WO2019057002A1 - 一种热喷涂石墨烯瓷漆及其使用方法 - Google Patents

一种热喷涂石墨烯瓷漆及其使用方法 Download PDF

Info

Publication number
WO2019057002A1
WO2019057002A1 PCT/CN2018/105925 CN2018105925W WO2019057002A1 WO 2019057002 A1 WO2019057002 A1 WO 2019057002A1 CN 2018105925 W CN2018105925 W CN 2018105925W WO 2019057002 A1 WO2019057002 A1 WO 2019057002A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
enamel
powder
thermal sprayed
thermal
Prior art date
Application number
PCT/CN2018/105925
Other languages
English (en)
French (fr)
Inventor
袁国清
余国强
Original Assignee
同济大学
威力士科技(香港)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 同济大学, 威力士科技(香港)有限公司 filed Critical 同济大学
Publication of WO2019057002A1 publication Critical patent/WO2019057002A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/04Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to gases
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • C09D5/10Anti-corrosive paints containing metal dust
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/14Paints containing biocides, e.g. fungicides, insecticides or pesticides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof

Definitions

  • the invention relates to the technical field of paint production, in particular to a thermal spray graphene enamel and a method of using the same.
  • the existing paint layers for ships and ship surfaces are made of epoxy resin, modified epoxy resin or ordinary chlorinated rubber, and alkyd paint, etc., which have the following disadvantages:
  • the adhesion is not enough.
  • the particles When using machine spraying, no matter whether it is gas or airless, the particles will be scattered after atomization. At least 20% of the paint particles will drift away with the air, forming air pollution.
  • the toxins of the anti-corrosion coating at the bottom of the ship will slowly overflow, pollute the ocean, etc., and the damage to the biological chain is particularly obvious.
  • the present invention provides a thermal sprayed graphene enamel and a method for using the same, which better overcomes the problems and defects of the prior art described above.
  • the thermal sprayed graphene enamel uses graphene and enamel powder and ceramic pulp. / A mixture of one or more of ceramic powder and quartz is not only environmentally friendly, but also does not rust or fall off after forming a coating. It has good corrosion resistance and antibacterial properties, and at the same time enhances surface strength and prolongs maintenance period. Maintenance, reducing maintenance costs, etc.
  • a thermal spray graphene enamel comprising the following raw materials by weight: 80 to 98% of the first raw material, 0.2 to 2% of the graphene powder, 0.5 to 1% of the borax, and 1 to 3% of the pigment;
  • the first raw material is A mixture of one or more of enamel powder, ceramic pulp/ceramic powder and quartz powder.
  • the thermally sprayed graphene enamel further comprises the following weight percentages of raw materials: 0.1 to 2% of nanosilver powder and 0.3 to 2% of nano titanium dioxide powder.
  • the thermally sprayed graphene enamel further comprises the following weight percent of the starting material: nano nickel powder 0.1 to 2%.
  • the thermally sprayed graphene enamel further comprises the following weight percent raw materials: 0.2 to 1% ferric oxide and 0.2 to 1% ferric oxide.
  • the composition further comprises the following weight percent of the starting material: 0.2 to 0.5% of the cobalt powder.
  • the graphene powder is a graphene powder of ten or less layers.
  • the pigment is an infrared reflective pigment.
  • the thermally sprayed graphene enamel further comprises the following weight percent of the starting material: 0.2 to 2% of the copper oxide.
  • the invention also provides a method for using a thermal sprayed graphene enamel which is the above-mentioned thermal sprayed graphene enamel; the method of use comprises: using a plasma thermal spraying system, the thermal sprayed graphite The enamel paint is melted by its heating system and then sprayed onto the ship substrate, and then cooled to obtain a coating.
  • the thermally sprayed graphene enamel further comprises the following weight percent raw material: 0.2 to 2% of copper oxide, the substrate being a bottom substrate.
  • thermal spray graphene enamel of the present invention Compared with the prior art, a thermal spray graphene enamel of the present invention and a method for using the same have the following advantages:
  • the thermal sprayed graphene enamel of the present invention is prepared by using one or a mixture of graphene and enamel powder, ceramic pulp/ceramic powder and quartz, which is environmentally friendly and can withstand high temperature construction by using plasma. After the thermal spray system forms a coating, it does not rust, does not fall off, has good corrosion resistance, has excellent bactericidal and algae-inhibiting effects, and at the same time enhances surface strength, prolongs maintenance period, is easy to maintain, and reduces maintenance costs.
  • the thermal sprayed graphene enamel of the invention has simple preparation process and is advantageous for industrial mass production.
  • the thermal sprayed graphene enamel of the invention is a revolutionary material and a revolutionary process for the marine industry and anticorrosion and antirust engineering.
  • compositions, step, method, article or device comprising the listed elements is not necessarily limited to those elements, but may include other elements not specifically listed or inherent to such compositions, steps, methods, articles or devices. Elements.
  • a and/or B include (A and B) and (A or B).
  • a thermal sprayed graphene enamel comprising the following weight percentages of raw materials:
  • the first raw materials are enamel powder, ceramic pulp, ceramic powder and quartz powder Mixing one or more of them, for example, the first raw material may be enamel powder, ceramic pulp or ceramic powder, or a mixture of enamel powder and quartz powder or a mixture of ceramic pulp and quartz powder.
  • the first raw material may also be exemplified by other materials for making glass having a melting temperature of 1000 ° C or higher.
  • Graphene powder 0.2 to 2% such as 0.2%, 0.5%, 0.8%, 1%, 1.2%, 1.5%, 1.8% or 2%;
  • Borax 0.5 to 1% such as 0.5%, 0.6%, 0.7%, 0.8%, 0.9% or 1%;
  • the pigment is 1 to 3%, such as 1%, 1.2%, 1.5%, 1.8%, 2.0%, 2.5%, 2.8% or 3%.
  • the enamel is also called ceramic glaze, covering a colorless or colored glassy layer on the surface of the ceramic product.
  • Porcelain glaze can be divided into lime glaze, feldspar glaze, lead glaze, zirconium glaze, boron glaze, lead boron glaze, salt glaze, earth glaze, etc.; according to the appearance can be divided into transparent glaze, opaque glaze, color glaze, crystal glaze, Gold sand glaze, matt glaze, broken glaze, etc.
  • the glaze layer can make the surface of the substrate smooth, impervious to water, and difficult to stain, and has a certain degree of improvement on the mechanical strength, electrical properties, chemical stability and thermal stability of the substrate.
  • Graphene is a two-dimensional (2D) periodic honeycomb lattice structure composed of a carbon six-membered ring.
  • Graphene is the thinnest material and the toughest material. Its breaking strength is 200 times higher than that of the best steel. At the same time, it has good elasticity and high temperature resistance. The stretching range can reach 20% of its own size. It is currently the thinnest and strongest material in nature.
  • the use of graphene powder in the thermal sprayed graphene enamel of the invention effectively enhances the hardness and strength of the coating on the one hand, and has certain bactericidal and algae-inhibiting effects on the other hand.
  • Borax the molecular formula is Na 2 B 4 O 7 ⁇ 10H 2 O, also known as moonstone, is a white powder containing colorless crystals, soluble in water, and its structural formula is: Borax can improve the transparency and heat resistance of the glass; it can also make the enamel not easy to fall off and make it shiny, and borax can also reduce the melting time of the thermal sprayed graphene enamel.
  • the graphene powder is a graphene powder of ten or less layers.
  • the pigment is an infrared reflective pigment that effectively increases the infrared reflective properties of the formed coating.
  • the infrared reflective pigment can be exemplified by: ARCTIC Cooling Series infrared reflective inorganic pigments such as Yellow Yellow 10C112 pigment, brown Brown 157, blue Blue 424, green Green 187B, black Black 411A, etc., of course, other companies can also use infrared reflection. Pigments such as titanium nickel yellow, titanium nickel yellow or green titanium yellow.
  • the thermal sprayed graphene enamel of the invention is prepared by using one or a mixture of graphene and enamel powder, ceramic pulp/ceramic powder and quartz, which is environmentally friendly and can withstand high temperature construction by adopting a plasma thermal spraying system. After the coating is formed, it does not rust, does not fall off, has good corrosion resistance, has excellent bactericidal and algae-inhibiting effects, and at the same time enhances surface strength and hardness, prolongs maintenance period, is easy to maintain, and reduces maintenance costs.
  • the thermally sprayed graphene enamel further comprises the following weight percent of raw materials: 0.2 to 2% of copper oxide, such as 0.2%, 0.5%, 0.8%, 1%, 1.2%, 1.5%, 1.8. % or 2%, etc.
  • Copper oxides are copper dioxide or cuprous oxide (used in ship primers only), and copper oxides act to kill marine microorganisms.
  • the composition further comprises the following weight percent of the starting material: nano silver powder 0.1 to 2%, such as 0.1%, 0.3%, 0.5%, 0.8%, 1%, 1.2%, 1.5%, 1.8% or 2%, etc.; nano-titanium dioxide powder 0.3 to 2% such as 0.3%, 0.5%, 0.8%, 1%, 1.2%, 1.5%, 1.8% or 2%, and the like.
  • Nano silver powder has the characteristics and effects of antibacterial, strong sterilization, strong permeability, repair and regeneration, long-lasting antibacterial, safe and non-toxic, and non-resistance.
  • Silver is the best recognized antibacterial substance in natural substances. It can kill more than 650 kinds of bacteria, and silver is not toxic. It is mainly due to the biological effects of silver.
  • the active silver ions attract the sulfhydryl groups (-SH) on the enzyme proteins in the bacteria, rapidly bind together, and deactivate the sulfhydryl-containing enzymes, thereby killing the bacteria.
  • the efficacy of nanosilver is a long-acting fungicide. In general, its effectiveness can last for at least five years.
  • Nano-sized titanium dioxide also known as titanium dioxide, has a white porous powder appearance; it has anti-ultraviolet, antibacterial, self-cleaning and anti-aging properties.
  • the bactericidal and algae-inhibiting effect can be further enhanced by adding copper, nano silver powder and nano titanium dioxide to the thermal spray graphene enamel.
  • the thermally sprayed graphene enamel further comprises the following weight percentages of raw materials: nano nickel powder 0.1 to 2%, such as 0.1%, 0.3%, 0.5%, 0.8%, 1%, 1.2%, 1.5% , 1.8% or 2%, etc.
  • the thermally sprayed graphene enamel further comprises the following weight percent of raw materials: 0.2 to 2% of triiron tetroxide such as 0.2%, 0.3%, 0.4%, 0.5%, 0.6%, 0.7%, 0.8 %, 0.9% or 1%, etc.; 0.2 to 1% of ferric oxide such as 0.2%, 0.3%, 0.4%, 0.5%, 0.6%, 0.7%, 0.8%, 0.9% or 1%, and the like.
  • the thermally sprayed graphene enamel further comprises the following raw materials by weight: 0.2 to 0.5% of the cobalt powder, such as 0.2%, 0.3%, 0.4% or 0.5%, and the like.
  • the effect of shielding radiation and the like can be further achieved by adding nano nickel powder, triiron tetroxide, ferric oxide and cobalt powder to the thermal spray graphene enamel.
  • the invention also provides a method for using a thermal sprayed graphene enamel which is the above-mentioned thermal sprayed graphene enamel; the method of use comprises: using a plasma thermal spraying system, the thermal sprayed graphite The enamel paint is melted by its heating system and sprayed onto the substrate of the ship and the ship, and then cooled to obtain a coating.
  • the above plasma thermal spraying system is preferably a Bulletin 6600 automatic plasma spraying system.
  • the substrate is a steel sheet.
  • the thermally sprayed graphene enamel further comprises the following weight percent of a feedstock: 0.2 to 2% of copper oxide, the substrate being a bottom substrate.
  • the heating system has a heating temperature of 800 to 1000 ° C, 1000 to 2000 ° C, such as 800 ° C, 1000 ° C, 1200 ° C, 1500 ° C, 1800 ° C or 2000 ° C, and the like.
  • the thermal sprayed graphene enamel is melted into a molten liquid in a heating system of a plasma thermal spraying system, and then sprayed onto a substrate such as steel by a spray gun, and the substrate is instantaneously heated at a temperature exceeding 1000 ° C. Combined with the melt, after cooling, a coating is formed on the surface of the substrate.
  • the thermal sprayed graphene enamel and the method of use thereof are suitable for ships and ships, and are also suitable for rust and anticorrosion purposes such as marine vehicles, drilling platforms and the like, and containers.
  • rust and anticorrosion purposes such as marine vehicles, drilling platforms and the like, and containers.
  • the thermal sprayed graphene enamel prepared in the step (1) is transported to the heating system through a transfer tank, and melted at a temperature of 1000 ° C to obtain a molten metal. The melt was then sprayed onto the steel plate by a spray gun and finally cooled to room temperature to obtain a coating.
  • the thermal sprayed graphene enamel prepared in step (1) is transported to the heating system through a transfer tank, melted at a temperature of 1500 ° C to obtain a melt, and then the melt is passed through a spray gun. Spray onto the steel plate and finally cool to room temperature to obtain a coating.
  • the thermal sprayed graphene enamel prepared in step (1) is transported to the heating system through a transfer tank, melted at 2000 ° C to obtain a melt, and then the melt is passed through a spray gun. Spray onto the steel plate and finally cool to room temperature to obtain a coating.
  • step (2) Using the Bulletin 6600 automatic plasma spraying system, the thermal sprayed graphene enamel prepared in step (1) is transported to the heating system through a transfer tank, melted at a temperature of 1200 ° C to obtain a melt, and then the melt is passed through a spray gun. Spray onto the steel plate and finally cool to room temperature to obtain a coating.
  • the thermal sprayed graphene enamel prepared in step (1) is transported to the heating system through a transfer tank, melted at a temperature of 1500 ° C to obtain a melt, and then the melt is passed through a spray gun. Spray onto the steel plate and finally cool to room temperature to obtain a coating.
  • step (2) Using the Bulletin 6600 automatic plasma spraying system, the thermal sprayed graphene enamel prepared in step (1) is transported to the heating system through a transfer tank, melted at a temperature of 1800 ° C to obtain a melt, and then the melt is passed through a spray gun. Spray onto the steel plate and finally cool to room temperature to obtain a coating.
  • the thermal sprayed graphene enamel prepared in step (1) is transported to the heating system through a transfer tank, melted at a temperature of 1000 ° C to obtain a melt, and then the melt is passed through a spray gun. Spray onto the steel plate and finally cool to room temperature to obtain a coating.
  • the thermal sprayed graphene enamel prepared in step (1) is transported to the heating system through a transfer tank, melted at a temperature of 1500 ° C to obtain a melt, and then the melt is passed through a spray gun. Spray onto the steel plate and finally cool to room temperature to obtain a coating.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Plant Pathology (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

一种热喷涂石墨烯瓷漆,包含以下重量百分比的原料:第一原料80~98%、石墨烯粉0.2~2%、硼砂0.5~1%和颜料1~3%;所述第一原料为瓷釉粉、陶浆、陶粉和石英粉中的一种或几种的混合。该热喷涂石墨烯瓷漆,通过采用热喷涂设备形成涂层后,具有杀菌抑藻作用,易维修,减少维修成本。

Description

一种热喷涂石墨烯瓷漆及其使用方法 技术领域
本发明涉及涂料生产技术领域,具体而言,涉及一种热喷涂石墨烯瓷漆及其使用方法。
背景技术
现有的用于船舶和舰艇表面的漆层以环氧树脂、改良环氧树脂或普通氯化橡胶等制作,还有醇酸漆等,存在以下缺点:
首先,粘结力不足,采用机器喷涂时,无论使用有气还是无气喷涂,雾化后都会产生漆粒子的飞散,至少有20%的漆粒子随空气飘走,形成大气污染,而用在船舶底部的防腐涂层的毒素会慢慢溢出,污染海洋等,对生物链的危害尤为明显。
其次,在紫外线的照射下,一般两年左右就会局部脱落,因此短期就需要维修。
第三,不能很好地长久性地抑制海洋生物和藻类的滋生,以至于每年都需要上坞维修,此维修过程复杂,且维修费用昂贵。
发明内容
有鉴于此,本发明提供的一种热喷涂石墨烯瓷漆及其使用方法,更好的克服了上述现有技术存在的问题和缺陷,该热喷涂石墨烯瓷漆使用石墨 烯及瓷釉粉、陶浆/陶粉和石英中的一种或几种的混合物作为原料,不仅环保,形成涂层后,不生锈、不脱落,抗腐蚀、抗菌性能良好,同时增强了表面强度,延长维修期限,易维修,减少维修成本等。
一种热喷涂石墨烯瓷漆,包含以下重量百分比的原料:第一原料80~98%、石墨烯粉0.2~2%%、硼砂0.5~1%和颜料1~3%;所述第一原料为瓷釉粉、陶浆/陶粉和石英粉中的一种或几种的混合。
在某些实施方式中,所述热喷涂石墨烯瓷漆还包含以下重量百分比的原料:纳米银粉0.1~2%和纳米二氧化钛粉0.3~2%。
在某些实施方式中,所述热喷涂石墨烯瓷漆还包含以下重量百分比的原料:纳米镍粉0.1~2%。
在某些实施方式中,所述热喷涂石墨烯瓷漆还包含以下重量百分比的原料:四氧化三铁0.2~1%和三氧化二铁0.2~1%。
在某些实施方式中,所述组合物还包含以下重量百分比的原料:钴粉0.2~0.5%。
在某些实施方式中,所述石墨烯粉为十层以下的石墨烯粉。
在某些实施方式中,所述颜料为红外线反射颜料。
在某些实施方式中,所述热喷涂石墨烯瓷漆还包含以下重量百分比的原料:铜的氧化物0.2~2%。
本发明还提供了一种热喷涂石墨烯瓷漆的使用方法,所述热喷涂石墨烯瓷漆为上述的热喷涂石墨烯瓷漆;所述使用方法包括:采用等离子热喷涂系统,将所述热喷涂石墨烯瓷漆经其加热系统熔融后再喷涂到舰基材上,然后冷却得到涂层。
在某些实施方式中,所述热喷涂石墨烯瓷漆还包含以下重量百分比的原料:铜的氧化物0.2~2%,所述基材为船底基材。
与现有技术相比,本发明的一种热喷涂石墨烯瓷漆及其使用方法的有益效果是:
(1)本发明的热喷涂石墨烯瓷漆,使用石墨烯及瓷釉粉、陶浆/陶粉和石英中的一种或几种的混合物制备得到,不仅环保,且能承受高温施工,通过采用等离子热喷涂系统形成涂层后,不生锈,不脱落,抗腐蚀良好,具有优良的杀菌抑藻作用,同时增强了表面强度,延长维修期限,易维修,减少维修成本等。
(2)本发明的热喷涂石墨烯瓷漆制备工艺简单,有利于工业化大量生产,本发明的热喷涂石墨烯瓷漆是船舶工业和防腐防锈工程革命性材料和革命性工艺。
为使本发明的上述目的、特征和优点能更明显易懂,下文特举较佳实施例,作详细说明如下。
具体实施方式
为了便于理解本发明,下面结合实施例的方式对本发明的技术方案做详细说明,在下面的描述中阐述了很多具体细节以便于充分理解本发明。
但是本发明能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似改进,因此本发明不受下面公开的具体实施的限制。
除非另有限定,本文使用的所有技术以及科学术语具有与本发明所属领域普通技术人员通常理解的相同的含义。当存在矛盾时,以本说明书中的定义为准。
如本文所用之术语:
本文中所用的术语“包含”、“包括”、“具有”、“含有”或其任 何其它变形,意在覆盖非排它性的包括。例如,包含所列要素的组合物、步骤、方法、制品或装置不必仅限于那些要素,而是可以包括未明确列出的其它要素或此种组合物、步骤、方法、制品或装置所固有的要素。
连接词“由……组成”排除任何未指出的要素、步骤或组分。如果用于权利要求中,此短语将使权利要求为封闭式,使其不包含除那些描述的材料以外的材料,但与其相关的常规杂质除外。当短语“由……组成”出现在权利要求主体的子句中而不是紧接在主题之后时,其仅限定在该子句中描述的要素;其它要素并不被排除在作为整体的所述权利要求之外。
当量、浓度、或者其它值或参数以范围、优选范围、或一系列上限优选值和下限优选值限定的范围表示时,这应当被理解为具体公开了由任何范围上限或优选值与任何范围下限或优选值的任一配对所形成的所有范围,而不论该范围是否单独公开了。例如,当公开了范围“1~5”时,所描述的范围应被解释为包括范围“1~4”、“1~3”、“1~2”、“1~2和4~5”、“1~3和5”等。当数值范围在本文中被描述时,除非另外说明,否则该范围意图包括其端值和在该范围内的所有整数和分数。
“和/或”用于表示所说明的情况的一者或两者均可能发生,例如,A和/或B包括(A和B)和(A或B)。
一种热喷涂石墨烯瓷漆,包含以下重量百分比的原料:
第一原料80~98%如80%、83%、85%、88%、90%、92%、95%或98%等;所述第一原料为瓷釉粉、陶浆、陶粉和石英粉中的一种或几种的混合,例如第一原料可以为瓷釉粉,也可以为陶浆或陶粉,还可以为瓷釉粉和石英粉的混合物或陶浆和石英粉的混合物。当然,所述第一原料还可列举为其它熔融温度在1000℃以上的用于制作玻璃的材料。
石墨烯粉0.2~2%如0.2%、0.5%、0.8%、1%、1.2%、1.5%、1.8%或 2%等;
硼砂0.5~1%如0.5%、0.6%、0.7%、0.8%、0.9%或1%等;
和颜料1~3%如1%、1.2%、1.5%、1.8%、2.0%、2.5%、2.8%或3%等。
需要说明的是,瓷釉又称陶瓷釉,覆盖在陶瓷制品表面的无色或有色的玻璃态薄层。瓷釉按组成可分为石灰釉、长石釉、铅釉、锆釉、硼釉、铅硼釉、盐釉、土釉等;按外观可分为透明釉、乳浊釉、颜色釉、结晶釉、金砂釉、无光釉、碎纹釉等。釉层可使基材表面光润、不透水、不易沾污,并对基材的机械强度,电性能,化学稳定性及热稳定性等有一定的程度的提高。
石墨烯(Graphene)是由碳六元环组成的两维(2D)周期蜂窝状点阵结构。石墨烯既是最薄的材料,也是最强韧的材料,断裂强度比最好的钢材还要高200倍;同时它又有很好的弹性,耐高温,拉伸幅度能达到自身尺寸的20%,它是目前自然界最薄、强度最高的材料。本发明的热喷涂石墨烯瓷漆中使用石墨烯粉一方面有效增强了涂层的硬度和强度,另一方面具有一定的杀菌抑藻作用。
硼砂,分子式为Na 2B 4O 7·10H 2O,又称月石,为含有无色晶体的白色粉末,易溶于水,其结构式为:
Figure PCTCN2018105925-appb-000001
硼砂能提高玻璃的透明度及耐热性能;也可使瓷釉不易脱落而使其具有光泽,硼砂还能够减少热喷涂石墨烯瓷漆使用时的熔融时间。
上述瓷釉粉、陶浆/陶粉、石英、石墨烯粉、硼砂和颜料均来源于市购。
优选地,所述石墨烯粉为十层以下的石墨烯粉。
优选地,所述颜料为红外线反射颜料,有效增加了形成的涂层的红外线反射性能。该红外线反射颜料可列举为:美国薛特颜料公司的ARCTIC酷冷系列红外线反射无机颜料,如黄Yellow10C112颜料、棕Brown157、蓝Blue424、绿Green187B、黑Black411A等,当然还可选用其它公司的红外线反射颜料,如钛镍锑黄、钛镍黄或绿光钛黄等。
本发明的热喷涂石墨烯瓷漆,使用石墨烯及瓷釉粉、陶浆/陶粉和石英中的一种或几种的混合物制备得到,不仅环保,且能承受高温施工,通过采用等离子热喷涂系统形成涂层后,不生锈,不脱落,抗腐蚀良好,具有优良的杀菌抑藻作用,同时增强了表面强度和硬度,延长维修期限,易维修,减少维修成本等。
在某些实施方式中,所述热喷涂石墨烯瓷漆还包含以下重量百分比的原料:铜的氧化物0.2~2%如0.2%、0.5%、0.8%、1%、1.2%、1.5%、1.8%或2%等。铜的氧化物为二氧化铜或氧化亚铜(仅限船底漆中使用),铜的氧化物可起到杀灭海洋微生物的作用。
在某些实施方式中,所述组合物还包含以下重量百分比的原料:纳米银粉0.1~2%如0.1%、0.3%、0.5%、0.8%、1%、1.2%、1.5%、1.8%或2%等;纳米二氧化钛粉0.3~2%如0.3%、0.5%、0.8%、1%、1.2%、1.5%、1.8%或2%等。
纳米银粉具有抗菌、强效杀菌、渗透性强、修复再生、抗菌持久、平安无毒、无耐药性的特性和功效。银可说是自然物质中公认抗菌最好的一种,可以杀死650种以上的细菌,且银物质是不具毒性,其主因为银本生具有的生物作用。活性银离子能够吸引细菌体内酶蛋白上的硫氢基(-SH),迅速的结合在一起,并使含硫氢基之酵素失去活性,进而使细菌死亡。另 外,纳米银的功效是属于长效型杀菌剂,一般而言,其效用最少可以保持五年。
纳米级二氧化钛,亦称钛白粉,产品外观为白色疏松粉末;其具有抗紫外线、抗菌、自洁净、抗老化性能。
本发明实施例中,通过在热喷涂石墨烯瓷漆中添加铜和纳米银粉和纳米二氧化钛可以进一步提升杀菌抑藻作用。
在某些实施方式中,所述热喷涂石墨烯瓷漆还包含以下重量百分比的原料:纳米镍粉0.1~2%如0.1%、0.3%、0.5%、0.8%、1%、1.2%、1.5%、1.8%或2%等。
在某些实施方式中,所述热喷涂石墨烯瓷漆还包含以下重量百分比的原料:四氧化三铁0.2~2%如0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%、0.9%或1%等;三氧化二铁0.2~1%如0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%、0.9%或1%等。
在某些实施方式中,所述热喷涂石墨烯瓷漆还包含以下重量百分比的原料:钴粉0.2~0.5%如0.2%、0.3%、0.4%或0.5%等。
本发明实施例中,通过在热喷涂石墨烯瓷漆中添加纳米镍粉、四氧化三铁、三氧化二铁和钴粉可以进一步起到屏蔽辐射等作用。
本发明还提供了一种热喷涂石墨烯瓷漆的使用方法,所述热喷涂石墨烯瓷漆为上述的热喷涂石墨烯瓷漆;所述使用方法包括:采用等离子热喷涂系统,将所述热喷涂石墨烯瓷漆经其加热系统熔融后再喷涂到舰艇和船舶的基材上,然后冷却得到涂层。
上述等离子热喷涂系统优选为Bulletin 6600型自动等离子喷涂系统。所述基材为钢板。
在某些实施方式中,所述热喷涂石墨烯瓷漆还包含以下重量百分比的 原料:铜的氧化物0.2~2%,所述基材为船底基材。
优选地,所述加热系统的加热温度为800~1000℃1000~2000℃如800℃、1000℃、1200℃、1500℃、1800℃或2000℃等
需要说明的是,本发明通过将所述热喷涂石墨烯瓷漆输入等离子热喷涂系统的加热系统中熔融成熔液,再通过喷枪喷涂到钢铁等基材上,超过1000℃的热量瞬间把基材和熔液结合在一起,冷却后,基材表面就形成了一层涂层。
该热喷涂石墨烯瓷漆及其使用方法适用于船舶和舰艇,也适用于战车、钻井平台等海洋设施,集装箱等防锈防腐用途。当船舶或舰艇需要维修时,只需将火枪的温度调校在500℃左右,喷火烧去附着物即可,无需喷沙重涂等繁琐程序。
为了便于理解本发明,下面结合实施例来进一步说明本发明的技术方案。申请人声明,本发明通过以下实施例来说明本发明的详细工艺设备和工艺流程,但本发明并不局限于下述详细工艺设备和工艺流程,即不意味着本发明应依赖上述详细工艺设备和工艺流程才能实施。所属技术领域的技术人员应该明了,对本发明的任何改进,对本发明产品各原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本发明的保护范围和公开范围之内。
实施例1
(1)将80份瓷釉粉和2份石墨烯分加入到干粉搅拌机中搅拌,然后在搅拌过程中依次加入1份硼砂和3份颜料,至混合均匀,得到热喷涂石墨烯瓷漆。
(2)采用Bulletin 6600型自动等离子喷涂系统(或其他熱噴塗設備),将步骤(1)制备得到的热喷涂石墨烯瓷漆通过输送罐输送至加热系统,在 1000℃温度下熔融得到熔液,然后将该熔液经喷枪喷涂到钢板上,最后冷却至室温,得到涂层。
实施例2
(1)将90份瓷釉粉和1份石墨烯分加入到干粉搅拌机中搅拌,然后在搅拌过程中依次加入0.8份硼砂和2份颜料,至混合均匀,得到热喷涂石墨烯瓷漆。
(2)采用Bulletin 6600型自动等离子喷涂系统,将步骤(1)制备得到的热喷涂石墨烯瓷漆通过输送罐输送至加热系统,在1500℃温度下熔融得到熔液,然后将该熔液经喷枪喷涂到钢板上,最后冷却至室温,得到涂层。
实施例3
(1)将98份瓷釉粉和0.2份石墨烯分加入到干粉搅拌机中搅拌,然后在搅拌过程中依次加入0.5份硼砂和1份颜料,至混合均匀,得到热喷涂石墨烯瓷漆。
(2)采用Bulletin 6600型自动等离子喷涂系统,将步骤(1)制备得到的热喷涂石墨烯瓷漆通过输送罐输送至加热系统,在2000℃温度下熔融得到熔液,然后将该熔液经喷枪喷涂到钢板上,最后冷却至室温,得到涂层。
实施例4
(1)将85份瓷釉粉和1.8份石墨烯分加入到干粉搅拌机中搅拌,然后在搅拌过程中依次加入0.1份纳米银、2份纳米二氧化钛、0.1份纳米镍粉、1份四氧化三铁、0.2份三氧化二铁、0.2份钴粉、0.8份硼砂和2.5份颜料,至混合均匀,得到热喷涂石墨烯瓷漆。
(2)采用Bulletin 6600型自动等离子喷涂系统,将步骤(1)制备得 到的热喷涂石墨烯瓷漆通过输送罐输送至加热系统,在1200℃温度下熔融得到熔液,然后将该熔液经喷枪喷涂到钢板上,最后冷却至室温,得到涂层。
实施例5
(1)将88份瓷釉粉和1.5份石墨烯分加入到干粉搅拌机中搅拌,然后在搅拌过程中依次加入0.5份纳米银、1.5份纳米二氧化钛、0.5份纳米镍粉、0.5份四氧化三铁、1份三氧化二铁、0.3份钴粉、0.7份硼砂和1.8份颜料,至混合均匀,得到热喷涂石墨烯瓷漆。
(2)采用Bulletin 6600型自动等离子喷涂系统,将步骤(1)制备得到的热喷涂石墨烯瓷漆通过输送罐输送至加热系统,在1500℃温度下熔融得到熔液,然后将该熔液经喷枪喷涂到钢板上,最后冷却至室温,得到涂层。
实施例6
(1)将92份陶浆/陶粉和1.2份石墨烯分加入到搅拌机中搅拌,然后在搅拌过程中依次加入2份二氧化铜、1份纳米银、1份纳米二氧化钛、1份纳米镍粉、0.8份四氧化三铁、0.5份三氧化二铁、0.4份钴粉、0.6份硼砂和1.5份颜料,至混合均匀,得到热喷涂石墨烯瓷漆。
(2)采用Bulletin 6600型自动等离子喷涂系统,将步骤(1)制备得到的热喷涂石墨烯瓷漆通过输送罐输送至加热系统,在1800℃温度下熔融得到熔液,然后将该熔液经喷枪喷涂到钢板上,最后冷却至室温,得到涂层。
实施例7
(1)将95份陶浆/陶粉和0.5份石墨烯分加入到搅拌机中搅拌,然后在搅拌过程中依次加入1份氧化亚铜、1.8份纳米银、0.5份纳米二氧化钛、 1.8份纳米镍粉、0.9份四氧化三铁、0.3份三氧化二铁、0.4份钴粉、0.6份硼砂和1.2份颜料,至混合均匀,得到热喷涂石墨烯瓷漆。
(2)采用Bulletin 6600型自动等离子喷涂系统,将步骤(1)制备得到的热喷涂石墨烯瓷漆通过输送罐输送至加热系统,在1000℃温度下熔融得到熔液,然后将该熔液经喷枪喷涂到钢板上,最后冷却至室温,得到涂层。
实施例8
(1)将98份石英粉和0.2份石墨烯分加入到干粉搅拌机中搅拌,然后在搅拌过程中依次加入0.2份氧化亚铜、2份纳米银、0.3份纳米二氧化钛、2份纳米镍粉、1份四氧化三铁、0.2份三氧化二铁、0.5份钴粉、0.5份硼砂和1份颜料,至混合均匀,得到热喷涂石墨烯瓷漆。
(2)采用Bulletin 6600型自动等离子喷涂系统,将步骤(1)制备得到的热喷涂石墨烯瓷漆通过输送罐输送至加热系统,在1500℃温度下熔融得到熔液,然后将该熔液经喷枪喷涂到钢板上,最后冷却至室温,得到涂层。
上述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明配方及制备工艺可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种热喷涂石墨烯瓷漆,其特征在于:包含以下重量百分比的原料:第一原料80~98%、石墨烯粉0.2~2%、硼砂0.5~1%和颜料1~3%;所述第一原料为瓷釉粉、陶浆、陶粉和石英粉中的一种或几种的混合。
  2. 根据权利要求1所述的热喷涂石墨烯瓷漆,其特征在于:所述组合物还包含以下重量百分比的原料:纳米银粉0.1~2%和纳米二氧化钛粉0.3~2%。
  3. 根据权利要求1所述的热喷涂石墨烯瓷漆,其特征在于:所述组合物还包含以下重量百分比的原料:纳米镍粉0.1~2%。
  4. 根据权利要求1所述的热喷涂石墨烯瓷漆,其特征在于:所述组合物还包含以下重量百分比的原料:四氧化三铁0.2~2%和三氧化二铁0.2~1%。
  5. 根据权利要求1所述的热喷涂石墨烯瓷漆,其特征在于:所述组合物还包含以下重量百分比的原料:钴粉0.2~0.5%。
  6. 根据权利要求1所述的热喷涂石墨烯瓷漆,其特征在于:所述石墨烯粉为十层以下的石墨烯粉。
  7. 根据权利要求1所述的热喷涂石墨烯瓷漆,其特征在于:所述颜料为红外线反射颜料。
  8. 根据权利要求1所述的热喷涂石墨烯瓷漆,其特征在于:所述组合物还包含以下重量百分比的原料:铜的氧化物0.2~2%。
  9. 一种热喷涂石墨烯瓷漆的使用方法,其特征在于:所述热喷涂石墨烯瓷漆为如权利要求1~7任一项所述的热喷涂石墨烯瓷漆;所述使用方法包括:采用等离子热喷涂系统,将所述热喷涂石墨烯瓷漆经其加热系统熔融后再喷涂到基材上,然后冷却得到涂层。
  10. 根据权利要求9所述的热喷涂石墨烯瓷漆的使用方法,其特征在 于:所述热喷涂石墨烯瓷漆还包含以下重量百分比的原料:铜的氧化物0.2~2%,所述基材为船底基材。
PCT/CN2018/105925 2017-09-19 2018-09-17 一种热喷涂石墨烯瓷漆及其使用方法 WO2019057002A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710845572.3 2017-09-19
CN201710845572.3A CN107629493B (zh) 2017-09-19 2017-09-19 一种热喷涂石墨烯瓷漆及其使用方法

Publications (1)

Publication Number Publication Date
WO2019057002A1 true WO2019057002A1 (zh) 2019-03-28

Family

ID=61102230

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/105925 WO2019057002A1 (zh) 2017-09-19 2018-09-17 一种热喷涂石墨烯瓷漆及其使用方法

Country Status (2)

Country Link
CN (1) CN107629493B (zh)
WO (1) WO2019057002A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112408792A (zh) * 2020-12-16 2021-02-26 广东欧文莱陶瓷有限公司 一种低色差陶瓷釉料

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107629493B (zh) * 2017-09-19 2020-03-13 王安华 一种热喷涂石墨烯瓷漆及其使用方法
CN109577844B (zh) * 2019-01-14 2020-06-19 江苏工程职业技术学院 一种智能窗帘
CN111018489A (zh) * 2019-12-16 2020-04-17 王安华 一种用于不沾炊具的骨瓷材料及其应用、不粘炊具及其制造方法
CN112441845B (zh) * 2020-12-16 2022-07-22 广东欧文莱陶瓷有限公司 一种低色差陶瓷的制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101096308A (zh) * 2007-05-29 2008-01-02 武汉理工大学 热喷涂用抗海水腐蚀磨损和生物污损的复合陶瓷粉及制备
CN101590525A (zh) * 2009-07-02 2009-12-02 哈尔滨工业大学 非晶-纳米晶陶瓷复合粉体及其制备方法
CN102181815A (zh) * 2011-04-21 2011-09-14 北京矿冶研究总院 一种抗海生物腐蚀的陶瓷涂层及其制备方法
CN102336256A (zh) * 2011-05-27 2012-02-01 中国船舶重工集团公司第七二五研究所 一种防止船舶螺旋桨腐蚀和海生物污损的方法
CN102816987A (zh) * 2012-07-05 2012-12-12 中国科学院宁波材料技术与工程研究所 一种基体表面的耐磨耐蚀复合涂层及其制备方法
CN104831211A (zh) * 2015-05-09 2015-08-12 芜湖鼎瀚再制造技术有限公司 一种耐磨Co3O4-SiC纳米涂层材料及其制备方法
CN104862638A (zh) * 2015-05-09 2015-08-26 芜湖鼎瀚再制造技术有限公司 一种Ni-Co-Mo-Mn涂层材料及其制备方法
CN105907293A (zh) * 2016-04-28 2016-08-31 宁国市开源电力耐磨材料有限公司 碳基复合涂层及其制备方法
CN107629493A (zh) * 2017-09-19 2018-01-26 深圳兴邦石墨烯科技发展有限公司 一种石墨烯热喷涂瓷漆及其使用方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150035861A (ko) * 2015-02-23 2015-04-07 이재환 내열 도료 조성물
CN105238105B (zh) * 2015-11-12 2017-04-05 浙江大学 一种用于钢筋防腐的韧性涂料及其涂覆方法
CN106118150A (zh) * 2016-07-04 2016-11-16 山东源根化学技术研发有限公司 一种医用石墨烯无机粉末涂料及其制备方法
CN106243790A (zh) * 2016-08-29 2016-12-21 无锡益联机械有限公司 一种纺织用高强度抗剥落钢丝圈

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101096308A (zh) * 2007-05-29 2008-01-02 武汉理工大学 热喷涂用抗海水腐蚀磨损和生物污损的复合陶瓷粉及制备
CN101590525A (zh) * 2009-07-02 2009-12-02 哈尔滨工业大学 非晶-纳米晶陶瓷复合粉体及其制备方法
CN102181815A (zh) * 2011-04-21 2011-09-14 北京矿冶研究总院 一种抗海生物腐蚀的陶瓷涂层及其制备方法
CN102336256A (zh) * 2011-05-27 2012-02-01 中国船舶重工集团公司第七二五研究所 一种防止船舶螺旋桨腐蚀和海生物污损的方法
CN102816987A (zh) * 2012-07-05 2012-12-12 中国科学院宁波材料技术与工程研究所 一种基体表面的耐磨耐蚀复合涂层及其制备方法
CN104831211A (zh) * 2015-05-09 2015-08-12 芜湖鼎瀚再制造技术有限公司 一种耐磨Co3O4-SiC纳米涂层材料及其制备方法
CN104862638A (zh) * 2015-05-09 2015-08-26 芜湖鼎瀚再制造技术有限公司 一种Ni-Co-Mo-Mn涂层材料及其制备方法
CN105907293A (zh) * 2016-04-28 2016-08-31 宁国市开源电力耐磨材料有限公司 碳基复合涂层及其制备方法
CN107629493A (zh) * 2017-09-19 2018-01-26 深圳兴邦石墨烯科技发展有限公司 一种石墨烯热喷涂瓷漆及其使用方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112408792A (zh) * 2020-12-16 2021-02-26 广东欧文莱陶瓷有限公司 一种低色差陶瓷釉料
CN112408792B (zh) * 2020-12-16 2022-04-29 广东欧文莱陶瓷有限公司 一种低色差陶瓷釉料

Also Published As

Publication number Publication date
CN107629493B (zh) 2020-03-13
CN107629493A (zh) 2018-01-26

Similar Documents

Publication Publication Date Title
WO2019057002A1 (zh) 一种热喷涂石墨烯瓷漆及其使用方法
CN107892479A (zh) 一种亚光砂纹搪瓷釉核心釉料及生产方法
EP2545199B1 (de) Metallische oberflächen mit dünner, glas- oder keramikartiger schutzschicht mit hoher chemischer beständigkeit und verbesserten antihaft-eigenschaften
DE102008063161A1 (de) Metallische Gegenstände mit glasartigen oder glaskeramischen pigmentierten Schutzschichten von hoher chemischer Beständigkeit
CN106715621A (zh) 防锈涂料组合物及其用途
CN106675273A (zh) 一种多功能抗菌涂料及其制备方法
JP2015231941A5 (zh)
He et al. Synthesis and coloration of highly dispersive SiO2/BiVO4 hybrid pigments with low cost and high NIR reflectance
Daloğlu et al. Antifouling performance of TiO2-based SiO2–Na2O–K2O glass-ceramic coatings in marine environments
Abdelwahab et al. Influences of annealing temperature on sprayed CuFeO2 thin films
CN103911029B (zh) 一种外墙涂料用粉体材料
CN104230379A (zh) 浮雕釉的配制方法
CN106316129B (zh) 一种陶瓷基础釉药的制作工艺
KR100940167B1 (ko) 우 분뇨를 이용한 청자 유약 조성물
CN103897445B (zh) 一种外墙用纳米涂料
CN102849949A (zh) 一种用于金属制品表面的釉料及其烧制方法
CN104745078A (zh) 一种防腐涂料及其制备方法
CN103897472A (zh) 一种纳米粉体复合材料的制备方法
CN109749490A (zh) 一种氯化橡胶防腐漆及其制备方法
CN102557569A (zh) 枣红石纳米抗菌人造石
CN110294992A (zh) 一种耐腐蚀耐高温船用涂层及其制备方法
Prudente et al. Advancements in self-cleaning building materials: Photocatalysts, superhydrophobic surfaces, and biocides approaches
EP2110365B1 (en) Fish scale free enamelling of non-enamellable steel sheet
CN107383965A (zh) 一种抗氧化耐腐蚀油漆
CN108102555A (zh) 一种无机耐高温粘结组合物及制备方法与应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18858357

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18858357

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC