WO2019058822A1 - チタン酸化物及びその製造方法、並びに該チタン酸化物を用いた電極活物質及び蓄電デバイス - Google Patents

チタン酸化物及びその製造方法、並びに該チタン酸化物を用いた電極活物質及び蓄電デバイス Download PDF

Info

Publication number
WO2019058822A1
WO2019058822A1 PCT/JP2018/030480 JP2018030480W WO2019058822A1 WO 2019058822 A1 WO2019058822 A1 WO 2019058822A1 JP 2018030480 W JP2018030480 W JP 2018030480W WO 2019058822 A1 WO2019058822 A1 WO 2019058822A1
Authority
WO
WIPO (PCT)
Prior art keywords
peak
titanium oxide
sample
ppm
sodium titanate
Prior art date
Application number
PCT/JP2018/030480
Other languages
English (en)
French (fr)
Inventor
永井 秀明
秋本 順二
Original Assignee
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人産業技術総合研究所 filed Critical 国立研究開発法人産業技術総合研究所
Priority to JP2019543481A priority Critical patent/JP7062304B2/ja
Publication of WO2019058822A1 publication Critical patent/WO2019058822A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a novel sodium titanate hydrate having a novel structure and a novel titanium oxide obtained by heat-treating its proton exchanger.
  • the present invention also relates to an electrode active material using such a titanium oxide and a storage device thereof.
  • lithium secondary batteries mounted in portable electronic devices such as mobile phones and laptop computers are lithium secondary batteries.
  • lithium secondary batteries are expected to be put to practical use as large batteries such as hybrid cars and power load leveling systems in the future, and their importance is increasing more and more.
  • the lithium secondary battery mainly includes a positive electrode and a negative electrode each containing a material capable of reversibly absorbing and desorbing lithium, and a separator including a non-aqueous electrolyte solution or a solid electrolyte as main components.
  • lithium cobalt oxide LiCoO 2
  • lithium manganese oxide LiMn 2 O 4
  • lithium titanate Li 4 Ti 5 O 12
  • metal lithium such as lithium metal, lithium alloy, tin alloy and the like
  • carbon-based materials such as graphite and MCMB (mesocarbon microbeads).
  • the battery potential is determined by the difference in the chemical potential of the lithium content in each active material, but it is possible to form a large potential difference particularly by the combination, lithium secondary battery excellent in energy density Is a feature of
  • the combination of the spinel type lithium manganese oxide (LiMn 2 O 4 ) active material and the electrode containing the spinel type lithium titanium oxide (Li 4 Ti 5 O 12 ) active material causes lithium absorption and desorption Since it is easy to be carried out smoothly and the change in crystal lattice volume due to the reaction is less, it has been revealed that a lithium secondary battery excellent in long-term charge and discharge cycles can be realized, which has been put to practical use .
  • titanium oxide-based active materials have a voltage of about 1 to 2 V when lithium metal is used as a counter electrode, and materials having various crystal structures as materials for negative electrodes are used as electrode active materials. The possibility as is being considered.
  • Li 4 Ti 5 O 12 has a theoretical capacity of about 175 mAh / g and can not be expected to have a large capacity.
  • titanium oxides containing TiO 2 (B) and H in the composition those showing an initial charge capacity exceeding 300 mAh / g are also synthesized, but they have a problem that the initial irreversible capacity is large.
  • HTO although the initial irreversible capacity is small compared to TiO 2 (B), the initial charge capacity is about 230 mAh / g, and further miniaturization is possible by miniaturization, but the irreversible capacity increases. I have a problem.
  • the monoclinic titanium-niobium composite oxide has an initial charge capacity of about 280 mAh / g and a relatively small irreversible capacity, but the price of niobium (about 6 times as of fiscal 2007) and the amount of resources relative to titanium There is a problem in terms of (220 times the abundance ratio in the crust).
  • An object of the present invention is to provide a novel titanium oxide, a method for producing the same, and an electrode active material and an electricity storage device using the titanium oxide, which solve the above-mentioned current problems.
  • the present inventors have found that a titanium oxide containing H having a characteristic local structure different from that of a titanium oxide containing H such as HTO and having a characteristic vibration of Ti—O—Ti skeleton It has been found that the present invention is obtained.
  • the present invention provides a novel titanium oxide having a novel structure shown below and a method for producing the same, and provides an electrode active material using these titanium compounds and a storage device thereof.
  • the peak top of the spectrum obtained from the sample of the room temperature which rotated at 10000-12500 rotations per minute in 1 H solid NMR measurement contains 9-11 ppm (peak 1)
  • the peak top of the sodium titanate hydrate at peak separation of a spectrum obtained from a room temperature sample rotated at 10000 to 12500 rpm using an electromagnetic wave of 400 MHz in 1 H solid state NMR measurement is 11.
  • An electrode active material comprising the titanium oxide according to any one of the above (1) to (3).
  • a titanium oxide containing H having a characteristic local structure different from that of a titanium oxide containing H such as HTO and having a characteristic vibration of a Ti—O—Ti skeleton can be produced.
  • This titanium oxide is useful in various applications, for example, when used as an electrode active material, it can provide a lithium secondary battery excellent in long-term charge and discharge cycles and expected of high capacity.
  • FIG. It is a measurement result of 1 H solid NMR spectrum of sample A ′ ′ and sample B. It is a lithium secondary battery (coin-type cell) basic structural drawing. It is a charging / discharging characteristic at the time of using sample A '' and sample B as a negative electrode.
  • the novel titanium oxide of the present embodiment is synthesized by synthesizing new sodium titanate hydrate and performing ion exchange and heat treatment, as shown in the synthesis flow diagram of FIG.
  • the characteristics and production method of the novel titanium oxide according to the present embodiment and the novel sodium titanate hydrate which is a precursor thereof will be described in more detail.
  • the novel titanium oxide of the present embodiment contains H, and in 1 H solid-state NMR measurement, the peak is separated in the spectrum obtained from a room temperature sample rotated at 10000 to 12500 rpm using an electromagnetic wave of 400 MHz. The top is present at 9-11 ppm (peak 1) and 6.7-8 ppm (peak 2), and the peak intensity ratio (I peak 1 / I peak 2 ) of the two peaks is 1.0 or less. I assume.
  • the signals of 1 H solid state NMR are represented by the overlap of 1 H signals with individual local structures.
  • H contained in the novel titanium oxide has a large proportion of those showing low peak positions.
  • peak separation generally, a plurality of peaks having a shape such as Lorentzian distribution or Gaussian distribution are set, and the peak position or peak position or peak position or the peak intensity or the peak position or the peak position or Perform fitting by changing peak intensity and half width and perform peak separation.
  • the number of peak separations is the number of 1 H local structures assumed to exist, and the 1 H local structure determines the approximate range of peak positions, thus limiting the peak positions and the half width during fitting. Sometimes.
  • the above-mentioned titanium oxide is characterized by having a vibrational absorption different from that of a typical titanium oxide in infrared absorption analysis, and is characterized by having an absorption peak at 930 to 990 cm -1 .
  • stretching vibration due to a Ti—O—Ti skeleton appears in the vicinity of 500 to 1000 cm ⁇ 1 in titanium oxide, and a broad absorption spectrum is observed in the vicinity of 700 cm ⁇ 1 in typical titanium oxides such as rutile and anatase.
  • the bond strength of the Ti-O-Ti bond changes, so that the absorption peak position changes or a new peak is generated.
  • the titanium oxide of the present embodiment is considered to have a large proportion of OH groups attached to the Ti-O-Ti skeleton, since more water than HTO is desorbed based on the weight reduction according to TG-DTA measurement, and the higher the wave It is considered to shift to the number side.
  • a peak appears at the position of 2 ⁇ value depending on the crystal structure of the sample, but the peak is caused by nanoization of the sample, inhibition of crystal growth, reduction of crystallinity due to grinding, etc.
  • the broadening affects the properties of the sample.
  • the titanium oxide is synthesized while partially maintaining the layered structure of the precursor, the crystal growth is inhibited, the crystallite diameter remains small, and the peak width is broadened.
  • the novel titanium oxide of the present embodiment exhibits a powder XRD pattern similar to that of HTO, it is considered to have a similar crystal structure, and the wide width of these peaks has many corresponding faces. In other words, it has more surfaces suitable for insertion and desorption of Li.sup. + , Which is desirable from the viewpoint of powder utilization efficiency.
  • the spread of the peak width is expressed using the peak half width (full width at a half height of the peak height), and is used when determining the crystallinity and the crystallite diameter.
  • the titanium raw material is not particularly limited as long as it contains titanium, and, for example, titanium (metal titanium) and oxides such as TiO, Ti 2 O 3 and TiO 2 , TiO (OH) 2 , TiO 2 ⁇ x H
  • titanium oxide hydrate represented by 2 O (x is arbitrary) and the like examples thereof include titanium oxide hydrate represented by 2 O (x is arbitrary) and the like, inorganic titanium compounds such as titanium chloride and titanium sulfate, and organic titanium compounds such as titanium isopropoxide and titanium butoxide.
  • titanium oxide and titanium oxide hydrate are particularly preferable, and metatitanic acid represented by TiO (OH) 2 or TiO 2 ⁇ H 2 O or orthotitanic acid represented by TiO 2 ⁇ 2H 2 O, or A mixture of them can be used.
  • sodium raw material at least one of sodium (metal sodium) and a sodium compound is used.
  • the sodium compound is not particularly limited as long as it contains sodium, for example, oxides such as Na 2 O, Na 2 O 2 , salts such as Na 2 CO 3 , NaNO 3 , hydroxides such as NaOH, etc. Can be mentioned.
  • metals such as lithium and potassium which are the same alkali metals and lithium compounds (eg, Li 2 O, Li 2 CO 3 , LiNO 3 , LiOH etc.), potassium compounds (eg, K 2 O, K 2 CO 3 , KNO 3 , KOH and the like may be mixed, and it is sufficient if the sodium raw material exceeds 50% in molar ratio.
  • NaOH is particularly preferred.
  • the sodium source also serves to promote the dissolution of the titanium source during synthesis, it needs to be added in excess to the titanium source.
  • the weight ratio be 8 times or more.
  • these are dissolved or suspended in water or ethanol or a mixture thereof as a solvent and mixed well.
  • the mixing is carried out at room temperature to below the boiling point of the solvent.
  • hydrogen peroxide, ammonia, NH 4 F, glucose or the like may be added in order to promote dissolution of the titanium raw material and complex formation to enhance the reactivity.
  • various surfactants and inorganic or organic salts such as sodium sulfate may be added to improve the dispersibility and to control the form at the time of crystal growth.
  • 0.1 wt% to 10 wt% of carbon particles, carbon nanotubes, graphene, graphene oxide or the like may be added, and these may be previously combined with the starting material.
  • a hydrothermal synthesis method is particularly preferable.
  • the reaction temperature and time are not particularly limited as long as sufficient reaction and crystal growth can be performed, but the reaction temperature is preferably 190 ° C. or more, and the reaction time is preferably 10 hours or more.
  • the chemical composition and crystallinity of the novel sodium titanate hydrate aimed at herein can provide a compound showing an X-ray diffraction pattern similar to the X-ray diffraction pattern peculiar to the above sodium titanate hydrate. It is sufficient if it has a certain degree of crystallinity or more. In addition, in the range in which the crystallinity of a certain level or more is not impaired, a dispersing or atomizing operation such as pulverization may be added.
  • the shape of the novel sodium titanate hydrate is not particularly limited, and may be needle-like, rod-like, column-like, spindle-like, cylindrical, fibrous, or any other anisotropic shape, or spherical or irregular shape. In addition, these particles may be granulated by a known method such as a spray dryer.
  • the use of dilute hydrochloric acid at a concentration of 0.1 to 1.0 N is preferred.
  • the treatment time is 10 hours to 10 days, preferably 1 day to 7 days.
  • the exchange reaction treatment temperature may be from room temperature (20 ° C.) to less than 100 ° C.
  • the drying can apply a well-known drying method, vacuum drying etc. are more preferable.
  • the proton exchanger of sodium titanate hydrate obtained in this way can not detect Na by analysis in the solid state using an energy dispersive X-ray spectrometer, and the conditions for the exchange process are optimized. By doing this, it is possible to reduce the amount of sodium remaining from the starting material to below the detection limit of chemical analysis by the wet method.
  • Desired dehydration is carried out by heat treatment in an oxygen gas-containing atmosphere such as in air, or in an inert gas atmosphere such as nitrogen or argon, using the proton exchanger of sodium titanate hydrate obtained above as a starting material.
  • an oxygen gas-containing atmosphere such as in air
  • an inert gas atmosphere such as nitrogen or argon
  • the proton exchanger of sodium titanate hydrate obtained above is obtained.
  • the dehydration reaction can be promoted by reducing the pressure or reducing the pressure of the atmosphere.
  • the temperature of the heat treatment is in the range of 250 ° C. to 500 ° C., preferably 260 ° C. to 400 ° C.
  • the treatment time is usually 0.5 to 100 hours, preferably 1 to 30 hours, and the treatment time can be shortened as the treatment temperature is higher.
  • the above sodium titanate hydrate is a crystalline compound having a layered structure.
  • crystalline compounds having a layered structure have an interlayer distance longer than the Ti-O interatomic distance of crystals such as rutile and anatase, and by including sodium ions, water, etc. in this layer, the crystal structure is stabilized. ing.
  • the sodium ion, water, etc. are relatively loosely bound, so if the crystallinity is high, the sodium ion is replaced by another ion by ion exchange while maintaining its layered structure, or reversibly Water can be put in and out.
  • Na + / H + ion exchange is performed using an acidic aqueous solution while maintaining its layered structure.
  • the peak top is 11. It is characterized by being present in 4 to 12.7 ppm and 6.4 to 7.6 ppm. Since NMR signals are usually represented by the overlap of 1 H signals with individual local structures, they also change with the water content of the sample. Therefore, by separating peaks signal to a plurality of peaks, it is possible to distinguish different 1 H of local structures (for example, occupying the site is different from 1 H adsorption or in water to which water and crystal structure in the interlayer) .
  • peak separation In peak separation, generally, a plurality of peaks having a shape such as Lorentzian distribution or Gaussian distribution are set, and the peak position or peak position or peak position or the peak intensity or the peak position or the peak position or Perform fitting by changing peak intensity and half width and perform peak separation.
  • the number of peak separations is the number of 1 H local structures assumed to exist, and the 1 H local structure determines the approximate range of peak positions, thus limiting the peak positions and the half width during fitting. Sometimes.
  • the lithium secondary battery (power storage device) uses an electrode containing an electrode active material containing the titanium oxide as a component. That is, except using the titanium oxide active material of the present embodiment as one of the electrode materials, a battery element of a known lithium secondary battery (coin type, button type, cylindrical type, all solid type, etc.) is adopted as it is Can.
  • FIG. 17 is a schematic view showing an example in which the lithium secondary battery according to the present embodiment is applied to a coin battery.
  • the coin-type battery 1 includes a negative electrode terminal 2, a negative electrode 3, (separator + electrolyte solution) 4, an insulating packing 5, a positive electrode 6, and a positive electrode can 7.
  • a conductive agent, a binder and the like are added to the above-mentioned active material containing titanium oxide to prepare an electrode mixture, and this is pressure-bonded to a current collector. It can be made.
  • a stainless steel mesh, an aluminum foil or the like can be used as the current collector.
  • the conductive agent preferably, acetylene black, ketjen black or the like can be used.
  • the binder tetrafluoroethylene, polyvinylidene fluoride and the like can be preferably used.
  • composition of the electrode active material, the conductive agent, the binder and the like in the electrode mixture is not particularly limited, but usually, the conductive agent is about 1 to 30% by weight (preferably 5 to 25% by weight) and the binder is The content may be 0 to 30% by weight (preferably 3 to 10% by weight), and the remaining portion may be an electrode active material.
  • the counter electrode to the above electrode for example, metal lithium, lithium alloy or the like which is known as an anode, which functions as an anode and occludes lithium can be adopted.
  • the counter electrode known ones which function as a positive electrode and occlude lithium, such as lithium cobalt oxide (LiCoO 2 ) and spinel type lithium manganese oxide (LiMn 2 O 4 ) can also be adopted.
  • the electrode containing the electrode active material of the present embodiment can function as both a positive electrode and a negative electrode depending on the electrode constituent material to be combined.
  • a known battery element may be adopted as the separator, the battery case, and the like.
  • electrolytic solutions solid electrolytes and the like can also be applied as the electrolyte.
  • an electrolyte such as lithium perchlorate or lithium hexafluorophosphate is used as a solvent such as ethylene carbonate (EC), dimethyl carbonate (DMC), propylene carbonate (PC), diethyl carbonate (DEC) or the like. What was dissolved can be used.
  • Example 1 Metal of producing novel sodium titanate hydrate 2 g of titanium dioxide (crystal form: anatase, specific surface area: 280 m 2 / g) was mixed with 20 g of sodium hydroxide and 50 ml of distilled water and mixed, and enclosed in a hydrothermal synthesis container with an inner volume of 100 ml. . This was placed in a thermostatic chamber, and was heated from room temperature to 200 ° C. in one hour, and then held for 24 hours to conduct hydrothermal synthesis. After completion of the synthesis, the mixture was naturally cooled to room temperature in a thermostat.
  • the solution and the sample were taken out from the hydrothermal synthesis vessel, and the solid content was separated and collected by suction filtration using a membrane filter (pore diameter: 0.2 ⁇ m).
  • the collected solid content was once dispersed in ion exchange water using an ultrasonic cleaner for washing, and suction filtration was performed again using a membrane filter.
  • the collected solid content was dried overnight in a dryer at 70 ° C., and the aggregate was lightly crushed in an agate mortar to obtain Sample A.
  • the results shown in Table 1 are obtained, and sodium titanate hydrates satisfying all the above peaks can not be found, and novel sodium titanates It turned out to be a hydrate. Further, as shown in Table 2, the peak half value widths of the peaks 3 to 5 were 0.23 °, 0.40 °, and 0.23 °, respectively.
  • sample A by 1 H solid state NMR was performed at room temperature using NMR AVANCE III 400 WB from Bruker.
  • the signal pattern obtained as shown in FIG. 6 was different depending on the dry state of the sample before analysis. As the drying temperature increased, the signal near 5.3 ppm decreased rapidly, and the signal near 13.1 ppm moved to the lower side of the chemical shift. From this, around 5.3 ppm and 13.1 ppm are signals of 1 H solid NMR due to adsorbed water and water intruded into the layer, and the others are original 1 H solid NMR signals of sample A.
  • the samples dried at 110 ° C. showed signal peaks at 12.03 ppm, 7.04 ppm and 1.74 ppm, in addition to the above.
  • sample A ′ ′ was found to contain Ti and O as constituent elements by elemental analysis based on characteristic X-ray measurement using an energy dispersive X-ray spectrometer (FIG. 12). Further, FIG. 13 shows absorption spectrum measurement of sample A ′ ′ and sample B by FT-IR. Sample A ′ ′ shows a broad absorption peak near 3300 cm ⁇ 1 (arrows in FIG. 13), and sample B shows an absorption peak near 3420 cm ⁇ 1 . This indicates that OH groups are present in sample A ′ ′ and sample B. It was found to exist.
  • sample B was 2.19 wt%, and the behavior at the time of heating was significantly different from sample A ′ ′.
  • sample A ′ ′ and sample B by 1 H solid state NMR was carried out using the material dried at 110 ° C., referring to the measurement of sodium titanate hydrate.
  • Sample A ′ ′ and sample in FIG. The results of 1 H solid state NMR measurement of B are shown in Table 4 and the peak position and peak intensity ratio after peak separation.
  • signal separation was shown for peak 1 (10.22 ppm, sample origin), peak 2 (7.15 ppm, sample origin), peak 3 (1.63 ppm, origin for measurement container) by peak separation.
  • sample B by 1 H solid state NMR showed signal peaks at 10.01 ppm (peak 1) and 6.62 ppm (peak 2), which were different from sample A ′ ′.
  • the peak intensity ratio (I peak 1 / I peak 2 ) of sample A ′ ′ was 0.47, and that of sample B was 2.74. From these facts, the peak for sample A ′ ′ and sample B It was revealed that the position and peak intensity ratio are different, that is, the local structure of H and the abundance ratio thereof are different, and they are different substances.
  • Lithium rechargeable battery (Lithium rechargeable battery) Using the sample A ′ ′ and sample B thus obtained as active materials, acetylene black as a conductive agent and polytetrafluoroethylene as a binder at a weight ratio of 5: 5: 1 A 1 M solution in which lithium hexafluorophosphate is dissolved in a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) (volume ratio 1: 1) using lithium metal as a counter electrode is prepared as an electrolyte.
  • the lithium secondary battery (coin-type cell) having the structure shown in Fig. 17 was prepared, and its electrochemical lithium insertion and desorption behavior was measured.
  • lithium insertion and desorption tests were carried out electrochemically at a current density of 10 mA / g and a cut-off potential of 3.0 V to 1.0 V under a temperature condition of 25 ° C.
  • the voltage was maintained at 1.0 V for 2 hours after reaching 1.0 V.
  • the voltage change accompanying lithium insertion and removal is shown in FIG. It has been found that all have voltage plateaus around 1.6 V, and reversible lithium insertion / desorption reaction is possible.
  • the lithium insertion amount of Sample A ′ ′ was evaluated when the voltage reached 1.0 V, the initial insertion amount per active material weight was 286 mAh / g, which was a value higher than 259 mAh / g of Sample B.
  • sample A ′ ′ The initial desorption amount of sample A ′ ′ was 247 mAh / g, and the initial charge / discharge efficiency was 86%, which was almost the same as sample B (86%). Furthermore, it became clear that even after 10 cycles, Sample A ′ ′ can maintain a discharge capacity of 246 mAh / g. From the above, the novel titanium oxide active material of the present invention is more reversible than Sample B. High lithium insertion and elimination reactions are possible, and it has been shown to be promising as a lithium secondary battery electrode material.
  • a lithium secondary battery was prepared in the same manner as in Example 1 using Sample C ′, and the electrochemical lithium insertion and desorption were measured. The initial insertion amount, the initial desorption amount, and the initial charge per weight of active material were measured. The discharge efficiencies were 288 mAh / g, 250 mAh / g, and 87%, respectively.
  • the sample D ′ obtained by ion-exchanging the sample D in the same manner as in Example 1 has a low crystallinity of the precursor sodium titanate hydrate, so that the crystal structure is broken in the ion exchange process, and the sample It became a powder X-ray-diffraction pattern different from A '(FIG. 10) (FIG. 22). Furthermore, the sample D ′ obtained by firing the sample D ′ in the same manner as in Example 1 is a titanium oxide containing anatase as a main component, which is different from Example 1 (FIG. 15).
  • Example 4 The sample A ′ of Example 1 was calcined at 300 ° C. for 5 hours in air, and then furnace-cooled to obtain a sample A ′ ′-2.
  • a lithium secondary battery was produced in the same manner as in Example 1 using Sample A ′ ′-2 and its electrochemical lithium insertion and desorption were measured. The amount of initial insertion, weight of active material, amount of initial desorption, and the like The initial charge and discharge efficiencies were 274 mAh / g, 248 mAh / g, and 91%, respectively.
  • Example 5 The sample A ′ of Example 1 was calcined in air at 400 ° C. for 5 hours and then furnace-cooled to obtain a sample A ′ ′-3.
  • a lithium secondary battery was produced in the same manner as in Example 1 using Sample A ′ ′-3, and its electrochemical lithium insertion and desorption were measured. The initial insertion amount per initial weight of active material, the initial desorption amount, and The initial charge and discharge efficiencies were 262 mAh / g, 248 mAh / g, and 95%, respectively.
  • Example 6 In the synthesis of sodium titanate hydrate of Example 1, 50 ml (solid content 21.5 mg) of graphene oxide suspension (manufactured by Graphene Supermarket) was used instead of distilled water to obtain Sample H.
  • a lithium secondary battery was prepared in the same manner as in Example 1 using Sample H ′ ′, and its electrochemical lithium insertion and desorption were measured. The initial insertion amount, the initial desorption amount and the initial charge per weight of active material were measured. The discharge efficiencies were 292 mAh / g, 249 mAh / g, and 85%, respectively.
  • Example 7 In the synthesis of the sodium titanate hydrate of Example 1, the synthesis is carried out using a titania hydrate which incorporates about 1 wt% of conductive carbon fine particles (SuperC 65 manufactured by TIMICAL, specific surface area 46 m 2 / g) as a titanium source. The sample I was obtained. The titania hydrate in which the conductive carbon fine particles are encapsulated suspends the conductive carbon fine particles by suspending the conductive carbon fine particles in an aqueous solution in which titanyl sulfate and urea are dissolved, and heating in a water bath to precipitate the titania hydrate. Obtained by the generation. As shown in FIG.
  • the sample I which was ion-exchanged and fired in the same manner as in Example 1 (Sample I ′ ′) had the same powder X-ray diffraction pattern as in Example 1 (FIG. 15) (FIG.
  • a lithium secondary battery was prepared in the same manner as in Example 1 using Sample I ′ ′, and its electrochemical lithium insertion and desorption were measured. The initial insertion amount, the initial desorption amount and the initial charge per weight of active material were measured. The discharge efficiencies were 283 mAh / g, 249 mAh / g, and 88%, respectively.
  • a novel titanium oxide containing H having a characteristic local structure and having a characteristic Ti—O—Ti skeleton vibration can be manufactured. Since this method does not require special equipment and the raw materials used are also low, it is possible to manufacture high value-added materials at low cost.
  • the novel titanium oxide obtained by the method of the present invention has extremely high practical value as a lithium secondary battery electrode material having high capacity and excellent in terms of initial charge / discharge efficiency and cycle characteristics. .
  • lithium secondary batteries in which this titanium oxide is used as an active material for an electrode material can be expected to have a high capacity, and it is a battery capable of reversible lithium insertion and desorption reactions and capable of supporting long-term charge and discharge cycles. It is.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

長期にわたる充放電サイクルに優れ、高容量が期待できるリチウム二次電池電極材料に使用可能な新規チタン酸化物、その製造方法、及びそのチタン酸化物を活物質として含有した電極を構成部材として含む蓄電デバイスを提供する。特徴的な局所構造を有するHを含有し、特徴的なTi-O-Ti骨格の振動を有する新規チタン酸化物及びその製造方法により解決される。

Description

チタン酸化物及びその製造方法、並びに該チタン酸化物を用いた電極活物質及び蓄電デバイス
 本発明は、新規な構造を有する新規チタン酸ナトリウム水和物とそのプロトン交換体を熱処理して得られる新規チタン酸化物に関する。また、これらのチタン酸化物を用いた電極活物質及びその蓄電デバイスに関する。
 現在、我が国においては、携帯電話、ノートパソコンなどの携帯型電子機器に搭載されている二次電池のほとんどは、リチウム二次電池である。また、リチウム二次電池は、今後ハイブリッドカー、電力負荷平準化システムなどの大型電池としても実用化されるものと予測されており、その重要性はますます高まっている。
 このリチウム二次電池は、いずれもリチウムを可逆的に吸蔵・放出することが可能な材料を含有する正極および負極、さらに非水系電解液を含むセパレータまたは固体電解質を主要構成要素とする。
 これらの構成要素の内、電極用の活物質として検討されているのは、リチウムコバルト酸化物(LiCoO2)、リチウムマンガン酸化物(LiMn24)、リチウムチタン酸(Li4Ti512)などの酸化物系、金属リチウム、リチウム合金、スズ合金などの金属系、および黒鉛、MCMB(メソカーボンマイクロビーズ)などの炭素系材料が挙げられる。
 これらの材料について、それぞれの活物質中のリチウム含有量における、化学ポテンシャルの差によって、電池の電圧が決定されるが、特に組合せによって、大きな電位差を形成できることが、エネルギー密度に優れるリチウム二次電池の特徴である。
 特に、リチウムコバルト酸化物LiCoO2活物質と炭素材料を電極とした組合せにおいて、4V近い電圧が可能となり、また充放電容量(電極から脱離・挿入可能なリチウム量)も大きく、さらに安全性も高いことから、この電極材料の組合せが、現行のリチウム電池において広く採用されている。
 一方、スピネル型のリチウムマンガン酸化物(LiMn24)活物質とスピネル型のリチウムチタン酸化物(Li4Ti512)活物質を含む電極の組合せにより、リチウムの吸蔵・脱離反応がスムーズに行われやすく、また反応に伴う結晶格子体積の変化がより少ないことから、長期にわたる充放電サイクルに優れたリチウム二次電池が可能となることが明らかになっており、実用化されている。
 今後、リチウム二次電池やキャパシタ等の化学電池は、自動車用電源や大容量のバックアップ電源、緊急用電源など、大型で長寿命のものが必要となることが予測されていることから、前項のような酸化物活物質の組合せで、さらに高性能(大容量)な電極活物質が必要とされている。
 この内、チタン酸化物系活物質は、対極にリチウム金属を使用した場合、約1~2V程度の電圧であることから、負極用の材料として、様々な結晶構造を有する材料が、電極活物質としての可能性について検討されている。
 スピネル型リチウムチタン酸化物Li4Ti512やナトリウムブロンズ型の結晶構造を有する二酸化チタン(本明細書では、「ナトリウムブロンズ型の結晶構造を有する二酸化チタン」を「TiO2(B)」と略称する)、AxyTi1.73z(Aはリチウムを除くアルカリ金属を示す)、TiO・(HO)a・(AO)b(AはNaまたはK)、Ti-O-H系チタン構造体などのように組成にHを含むチタン酸化物、結晶構造中にH元素を含む酸化チタンであるH2Ti1225(本明細書では、「H2Ti1225」を「HTO」と略称する)、単斜晶系のチタンニオブ複合酸化物などの活物質が、電極材料として注目されている。(特許文献1-2、非特許文献1-2)
 しかしながら、Li4Ti5O12は理論容量が175mAh/g程度で大容量化は見込めない。TiO2(B)や組成にHを含むチタン酸化物の中には300mAh/gを超える初期充電容量を示す物も合成されているが、初期不可逆容量が大きいという問題を抱えている。HTOに関しては、TiO2(B)と比較して初期不可逆容量は小さいが、初期充電容量が230mAh/g程度であり、微細化により更なる大容量化が可能であるが不可逆容量が増加するという問題を抱えている。単斜晶系のチタンニオブ複合酸化物は、初期充電容量は280mAh/g程度で不可逆容量は比較的小さいものもあるが、チタンに対してニオブの価格(2007年度時点で約6倍)や資源量(地殻内存在比で220倍)の点で問題を抱えている。
 そのため、これらの問題点を克服した初期負不可逆容量が小さく、充放電容量の大きい、高価で資源量に問題のある元素を含まない新規なチタン酸化物の登場が望まれている。
特開2014-186826号公報 特開2008-255000号公報
A. R. Armstrong, G. Armstrong, J. Canales, R. Garcia, P. G. Bruce, Advanced Materials, 17, 862-865 (2005) J. Akimoto, K. Chiba, N. Kijima, H. Hayakawa, S. Hayashi, Y. Gotoh, Y. Idemoto, Journal of The Electrochemical Society, 158, A546-A549 (2011)
 本発明は、上記の様な現状の課題を解決した新規なチタン酸化物及びその製造方法並びに該チタン酸化物を用いた電極活物質及び蓄電デバイスを提供することを目的とする。
 本発明者は鋭意検討した結果、HTOなどのHを含有したチタン酸化物とは異なる特徴的な局所構造を有するHを含有し、特徴的なTi-O-Ti骨格の振動を有するチタン酸化物が得られることを見出し、本発明を完成させた。
 すなわち、本発明は、下記に示す新規な構造を有する新規チタン酸化物とその製造方法を提供し、これらのチタン化合物を用いた電極活物質及びその蓄電デバイスを提供する。
(1)Hを含有し、1H固体NMR測定において、400MHzの電磁波を用い、毎分10000~12500回転した室温の試料から得られるスペクトルをピーク分離した際のピークトップが9-11ppm(ピーク1)と6.7-8ppm(ピーク2)に存在し、この2つのピークのピーク強度比(Iピーク1/Iピーク2)が1.0以下である、チタン酸化物。
(2)前記チタン酸化物が、赤外線吸光分析において、930~990cm-1に吸収ピークをもつ、(1)に記載のチタン酸化物。
(3)前記チタン酸化物が、CuKαを線源とした粉末X線回折パターンにおいて、2θ=24.2~25.2°、47.9~48.6°に存在するピークのピーク半値幅がそれぞれ、0.5~2°と0.25~1°である、(1)または(2)に記載のチタン酸化物。
(4)(1)~(3)のいずれかに記載のチタン酸化物の製造方法であって、チタン源とナトリウム源を溶解あるいは懸濁した溶液を用いた水熱合成法によりチタン酸ナトリウム水和物を合成する工程と、該チタン酸ナトリウム水和物のプロトン交換体を合成する工程と、該チタン酸ナトリウム水和物のプロトン交換体を酸素ガス含有雰囲気あるいは不活性ガス雰囲気中で熱処理する工程と、を有するチタン酸化物の製造方法。
(5)前記チタン酸ナトリウム水和物が、CuKαを線源とした粉末X線回折パターンにおいて、2θ=10.1~10.5°、15.4~15.8°、24.7~25.1°、29.4~29.8°、48.2~48.6°の位置に少なくともピークを有し、前記2θ=24.7~25.1°、29.4~29.8°、48.2~48.6°に存在するピークのピーク半値幅がそれぞれ0.8°以下である、(4)に記載のチタン酸化物の製造方法。
(6)前記チタン酸ナトリウム水和物が、1H固体NMR測定において、400MHzの電磁波を用い、毎分10000~12500回転した室温の試料から得られるスペクトルをピーク分離した際のピークトップが11.4~12.7ppmと6.4~7.6ppmに存在する、(4)または(5)に記載のチタン酸化物の製造方法。
(7)前記(1)~(3)のいずれかに記載のチタン酸化物を含む、電極活物質。
(8)前記(7)に記載の電極活物質を用いた蓄電デバイス。
 本発明によれば、HTOなどのHを含有したチタン酸化物とは異なる特徴的な局所構造を有するHを含有し、特徴的なTi-O-Ti骨格の振動を有するチタン酸化物が製造できる。
 このチタン酸化物は、種々の用途において有用であり、たとえば、電極活物質として使用した場合、長期にわたる充放電サイクルに優れ、高容量が期待できるリチウム二次電池を提供することができる。
新規チタン酸化物の合成フロー図である。 試料Aの特性X線測定による元素分析結果である。 試料AのFT-IR吸収スペクトル測定結果である。 試料Aの熱重量分析結果である。 試料Aの粉末X線回折測定結果である。 試料Aの1H固体NMRスペクトル測定結果である。 試料A’の特性X線測定による元素分析結果である。 試料A’のFT-IR吸収スペクトル測定結果である。 試料A’の熱重量分析結果である。 試料A’の粉末X線回折測定結果である。 試料A’のH固体NMRスペクトル測定結果である。 試料A”の特性X線測定による元素分析結果である。 試料A”と試料BのFT-IR吸収スペクトル測定結果である。 試料A”と試料Bの熱重量分析結果である。 試料A”と試料Bの粉末X線回折測定結果である。 試料A”と試料Bの1H固体NMRスペクトル測定結果である。 リチウム二次電池(コイン型セル)基本構造図である。 試料A”と試料Bを負極とした場合の充放電特性である。 試料Cの粉末X線回折測定結果である。 試料C”の粉末X線回折測定結果である。 試料Dの粉末X線回折測定結果である。 試料D’と試料D”の粉末X線回折測定結果である。 試料Eの粉末X線回折測定結果である。 試料Fの粉末X線回折測定結果である。 試料Gの粉末X線回折測定結果である。 試料A”-2の粉末X線回折測定結果である。 試料A”-3の粉末X線回折測定結果である。 試料Hの粉末X線回折測定結果である。 試料H”の粉末X線回折測定結果である。 試料Iの粉末X線回折測定結果である。 試料I”の粉末X線回折測定結果である。
 本実施形態の新規チタン酸化物は、図1の合成フロー図で示すように、新規チタン酸ナトリウム水和物を合成し、そのイオン交換と熱処理によって合成される。
 本実施形態に係わる新規チタン酸化物及びその前駆体である新規チタン酸ナトリウム水和物の特徴及び製造方法についてさらに詳しく説明する。
(新規チタン酸化物の特徴)
 本実施形態の新規チタン酸化物は、Hを含有し、1H固体NMR測定において、400MHzの電磁波を用い、毎分10000~12500回転した室温の試料から得られるスペクトルをピーク分離した際に、ピークトップが9-11ppm(ピーク1)と6.7-8ppm(ピーク2)に存在し、この2つのピークのピーク強度比(Iピーク1/Iピーク2)が1.0以下であることを特徴とする。
 通常、1H固体NMRのシグナルは個々の局所構造を持つ1Hシグナルの重なりによって表示される。そのため、シグナルを複数のピークにピーク分離することで、局所構造の異なるH(例えば吸着あるいは層間に含水している水や結晶構造内の占有サイトが異なるHなど)を区別することができる。また、結晶構造内のHの水素結合の強さとピーク位置には相関があることが知られており(例えば、Solid State Ionics、Vol.177 (2006) 3223-3231)、低いピーク位置にあるHほど近傍にある酸素原子との水素結合が弱くなる。このことは、Hが直接共有結合をしているOとの結合を強固にする方向に働くため、HがH+として乖離しにくくなる事を意味している。H+はリチウムイオン電池に用いられている有機電解質を分解するなどの副反応を引き起こすため、極力少なくした方が良い。このような観点から、新規チタン酸化物中に含まれるHは低いピーク位置を示すものの割合が多い。
 ピーク分離は、一般的にはローレンツ型分布やガウス型分布などの形状を持つピークを複数設定し、各シグナルのピーク強度の合計が元々の測定結果とのずれが最小となるようにピーク位置やピーク強度、半値幅を変化させてフィッティングを行い、ピーク分離を行う。ピーク分離の数は、存在すると想定されるHの局所構造の数であり、Hの局所構造によってピーク位置のおよその範囲が決まるため、フィッティングの際にピーク位置や半値幅に制限を設けることがある。 
 また、上記チタン酸化物は、赤外線吸光分析において、代表的なチタン酸化物とは異なる振動吸収を持つことを特徴としており、930~990cm-1に吸収ピークを持つことを特徴とする。
 通常、チタン酸化物は500~1000cm-1付近にTi-O-Ti骨格による伸縮振動が現れ、代表的な酸化チタンであるルチルやアナターゼでは、700cm-1付近にブロードな吸収スペクトルが見られる。チタン酸化物の結晶構造が異なる場合やTi-O-Ti骨格に異なる元素が結合した場合には、Ti-O-Ti結合の結合強度が変化するために、吸収ピーク位置が変化したり、新たな吸収ピークが現れる。Hのような軽い原子が結合した場合には、一般的にはピークは高波数側にシフトする。非特許文献2に示されているHTOでは、3447cm-1にOH基の伸縮振動による吸収スペクトルと760cm-1と910cm-1にTi-O-Ti骨格の伸縮振動による吸収スペクトルが見られ、Ti-O-Ti骨格の一部にOH基が結合した結果、Ti-O-Ti骨格の伸縮振動による吸収スペクトルは高波数側にシフトしたり、新たな吸収ピークが現れている。本実施形態のチタン酸化物は、TG-DTA測定による重量減少からHTOより多くの水が脱離することから、Ti-O-Ti骨格へのOH基の結合割合が多いと考えられ、より高波数側にシフトすると考えられる。
 さらに、上記チタン酸化物は、CuKαを線源とした粉末X線回折により、2θ=24.2~25.2°、47.9~48.6°に存在するピークのピーク半値幅がそれぞれ、0.5~2°と0.25~1°、好ましくはそれぞれ0.6~1.4°と0.3~0.5°であることを特徴とする。
 通常、結晶性化合物の粉末X線回折では、その試料の結晶構造に依存した2θ値の位置にピークが現れるが、試料のナノ化や結晶成長の阻害、粉砕による結晶性の低下などによってピークの幅が広がり、試料の特性に影響を及ぼす。上記チタン酸化物は前駆体が持つ層状構造を部分的に維持しながら合成されるため、結晶成長が阻害されて結晶子径が小さいまま留まり、ピーク幅を広げている。特に、HTOでは、2θ=24.2~25.2°と47.9~48.6°のピークはそれぞれ(110)面と(020)面に対応すると報告されており(例えば、Materials Letters、Vol.143 (2015) 101-104)、[110]方向と[010]方向にはLiの挿入・脱離に適したトンネル構造が形成されている(例えば、Journal of the Ceramic Society of Japan、Vol.124 (2016)710-713)。本実施形態の新規チタン酸化物はHTOと類似の粉末XRDパターンを示すことから、類似の結晶構造を有していると考えられ、これらのピーク幅が広いことは、対応する面を多く有していることを意味しており、すなわちLiの挿入・脱離に適した表面をより多く持つこととなり、粉体の利用効率の観点から望ましい。ピークの幅の広がりはピーク半値幅(ピーク高さの1/2の高さにおける全幅)を用いて表され、結晶性や結晶子径を求める際に使用する。
(新規チタン酸ナトリウム水和物の製造方法)
 本実施形態の製造方法では、まず、結晶性の高いチタン酸ナトリウム水和物を製造する。
 チタン原料としては、チタンを含有するものであれば特に制限されず、例えば、チタン(金属チタン)及びTiO、Ti23、TiO2 等の酸化物、TiO(OH)2、TiO2・xH2O(xは任意)等で表される酸化チタン水和物、その他、塩化チタンや硫酸チタンなどの無機チタン化合物、チタンイソプロポキシドやチタンブトキシドなどの有機チタン化合物等が挙げられる。これらの中でも、特に酸化チタンや酸化チタン水和物が好ましく、TiO(OH)またはTiO・HOで表されるメタチタン酸やTiO・2HOで表されるオルトチタン酸、あるいはそれらの混合物などを用いることができる。
 ナトリウム原料としては、ナトリウム(金属ナトリウム)及びナトリウム化合物の少なくとも1種を用いる。ナトリウム化合物としては、ナトリウムを含有する物であれば特に制限されず、例えばNa2O、Na22などの酸化物、Na2CO3,NaNO3等の塩類、NaOH等の水酸化物などが挙げられる。また、ナトリウム原料には同じアルカリ金属であるリチウムやカリウム等の金属及びリチウム化合物(例えば、LiO、LiCO,LiNO,LiOHなど)、カリウム化合物(例えば、KO、KCO,KNO,KOHなど)が混入していても良く、モル比でナトリウム原料が50%を超えていれば良い。これらの中でも、特にNaOHが好ましい。さらに、ナトリウム原料は、合成時のチタン原料の溶解を促進する働きもあるため、チタン原料に対して過剰に加える必要がある。例えば、TiOをチタン原料とした場合には、ナトリウム原料としてNaOHを選択した場合、重量比で8倍以上が好ましい。
 まず、これらを水またはエタノール、あるいはその混合物を溶媒として溶解あるいは懸濁して良く混合する。混合は、室温~溶媒の沸点以下で行う。この際に、チタン原料の溶解や錯体形成を促して反応性を高めるために、過酸化水素やアンモニア、NH4F、グルコースなどを添加しても良い。また、分散性向上や結晶成長時の形態制御のために、各種界面活性剤や硫酸ナトリウムなどの無機、有機塩類を添加しても良い。更に、導電性を付与するためにカーボン粒子や化カーボンナノチューブ、グラフェン、酸化グラフェンなどを0.1wt%~10wt%添加しても良く、これらは予め出発原料に複合化していても良い。 
 この段階では、ほとんどの場合で、単なる原料の混合物あるいは結晶性の極めて低い化合物しか得られない。そのため、結晶性の高いチタン酸ナトリウム水和物を得るためには、原料の反応に加えて結晶成長を行う必要がある。このような合成方法としては、特に水熱合成法が好ましい。水熱合成法では、十分な反応や結晶成長が行えれば反応温度や時間については特に制約は無いが、反応温度としては190℃以上、反応時間としては10時間以上が好ましい。 
 ここで目的とする新規チタン酸ナトリウム水和物の化学組成と結晶性は、上記のチタン酸ナトリウム水和物に特有のX線回折パターンと同様のX線回折パターンを示す化合物を提供しうるものであり、一定以上の結晶性を有していれば足る。また、一定以上の結晶性が損なわれない範囲においては、粉砕などの分散・微粒化操作を加えても良い。
 新規チタン酸ナトリウム水和物の形状については特に制約は無く、針状、棒状、柱状、紡錘状、筒状、繊維状などの異方性形状や、球状や不定形形状でも良い。また、これらの粒子をスプレードライヤーなどの公知の方法で造粒したものでも良い。
(新規チタン酸ナトリウム水和物のプロトン交換体の製造方法)
 上記により得られた新規チタン酸ナトリウム水和物を出発原料として、酸性水溶液中でプロトン交換反応を適用することにより、出発原料化合物中のチタン酸ナトリウム水和物のほぼ全てが水素と交換したチタン酸ナトリウム水和物のプロトン交換体が得られる。
 この場合、上記により得られたチタン酸ナトリウム水和物を酸性水溶液中に分散させ、一定時間保持した後、乾燥することが好ましい。使用する酸としては、任意の濃度の塩酸、硫酸、硝酸などの内で、いずれか1種類以上を含む水溶液が好ましい。この内、濃度0.1から1.0Nの希塩酸の使用が好ましい。処理時間としては、10時間から10日間、好ましくは、1日から7日間である。また、処理時間を短縮するために、適宜溶液を新しいものと交換することが好ましい。さらに、交換反応処理温度は室温(20℃)以上100℃未満であれば良い。乾燥は、公知の乾燥方法が適用可能であるが、真空乾燥等がより好ましい。
 このようにして得られたチタン酸ナトリウム水和物のプロトン交換体は、エネルギー分散型X線分光装置を用いた固体状態での分析ではNaを検出ができず、その交換処理の条件を最適化することにより、出発原料に由来して残存するナトリウム量を、湿式法による化学分析の検出限界以下にまで低減することが可能である。
(新規チタン酸化物の製造方法)
 上記により得られたチタン酸ナトリウム水和物のプロトン交換体を出発原料として、空気中などの酸素ガス含有雰囲気中、あるいは窒素やアルゴンなどの不活性ガス雰囲気中で熱処理することによって、所望の脱水反応を起こすことで、チタン酸化物が得られる。また、上記雰囲気を減圧あるいは真空にすることで、脱水反応を促進することができる。熱処理の温度は、250℃から500℃、好ましくは260℃から400℃の範囲である。処理時間は、通常0.5から100時間、好ましくは1から30時間であり、処理温度が高い程、処理時間を短くすることができる。
(新規チタン酸ナトリウム水和物の特徴)
 本実施形態の新規チタン酸ナトリウム水和物は、CuKαを線源とした粉末X線回折パターンにおいて、2θ=10.1~10.5°、15.4~15.8°、24.7~25.1°、29.4~29.8°、48.2~48.6°の位置に少なくともピークを有し、前記2θ=24.7~25.1°、29.4~29.8°、48.2~48.6°に存在するピークのピーク半値幅がそれぞれ0.8°以下であることを特徴とする。
 上記のチタン酸ナトリウム水和物は、層状構造を有する結晶性化合物である。通常、層状構造を持つ結晶性化合物は、ルチルやアナターゼなどの結晶のTi-O原子間距離より長い層間距離を持っており、この層間にナトリウムイオンや水などを含むことによって結晶構造が安定化している。このナトリウムイオンや水などは比較的緩やかに結合しているため、結晶性が高い場合には、その層状構造を維持しながら、イオン交換によってナトリウムイオンを別のイオンに置換したり、可逆的に水の出し入れが可能である。本実施形態の場合には、酸性水溶液を用いてその層状構造を維持しながらNa/Hイオン交換を行っている。このイオン交換体を熱処理すると、層状構造が部分的に維持された状態で脱水反応が進行するため、ルチルやアナターゼのような代表的なチタン酸化物よりTi-O原子間距離が長くなり、本実施形態の特徴を持つチタン酸化物となる。一方、同様の粉末X線回折パターンを持っていても、ピーク半値幅が広い、すなわち結晶性が低いチタン酸ナトリウム水和物を用いた場合、結晶構造が発達していないために、Na/Hイオン交換を行う際に層状構造が維持できずに結晶構造が崩れてしまい、熱処理して得られるチタン酸化物はアナターゼやルチルなどの代表的なチタン酸化物を主体とするものになる。
 また、前記チタン酸ナトリウム水和物は、1H固体NMR測定において、400MHzの電磁波を用い、毎分10000~12500回転した室温の試料から得られるスペクトルをピーク分離した際に、ピークトップが11.4~12.7ppmと6.4~7.6ppmに存在することを特徴とする。
 通常、NMRのシグナルは個々の局所構造を持つ1Hシグナルの重なりによって表示されるため、試料の含水量によっても変化する。そのため、シグナルを複数のピークにピーク分離することで、局所構造の異なるH(例えば吸着あるいは層間に含水している水や結晶構造内の占有サイトが異なるHなど)を区別することができる。
 ピーク分離は、一般的にはローレンツ型分布やガウス型分布などの形状を持つピークを複数設定し、各シグナルのピーク強度の合計が元々の測定結果とのずれが最小となるようにピーク位置やピーク強度、半値幅を変化させてフィッティングを行い、ピーク分離を行う。ピーク分離の数は、存在すると想定されるHの局所構造の数であり、Hの局所構造によってピーク位置のおよその範囲が決まるため、フィッティングの際にピーク位置や半値幅に制限を設けることがある。
(リチウム二次電池)
 本実施形態に係るリチウム二次電池(蓄電デバイス)は、上記チタン酸化物を含む電極活物質を含有する電極を構成部材として用いるものである。すなわち、電極材料のひとつに本実施形態のチタン酸化物活物質を用いる以外は、公知のリチウム二次電池(コイン型、ボタン型、円筒型、全固体型等)の電池要素をそのまま採用することができる。
 図17は、本実施形態に係るリチウム二次電池を、コイン型電池に適用した1例を示す模式図である。このコイン型電池1は、負極端子2、負極3、(セパレータ+電解液)4、絶縁パッキング5、正極6、正極缶7により構成される。
 リチウム二次電池では、上記チタン酸化物を含む活物質に、必要に応じて導電剤、結着剤等を配合して電極合材を調整し、これを集電体に圧着することにより電極が作製できる。集電体としては、好ましくはステンレスメッシュ、アルミ箔等を用いることができる。導電剤としては、好ましくはアセチレンブラック、ケッチェンブラック等を用いることができる。結着剤としては、好ましくはテトラフルオロエチレン、ポリフッ化ビニリデン等を用いることができる。
 電極合材における電極活物質、導電剤、結着剤等の配合も特に限定的ではないが、通常は導電剤が1~30重量%程度(好ましくは5~25重量%)、結着剤が0~30重量%(好ましくは3~10重量%)とし、残部を電極活物質となるようにすればよい。
 リチウム二次電池において、上記電極に対する対極としては、例えば金属リチウム、リチウム合金など、負極として機能し、リチウムを吸蔵している公知のものを採用することができる。或いは、対極として、リチウムコバルト酸化物(LiCoO)やスピネル型リチウムマンガン酸化物(LiMn)などの、正極として機能し、かつリチウムを吸蔵している公知のものも採用することもできる。すなわち、組み合わせる電極構成材料によって、本実施形態の電極活物質を含有する電極は、正極としても、負極としても機能できる。
 また、本実施形態のリチウム二次電池において、セパレータ、電池容器等も公知の電池要素を採用すればよい。
 さらに、電解質としても公知の電解液、固体電解質等が適用できる。例えば、電解液としては、過塩素酸リチウム、6フッ化リン酸リチウム等の電解質を、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)、プロピレンカーボネート(PC)、ジエチルカーボネート(DEC)等の溶媒に溶解させたものが使用できる。
 以下に、実施例を示し、本発明の特徴とするところをより一層明確にする。本発明は、これら実施例に限定されるものではない。
実施例1
(新規チタン酸ナトリウム水和物の製造方法)
 二酸化チタン(結晶形:アナターゼ、比表面積:280m/g)2gを水酸化ナトリウム20gと蒸留水50mlと合わせて混合し、内容積100mlのテフロン(登録商標)ライナー付き水熱合成容器に封入した。これを恒温槽に入れて室温から1時間で200℃まで昇温し、その後24時間保持し水熱合成を行った。合成終了後、恒温槽内で室温まで自然冷却した。冷却後、水熱合成容器から溶液ごと試料を取り出し、メンブレンフィルター(細孔径:0.2μm)を用いて固形分を吸引濾過で分離回収した。回収した固形分は、洗浄のために、超音波洗浄器を用いてイオン交換水に一旦分散し、再度メンブレンフィルターを用いて吸引濾過を行った。回収した固形分は70℃の乾燥器にて一昼夜乾燥し、凝集物をメノウ乳鉢で軽く解砕して、試料Aを得た。
(新規チタン酸ナトリウム水和物の分析)
 このようにして得られた試料Aは、図2のエネルギー分散型X線分光装置を用いた特性X線測定による元素分析でNa、Ti、Oが構成元素として含まれていることがわかった(Cは両面テープあるいは炭素導電膜蒸着に由来)。また、図3のFT-IRによる吸収スペクトル測定では、3120cm-1付近(図3中の矢印)にブロードな吸収ピークが見られ、このことから、試料AにはOH基が存在することがわかった。さらに図4の熱重量分析により、室温から200℃付近までの加熱による重量減少と吸熱反応が認められ、吸着水及び層間や結晶構造中に取り込まれている水の脱離が起こっていることがわかった。重量変化がほとんどなくなった600℃まで加熱した場合の重量減少は10.13wt%であった。これらの結果より、試料Aはチタン酸ナトリウム水和物であることが明らかとなった。
 図5に示すように、試料Aは、CuKαを線源とした粉末X線回折により、2θ=10.42°(ピーク1)、15.68°(ピーク2)、24.96°(ピーク3)、29.68°(ピーク4)、48.44°(ピーク5)の位置に少なくともピークを有していた。代表的なチタン酸ナトリウム水和物の粉末X線回折結果と比較してみたところ、表1のような結果となり、上記のピークを全て満たすチタン酸ナトリウム水和物は見つからず、新規チタン酸ナトリウム水和物であることがわかった。また、表2に示すように、前記ピーク3~5のピーク半値幅がそれぞれ0.23°、0.40°、0.23°であった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 試料AのH固体NMRによる分析には、ブルカー製NMR AVANCEIII 400WBを用いて室温にて行った。分析前の試料の乾燥状態によって、図6のように得られるシグナルパターンが異なっていた。乾燥温度が高くなると、5.3ppm付近のシグナルが急速に減少しており、13.1ppm付近のシグナルがケミカルシフトの低い方へ移動していた。このことより、5.3ppm及び13.1ppm付近は吸着水や層間に入り込んだ水による1H固体NMRのシグナルであり、それ以外が試料A本来の1H固体NMRシグナルである。110℃で乾燥した試料には、上記以外に12.03ppm、7.04ppm、1.74ppmにシグナルピークを示していた。なお、どの測定においてもケミカルシフト1.7ppm付近にシグナルが観察されるが、これはZrO2製測定容器に由来するものであり、測定容器のみで測定した場合、ケミカルシフト1.68ppmの位置に現れた。なお、H固体NMRのケミカルシフト値の校正は、グリシンのカルボニル基を176.48ppmに合わせている。
 十分に乾燥することで試料本来のH固体NMRシグナルを得ることができるが、これ自体が異なる局所構造を持つ1H固体NMRシグナルの重ね合わせによって示されているため、個々のシグナルを正確に把握するため、ピーク分離を行った。ローレンツ型分布のピークを5つ設定し、Hの由来がわかっている1.68ppm、5.3ppm、13.1ppm付近のシグナルはフィッティング時におけるピーク位置の変動範囲を±0.05ppmに制限した。また、各ピークの半値幅は2ppm以下とした。乾燥状態の異なる3つの試料の1H固体NMR測定結果についてピーク分離を行った結果、図6のように5つのピークに分離できた。ピーク分離後のピーク位置はそれぞれ表3のようになり、ピークb及びcが試料に由来する1H固体NMRシグナルであった。
Figure JPOXMLDOC01-appb-T000003
(新規チタン酸ナトリウムのイオン交換体の製造方法)
 試料A約1gを25℃の室温で、0.5mol/Lの塩酸水溶液100mLに懸濁し、テフロン加工したマグネット撹拌子で12時間撹拌し、その後12時間静置して固形物を沈降させ、上澄み液を除去した。残った固形分に新鮮な0.5mol/Lの塩酸水溶液を100mLになるように追加して同様の操作を更に2回行った。最後にイオン交換水で洗い流しながら、メンブレンフィルター(細孔径:0.2μm)で固形分を吸引濾過した。この段階で、イオン交換水で固形分を複数回洗浄し、フィルターに付着したまま固形分をシャーレに載せて60℃の乾燥器に入れて一昼夜乾燥して、試料A’を得た。
(新規チタン酸ナトリウム水和物のイオン交換体の分析)
 このようにして得られた試料A’は、図7のエネルギー分散型X線分光装置を用いた特性X線測定による元素分析でTiとOが構成元素として含まれていることがわかり、Naは確認することができなかったことから、Na+/H+イオン交換が行われていることがわかった。また、図8のFT-IRによる吸収スペクトル測定では、3130cm-1付近(図8中の矢印)にブロードな吸収ピークが見られ、このことから、試料A’にはOH基が存在することがわかった。更に図9の熱重量分析により、室温から200℃付近までの加熱による重量減少と吸熱反応が認められ、吸着水及び層間や結晶構造中に取り込まれている水の脱離が起こっていることがわかった。重量変化がほとんどなくなった600℃まで加熱した場合の重量減少は15.53wt%であった。
 試料A’は、CuKαを線源とした粉末X線回折により、図10のようなパターンを示しており、2θ=10.97°の位置にシャープなピークを有していることから、層状構造を維持したまま、イオン交換が行われていることがわかった。
 試料A’のH固体NMRによる分析は、チタン酸ナトリウム水和物の測定を参考にして、110℃で乾燥した状態の物を用いて行った。試料A’では、図11のように、ピーク分離により、12.1ppm、10.2ppm、7.8ppm、5.3ppm、1.63ppm(測定容器由来)の5つのピークが確認された。
(新規チタン酸化物の製造方法)
 試料A’約0.5gをアルミナ製容器に入れ、ボックス型の電気炉を用いて、空気中、260℃で5時間焼成し、その後炉冷し、試料A”を得た。
比較例1
 特許文献2の方法で、HTO(試料B)を得た。
(新規チタン酸化物[試料A”]とHTO[試料B]の分析)
 このようにして得られた試料A”は、エネルギー分散型X線分光装置を用いた特性X線測定による元素分析でTiとOが構成元素として含まれていることがわかった(図12)。また、図13に試料A”と試料Bの FT-IRによる吸収スペクトル測定を示す。試料A”では3300cm-1付近(図13中の矢印)にブロードな吸収ピーク、試料Bでは3420cm-1付近に吸収ピークが見られ、このことから、試料A”と試料BにはOH基が存在することがわかった。さらに500~1000cm-1付近は、Ti-O-Ti骨格による伸縮振動が現れる領域であり、試料A”においては760cm-1と960cm-1にTi-O-Ti骨格の伸縮振動による吸収スペクトルが見られた。試料Bにおいては760cm-1と910cm-1に吸収スペクトルが見られたが、高波数側のピークの位置が試料A”とは異なっていた。
 図14の熱重量分析により、試料A”では、室温から200℃付近までの加熱による重量減少と吸熱反応が認められ、吸着水及び層間や結晶構造中に取り込まれている水の脱離が起こっていることがわかった。重量変化がほとんどなくなった600℃まで加熱した場合の重量減少は、4.04wt%であった。また、260℃で加熱して脱水した直後の試料A”9.25mgを大気中に3日間放置すると0.54mg(5.8wt%)の重量の増加が確認され、層状構造などの大気中の水分を吸収しやすい構造が残っていることがわかった。試料Bの熱重量分析では、200℃付近までの加熱ではほとんど重量減少は起きておらず、吸着水及び層間などに取り込まれている水がほとんどないことを示していた。また、試料Bの600℃までの加熱での重量減少は2.19wt%であり、試料A”とは加熱時の挙動が大きく異なっていた。
 試料A”は、CuKαを線源とした粉末X線回折により、図15のようなパターンを示しており、2θ=14.0°、24.4°、28.8°、44.0°、48.1°、57.3°、67.1°の位置に少なくともピークを有しており、全体的にピークが広がっていた。2θ=24.4°、48.1°のピーク半値幅はそれぞれ、1.18°と0.34°であった。試料Bは、2θ=14.0°、24.7°、28.7°、44.4°、48.5°、57.5°、67.1°の位置にピークを有しており、2θ=24.7°、48.5°のピーク半値幅は、それぞれ0.19°と0.20°であった。
 試料A”と試料BのH固体NMRによる分析は、チタン酸ナトリウム水和物の測定を参考にして、110℃で乾燥した状態の物を用いて行った。図16に試料A”と試料BのH固体NMR測定結果を、表4にピーク分離後のピーク位置とピーク強度比を示した。試料A”では、ピーク分離により、ピーク1(10.22ppm、試料由来)、ピーク2(7.15ppm、試料由来)、ピーク3(1.63ppm、測定容器由来)にシグナルピークを示していた。試料BのH固体NMRによる分析では、10.01ppm(ピーク1)と6.62ppm(ピーク2)にシグナルピークを持っており、試料A”とは異なっていた。また、試料A”のピーク強度比(Iピーク1/Iピーク2)は、0.47であり、試料Bでは2.74であった。これらのことから、試料A”と試料Bでは、ピーク位置及びピーク強度比が異なっており、すなわち、Hの局所構造及びその存在比が異なっており、異なる物質であることが明らかとなった。
Figure JPOXMLDOC01-appb-T000004
(リチウム二次電池)
 このようにして得られた試料A”と試料Bを活物質として、導電剤としてアセチレンブラック、結着剤としてポリテトラフルオロエチレンを重量比で5:5:1となるように配合して電極を作製し、対極にリチウム金属を用いて、6フッ化リン酸リチウムをエチレンカーボネート(EC)とジエチルカーボネート(DEC)との混合溶媒(体積比1:1)に溶解させた1M溶液を電解液とする、図17に示す構造のリチウム二次電池(コイン型セル)を作製し、その電気化学的リチウム挿入・脱離挙動を測定した。電池の作製は、公知のセルの構造・組み立て方法に従って行った。
 作製されたリチウム二次電池について、25℃の温度条件下で、電流密度10mA/g、3.0V-1.0Vのカットオフ電位で電気化学的にリチウム挿入・脱離試験を行った。リチウム挿入時には電圧が1.0Vに達した後、2時間1.0Vを維持した。リチウム挿入・脱離に伴う電圧変化を図18に示す。いずれも1.6V付近に電圧平坦部を有し、可逆的なリチウム挿入・脱離反応が可能であることが判明した。試料A”のリチウム挿入量を電圧が1.0Vに達した時点で評価すると、活物質重量当たりの初期挿入量は286mAh/gであり、試料Bの259mAh/gより高い値であった。また、試料A”の初期脱離量は247mAh/gであり、初期充放電効率は86%であり、試料B(86%)とほぼ同等であった。さらに、10サイクル後においても試料A”は246mAh/gの放電容量を維持可能であることが明らかになった。以上から、本発明の新規チタン酸化物活物質は、試料Bを凌ぐ可逆性の高いリチウム挿入・脱離反応が可能であり、リチウム二次電池電極材料として有望であることが明らかとなった。
実施例2
 実施例1のチタン酸ナトリウム水和物の合成において、導電性カーボン微粒子(TIMICAL社製 SuperC65、比表面積46m/g)20mgを添加して合成を行い、試料Cを得た。
 図19及び表2に示すように、試料Cは、CuKαを線源とした粉末X線回折により、2θ=10.37°、15.73°、24.9°、29.7°、48.52°に少なくともピークを有しており、前記2θ=24.9°、29.7°、48.52°に存在するピークのピーク半値幅がそれぞれ0.29°、0.49°、0.29°であった。
 試料Cを実施例1と同様にイオン交換して焼成を行ったもの(試料C”)は、実施例1(図15)と同様の粉末X線回折のパターンを示し(図20)、2θ=24.4°、48.2°のピーク半値幅はそれぞれ、1.0°と0.45°であった。
 試料C“を用いて実施例1と同様にリチウム二次電池を作製し、その電気化学的リチウム挿入・脱離を測定した所、活物質重量当たりの初期挿入量、初期脱離量及び初期充放電効率はそれぞれ288mAh/g、250mAh/g、87%であった。
比較例2
 実施例1のチタン酸ナトリウム水和物の合成において、水熱合成温度を180℃として合成を行い、試料Dを得た。
 図21及び表2に示すように、試料Dは、CuKαを線源とした粉末X線回折により、2θ=9.8°、24.1°、28.3°、48.1°に少なくともピークを有しており、前記2θ=24.1°、28.3°、48.1°に存在するピークのピーク半値幅がそれぞれ1.38°、1.92°、0.84°であった。
 試料Dを実施例1と同様にイオン交換して得られた試料D’は、前駆体であるチタン酸ナトリウム水和物の結晶性が低いために、イオン交換過程で結晶構造が崩れしまい、試料A’(図10)とは異なる粉末X線回折パターンとなった(図22)。さらに、試料D’を実施例1と同様に焼成を行って得られ試料D”は、アナターゼを主成分とするチタン酸化物となっており、実施例1(図15)とは異なっていた。
比較例3
 実施例1のチタン酸ナトリウム水和物の合成において、水熱合成時間を6時間として合成を行い、試料Eを得た。
 図23及び表2に示すように、試料Eは、CuKαを線源とした粉末X線回折により、2θ=9.3°、24.0°、28.1°、48.2°に少なくともピークを有しており、前記2θ=24.0°、28.1°、48.2°に存在するピークのピーク半値幅がそれぞれ0.80°、1.71°、0.63°であった。
比較例4
 実施例1のチタン酸ナトリウム水和物の合成において、NaOHを15g(TiO2に対して重量比で7.5倍)として合成を行い、試料Fを得た。
 図24及び表2に示すように、試料Fは、CuKαを線源とした粉末X線回折により、2θ=8.8°、24.1°、28.2°、48.1°に少なくともピークを有しており、前記2θ=24.1°、28.2°、48.1°に存在するピークのピーク半値幅がそれぞれ1.11°、1.53°、0.86°であった。
実施例3
 実施例1のチタン酸ナトリウム水和物の合成において、硫酸ナトリウム3.55gを添加して合成を行い、試料Gを得た。
 図25及び表2に示すように、試料Gは、CuKαを線源とした粉末X線回折により、2θ=10.29°、15.63°、24.92°、29.66°、48.41°に少なくともピークを有しており、前記2θ=24.92°、29.66°、48.41°に存在するピークのピーク半値幅がそれぞれ0.17°、0.29°、0.23°であった。
実施例4
 実施例1の試料A’を空気中、300℃で5時間焼成し、その後炉冷し、試料A”-2を得た。
試料A”-2は、CuKαを線源とした粉末X線回折により、図26のようなパターンを示しており、2θ=24.6°、48.3°のピーク半値幅はそれぞれ、1.18°と0.45°であった。
試料A”-2を用いて実施例1と同様にリチウム二次電池を作製し、その電気化学的リチウム挿入・脱離を測定した所、活物質重量当たりの初期挿入量、初期脱離量及び初期充放電効率はそれぞれ274mAh/g、248mAh/g、91%であった。
実施例5
 実施例1の試料A’を空気中、400℃で5時間焼成し、その後炉冷し、試料A”-3を得た。
試料A”-3は、CuKαを線源とした粉末X線回折により、図27のようなパターンを示しており、2θ=24.8°、48.3°のピーク半値幅はそれぞれ、0.9°と0.5°であった。
試料A”-3を用いて実施例1と同様にリチウム二次電池を作製し、その電気化学的リチウム挿入・脱離を測定した所、活物質重量当たりの初期挿入量、初期脱離量及び初期充放電効率はそれぞれ262mAh/g、248mAh/g、95%であった。
実施例6
 実施例1のチタン酸ナトリウム水和物の合成において、蒸留水の代わりに酸化グラフェン懸濁液(Graphene Supermarket製)50ml(固形分含有量21.5mg)を用いて合成を行い、試料Hを得た。
 図28及び表2に示すように、試料Hは、CuKαを線源とした粉末X線回折により、2θ=10.43°、15.68°、25.0°、29.76°、48.53°に少なくともピークを有しており、前記2θ=25.0°、29.81°、48.53°に存在するピークのピーク半値幅がそれぞれ0.19°、0.43°、0.29°であった。
 試料Hを実施例1と同様にイオン交換して焼成を行ったもの(試料H”)は、実施例1(図15)と同様の粉末X線回折のパターンを示し(図29)、2θ=24.45°、48.17°のピーク半値幅はそれぞれ、1.1°と0.33°であった。
 試料H”を用いて実施例1と同様にリチウム二次電池を作製し、その電気化学的リチウム挿入・脱離を測定した所、活物質重量当たりの初期挿入量、初期脱離量及び初期充放電効率はそれぞれ292mAh/g、249mAh/g、85%であった。
実施例7
 実施例1のチタン酸ナトリウム水和物の合成において、チタン源として、導電性カーボン微粒子(TIMICAL社製 SuperC65、比表面積46m/g)約1wt%を内包したチタニア水和物を用いて合成を行い、試料Iを得た。導電性カーボン微粒子を内包したチタニア水和物は、硫酸チタニルと尿素を溶解した水溶液に導電性カーボン微粒子を懸濁し、水浴で加熱する事で導電性カーボン微粒子を内包しながらチタニア水和物の沈殿が生成することで得た。
図30及び表2に示すように、 試料Iは、CuKαを線源とした粉末X線回折により、2θ=10.3°、15.73°、24.97°、29.7°、48.48°に少なくともピークを有しており、前記2θ=24.97°、29.7°、48.48°に存在するピークのピーク半値幅がそれぞれ0.14°、0.36°、0.24°であった。
 試料Iを実施例1と同様にイオン交換して焼成を行ったもの(試料I”)は、実施例1(図15)と同様の粉末X線回折のパターンを示し(図31)、2θ=24.55°、48.2°のピーク半値幅はそれぞれ、1.22°と0.36°であった。
 試料I”を用いて実施例1と同様にリチウム二次電池を作製し、その電気化学的リチウム挿入・脱離を測定した所、活物質重量当たりの初期挿入量、初期脱離量及び初期充放電効率はそれぞれ283mAh/g、249mAh/g、88%であった。
 本発明によれば、特徴的な局所構造を有するHを含有し、特徴的なTi-O-Ti骨格の振動を有する新規チタン酸化物を製造することができる。この方法は、特別な装置を必要とせず、また、使用する原料も低価格であることから、低コストで高付加価値の材料を製造可能である。
 特に本発明の方法で得られた新規チタン酸化物は、高容量であり、かつ、初期充放電効率、サイクル特性の観点で優れたリチウム二次電池電極材料として実用的価値の極めて高いものである。
 また、このチタン酸化物を活物質として電極材料に適用したリチウム二次電池は、高容量が期待でき、可逆的なリチウム挿入・脱離反応が可能で、長期にわたる充放電サイクルに対応可能な電池である。
1:コイン型リチウム二次電池
2:負極端子
3:負極
4:セパレータ+電解液
5.:絶縁パッキング
6:正極
7:正極缶

Claims (8)

  1.  Hを含有し、
     1H固体NMR測定において、400MHzの電磁波を用い、毎分10000~12500回転した室温の試料から得られるスペクトルをピーク分離した際のピークトップが9-11ppm(ピーク1)と6.7-8ppm(ピーク2)に存在し、この2つのピークのピーク強度比(Iピーク1/Iピーク2)が1.0以下である、
    チタン酸化物。
  2.  前記チタン酸化物が、赤外線吸光分析において、930~990cm-1に吸収ピークをもつ、
    請求項1に記載のチタン酸化物。
  3.  前記チタン酸化物が、CuKαを線源とした粉末X線回折パターンにおいて、2θ=24.2~25.2°、47.9~48.6°に存在するピークのピーク半値幅がそれぞれ、0.5~2°と0.25~1°である、
    請求項1または2に記載のチタン酸化物。
  4.  請求項1~3のいずれかに記載のチタン酸化物の製造方法であって、
     チタン源とナトリウム源を溶解あるいは懸濁した溶液を用いた水熱合成法によりチタン酸ナトリウム水和物を合成する工程と、
     該チタン酸ナトリウム水和物のプロトン交換体を合成する工程と、
     該チタン酸ナトリウム水和物のプロトン交換体を酸素ガス含有雰囲気あるいは不活性ガス雰囲気中で熱処理する工程と、
    を有するチタン酸化物の製造方法。
  5.  前記チタン酸ナトリウム水和物が、CuKαを線源とした粉末X線回折パターンにおいて、2θ=10.1~10.5°、15.4~15.8°、24.7~25.1°、29.4~29.8°、48.2~48.6°の位置に少なくともピークを有し、前記2θ=24.7~25.1°、29.4~29.8°、48.2~48.6°に存在するピークのピーク半値幅がそれぞれ0.8°以下である、
    請求項4に記載のチタン酸化物の製造方法。
  6.  前記チタン酸ナトリウム水和物が、1H固体NMR測定において、400MHzの電磁波を用い、毎分10000~12500回転した室温の試料から得られるスペクトルをピーク分離した際に、ピークトップが11.4~12.7ppmと6.4~7.6ppmに存在する、
    請求項4または5に記載のチタン酸化物の製造方法。
  7.  請求項1~3のいずれかに記載のチタン酸化物を含む、電極活物質。
  8.  請求項7に記載の電極活物質を用いた蓄電デバイス。
PCT/JP2018/030480 2017-09-21 2018-08-17 チタン酸化物及びその製造方法、並びに該チタン酸化物を用いた電極活物質及び蓄電デバイス WO2019058822A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019543481A JP7062304B2 (ja) 2017-09-21 2018-08-17 チタン酸化物及びその製造方法、並びに該チタン酸化物を用いた電極活物質及び蓄電デバイス

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-181124 2017-09-21
JP2017181124 2017-09-21

Publications (1)

Publication Number Publication Date
WO2019058822A1 true WO2019058822A1 (ja) 2019-03-28

Family

ID=65810129

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/030480 WO2019058822A1 (ja) 2017-09-21 2018-08-17 チタン酸化物及びその製造方法、並びに該チタン酸化物を用いた電極活物質及び蓄電デバイス

Country Status (3)

Country Link
JP (1) JP7062304B2 (ja)
TW (1) TW201914964A (ja)
WO (1) WO2019058822A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008255000A (ja) * 2007-03-13 2008-10-23 National Institute Of Advanced Industrial & Technology 新規チタン酸化物及びその製造方法、並びにそれを活物質として用いたリチウム二次電池
JP2013105744A (ja) * 2011-11-11 2013-05-30 Samsung Sdi Co Ltd 複合体、その製造方法、それを含む負極活物質、それを含む負極及びそれを採用したリチウム二次電池

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008255000A (ja) * 2007-03-13 2008-10-23 National Institute Of Advanced Industrial & Technology 新規チタン酸化物及びその製造方法、並びにそれを活物質として用いたリチウム二次電池
JP2013105744A (ja) * 2011-11-11 2013-05-30 Samsung Sdi Co Ltd 複合体、その製造方法、それを含む負極活物質、それを含む負極及びそれを採用したリチウム二次電池

Also Published As

Publication number Publication date
TW201914964A (zh) 2019-04-16
JP7062304B2 (ja) 2022-05-06
JPWO2019058822A1 (ja) 2020-11-05

Similar Documents

Publication Publication Date Title
US8309253B2 (en) Titanium oxide, method for manufacturing the same, and lithium secondary battery using the same as active material
JP5093643B2 (ja) リチウム二次電池活物質及びその製造方法、並びにそれを用いたリチウム二次電池
Li et al. From α-NaMnO 2 to crystal water containing Na-birnessite: enhanced cycling stability for sodium-ion batteries
KR101781764B1 (ko) 이방성 구조를 갖는 알칼리 금속 티탄 산화물 및 티탄 산화물 그리고 이들 산화물을 포함하는 전극 활물질 및 축전 디바이스
JP5724269B2 (ja) 複合酸化物の製造方法
JP2011175929A (ja) リチウム空気二次電池及びその空気極作製方法
JP5644273B2 (ja) チタン酸化物及びその製造方法、並びにそれを部材として使用した電気化学デバイス
JP7363747B2 (ja) 正極活物質の製造方法、正極活物質およびリチウムイオン電池の製造方法
Lee et al. Preparation and characteristics of Li 4 Ti 5 O 12 anode material for hybrid supercapacitor
Ji et al. Effects of microwave-hydrothermal conditions on the purity and electrochemical performance of orthorhombic LiMnO2
JPH07101728A (ja) リチウムマンガン酸化物及びその製造方法並びにその用途
JP6528192B2 (ja) リチウムナトリウム複合酸化物の製造方法
WO2020153409A1 (ja) チタン酸化物、チタン酸化物の製造方法、およびチタン酸化物を含む電極活物質を用いたリチウム二次電池
JP4431786B2 (ja) リチウム二次電池用正極材料及びその製造方法、ならびにそれを用いたリチウム二次電池
JP2012209242A (ja) リチウムマンガンチタンニッケル複合酸化物及びその製造方法、並びにそれを部材として使用したリチウム二次電池
JP2016100058A (ja) ナトリウムイオン電池用負極活物質、ナトリウムイオン電池用負極及びナトリウムイオン電池
WO2007007581A1 (ja) リチウム二次電池用正極材料及びその製造方法、ならびにそれを用いたリチウム二次電池
JP2014051425A (ja) チタン酸化物単結晶粒子及びその製造方法、並びに該チタン酸化物単結晶粒子を含む電極活物質、該電極活物質を用いてなる蓄電デバイス
WO2018181967A1 (ja) マンガン酸化物、その製造方法、及びリチウム二次電池
JP6008610B2 (ja) 二次電池用正極材および該正極材を用いた二次電池
JP7062304B2 (ja) チタン酸化物及びその製造方法、並びに該チタン酸化物を用いた電極活物質及び蓄電デバイス
KR101611146B1 (ko) 산화티타늄 화합물 및 이것을 사용한 전극 및 리튬 이온 2차 전지
JP6395051B2 (ja) リチウム複合酸化物、リチウム複合酸化物の製造方法、リチウム二次電池用正極活物質、及び、リチウム二次電池
JP7377518B2 (ja) 電極材料及びそれを用いた電極、電池
JP7307925B2 (ja) 電極材料及びそれを用いた電極、電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18857795

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019543481

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18857795

Country of ref document: EP

Kind code of ref document: A1