を有する弾性波共振子である。よって、横モードによるスプリアスを効果的に抑制することができる。
 傾斜型のIDT電極である第2のIDT電極の傾斜角度は、0.4°以上、15°以下であることが好ましい。第2のIDT電極における傾斜角度を上記範囲とすることにより、弾性波フィルタ装置1において、横モードによるスプリアスの影響を抑制することができる。
 なお、最もアンテナ端側に配置された直列腕共振子部S1の弾性波共振子及び最もアンテナ端側に配置された並列腕共振子部P1の弾性波共振子のうち少なくとも一方が、図2に示した第1のIDT電極8を有していればよい。この場合においても、リターンロスの変化量が大きい弾性波共振子のうち少なくとも一方がピストンモードを利用する弾性波共振子であるため、ストップバンドレスポンスを効果的に抑制することができる。加えて、積層体6を有するため、弾性波のエネルギーを圧電体層5側に効率的に閉じ込めることもできる。
 ここで、最もアンテナ端側に配置された直列腕共振子部の弾性波共振子が複数の弾性波共振子を有する場合には、該直列腕共振子部の全ての弾性波共振子が第1のIDT電極8を有することにより、ストップバンドレスポンスを効果的に抑制することができる。最もアンテナ端側に配置された並列腕共振子部に複数の弾性波共振子が配置されている場合には、該並列腕共振子部における全ての弾性波共振子が第1のIDT電極8を有することにより、ストップバンドレスポンスを効果的に抑制することができる。
 図1に示す本実施形態のように、並列腕よりも直列腕共振子部がアンテナ端X側に配置されている場合には、複数の直列腕共振子部を有していればよい。この場合には、少なくとも、最もアンテナ端X側に配置されていない直列腕共振子部の弾性波共振子が、第2のIDT電極を有していればよい。他方、直列腕共振子部よりも並列腕がアンテナ端X側に配置されている場合には、並列碗共振子部が配置された並列腕を複数有していればよい。この場合には、少なくとも、最もアンテナ端X側に配置されていない並列腕共振子部における弾性波共振子が、第2のIDT電極を有していればよい。
 第2のIDT電極として、下記の図9に示すIDT電極を用いてもよい。
 図9は、第1の実施形態の変形例における、最もアンテナ端側に配置された直列腕共振子部以外の直列腕共振子部の電極構造を示す略図的平面図である。図9においては、第2のIDT電極及び反射器を、多角形に2本の対角線を加えた略図により示す。
 本変形例における第2のIDT電極28の平面形状は略菱形である。第2のIDT電極28における第1の包絡線E2及び第2の包絡線F2は、弾性波伝搬方向に対して傾斜して延びる部分と、弾性波伝搬方向に平行に延びる部分とを有する。このように、第1の包絡線E2及び第2の包絡線F2が延びる方向が変化していてもよい。
 図10は、第2の実施形態における最もアンテナ端側に配置された直列腕共振子部及び他の直列腕共振子部を模式的に並べて示す模式的正面断面図である。
 本実施形態においては、積層体36における高音速部材が高音速膜33である点において、第1の実施形態と異なる。高音速膜33は、支持基板2と低音速膜4との間に設けられている。高音速膜33は、第1の実施形態における支持基板2と同様の高音速材料からなる。上記の点以外においては、本実施形態の弾性波フィルタ装置は第1の実施形態の弾性波フィルタ装置1と同様の構成を有する。なお、本実施形態においては、支持基板2を構成する材料は、高音速材料には限られない。
 本実施形態においても、最もアンテナ端側に配置された直列腕共振子部S1及び最もアンテナ端側に配置された並列腕共振子部がピストンモードを利用する弾性波共振子である。残りの複数の弾性波共振子は傾斜型のIDT電極を有する弾性波共振子である。さらに、本実施形態の弾性波フィルタ装置は、上記積層体36を有する。従って、本実施形態においても、第1の実施形態と同様に、弾性波のエネルギーを圧電体層5側に効率的に閉じ込めることができ、かつストップバンドレスポンスを効果的に抑制することができる。
 図11は、第3の実施形態に係るマルチプレクサの模式図である。
 マルチプレクサ40は、アンテナに接続されるアンテナ端子46を有する。マルチプレクサ40は、アンテナ端子46に共通接続されている、第1の帯域通過型フィルタ41A、第2の帯域通過型フィルタ41B及び第3の帯域通過型フィルタ41Cを有する。第1の帯域通過型フィルタ41Aは、第1の実施形態の弾性波フィルタ装置1と同様の構成を有するフィルタ装置である。第1の帯域通過型フィルタ41A、第2の帯域通過型フィルタ41B及び第3の帯域通過型フィルタ41Cの通過帯域は互いに異なる。
 なお、マルチプレクサ40は、第1の帯域通過型フィルタ41A、第2の帯域通過型フィルタ41B及び第3の帯域通過型フィルタ41C以外の、アンテナ端子46に共通接続された他のフィルタ装置も有する。マルチプレクサ40が有するフィルタ装置の個数は特に限定されない。マルチプレクサ40は、第1の帯域通過型フィルタ41Aと、第1の帯域通過型フィルタ41Aとは通過帯域が異なる、少なくとも1つの帯域通過型フィルタとを有していればよい。
 マルチプレクサ40の第1の帯域通過型フィルタ41Aにおいては、第1の実施形態と同様に、弾性波のエネルギーを圧電体層側に効率的に閉じ込めることができ、かつストップバンドレスポンスを効果的に抑制することができる。なお、第1の帯域通過型フィルタ41Aにおいて、横モードによるスプリアスも抑制することができる。これにより、第2の帯域通過型フィルタ41B及び第3の帯域通過型フィルタ41Cに対する、第1の帯域通過型フィルタ41Aのストップバンドレスポンス及び横モードによるスプリアスの影響を効果的に抑制することができる。従って、マルチプレクサ40において、第1の帯域通過型フィルタ41Aと共にアンテナ端子46に共通接続された第2の帯域通過型フィルタ41B及び第3の帯域通過型フィルタ41Cのフィルタ特性を改善することができる。
1…弾性波フィルタ装置
2…支持基板
4…低音速膜
5…圧電体層
6…積層体
7…保護膜
8…第1のIDT電極
9A,9B…反射器
12a…第1のバスバー
12b…第1の電極指
12c,12d…幅広部
13a…第2のバスバー
13b…第2の電極指
13c,13d…幅広部
14a…第3のバスバー
14b…第3の電極指
15a…第4のバスバー
15b…第4の電極指
18…第2のIDT電極
19A,19B…反射器
28…第2のIDT電極
33…高音速膜
36…積層体
40…マルチプレクサ
41A~41C…第1,第2,第3の帯域通過型フィルタ
46…アンテナ端子
P1~P4…並列腕共振子部
S1~S5…直列腕共振子部

Claims (6)

  1.  圧電体層と、
     前記圧電体層を伝搬する弾性波の音速よりも伝搬するバルク波の音速が高速である高音速部材と、
     前記高音速部材と前記圧電体層との間に設けられており、前記圧電体層を伝搬するバルク波の音速よりも伝搬するバルク波の音速が低速である低音速膜と、
     前記圧電体層上に設けられており、第1のIDT電極及び第2のIDT電極を含む複数のIDT電極と、
    を備え、
     前記高音速部材、前記低音速膜、前記圧電体層及び前記複数のIDT電極により、複数の弾性波共振子が構成されており、
     前記複数の弾性波共振子が、アンテナ端と前記アンテナ端以外の信号端とを結ぶ直列腕に配置された、少なくとも1つの直列腕共振子部と、前記直列腕とグラウンド電位とを結ぶ並列腕に配置された、少なくとも1つの並列腕共振子部とに配置されており、前記直列腕共振子部及び前記並列共振子部は、それぞれ、少なくとも1個の前記弾性波共振子を有し、
     前記直列腕共振子部のうち、最も前記アンテナ端側に配置された前記直列腕共振子部の前記弾性波共振子及び最も前記アンテナ端側に配置された前記並列腕共振子部における前記弾性波共振子のうち少なくとも一方が前記第1のIDT電極を有し、残りの前記弾性波共振子が前記第2のIDT電極を有し、
     前記第1のIDT電極が、互いに対向する第1のバスバー及び第2のバスバーと、前記第1のバスバーに一端が接続された複数の第1の電極指と、前記第2のバスバーに一端が接続されており、かつ前記複数の第1の電極指と間挿し合っている複数の第2の電極指と、を有し、前記第1の電極指と前記第2の電極指とが弾性波伝搬方向において重なり合っている部分が交叉領域であり、
     前記交叉領域が、弾性波伝搬方向に直交する方向における中央側に位置している中央領域を有し、
     前記交叉領域において、前記中央領域の前記第1のバスバー側に配置されており、かつ前記中央領域における音速より音速が低速である第1の低音速領域と、前記中央領域の前記第2のバスバー側に配置されており、かつ前記中央領域における音速より音速が低速である第2の低音速領域とが設けられており、
     前記第1のIDT電極において、前記中央領域における音速より音速が高速である第1の高音速領域と、第2の高音速領域とが設けられており、前記第1の高音速領域が前記第1の低音速領域の、弾性波伝搬方向に直交する方向における外側に配置されており、前記第2の高音速領域が前記第2の低音速領域の、弾性波伝搬方向に直交する方向における外側に配置されており、
     前記第2のIDT電極が互いに間挿し合っている複数の第3の電極指及び複数の第4の電極指を有し、
     前記複数の第3の電極指の先端を結ぶことにより形成される仮想線である第1の包絡線が、弾性波伝搬方向に対して傾斜して延びており、前記複数の第4の電極指の先端を結ぶことにより形成される仮想線である第2の包絡線が、弾性波伝搬方向に対して傾斜して延びている、弾性波フィルタ装置。
  2.  最も前記アンテナ端側に配置された前記直列腕共振子部の前記弾性波共振子及び最も前記アンテナ端側に配置された前記並列腕共振子部における前記弾性波共振子の両方が前記第1のIDT電極を有する、請求項1に記載の弾性波フィルタ装置。
  3.  前記高音速部材が支持基板である、請求項1または2に記載の弾性波フィルタ装置。
  4.  前記高音速部材が高音速膜であり、
     支持基板をさらに備え、
     前記支持基板と前記低音速膜との間に前記高音速膜が設けられている、請求項1または2に記載の弾性波フィルタ装置。
  5.  前記直列腕共振子部を複数有し、前記並列腕共振子部を複数有するラダー型フィルタである、請求項1~4のいずれか1項に記載の弾性波フィルタ装置。
  6.  アンテナに接続されるアンテナ端子と、
     前記アンテナ端子に接続されている、請求項1~5のいずれか1項に記載の弾性波フィルタ装置と、
     前記弾性波フィルタ装置と共に前記アンテナ端子に共通接続されており、かつ前記弾性波フィルタ装置とは通過帯域が異なる少なくとも1つの帯域通過型フィルタと、
    を備える、マルチプレクサ。
PCT/JP2018/034582 2017-09-19 2018-09-19 弾性波フィルタ装置及びマルチプレクサ WO2019059208A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020207005949A KR102345526B1 (ko) 2017-09-19 2018-09-19 탄성파 필터 장치 및 멀티플렉서
JP2019543658A JP6806265B2 (ja) 2017-09-19 2018-09-19 弾性波フィルタ装置及びマルチプレクサ
CN201880060290.5A CN111095795B (zh) 2017-09-19 2018-09-19 弹性波滤波器装置以及多工器
US16/813,788 US11251777B2 (en) 2017-09-19 2020-03-10 Acoustic wave filter device and multiplexer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017178562 2017-09-19
JP2017-178562 2017-09-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/813,788 Continuation US11251777B2 (en) 2017-09-19 2020-03-10 Acoustic wave filter device and multiplexer

Publications (1)

Publication Number Publication Date
WO2019059208A1 true WO2019059208A1 (ja) 2019-03-28

Family

ID=65810333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/034582 WO2019059208A1 (ja) 2017-09-19 2018-09-19 弾性波フィルタ装置及びマルチプレクサ

Country Status (5)

Country Link
US (1) US11251777B2 (ja)
JP (1) JP6806265B2 (ja)
KR (1) KR102345526B1 (ja)
CN (1) CN111095795B (ja)
WO (1) WO2019059208A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019177028A1 (ja) * 2018-03-14 2019-09-19 株式会社村田製作所 弾性波装置
WO2021220936A1 (ja) * 2020-04-27 2021-11-04 株式会社村田製作所 弾性波装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG10201905013VA (en) * 2018-06-11 2020-01-30 Skyworks Solutions Inc Acoustic wave device with spinel layer
US11876501B2 (en) 2019-02-26 2024-01-16 Skyworks Solutions, Inc. Acoustic wave device with multi-layer substrate including ceramic
CN116470878B (zh) * 2023-04-03 2024-03-19 无锡市好达电子股份有限公司 横向激励薄膜体声波谐振器

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016208446A1 (ja) * 2015-06-24 2016-12-29 株式会社村田製作所 フィルタ装置
WO2016208236A1 (ja) * 2015-06-22 2016-12-29 株式会社村田製作所 弾性波フィルタ装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010010874A (ja) 2008-06-25 2010-01-14 Epson Toyocom Corp 弾性表面波フィルタ
JP2010278830A (ja) * 2009-05-29 2010-12-09 Murata Mfg Co Ltd ラダー型フィルタ及びその製造方法並びにデュプレクサ
JP5713025B2 (ja) * 2010-12-24 2015-05-07 株式会社村田製作所 弾性波装置及びその製造方法
CN105264772B (zh) * 2013-05-29 2018-01-12 株式会社村田制作所 弹性波滤波器装置
JP6504551B2 (ja) * 2013-06-10 2019-04-24 太陽誘電株式会社 共振器、フィルタおよび分波器
CN105814794B (zh) * 2013-12-26 2019-05-17 株式会社村田制作所 弹性波装置以及滤波器装置
CN106416067B (zh) * 2014-06-26 2019-03-08 株式会社村田制作所 纵耦合谐振器型声表面波滤波器
JP6307021B2 (ja) * 2014-12-19 2018-04-04 太陽誘電株式会社 弾性波デバイス
JP7055023B2 (ja) * 2018-01-12 2022-04-15 太陽誘電株式会社 弾性波共振器、フィルタおよびマルチプレクサ

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016208236A1 (ja) * 2015-06-22 2016-12-29 株式会社村田製作所 弾性波フィルタ装置
WO2016208446A1 (ja) * 2015-06-24 2016-12-29 株式会社村田製作所 フィルタ装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019177028A1 (ja) * 2018-03-14 2019-09-19 株式会社村田製作所 弾性波装置
US11444601B2 (en) 2018-03-14 2022-09-13 Murata Manufacturing Co., Ltd. Acoustic wave device
WO2021220936A1 (ja) * 2020-04-27 2021-11-04 株式会社村田製作所 弾性波装置

Also Published As

Publication number Publication date
CN111095795B (zh) 2023-09-19
US20200212891A1 (en) 2020-07-02
KR20200033319A (ko) 2020-03-27
JP6806265B2 (ja) 2021-01-06
US11251777B2 (en) 2022-02-15
JPWO2019059208A1 (ja) 2020-10-01
KR102345526B1 (ko) 2021-12-30
CN111095795A (zh) 2020-05-01

Similar Documents

Publication Publication Date Title
WO2019059208A1 (ja) 弾性波フィルタ装置及びマルチプレクサ
WO2016208446A1 (ja) フィルタ装置
KR102472455B1 (ko) 탄성파 장치
WO2011111743A1 (ja) 弾性波共振子及びラダー型フィルタ
JP6835222B2 (ja) 弾性波装置及び複合フィルタ装置
WO2006109591A1 (ja) 弾性波素子
WO2015198709A1 (ja) ラダー型フィルタ
JP7268747B2 (ja) 弾性波装置
WO2019131530A1 (ja) 弾性波フィルタ
WO2020261763A1 (ja) 弾性波装置
JP5083469B2 (ja) 弾性表面波装置
WO2020250572A1 (ja) 弾性波装置
JP7334786B2 (ja) 弾性波フィルタ
WO2022202917A1 (ja) 弾性波装置
JP5141776B2 (ja) 弾性波共振子、ラダー型フィルタ及びデュプレクサ
KR20230091164A (ko) 탄성파 장치 및 래더형 필터
WO2018193933A1 (ja) 弾性波装置、帯域通過型フィルタ及びマルチプレクサ
CN112805919B (zh) 弹性波装置、带通型滤波器、双工器以及多工器
WO2023002824A1 (ja) 弾性波装置
WO2023085347A1 (ja) 弾性波装置
WO2023248636A1 (ja) 弾性波装置
WO2023048256A1 (ja) 弾性波装置
WO2023136291A1 (ja) 弾性波装置
WO2023136293A1 (ja) 弾性波装置
WO2024004862A1 (ja) フィルタ装置および通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18858260

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207005949

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019543658

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18858260

Country of ref document: EP

Kind code of ref document: A1