WO2019056780A1 - 一种太阳能电池薄膜的制备设备及其制备方法 - Google Patents

一种太阳能电池薄膜的制备设备及其制备方法 Download PDF

Info

Publication number
WO2019056780A1
WO2019056780A1 PCT/CN2018/087359 CN2018087359W WO2019056780A1 WO 2019056780 A1 WO2019056780 A1 WO 2019056780A1 CN 2018087359 W CN2018087359 W CN 2018087359W WO 2019056780 A1 WO2019056780 A1 WO 2019056780A1
Authority
WO
WIPO (PCT)
Prior art keywords
evaporation
solar cell
substrate
film
transport layer
Prior art date
Application number
PCT/CN2018/087359
Other languages
English (en)
French (fr)
Inventor
彭德华
姚冀众
颜步一
Original Assignee
杭州纤纳光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州纤纳光电科技有限公司 filed Critical 杭州纤纳光电科技有限公司
Publication of WO2019056780A1 publication Critical patent/WO2019056780A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/26Vacuum evaporation by resistance or inductive heating of the source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention belongs to the technical field of manufacturing a perovskite thin film solar cell, and particularly relates to a device for preparing a solar cell film and a preparation method thereof.
  • the preparation methods of perovskite films are mainly divided into two categories: solution method and gas phase method.
  • the solution method is divided into a one-step solution method and a two-step solution method. Since the one-step solution method cannot control the crystallization process of the perovskite film, the uniformity and repeatability of the film are poor.
  • the two-step solution method requires high handling methods during preparation, and the amount of materials is large, which is not suitable for the production of large-sized components.
  • the gas phase method mainly includes: dual source vapor deposition, chemical vapor deposition, and the like.
  • the perovskite film prepared by the gas phase method has good crystal quality, uniformity and compactness, and can realize large-scale production, so it has great potential in the process of industrialization of perovskite, and has been used in other types of thin film solar cells, such as copper indium gallium.
  • Thin-film solar cells such as selenium (CIGS), cadmium telluride (CdTe), and gallium arsenide (GaAs) are widely used in industrial production.
  • the dual source vapor deposition method requires a high vacuum, and the lead iodide (PbI 2 ) gas is toxic, and the sealing property of the vapor deposition chamber is strictly controlled, thereby increasing The cost of the preparation process.
  • the most widely used perovskite material is MAPbI 3 , which is easy to prepare, but the device efficiency has not entered the high efficiency (greater than 20%) rank, and the water The sensitivity of oxygen is high.
  • the forbidden band width of FAPbI 3 is closer to the ideal bandwidth, but phase transition occurs at room temperature, resulting in a photoactive "yellow phase" ( ⁇ phase). Therefore, a successful strategy is to blend MA and FA.
  • MA x FA (1-x) PbX 3 hybrid perovskite materials have improved material stability and battery efficiency.
  • the preparation of the above three-phase blended perovskite film is prepared by a solution method, and has not been prepared by a gas phase method, and the gas phase method can control the content of different components more accurately than the solution method, and is less subject to Under the influence of water and oxygen, the prepared film is also denser and more uniform, and is suitable for large-scale industrial production.
  • the technical problem to be solved by the present invention is to provide a solar cell film preparation apparatus and a preparation method thereof, and a solution-assisted vapor deposition method for preparing a mixed perovskite film, and the preparation process is carried out in two steps, first, depositing carriers A metal halide (BX 2 ) film is prepared by a solution method on a substrate of a transport layer (hole transport layer or electron transport layer), and then the vaporized precursor AX molecule is vapor-deposited on the substrate on which the BX 2 film is prepared.
  • the molecular reaction of the metal halide BX 2 film forms a mixed perovskite film layer, and the mixed perovskite film material has good crystal quality and uniformity.
  • the present invention is achieved by providing a solar cell film preparation apparatus comprising a hollow and sealed vapor deposition chamber, wherein at least one evaporation source container and a container baffle thereof are disposed on an inner bottom surface of the vapor deposition chamber, An evaporating material for preparing a solar cell film is disposed in the evaporation source container, the container baffle is disposed at the top of the evaporation source container and automatically opens or closes the evaporation source container by a control device, and the evaporation source container is provided with heating evaporation
  • the apparatus causes the evaporating material therein to be heated and evaporated, and the heating evaporating device is controlled by the control device; an upper heating surface and a sample baffle are disposed on the inner top surface of the vapor deposition chamber, and the upper heating table is disposed on the upper heating surface a sample holder for fixing a substrate sample, the upper heating stage heating the substrate sample, the sample baffle being disposed at a lower portion of the substrate sample, and automatically
  • three evaporation source containers and their container baffles are disposed on the inner bottom surface of the vapor deposition chamber, and a detachable partition plate is disposed between the adjacent two evaporation source containers, and three evaporation source containers are spatially disposed.
  • a rotating shaft is further disposed on the inner top surface of the vapor deposition chamber, and the upper heating stage is disposed on the rotating shaft, and the rotating shaft drives the upper heating stage and the substrate sample to rotate simultaneously.
  • a pressure sensor for testing the degree of vacuum in the vapor deposition chamber is further disposed on the vapor deposition chamber.
  • the present invention is achieved by the method of preparing a solar cell film, using the solar cell film preparation device as described above, and preparing a perovskite solar cell film, comprising the steps of: firstly depositing a current carrying current
  • the metal halide BX 2 film is prepared by a solution method on the substrate sample of the sub-transport layer, and then the substrate sample is transferred to the evaporation chamber, and the screened quartz sand having a diameter of 0.5-5 mm is added to the evaporation source container.
  • the granules are covered with the bottom of the evaporation source vessel and have a thickness in the range of 1-20 mm.
  • the precursor AX is slowly filled into the evaporation source vessel, the heating evaporation device is turned on to heat the precursor AX to evaporate, and the evaporation rate sensor is used to monitor the time.
  • Evaporation rate open the upper heating table to heat the substrate sample, the substrate sample heating temperature range is 50-100 ° C, the vacuum degree in the evaporation chamber is controlled between 10 -6 Pa-10 5 Pa, the evaporated precursor
  • the AX molecule forms a mixed perovskite film layer by vapor phase reaction with a metal halide BX 2 film;
  • BX 2 is a divalent metal halide, wherein B is a divalent metal cation, including lead, tin, tungsten, copper, zinc, gallium, antimony, arsenic, selenium, tellurium, palladium, silver, cadmium, indium, antimony, Any one of ruthenium, osmium, platinum, gold, mercury, ruthenium, osmium, iridium, X is at least one anion of iodine, bromine, chlorine, ruthenium, and A is ruthenium, osmium, amine, sulfhydryl or alkali At least one cation in the family.
  • B is a divalent metal cation, including lead, tin, tungsten, copper, zinc, gallium, antimony, arsenic, selenium, tellurium, palladium, silver, cadmium, indium, antimony, Any one of ruthenium, osmium,
  • the precursor AX evaporation rate is controlled at The reaction time is 5-100 min.
  • the present invention is achieved in this way, and a method for preparing a solar cell film is provided.
  • the solar cell film preparation device is prepared as described above, and a perovskite solar cell film is prepared, comprising the following steps: firstly, depositing The metal halide BX 2 film is prepared by a solution method on the substrate sample of the carrier transport layer, and then the substrate sample is transferred to the vapor deposition chamber, and the diameters of 0.5-5 mm are respectively added to the three evaporation source containers.
  • the screened quartz sand particles are covered with the bottom of the evaporation source container, and the thickness is in the range of 1-20 mm, and then the precursors AX having large, medium and small ionic radii are slowly filled into the three evaporation source containers respectively; the heating evaporation device is turned on. According to the order of large, medium and small ionic radius, each precursor AX is heated and evaporated in turn, and the evaporation rate is monitored by the evaporation rate sensor, and the upper heating table is turned on to heat the substrate sample, and the heating temperature range of the substrate sample is heated.
  • the vacuum in the evaporation chamber is controlled between 10 -6 Pa-10 5 Pa, and the vaporized precursor AX molecules are vapor deposited with metal halide BX 2 Molecular reaction of the film to form a mixed perovskite film layer;
  • BX 2 is a divalent metal halide, wherein B is a divalent metal cation, including lead, tin, tungsten, copper, zinc, gallium, antimony, arsenic, selenium, tellurium, palladium, silver, cadmium, indium, antimony, Any one of ruthenium, osmium, platinum, gold, mercury, ruthenium, osmium, iridium, X is at least one anion of iodine, bromine, chlorine, ruthenium, and A is ruthenium, osmium, amine, sulfhydryl or alkali At least one cation in the family.
  • B is a divalent metal cation, including lead, tin, tungsten, copper, zinc, gallium, antimony, arsenic, selenium, tellurium, palladium, silver, cadmium, indium, antimony, Any one of ruthenium, osmium,
  • the precursor AX having a large ionic radius is preferentially evaporated, and the evaporation rate is controlled at The reaction time is 5-100 min; then the precursor AX in the ionic radius is evaporated, and the evaporation rate is controlled at The reaction time is 5-60 min; finally, the precursor AX with a small ionic radius is evaporated, and the evaporation rate is controlled at The reaction time is 5-30 min.
  • the present invention is achieved by the present invention, and further provides a method for preparing a solar cell comprising a substrate on which a hole transport layer or an electron transport layer, a perovskite film layer, and electron transport are sequentially disposed. a layer or a hole transport layer and a metal conductive layer, the perovskite film layer comprising a perovskite film prepared by using a solar cell film preparation device as described above, the method for preparing the solar cell comprising the following steps:
  • Step 1 preparing a metal halide BX 2 film by a solution method on a substrate on which a hole transport layer or an electron transport layer is deposited;
  • Step 2 vapor-depositing the precursor AX on the metal halide BX 2 film of the substrate by using a solar cell film preparation apparatus as described above to prepare a mixed perovskite film layer, including: transferring the substrate to the evaporation chamber Medium, the screened quartz sand particles having a diameter in the range of 0.5-5 mm are added into the evaporation source container, and the bottom of the evaporation source container is covered, and the thickness is in the range of 1-20 mm, and then the precursor AX is slowly filled into the evaporation source container.
  • the heating evaporator is turned on to heat the precursor AX to evaporate, and the evaporation rate sensor is used to monitor the evaporation rate from time to time, and the upper heating stage is turned on to heat the substrate.
  • the heating temperature of the substrate is 50-100 ° C, and the evaporation chamber is in the evaporation chamber.
  • the degree of vacuum is controlled between 10 -6 Pa-10 5 Pa;
  • Step 3 preparing an electron transport layer or a hole transport layer on the perovskite film layer of the substrate;
  • Step 4 preparing a metal conductive layer on the electron transport layer or the hole transport layer.
  • the present invention is achieved by the present invention, and further provides a method for preparing a solar cell comprising a substrate on which a hole transport layer or an electron transport layer, a perovskite film layer, and electron transport are sequentially disposed. a layer or a hole transport layer and a metal conductive layer, the perovskite film layer comprising a perovskite film prepared by using a solar cell film preparation device as described above, the method for preparing the solar cell comprising the following steps:
  • the first step preparing a metal halide BX 2 film by a solution method on a substrate on which a hole transport layer or an electron transport layer is deposited;
  • the second step vapor-depositing the precursor AX on the metal halide BX 2 film of the substrate by using the solar cell film preparation apparatus as described above to prepare a mixed perovskite film layer, including: transferring the substrate to the evaporation In the tank, the screened quartz sand particles with a diameter of 0.5-5 mm are respectively added to the three evaporation source containers, and the bottom of the evaporation source container is covered, and the thickness is in the range of 1-20 mm, and then the ionic radius is large, medium,
  • the small precursors AX are slowly filled into the three evaporation source containers respectively; the heating and evaporation device is turned on to sequentially heat the respective precursors AX in the order of large, medium and small ionic radii, and monitor them by means of the evaporation rate sensor. Evaporation rate, the upper heating stage is turned on to heat the substrate, the heating temperature of the substrate is 50-100 ° C, and the vacuum degree in the evaporation chamber is controlled between
  • the third step preparing an electron transport layer or a hole transport layer on the perovskite film layer of the substrate;
  • Fourth step preparing a metal conductive layer on the electron transport layer or the hole transport layer.
  • the solar cell film preparation apparatus and the preparation method thereof have the following characteristics:
  • the precursor AX is uniformly distributed in the evaporation source container, which is favorable for the uniform reaction of the perovskite film;
  • the three precursors AX were sequentially evaporated by step evaporation method.
  • a mixed perovskite film with good crystal quality and uniform density can be obtained.
  • the three kinds of precursors AX having different ionic radii are sequentially reacted with the metal halide BX 2 to form a mixed perovskite film material according to the radius from large to small.
  • the invention can accurately control the content of different components of the perovskite film, so that the prepared perovskite film is less affected by water and oxygen, and the prepared mixed perovskite film material has good crystal quality, compactness and uniformity, and is suitable for large Scale industrial production.
  • FIG. 1 is a schematic plan view showing a preferred embodiment of a solar cell film preparation apparatus of the present invention
  • SEM scanning electron microscope
  • a preferred embodiment of a solar cell film preparation apparatus of the present invention comprises a hollow and sealed vapor deposition chamber 100, at least one evaporation source container 107 is disposed on an inner bottom surface of the vapor deposition chamber 100 and Container baffle 108.
  • An evaporant for preparing a solar cell film is placed in the evaporation source container 107.
  • the container shutter 108 is disposed at the top of the evaporation source container 107 and automatically opens or closes the evaporation source container 107 by a control device.
  • a heating evaporation device is disposed on the evaporation source container 107 such that the evaporant therein is heated and evaporated, and the heating evaporation device is controlled by the control device.
  • the evaporation source container 107 serves as an evaporation source, and is in the shape of a cylindrical or cubic container, which is detachable, and can be temperature-controlled by an applied current.
  • the container shutter 108 is a baffle on the evaporation source container 107. When the evaporation source starts to evaporate, the shutter is opened, and the evaporation ends to close the shutter.
  • An upper heating stage 104 and a sample baffle 106 are disposed on the inner top surface of the vapor deposition chamber 100.
  • a sample holder (not shown) for fixing the substrate sample is disposed on the upper heating stage 104.
  • the upper heating stage 104 heats the substrate sample, which is placed above the evaporation source container 107.
  • the sample baffle 106 is disposed at a lower portion of the substrate sample, and the substrate sample is automatically blocked or exposed by the control device.
  • the sample baffle 106 is composed of two semi-circular baffles which are opened when the reaction of the perovskite is started, and are closed when the reaction is completed.
  • a vacuum suction duct 101 Also provided on the vapor deposition chamber 100 is a vacuum suction duct 101, a venting duct 102, a pressure sensor 103 for testing the degree of vacuum in the vapor deposition chamber, and an evaporation rate sensor 109 for testing the evaporation amount of the evaporant.
  • the evaporation rate sensor 109 is disposed above the evaporation source container 107 and between the sample shutter 106 and the container shutter 108.
  • One end of the vacuum pumping pipe 101 communicates with the inside of the vapor deposition chamber 100, and the other end is connected to the turbo molecular pump to function as a vacuum.
  • the deflation pipe 102 is controlled to open and close by a control valve, and is closed when the vacuum is applied, and is opened when the vapor deposition is completed, and deflated into the cabin.
  • the pressure sensor 103 uses a beam gauge to detect the in-cabin pressure of the vapor deposition chamber 100, and transmits the data to the computer to display the vacuum degree from time to time.
  • the evaporation rate sensor 109 uses a gold diaphragm to detect the evaporation rate of the evaporant at the evaporation source container 107.
  • three evaporation source containers 107 and their container shutters 108 are disposed on the inner bottom surface of the vapor deposition chamber 100, and a detachable partition plate is disposed between the adjacent two evaporation source containers 107. 110.
  • the three evaporation source containers 107 are spatially isolated from each other.
  • An evaporation rate sensor 109 is disposed above each of the evaporation source containers 107.
  • a rotating shaft 105 is further disposed on the inner top surface of the vapor deposition chamber 100.
  • the upper heating stage 104 is disposed on a rotating shaft 105 that drives the upper heating stage 104 and the substrate sample to rotate at a constant speed.
  • the detachable partition 110 spatially isolates the three evaporation sources, reducing mutual interference during evaporation.
  • the invention also discloses a preparation method of a solar cell film, which adopts the preparation device of the solar cell film as described above, and prepares a perovskite solar cell film, comprising the following steps:
  • a metal halide BX 2 film was first prepared by a solution method on a substrate sample on which a carrier transport layer was deposited.
  • the substrate sample is then transferred to the evaporation chamber 100, and the screened quartz sand particles having a diameter in the range of 0.5 to 5 mm are added to the evaporation source container 107 to cover the bottom of the evaporation source container 107, and the thickness is in the range of 1-20 mm. .
  • the precursor AX is then slowly filled into the evaporation source vessel 107 to be uniformly dispersed in the evaporation source vessel 107.
  • the heating evaporator is turned on to heat the precursor AX to evaporate, and the evaporation rate is monitored by the evaporation rate sensor 109 from time to time.
  • the upper heating stage 104 is turned on to heat the substrate sample, and the substrate sample is heated at a temperature ranging from 50 to 100 °C.
  • the degree of vacuum in the vapor deposition chamber 100 is controlled between 10 -6 Pa and 10 5 Pa.
  • the vaporized precursor AX molecule reacts with the metal halide BX 2 film by vapor deposition to form a mixed perovskite film layer.
  • the precursor AX evaporation rate is controlled at The reaction time is 5-100 min.
  • BX 2 is a divalent metal halide, wherein B is a divalent metal cation, including lead, tin, tungsten, copper, zinc, gallium, antimony, arsenic, selenium, tellurium, palladium, silver, cadmium, indium, antimony, Any of lanthanum, cerium, platinum, gold, mercury, cerium, lanthanum, cerium.
  • X is at least one anion of iodine, bromine, chlorine or hydrazine.
  • A is at least one cation of an anthracene, an anthracene, an amine group, a fluorenyl group or an alkali group.
  • the invention also discloses a preparation method of a solar cell film, which adopts the preparation device of the solar cell film as described above, and prepares a perovskite solar cell film, comprising the following steps:
  • a metal halide BX 2 film was first prepared by a solution method on a substrate sample on which a carrier transport layer was deposited.
  • the substrate sample is then transferred to the evaporation chamber 100, and the screened quartz sand particles having a diameter in the range of 0.5 to 5 mm are respectively added to the three evaporation source containers 107, and the bottom of the evaporation source container 107 is covered, and the thickness is 1 -20mm range.
  • the precursors AX having large, medium, and small ionic radii are slowly filled into the three evaporation source containers 107, respectively, and uniformly dispersed in the evaporation source container 107.
  • the heating and evaporation device is turned on to sequentially heat each of the precursors AX in the order of large, medium, and small ionic radii, and the evaporation rate is monitored by the evaporation rate sensor 109 from time to time.
  • the upper heating stage 104 is turned on to heat the substrate sample, and the substrate sample is heated at a temperature ranging from 50 to 100 °C.
  • the vacuum in the evaporation chamber is controlled between 10 -6 Pa and 10 5 Pa.
  • the vaporized precursor AX molecule reacts with the metal halide BX 2 film by vapor deposition to form a mixed perovskite film layer.
  • BX 2 is a divalent metal halide, wherein B is a divalent metal cation, including lead, tin, tungsten, copper, zinc, gallium, antimony, arsenic, selenium, tellurium, palladium, silver, cadmium, indium, antimony, Any of lanthanum, cerium, platinum, gold, mercury, cerium, lanthanum, cerium.
  • X is at least one anion of iodine, bromine, chlorine or hydrazine.
  • A is at least one cation of an anthracene, an anthracene, an amine group, a fluorenyl group or an alkali group.
  • the precursor AX having a large ionic radius is preferentially evaporated, and the evaporation rate is controlled at The reaction time is 5-100 min.
  • the precursor AX in the ionic radius is then evaporated, and the evaporation rate is controlled at The reaction time is 5-60 min.
  • the precursor AX with a small ionic radius is evaporated, and the evaporation rate is controlled at The reaction time is 5-30 min.
  • the invention also discloses a method for preparing a solar cell, wherein the solar cell comprises a substrate, and a hole transport layer or an electron transport layer, a perovskite film layer, an electron transport layer or an empty layer is sequentially disposed on the substrate.
  • the perovskite film layer comprises a perovskite film prepared by using a solar cell film preparation device as described above, and the method for preparing the solar cell comprises the following steps:
  • Step 1 A metal halide BX 2 film was prepared by a solution method on a substrate on which a hole transport layer or an electron transport layer was deposited.
  • Step 2 vapor-depositing the precursor AX on the metal halide BX 2 film of the substrate by using a solar cell film preparation apparatus as described above to prepare a mixed perovskite film layer, including: transferring the substrate to the evaporation chamber In 100, the screened quartz sand particles having a diameter in the range of 0.5 to 5 mm are added to the evaporation source vessel 107, and the bottom of the evaporation source vessel is covered to have a thickness in the range of 1 to 20 mm. The precursor AX is then slowly filled into the evaporation source vessel 107 to be uniformly dispersed in the evaporation source vessel 107.
  • the heating evaporator is turned on to heat the precursor AX to evaporate, and the evaporation rate is monitored by the evaporation rate sensor 109 from time to time.
  • the upper heating stage 104 is turned on to heat the substrate.
  • the heating temperature of the substrate ranges from 50 to 100 ° C, and the degree of vacuum in the evaporation chamber 100 is controlled between 10 -6 Pa and 10 5 Pa.
  • Step 3 preparing an electron transport layer or a hole transport layer on the perovskite film layer of the substrate.
  • Step 4 preparing a metal conductive layer on the electron transport layer or the hole transport layer.
  • the present invention is achieved by the present invention, and further provides a method for preparing a solar cell comprising a substrate on which a hole transport layer or an electron transport layer, a perovskite film layer, and electron transport are sequentially disposed. a layer or a hole transport layer and a metal conductive layer, the perovskite film layer comprising a perovskite film prepared by the method for preparing a solar cell film as described above, the method for preparing the solar cell comprising the following steps:
  • a metal halide BX 2 film was prepared by a solution method on a substrate on which a hole transport layer or an electron transport layer was deposited.
  • the second step vapor-depositing the precursor AX on the metal halide BX 2 film of the substrate by using the solar cell film preparation apparatus as described above to prepare a mixed perovskite film layer, including: transferring the substrate to the evaporation In the tank 100, the screened quartz sand particles having a diameter in the range of 0.5 to 5 mm are respectively added to the three evaporation source containers 107, and the bottom of the evaporation source container is covered, and the thickness is in the range of 1 to 20 mm. Then, the precursors AX having large, medium, and small ionic radii are slowly filled into the three evaporation source containers 107, respectively, and uniformly dispersed in the evaporation source container 107.
  • the heating and evaporation device is turned on to sequentially heat each of the precursors AX in the order of large, medium, and small ionic radii, and the evaporation rate is monitored by the evaporation rate sensor 109 from time to time.
  • the upper heating stage 104 is turned on to heat the substrate.
  • the heating temperature of the substrate ranges from 50 to 100 ° C, and the degree of vacuum in the evaporation chamber 100 is controlled between 10 -6 Pa and 10 5 Pa.
  • the third step preparing an electron transport layer or a hole transport layer on the perovskite film layer of the substrate.
  • Fourth step preparing a metal conductive layer on the electron transport layer or the hole transport layer.
  • the perovskite film solves the problems of incomplete film coverage, inconsistent crystallization, and easy to be affected by water and oxygen during the preparation of the solution method.
  • the substrate is selected from fluorine-doped tin oxide transparent conductive glass (FTO) or tin-doped indium oxide transparent conductive glass (ITO) or a flexible substrate such as polyethylene terephthalate (PET) or polyphenylene.
  • FTO fluorine-doped tin oxide transparent conductive glass
  • ITO indium oxide transparent conductive glass
  • PET polyethylene terephthalate
  • PEN polyphenylene glycol dicarboxylate
  • Hole transport materials include, but are not limited to, nickel oxide (NiO), copper oxide (CuO), molybdenum oxide (MoO 3 ), tungsten oxide (WO 3 ), vanadium pentoxide (V 2 O 5 ), poly 3,4- Ethylene dioxythiophene (PEDOT) and the like.
  • Electron transport materials include, but are not limited to, titanium dioxide (TiO 2 ), zinc oxide (ZnO), tin oxide (SnO 2 ), indium oxide (In 2 O 3 ), and the like.
  • the solvent used for dissolving BX 2 is any one of N,N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), N-methylpyrrolidone (NMP), and ⁇ -butyrolactone (GBL).
  • the precursor concentration is 0.5-2M, and the obtained BX 2 film has a thickness of 50-300 nm.
  • the solution method includes, but is not limited to, a spin coating method, a blade coating method, a slit coating method, a spray pyrolysis method, and the like.
  • the purpose of selecting quartz sand is that in the process of preparing a perovskite film by vapor phase deposition, the uneven distribution of the precursor AX leads to the uneven reaction of the perovskite film, and the present invention
  • the selected quartz sand particles are added to the evaporation source as a spreading "skeleton", and then the AX precursor powder particles are slowly filled therein to be evenly distributed in the evaporation source, and the prepared perovskite film is dense and uniform.
  • the quartz sand used in the present invention is a uniform-sized quartz sand particle which is screened through a mesh having a size ranging from 0.5 to 4.75 mm.
  • the thickness of the metal halide film BX 2 is d1, the area as S1, density ⁇ 1, relative molecular mass of Ml; AX precursor evaporation deposition surface 2 BX, under the assumption that not react with the formation of a 2 BX
  • the film formed by AX has a film thickness d2, an area of S2, a density of ⁇ 2, and a relative molecular mass of M2.
  • the amount of the substance of the precursor AX is the amount of the substance of the precursor AX.
  • the thickness of the metal halide BX 2 film we can obtain the evaporation thickness of the theoretically required precursor AX, and then obtain the desired perovskite film by controlling the reaction rate.
  • Stepwise evaporation of the precursor AX The substrate of the PbI 2 film prepared in the step 3) was sandwiched on the upper heating stage 103 in the evaporation chamber 100, and the PbI 2 film was faced downward. After closing the door, a vacuum is applied and the upper heating stage 104 is heated to maintain the temperature in the range of 50-100 °C. When the pressure sensor 103 detects that the degree of vacuum reaches the order of 10 -5 Pa, the FAI is first evaporated in the order of the ionic radius size R FAI >R MABr >R CsI .
  • the container shutter 108 on the FAI evaporation source container 107 is opened, and current is applied to the evaporation source to raise its temperature, and the evaporation rate of the FAI evaporation source is detected by the evaporation rate sensor 109.
  • the sample baffle 106 was opened, and FAI was deposited on the surface of the PbI 2 for reaction for 15 minutes, and then the sample baffle 106 and the container baffle 108 of the FAI evaporation source were turned off and the heating power was turned on.
  • the container baffle 108 of the MABr evaporation source vessel 107 and the heating current were turned on, and the MABr began to evaporate when the evaporation rate of the MABr reached At this time, the sample baffle 106 was opened, and MABr was deposited on the surface of the substrate sample to further react with PbI 2 , and after 15 minutes, the sample baffle 106 was closed while the container baffle 108 of the MABr evaporation source was turned off and the heating power was turned off.
  • the container baffle 108 of the CsI evaporation source vessel 107 and the heating current were turned on, and CsI began to evaporate when the CsI evaporation rate reached
  • the sample baffle 106 was opened, and CsI was deposited on the surface of the substrate sample to further react with the unreacted PbI 2 , and after 15 minutes, the sample baffle 106 was closed, while the container baffle 108 of the CsI evaporation source and the heating power source were turned off.
  • the vapor deposition chamber 100 was vented, and the door was opened to take out the substrate sample to obtain a dense and bright mixed perovskite film.
  • the prepared sample was scanned by scanning electron microscopy (SEM). As shown in Fig. 2, the perovskite film had coarse crystal grains, the size reached the micron level, and was dense and flat, showing good crystal quality.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

一种太阳能电池薄膜的制备设备,包括蒸镀舱,在蒸镀舱的内底面设置至少一个蒸发源容器及其容器挡板,在蒸发源容器内放置有用于制备太阳能电池薄膜的蒸发物,在蒸发源容器上设置有加热蒸发装置使得其内的蒸发物被加热蒸发;在蒸镀舱的内顶面设置上加热台和样品挡板,上加热台给基片样品加热,样品挡板设置在基片样品的下部;在蒸镀舱上还设置有真空抽气管道以及用于测试蒸发物蒸发量的蒸发速率传感器,蒸发速率传感器设置在蒸发源容器的上方且位于样品挡板与容器挡板之间。还公开了一种太阳能电池薄膜的制备方法以及太阳能电池的制备方法。

Description

一种太阳能电池薄膜的制备设备及其制备方法 技术领域
本发明属于钙钛矿薄膜太阳能电池制造技术领域,特别涉及一种太阳能电池薄膜的制备设备及其制备方法。
背景技术
当前,人类发展面临着化石能源日益紧缺和环境污染愈发严重的双重压力,开发可再生型新能源势在必行。在各种新能源技术中,光伏发电无疑是最具前景的方向之一。在众多的太阳能电池里,钙钛矿太阳能电池自2009年首次报道至今,其光电转化效率已从最初的3.8%跃升至22.1%(NREL chart,http://www.nrel.gov/ncpv/images/efficiency_chart.jpg.),成为光伏行业的一颗“新星”。这种基于钙钛矿结构的有机金属卤化物ABX 3(常见的组成为A=甲胺(CH 3NH 3 +(MA))、甲脒(CH 3(NH2) 2 +(FA))、铯(Cs +)、铷(Rb +);B=铅(Pb 2+)、锡(Sn 2+)、锗(Ge 2+);X=氯(Cl -)、溴(Br -)、碘(I -))不仅具有优异的光电性能,还可实现低温溶液法制备,且原料丰富,成本低廉,其电池组件的制造成本有望达到目前晶硅太阳能电池的1/3-1/5,显示出巨大的商业价值。
在钙钛矿太阳能电池中,钙钛矿薄膜质量的好坏直接影响电池性能的优劣。目前,钙钛矿薄膜的制备方法主要分为两大类:溶液法和气相法。溶液法分为一步溶液法和两步溶液法。由于一步溶液法不能控制钙钛矿薄膜的结晶过程,故而薄膜的均匀性和重复性较差。两步溶液法在制备时对操作手法要求较高,且材料用量大,不适合大尺寸组件的生产。气相法主要包括:双源气相沉积法、化学气相沉积法等。由于气相法制备的钙钛矿薄膜结晶质量好,均匀致密,可实现规模化生产,因而在钙钛矿产业化的进程中极具潜力,并已在其他类型的薄膜太阳能电池,如铜铟镓硒(CIGS)、碲化镉(CdTe)、砷化镓(GaAs)等薄膜太阳能电池的工业化生产中得到广泛应用。
在已经报道的用气相法制备钙钛矿薄膜的工作中,双源气相沉积法因要求高真空,且碘化铅(PbI 2)气体有毒,需严格控制蒸镀室的密闭性,因而增加了制备工艺的成本。化学气相沉积法在沉积过程中需要辅助气体,使得蒸发的AX(A=MA、FA、Cs、Rb等,X=Cl、Br、I等)前驱物容易出现沉积不均匀的问题,且基片的摆放位置也会影响薄膜质量,造成同批次样品的薄膜质量可能不一致的问题。
另一方面,从钙钛矿材料本身来讲,当前使用最多的钙钛矿材料是MAPbI 3,此种材料虽 易于制备,但器件效率一直没有进入高效率(大于20%)行列,且对水、氧的敏感度较高。FAPbI 3的禁带宽度更接近理想带宽,但其室温下就会发生相转变,生成无光活性的“黄相”(δ相),因此,一个成功的策略是将MA和FA共混,制备MA xFA (1-x)PbX 3混合型钙钛矿材料,其材料稳定性和电池效率都有所提升。(Jeon N.J.,Noh J.H.,Seok S.I.et al.Compositional engineering of perovskite materials for high-performance solar cells[J].Nature,2015,517(7535):476-80)。然而MA/FA共混钙钛矿材料的稳定性还是不能满足要求,为此将金属离子铯(Cs)引入钙钛矿体系,制备ABX 3中A位的三相共混型钙钛矿材料,可以进一步提高钙钛矿电池的效率和稳定性。(Michael Saliba et al.Cesium-containing Triple Cation Perovskite Solar Cells:Improved Stability,Reproducibility and High Efficiency[J].Energy Environ.Sci.,2016,9,1989-1997)。然而,目前制备上述三相共混型钙钛矿薄膜都是采用溶液法制备,还未见用气相法制备,而气相法相比溶液法可更精确地控制不同组分的含量,更少地受到水氧的影响,制备出的膜也更致密均匀,适合大规模产业化的生产。
发明内容
本发明所要解决的技术问题在于,提供一种太阳能电池薄膜的制备设备及其制备方法,溶液辅助气相沉积法制备混合型钙钛矿薄膜,制备过程分两步进行,先在沉积有载流子传输层(空穴传输层或电子传输层)的基底上通过溶液法制备金属卤化物(BX 2)薄膜,之后在制备好BX 2薄膜的基片上将蒸发的前驱物AX分子通过气相沉积方式与金属卤化物BX 2薄膜的分子反应生成混合型钙钛矿薄膜层,此混合型钙钛矿薄膜材料结晶质量良好、致密均匀。
本发明是这样实现的,提供一种太阳能电池薄膜的制备设备,包括中空且密封的蒸镀舱,在所述蒸镀舱的内底面设置至少一个蒸发源容器及其容器挡板,在所述蒸发源容器内放置有用于制备太阳能电池薄膜的蒸发物,所述容器挡板设置在蒸发源容器的顶部并通过控制装置自动打开或关闭蒸发源容器,在所述蒸发源容器上设置有加热蒸发装置使得其内的蒸发物被加热蒸发,所述加热蒸发装置被控制装置所控制;在所述蒸镀舱的内顶面设置上加热台和样品挡板,在所述上加热台上设置了用于固定基片样品的样品夹,所述上加热台给基片样品加热,所述样品挡板设置在基片样品的下部,通过控制装置自动遮挡或显露基片样品;在所述蒸镀舱上还设置有真空抽气管道以及用于测试蒸发物蒸发量的蒸发速率传感器,所述蒸发速率传感器设置在蒸发源容器的上方且位于样品挡板与容器挡板之间。
进一步地,在所述蒸镀舱的内底面设置有三个蒸发源容器及其容器挡板,在相邻两个蒸发源容器之间设置了可拆卸隔板,将三个蒸发源容器进行空间上的相互隔离,在所述每个蒸 发源容器的上方均设置蒸发速率传感器。
进一步地,在所述蒸镀舱的内顶面还设置有旋转轴,所述上加热台设置在旋转轴上,所述旋转轴带动上加热台和基片样品同时转动。
进一步地,在所述蒸镀舱上还设置有用于测试蒸镀舱内真空度的压强传感器。
本发明是这样实现的,还提供太阳能电池薄膜的制备方法,采用如前所述的太阳能电池薄膜的制备设备,所制备的是钙钛矿太阳能电池薄膜,包括如下步骤:先在沉积有载流子传输层的基片样品上通过溶液法制备金属卤化物BX 2薄膜,之后将基片样品传送到蒸镀舱中,向蒸发源容器内加入直径在0.5-5mm范围内的筛选过的石英砂颗粒,铺满蒸发源容器的底部,厚度在1-20mm范围,然后向蒸发源容器中缓慢填充前驱物AX,开启加热蒸发装置给前驱物AX加热使其蒸发,并借助蒸发速率传感器时时监控其蒸发速率,开启上加热台给基片样品加热,基片样品的加热温度范围为50-100℃,蒸镀舱内的真空度控制在10 -6Pa-10 5Pa之间,蒸发的前驱物AX分子通过气相沉积与金属卤化物BX 2薄膜的分子反应生成混合型钙钛矿薄膜层;
其中,BX 2为二价金属卤化物,其中B为二价金属阳离子,包括铅、锡、钨、铜、锌、镓、锗、砷、硒、铑、钯、银、镉、铟、锑、锇、铱、铂、金、汞、铊、铋、钋中的任意一种,X为碘、溴、氯、砹中的至少一种阴离子,A为铯、铷、胺基、脒基或者碱族中至少一种阳离子。
进一步地,所述前驱物AX蒸发速率控制在
Figure PCTCN2018087359-appb-000001
反应时间5-100min。
本发明是这样实现的,还提供一种太阳能电池薄膜的制备方法,采用如前所述的太阳能电池薄膜的制备设备,所制备的是钙钛矿太阳能电池薄膜,包括如下步骤:先在沉积有载流子传输层的基片样品上通过溶液法制备金属卤化物BX 2薄膜,之后将基片样品传送到蒸镀舱中,向三个蒸发源容器内分别加入直径在0.5-5mm范围内的筛选过的石英砂颗粒,铺满蒸发源容器的底部,厚度在1-20mm范围,然后将离子半径大、中、小的前驱物AX分别缓慢填充到三个蒸发源容器中;开启加热蒸发装置按照离子半径大、中、小的顺序,依次给各个前驱物AX加热使其蒸发,并借助蒸发速率传感器时时监控其蒸发速率,开启上加热台给基片样品加热,基片样品的加热温度范围为50-100℃,蒸镀舱内的真空度控制在10 -6Pa-10 5Pa之间,蒸发的前驱物AX分子通过气相沉积与金属卤化物BX 2薄膜的分子反应生成混合型钙钛矿薄膜层;
其中,BX 2为二价金属卤化物,其中B为二价金属阳离子,包括铅、锡、钨、铜、锌、镓、锗、砷、硒、铑、钯、银、镉、铟、锑、锇、铱、铂、金、汞、铊、铋、钋中的任意一 种,X为碘、溴、氯、砹中的至少一种阴离子,A为铯、铷、胺基、脒基或者碱族中至少一种阳离子。
进一步地,在按照离子半径大、中、小的顺序,依次给各个前驱物AX加热使其蒸发的过程中,优先蒸发离子半径大的前驱物AX,蒸发速率控制在
Figure PCTCN2018087359-appb-000002
反应时间5-100min;接着蒸发离子半径中的前驱物AX,蒸发速率控制在
Figure PCTCN2018087359-appb-000003
反应时间5-60min;最后蒸发离子半径小的前驱物AX,蒸发速率控制在
Figure PCTCN2018087359-appb-000004
反应时间为5-30min。
本发明是这样实现的,还提供一种太阳能电池的制备方法,所述太阳能电池包括基片,在所述基片上依次设置有空穴传输层或电子传输层、钙钛矿薄膜层、电子传输层或空穴传输层以及金属导电层,所述钙钛矿薄膜层包括采用如前所述的太阳能电池薄膜的制备设备制备的钙钛矿薄膜,所述太阳能电池的制备方法包括如下步骤:
步骤一:在沉积有空穴传输层或电子传输层的基片上通过溶液法制备金属卤化物BX 2薄膜;
步骤二:采用如前述的太阳能电池薄膜的制备设备在基片的金属卤化物BX 2薄膜上气相沉积前驱物AX,以制备混合型钙钛矿薄膜层,包括:将基片传送到蒸镀舱中,向蒸发源容器内加入直径在0.5-5mm范围内的筛选过的石英砂颗粒,铺满蒸发源容器的底部,厚度在1-20mm范围,然后向蒸发源容器中缓慢填充前驱物AX,开启加热蒸发装置给前驱物AX加热使其蒸发,并借助蒸发速率传感器时时监控其蒸发速率,开启上加热台给基片加热,基片的加热温度范围为50-100℃,蒸镀舱内的真空度控制在10 -6Pa-10 5Pa之间;
步骤三:在基片的所述钙钛矿薄膜层上制备电子传输层或空穴传输层;
步骤四:在所述电子传输层或空穴传输层上制备金属导电层。
本发明是这样实现的,还提供一种太阳能电池的制备方法,所述太阳能电池包括基片,在所述基片上依次设置有空穴传输层或电子传输层、钙钛矿薄膜层、电子传输层或空穴传输层以及金属导电层,所述钙钛矿薄膜层包括采用如前所述的太阳能电池薄膜的制备设备制备的钙钛矿薄膜,所述太阳能电池的制备方法包括如下步骤:
第一步:在沉积有空穴传输层或电子传输层的基片上通过溶液法制备金属卤化物BX 2薄膜;
第二步:采用如前述的太阳能电池薄膜的制备设备在基片的金属卤化物BX 2薄膜上气相沉积前驱物AX,以制备混合型钙钛矿薄膜层,包括:将基片传送到蒸镀舱中,向三个蒸发源容器内分别加入直径在0.5-5mm范围内的筛选过的石英砂颗粒,铺满蒸发源容器的底部,厚度在1-20mm范围,然后将离子半径大、中、小的前驱物AX分别缓慢填充到三个蒸发源 容器中;开启加热蒸发装置按照离子半径大、中、小的顺序,依次给各个前驱物AX加热使其蒸发,并借助蒸发速率传感器时时监控其蒸发速率,开启上加热台给基片加热,基片的加热温度范围为50-100℃,蒸镀舱内的真空度控制在10 -6Pa-10 5Pa之间;
第三步:在基片的所述钙钛矿薄膜层上制备电子传输层或空穴传输层;
第四步:在所述电子传输层或空穴传输层上制备金属导电层。
与现有技术相比,本发明的太阳能电池薄膜的制备设备及其制备方法,具有如下特点:
1、采用石英砂辅助前驱物AX的铺展,使前驱物AX均匀分布于蒸发源容器中,有利于钙钛矿薄膜的均匀反应;
2、首次运用分步蒸发法依次蒸发三种前驱物AX,通过精确控制各蒸发源的蒸发速率,可得到结晶质量好、均匀致密的混合型钙钛矿薄膜。将离子半径不同的三种前驱物AX,按照半径从大到小的顺序,依次通过气相沉积与金属卤化物BX 2反应生成混合型钙钛矿薄膜材料。本发明可精确控制钙钛矿薄膜不同组分的含量,使得制备的钙钛矿薄膜更少地受到水氧的影响,制备出的混合型钙钛矿薄膜材料结晶质量良好、致密均匀,适合大规模产业化的生产。
附图说明
图1为本发明的太阳能电池薄膜的制备设备一较佳实施例的平面示意图;
图2为采用本发明的太阳能电池薄膜的制备方法制备的混合型钙钛矿薄膜样品的扫描电子显微镜(SEM)拍摄图像。
具体实施方式
为了使本发明所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
请参照图1所示,本发明太阳能电池薄膜的制备设备的较佳实施例,包括中空且密封的蒸镀舱100,在所述蒸镀舱100的内底面设置至少一个蒸发源容器107及其容器挡板108。在所述蒸发源容器107内放置有用于制备太阳能电池薄膜的蒸发物。所述容器挡板108设置在蒸发源容器107的顶部并通过控制装置自动打开或关闭蒸发源容器107。在所述蒸发源容器107上设置有加热蒸发装置使得其内的蒸发物被加热蒸发,所述加热蒸发装置被控制装置所控制。蒸发源容器107作为蒸发源,其形状为圆柱体或立方体的容器,可拆卸,通过外加电 流可实现程序控温。容器挡板108为蒸发源容器107上的挡板,蒸发源开始蒸发时打开挡板,蒸发结束关闭挡板。
在所述蒸镀舱100的内顶面设置上加热台104和样品挡板106。在所述上加热台104上设置了用于固定基片样品的样品夹(图中未示出)。所述上加热台104给基片样品加热,所述基片样品被设置在蒸发源容器107的上方。所述样品挡板106设置在基片样品的下部,通过控制装置自动遮挡或显露基片样品。样品挡板106由两个半圆形挡板组成,开始进行钙钛矿的反应时打开,完成反应时关闭。
在所述蒸镀舱100上还设置有真空抽气管道101、放气管道102、用于测试蒸镀舱内真空度的压强传感器103以及用于测试蒸发物蒸发量的蒸发速率传感器109。所述蒸发速率传感器109设置在蒸发源容器107的上方且位于样品挡板106与容器挡板108之间。真空抽气管道101一端与蒸镀舱100的内部连通,另一端连接涡轮分子泵,起抽真空的作用。放气管道102通过控制阀控制开闭,抽真空时关闭,完成蒸镀时打开,向舱内放气。压强传感器103采用束流规,探测蒸镀舱100的舱内压强,将数据传输到计算机,时时显示真空度。蒸发速率传感器109采用金振片,探测蒸发源容器107处的蒸发物的蒸发速率。
在本发明的另一个实施例,在所述蒸镀舱100的内底面设置有三个蒸发源容器107及其容器挡板108,在相邻两个蒸发源容器107之间设置了可拆卸隔板110,将三个蒸发源容器107进行空间上的相互隔离。在所述每个蒸发源容器107的上方均设置蒸发速率传感器109。在所述蒸镀舱100的内顶面还设置有旋转轴105。所述上加热台104设置在旋转轴105上,所述旋转轴105带动上加热台104和基片样品同时匀速转动。可拆卸隔板110将三个蒸发源进行空间上的隔离,减少蒸发过程中的相互干扰。
本发明还公开了太阳能电池薄膜的制备方法,采用如前所述的太阳能电池薄膜的制备设备,所制备的是钙钛矿太阳能电池薄膜,包括如下步骤:
先在沉积有载流子传输层的基片样品上通过溶液法制备金属卤化物BX 2薄膜。之后将基片样品传送到蒸镀舱100中,向蒸发源容器107内加入直径在0.5-5mm范围内的筛选过的石英砂颗粒,铺满蒸发源容器107的底部,厚度在1-20mm范围。然后向蒸发源容器107中缓慢填充前驱物AX,使其均匀分散于蒸发源容器107中。开启加热蒸发装置给前驱物AX加热使其蒸发,并借助蒸发速率传感器109时时监控其蒸发速率。开启上加热台104给基片样品加热,基片样品的加热温度范围为50-100℃。蒸镀舱100内的真空度控制在10 -6Pa-10 5Pa之间。蒸发的前驱物AX分子通过气相沉积与金属卤化物BX 2薄膜的分子反应生成混合型钙钛矿薄膜层。所述前驱物AX蒸发速率控制在
Figure PCTCN2018087359-appb-000005
反应时间5-100min。
其中,BX 2为二价金属卤化物,其中B为二价金属阳离子,包括铅、锡、钨、铜、锌、镓、锗、砷、硒、铑、钯、银、镉、铟、锑、锇、铱、铂、金、汞、铊、铋、钋中的任意一种。X为碘、溴、氯、砹中的至少一种阴离子。A为铯、铷、胺基、脒基或者碱族中至少一种阳离子。
本发明还公开了一种太阳能电池薄膜的制备方法,采用如前所述的太阳能电池薄膜的制备设备,所制备的是钙钛矿太阳能电池薄膜,包括如下步骤:
先在沉积有载流子传输层的基片样品上通过溶液法制备金属卤化物BX 2薄膜。之后将基片样品传送到蒸镀舱100中,向三个蒸发源容器107内分别加入直径在0.5-5mm范围内的筛选过的石英砂颗粒,铺满蒸发源容器107的底部,厚度在1-20mm范围。然后将离子半径大、中、小的前驱物AX分别缓慢填充到三个蒸发源容器107中,使其均匀分散于蒸发源容器107中。开启加热蒸发装置按照离子半径大、中、小的顺序,依次给各个前驱物AX加热使其蒸发,并借助蒸发速率传感器109时时监控其蒸发速率。开启上加热台104给基片样品加热,基片样品的加热温度范围为50-100℃。蒸镀舱内的真空度控制在10 -6Pa-10 5Pa之间。蒸发的前驱物AX分子通过气相沉积与金属卤化物BX 2薄膜的分子反应生成混合型钙钛矿薄膜层。
其中,BX 2为二价金属卤化物,其中B为二价金属阳离子,包括铅、锡、钨、铜、锌、镓、锗、砷、硒、铑、钯、银、镉、铟、锑、锇、铱、铂、金、汞、铊、铋、钋中的任意一种。X为碘、溴、氯、砹中的至少一种阴离子。A为铯、铷、胺基、脒基或者碱族中至少一种阳离子。
在按照离子半径大、中、小的顺序,依次给各个前驱物AX加热使其蒸发的过程中,优先蒸发离子半径大的前驱物AX,蒸发速率控制在
Figure PCTCN2018087359-appb-000006
反应时间5-100min。接着蒸发离子半径中的前驱物AX,蒸发速率控制在
Figure PCTCN2018087359-appb-000007
反应时间5-60min。最后蒸发离子半径小的前驱物AX,蒸发速率控制在
Figure PCTCN2018087359-appb-000008
反应时间为5-30min。
本发明还公安开了一种太阳能电池的制备方法,所述太阳能电池包括基片,在所述基片上依次设置有空穴传输层或电子传输层、钙钛矿薄膜层、电子传输层或空穴传输层以及金属导电层。所述钙钛矿薄膜层包括采用如前所述的太阳能电池薄膜的制备设备制备的钙钛矿薄膜,所述太阳能电池的制备方法包括如下步骤:
步骤一:在沉积有空穴传输层或电子传输层的基片上通过溶液法制备金属卤化物BX 2薄膜。
步骤二:采用如前述的太阳能电池薄膜的制备设备在基片的金属卤化物BX 2薄膜上气相沉积前驱物AX,以制备混合型钙钛矿薄膜层,包括:将基片传送到蒸镀舱100中,向蒸发 源容器107内加入直径在0.5-5mm范围内的筛选过的石英砂颗粒,铺满蒸发源容器的底部,厚度在1-20mm范围。然后向蒸发源容器107中缓慢填充前驱物AX,使其均匀分散于蒸发源容器107中。开启加热蒸发装置给前驱物AX加热使其蒸发,并借助蒸发速率传感器109时时监控其蒸发速率。开启上加热台104给基片加热,基片的加热温度范围为50-100℃,蒸镀舱100内的真空度控制在10 -6Pa-10 5Pa之间。
步骤三:在基片的所述钙钛矿薄膜层上制备电子传输层或空穴传输层。
步骤四:在所述电子传输层或空穴传输层上制备金属导电层。
本发明是这样实现的,还提供一种太阳能电池的制备方法,所述太阳能电池包括基片,在所述基片上依次设置有空穴传输层或电子传输层、钙钛矿薄膜层、电子传输层或空穴传输层以及金属导电层,所述钙钛矿薄膜层包括采用如前所述的太阳能电池薄膜的制备方法制备的钙钛矿薄膜,所述太阳能电池的制备方法包括如下步骤:
第一步:在沉积有空穴传输层或电子传输层的基片上通过溶液法制备金属卤化物BX 2薄膜。
第二步:采用如前述的太阳能电池薄膜的制备设备在基片的金属卤化物BX 2薄膜上气相沉积前驱物AX,以制备混合型钙钛矿薄膜层,包括:将基片传送到蒸镀舱100中,向三个蒸发源容器107内分别加入直径在0.5-5mm范围内的筛选过的石英砂颗粒,铺满蒸发源容器的底部,厚度在1-20mm范围。然后将离子半径大、中、小的前驱物AX分别缓慢填充到三个蒸发源容器107中,使其均匀分散于蒸发源容器107中。开启加热蒸发装置按照离子半径大、中、小的顺序,依次给各个前驱物AX加热使其蒸发,并借助蒸发速率传感器109时时监控其蒸发速率。开启上加热台104给基片加热,基片的加热温度范围为50-100℃,蒸镀舱100内的真空度控制在10 -6Pa-10 5Pa之间。
第三步:在基片的所述钙钛矿薄膜层上制备电子传输层或空穴传输层。
第四步:在所述电子传输层或空穴传输层上制备金属导电层。
本发明采用溶液辅助气相沉积法制备混合型钙钛矿太阳能电池,首次采用分步蒸发法依次蒸发三种前驱物AX,制备得到致密均匀、无针孔的混合型(A 1) x((A 2) y(A 3) (1-y)) (1-x)BX 3(A位三种离子半径大小依次为R A1<R A2<R A3,x=0-0.2,y=0-0.3)钙钛矿薄膜,解决了溶液法制备过程中存在的薄膜覆盖不完全、结晶不一致、容易受水氧影响等问题。
在第一步中,基片选用掺氟的氧化锡透明导电玻璃(FTO)或掺锡的氧化铟透明导电玻璃(ITO)或柔性基底如聚对苯二甲酸乙二酯(PET)、聚苯二甲酸乙二醇酯(PEN)等。空穴传输材料包括但不限于氧化镍(NiO)、氧化铜(CuO)、氧化钼(MoO 3)、氧化钨(WO 3)、 五氧化二钒(V 2O 5)、聚3,4-乙烯二氧噻吩(PEDOT)等。电子传输材料包括但不限于二氧化钛(TiO 2)、氧化锌(ZnO)、氧化锡(SnO 2)、氧化铟(In 2O 3)等。溶解BX 2所用溶剂为N,N-二甲基甲酰胺(DMF)、二甲基亚砜(DMSO)、N-甲基吡咯烷酮(NMP)、γ-丁内酯(GBL)中的任意一种,前驱液浓度为0.5-2M,得到的BX 2薄膜厚度为50-300nm。溶液法包括但不限于旋涂法、刀片刮涂法、狭缝式涂布法、喷雾热解法等制备方法。
在第二步中,选用石英砂的目的在于,在气相沉积法制备钙钛矿薄膜的过程中,普遍存在前驱物AX铺展不均匀导致钙钛矿薄膜反应不均匀的问题,为此本发明通过向蒸发源中加入精选石英砂颗粒作为铺展“骨架”,然后向其中缓慢填充AX前驱物粉末颗粒,使其均匀分布于蒸发源中,制备出的钙钛矿薄膜致密均匀。本发明所用石英砂是通过尺寸范围为0.5-4.75mm的筛孔筛选出的尺寸均一的石英砂颗粒。
前驱物AX的理论蒸发速率由以下公式推导得出:
设金属卤化物BX 2薄膜的厚度为d1,面积为S1,密度为ρ1,相对分子质量为M1;蒸发的前驱物AX沉积在BX 2表面,在不与BX 2进行反应的假设下会形成一层薄膜,设AX形成的薄膜厚度为d2,面积为S2,密度为ρ2,相对分子质量为M2。
则金属卤化物BX 2的物质的量为
Figure PCTCN2018087359-appb-000009
前驱物AX的物质的量为
Figure PCTCN2018087359-appb-000010
当前驱物AX与金属卤化物BX 2按照1:1的物质的量反应时,有n1=n2,
又知S1=S2,所以得到
Figure PCTCN2018087359-appb-000011
为一定值。
因此,根据金属卤化物BX 2薄膜的厚度,我们可以得到理论所需前驱物AX的蒸发厚度,进而通过控制反应速率,得到理想的钙钛矿薄膜。
为进一步详细说明本发明,以下将结合附图1,通过列举实施例作进一步说明:
1)衬底的清洗:取5×5cm的ITO透明导电玻璃,依次经过洗涤剂、去离子水、丙酮、异丙醇各超声清洗10min,氮气枪吹干后放入紫外臭氧设备处理10min。
2)空穴传输层的制备:将臭氧处理后的ITO透明导电玻璃放于旋涂仪上,取3mL的聚3,4-乙烯二氧噻吩(PEDOT),过滤后滴加到ITO表面直到将表面完全覆盖,然后设置4000rpm的旋涂速度旋涂40s,旋涂完放150℃热台上烘烤10min。
3)制备金属卤化物BX 2薄膜:以PbI 2为例,配置1M浓度的PbI 2的N,N-二甲基甲酰胺 溶液,滴加到制备好空穴传输层的基底上进行旋涂,旋涂速度4500rpm,时间60s,然后100℃烘烤5min。
4)蒸发源容器107中前驱物AX的填装:先向蒸镀舱100中的三个蒸发源容器107中分别加入直径在1mm左右的筛选过的石英砂颗粒,铺满蒸发源底部,厚度在1-20mm范围,然后向三个蒸发源容器107中分别填充FAI、MABr和CsI三种前驱物AX的粉末颗粒,使前驱物AX均匀分散在蒸发源容器107中。
5)前驱物AX的分步蒸发:将步骤3)中制备好PbI 2薄膜的基片夹在蒸镀舱100中的上加热台103上,PbI 2薄膜面朝下。关上舱门后抽真空,并加热上加热台104,使其温度维持在50-100℃范围内。通过压强传感器103探测到真空度达到10 -5Pa量级时,按照离子半径大小的顺序R FAI>R MABr>R CsI,先蒸发FAI。打开盛装有FAI蒸发源容器107上的容器挡板108,并开始对此蒸发源加载电流,使其温度上升,通过蒸发速率传感器109探测FAI蒸发源的蒸发速率。当FAI的蒸发速率达到
Figure PCTCN2018087359-appb-000012
时,打开样品挡板106,使FAI沉积到PbI 2表面进行反应,反应时间15分钟,然后关闭样品挡板106和FAI蒸发源的容器挡板108以及加热电源。30分钟后,打开MABr蒸发源容器107的容器挡板108及加热电流,MABr开始蒸发,当MABr的蒸发速率达到
Figure PCTCN2018087359-appb-000013
时,打开样品挡板106,使MABr沉积到基片样品表面与PbI 2进一步反应,15分钟后关闭样品挡板106,同时关闭MABr蒸发源的容器挡板108和加热电源。30分钟后,打开CsI蒸发源容器107的容器挡板108及加热电流,CsI开始蒸发,当CsI蒸发速率达到
Figure PCTCN2018087359-appb-000014
时,打开样品挡板106,使CsI沉积到基片样品表面与未反应完全的PbI 2进一步反应,15分钟后关闭样品挡板106,同时关闭CsI蒸发源的容器挡板108和加热电源。30分钟后对蒸镀舱100进行放气,打开舱门取出基片样品,得到致密光亮的混合型钙钛矿薄膜。
制备的样品扫描电子显微镜(SEM)拍摄图像如图2所示,钙钛矿薄膜晶粒粗大,尺寸达到微米级别,且致密平整,显示出良好的结晶质量。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种太阳能电池薄膜的制备设备,包括中空且密封的蒸镀舱,其特征在于,在所述蒸镀舱的内底面设置至少一个蒸发源容器及其容器挡板,在所述蒸发源容器内放置有用于制备太阳能电池薄膜的蒸发物,所述容器挡板设置在蒸发源容器的顶部并通过控制装置自动打开或关闭蒸发源容器,在所述蒸发源容器上设置有加热蒸发装置使得其内的蒸发物被加热蒸发,所述加热蒸发装置被控制装置所控制;在所述蒸镀舱的内顶面设置上加热台和样品挡板,在所述上加热台上设置了用于固定基片样品的样品夹,所述上加热台给基片样品加热,所述样品挡板设置在基片样品的下部,通过控制装置自动遮挡或显露基片样品;在所述蒸镀舱上还设置有真空抽气管道以及用于测试蒸发物蒸发量的蒸发速率传感器,所述蒸发速率传感器设置在蒸发源容器的上方且位于样品挡板与容器挡板之间。
  2. 如权利要求1所述的太阳能电池薄膜的制备设备,其特征在于,在所述蒸镀舱的内底面设置有三个蒸发源容器及其容器挡板,在相邻两个蒸发源容器之间设置了可拆卸隔板,将三个蒸发源容器进行空间上的相互隔离,在所述每个蒸发源容器的上方均设置蒸发速率传感器。
  3. 如权利要求2所述的太阳能电池薄膜的制备设备,其特征在于,在所述蒸镀舱的内顶面还设置有旋转轴,所述上加热台设置在旋转轴上,所述旋转轴带动上加热台和基片样品同时转动。
  4. 如权利要求2所述的太阳能电池薄膜的制备设备,其特征在于,在所述蒸镀舱上还设置有用于测试蒸镀舱内真空度的压强传感器。
  5. 一种太阳能电池薄膜的制备方法,其特征在于,采用如权利要求1至4中任意一项所述的太阳能电池薄膜的制备设备,所制备的是钙钛矿太阳能电池薄膜,包括如下步骤:先在沉积有载流子传输层的基片样品上通过溶液法制备金属卤化物BX 2薄膜,之后将基片样品传送到蒸镀舱中,向蒸发源容器内加入直径在0.5-5mm范围内的筛选过的石英砂颗粒,铺满蒸发源容器的底部,厚度在1-20mm范围,然后向蒸发源容器中缓慢填充前驱物AX,开启加热蒸发装置给前驱物AX加热使其蒸发,并借助蒸发速率传感器时时监控其蒸发速率,开启上加热台给基片样品加热,基片样品的加热温度范围为50-100℃,蒸镀舱内的真空度控制在10 -6Pa-10 5Pa之间,蒸发的前驱物AX分子通过气相沉积与金属卤化物BX 2薄膜的分子反应生成混合型钙钛矿薄膜层;
    其中,BX 2为二价金属卤化物,其中B为二价金属阳离子,包括铅、锡、钨、铜、锌、镓、锗、砷、硒、铑、钯、银、镉、铟、锑、锇、铱、铂、金、汞、铊、铋、钋中的任意一种,X为碘、溴、氯、砹中的至少一种阴离子,A为铯、铷、胺基、脒基或者碱族中至少一种阳离子。
  6. 如权利要求5所述的太阳能电池薄膜的其制备方法,其特征在于,所述前驱物AX蒸发速率控制在
    Figure PCTCN2018087359-appb-100001
    反应时间5-100min。
  7. 一种太阳能电池薄膜的制备方法,其特征在于,采用如权利要求2至4中任意一项所述的太阳能电池薄膜的制备设备,所制备的是钙钛矿太阳能电池薄膜,包括如下步骤:先在沉积有载流子传输层的基片样品上通过溶液法制备金属卤化物BX 2薄膜,之后将基片样品传送到蒸镀舱中,向三个蒸发源容器内分别加入直径在0.5-5mm范围内的筛选过的石英砂颗粒,铺满蒸发源容器的底部,厚度在1-20mm范围,然后将离子半径大、中、小的前驱物AX分别缓慢填充到三个蒸发源容器中;开启加热蒸发装置按照离子半径大、中、小的顺序,依次给各个前驱物AX加热使其蒸发,并借助蒸发速率传感器时时监控其蒸发速率,开启上加热台给基片样品加热,基片样品的加热温度范围为50-100℃,蒸镀舱内的真空度控制在10 -6Pa-10 5Pa之间,蒸发的前驱物AX分子通过气相沉积与金属卤化物BX 2薄膜的分子反应生成混合型钙钛矿薄膜层;
    其中,BX 2为二价金属卤化物,其中B为二价金属阳离子,包括铅、锡、钨、铜、锌、镓、锗、砷、硒、铑、钯、银、镉、铟、锑、锇、铱、铂、金、汞、铊、铋、钋中的任意一种,X为碘、溴、氯、砹中的至少一种阴离子,A为铯、铷、胺基、脒基或者碱族中至少一种阳离子。
  8. 如权利要求7所述的太阳能电池薄膜的其制备方法,其特征在于,在按照离子半径大、中、小的顺序,依次给各个前驱物AX加热使其蒸发的过程中,优先蒸发离子半径大的前驱物AX,蒸发速率控制在
    Figure PCTCN2018087359-appb-100002
    反应时间5-100min;接着蒸发离子半径中的前驱物AX,蒸发速率控制在
    Figure PCTCN2018087359-appb-100003
    反应时间5-60min;最后蒸发离子半径小的前驱物AX,蒸发速率控制在
    Figure PCTCN2018087359-appb-100004
    反应时间为5-30min。
  9. 一种太阳能电池的制备方法,所述太阳能电池包括基片,在所述基片上依次设置有空穴传输层或电子传输层、钙钛矿薄膜层、电子传输层或空穴传输层以及金属导电层,其特征在于,所述钙钛矿薄膜层包括采用如权利要求1至4中任意一项所述的太阳能电池薄膜的制备设备制备的钙钛矿薄膜,所述太阳能电池的制备方法包括如下步骤:
    步骤一:在沉积有空穴传输层或电子传输层的基片上通过溶液法制备金属卤化物BX 2薄膜;
    步骤二:采用如权利要求1至4中任意一项所述的太阳能电池薄膜的制备设备在基片的金属卤化物BX 2薄膜上气相沉积前驱物AX,以制备混合型钙钛矿薄膜层,包括:将基片传送到蒸镀舱中,向蒸发源容器内加入直径在0.5-5mm范围内的筛选过的石英砂颗粒,铺满蒸发源容器的底部,厚度在1-20mm范围,然后向蒸发源容器中缓慢填充前驱物AX,开启加热 蒸发装置给前驱物AX加热使其蒸发,并借助蒸发速率传感器时时监控其蒸发速率,开启上加热台给基片加热,基片的加热温度范围为50-100℃,蒸镀舱内的真空度控制在10 -6Pa-10 5Pa之间;
    步骤三:在基片的所述钙钛矿薄膜层上制备电子传输层或空穴传输层;
    步骤四:在所述电子传输层或空穴传输层上制备金属导电层。
  10. 一种太阳能电池的制备方法,所述太阳能电池包括基片,在所述基片上依次设置有空穴传输层或电子传输层、钙钛矿薄膜层、电子传输层或空穴传输层以及金属导电层,其特征在于,所述钙钛矿薄膜层包括采用如权利要求2至4中任意一项所述的太阳能电池薄膜的制备设备制备的钙钛矿薄膜,所述太阳能电池的制备方法包括如下步骤:
    第一步:在沉积有空穴传输层或电子传输层的基片上通过溶液法制备金属卤化物BX 2薄膜;
    第二步:采用如权利要求2至4中任意一项所述的太阳能电池薄膜的制备设备在基片的金属卤化物BX 2薄膜上气相沉积前驱物AX,以制备混合型钙钛矿薄膜层,包括:将基片传送到蒸镀舱中,向三个蒸发源容器内分别加入直径在0.5-5mm范围内的筛选过的石英砂颗粒,铺满蒸发源容器的底部,厚度在1-20mm范围,然后将离子半径大、中、小的前驱物AX分别缓慢填充到三个蒸发源容器中;开启加热蒸发装置按照离子半径大、中、小的顺序,依次给各个前驱物AX加热使其蒸发,并借助蒸发速率传感器时时监控其蒸发速率,开启上加热台给基片加热,基片的加热温度范围为50-100℃,蒸镀舱内的真空度控制在10 -6Pa-10 5Pa之间;
    第三步:在基片的所述钙钛矿薄膜层上制备电子传输层或空穴传输层;
    第四步:在所述电子传输层或空穴传输层上制备金属导电层。
PCT/CN2018/087359 2017-09-22 2018-05-17 一种太阳能电池薄膜的制备设备及其制备方法 WO2019056780A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710862883.0 2017-09-22
CN201710862883.0A CN109536893A (zh) 2017-09-22 2017-09-22 一种太阳能电池薄膜的制备设备及其制备方法

Publications (1)

Publication Number Publication Date
WO2019056780A1 true WO2019056780A1 (zh) 2019-03-28

Family

ID=65811041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/087359 WO2019056780A1 (zh) 2017-09-22 2018-05-17 一种太阳能电池薄膜的制备设备及其制备方法

Country Status (2)

Country Link
CN (1) CN109536893A (zh)
WO (1) WO2019056780A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111925128A (zh) * 2020-08-11 2020-11-13 郑州大学 一种基于非溶剂全无机Pb基钙钛矿薄膜的制备方法
CN115505893B (zh) * 2022-09-28 2023-07-25 山东申华光学科技有限公司 一种基于光学镜片镀膜的镀膜机控制方法
CN115612991A (zh) * 2022-12-02 2023-01-17 杭州众能光电科技有限公司 一种等离子和电场协同的薄膜制备设备及制备工艺

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007224354A (ja) * 2006-02-23 2007-09-06 Hitachi Zosen Corp 真空蒸着方法および真空蒸着装置
KR20100118314A (ko) * 2009-04-28 2010-11-05 주식회사 선익시스템 진공증착장치 및 진공증착방법
KR20110024223A (ko) * 2009-09-01 2011-03-09 주식회사 선익시스템 증발 장치 및 이를 포함하는 진공 증착 장치
JP2013167007A (ja) * 2012-02-16 2013-08-29 Stanley Electric Co Ltd 多元蒸着装置
CN104233194A (zh) * 2013-06-13 2014-12-24 台积太阳能股份有限公司 蒸发装置和方法
CN105576131A (zh) * 2016-03-14 2016-05-11 华北电力大学 气相辅助溶液法制备界面修饰的钙钛矿太阳电池的方法
US20160254472A1 (en) * 2015-02-26 2016-09-01 Nanyang Technological University Perovskite thin films having large crystalline grains
CN105957965A (zh) * 2016-05-12 2016-09-21 东莞市联洲知识产权运营管理有限公司 一种无空穴传输层的高效稳定的钙钛矿太阳电池及其制备方法
CN106480422A (zh) * 2016-09-27 2017-03-08 西安交通大学 一种制备多晶钙钛矿薄膜的方法及太阳能电池器件
CN106967951A (zh) * 2017-03-28 2017-07-21 信利半导体有限公司 一种成膜装置、成膜方法及成膜源

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5025151B2 (ja) * 2005-03-23 2012-09-12 株式会社半導体エネルギー研究所 蒸着物の作製方法
JP5798171B2 (ja) * 2013-04-26 2015-10-21 ジージェイエム カンパニー リミテッド 量産用蒸発装置および方法
CN103526164B (zh) * 2013-10-23 2015-09-09 京东方科技集团股份有限公司 一种蒸镀设备
CN104762596A (zh) * 2014-01-06 2015-07-08 天津普利爱特真空镀膜有限公司 一种真空镀膜装置
EP3140873B1 (en) * 2014-05-05 2021-08-25 Okinawa Institute of Science and Technology School Corporation System for fabricating perovskite film for solar cell applications
CN105870339B (zh) * 2016-04-18 2018-04-13 河北大学 一种提高纯度、减少针孔的钙钛矿薄膜的制备方法
CN105826477B (zh) * 2016-05-12 2019-06-21 东莞市联洲知识产权运营管理有限公司 一种钙钛矿太阳能电池及其制备方法
CN105887020B (zh) * 2016-06-30 2019-04-02 光驰科技(上海)有限公司 多蒸发源镀膜装置及其镀膜方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007224354A (ja) * 2006-02-23 2007-09-06 Hitachi Zosen Corp 真空蒸着方法および真空蒸着装置
KR20100118314A (ko) * 2009-04-28 2010-11-05 주식회사 선익시스템 진공증착장치 및 진공증착방법
KR20110024223A (ko) * 2009-09-01 2011-03-09 주식회사 선익시스템 증발 장치 및 이를 포함하는 진공 증착 장치
JP2013167007A (ja) * 2012-02-16 2013-08-29 Stanley Electric Co Ltd 多元蒸着装置
CN104233194A (zh) * 2013-06-13 2014-12-24 台积太阳能股份有限公司 蒸发装置和方法
US20160254472A1 (en) * 2015-02-26 2016-09-01 Nanyang Technological University Perovskite thin films having large crystalline grains
CN105576131A (zh) * 2016-03-14 2016-05-11 华北电力大学 气相辅助溶液法制备界面修饰的钙钛矿太阳电池的方法
CN105957965A (zh) * 2016-05-12 2016-09-21 东莞市联洲知识产权运营管理有限公司 一种无空穴传输层的高效稳定的钙钛矿太阳电池及其制备方法
CN106480422A (zh) * 2016-09-27 2017-03-08 西安交通大学 一种制备多晶钙钛矿薄膜的方法及太阳能电池器件
CN106967951A (zh) * 2017-03-28 2017-07-21 信利半导体有限公司 一种成膜装置、成膜方法及成膜源

Also Published As

Publication number Publication date
CN109536893A (zh) 2019-03-29

Similar Documents

Publication Publication Date Title
Islam et al. Highly stable semi-transparent MAPbI3 perovskite solar cells with operational output for 4000 h
Cheng et al. Progress in air-processed perovskite solar cells: from crystallization to photovoltaic performance
Mahmud et al. Controlled nucleation assisted restricted volume solvent annealing for stable perovskite solar cells
CN109360895B (zh) 一种钙钛矿材料、制备方法及其太阳能电池器件
CN111740016B (zh) 一种提升钙钛矿太阳能电池稳定性的方法
Lin et al. Efficient Cesium Lead Halide Perovskite Solar Cells through Alternative Thousand‐Layer Rapid Deposition
CN105702864A (zh) 一种高质量钙钛矿薄膜、太阳能电池及其制备方法
WO2019056780A1 (zh) 一种太阳能电池薄膜的制备设备及其制备方法
Kam et al. Efficient mixed‐cation mixed‐halide perovskite solar cells by all‐vacuum sequential deposition using metal oxide electron transport layer
CN111785835A (zh) 一种复合电子传输层钙钛矿太阳能电池及其制备方法
Choi et al. Organic-cation-mixed (FA, MA) PbI3 through sequential vapor growth for planar perovskite solar cells
Nwankwo et al. Effects of alkali and transition metal-doped TiO 2 hole blocking layers on the perovskite solar cells obtained by a two-step sequential deposition method in air and under vacuum
Huang et al. Controllable deposition of TiO2 nanopillars at room temperature for high performance perovskite solar cells with suppressed hysteresis
CN105679944A (zh) 一种基于钙钛矿材料的太阳能电池及其制备方法
Xi et al. Highly efficient inverted perovskite solar cells mediated by electrodeposition-processed NiO NPs hole-selective contact with different energy structure and surface property
Wang et al. Glass rod-sliding and low pressure assisted solution processing composition engineering for high-efficiency perovskite solar cells
CN110323338A (zh) 一种钙钛矿薄膜太阳能电池的制备方法
El Ajjouri et al. Tunable Wide‐Bandgap Monohalide Perovskites
CN107245689B (zh) 一种大面积制备卤化甲胺铅光电薄膜的化学方法
CN116801652A (zh) 一种晶硅钙钛矿叠层太阳能电池及制备方法
Wu et al. Memory properties of (110) preferring oriented CH3NH3PbI3 perovskite film prepared using PbS-buffered three-step growth method
CN115394927A (zh) 钙钛矿薄膜、晶种辅助成膜方法、钙钛矿太阳能电池
CN115605063A (zh) 一种有序多孔碘化铅制备高性能钙钛矿薄膜的方法及应用
Kumar et al. Fabrication and life time of perovskite solar cells
CN113451516A (zh) 制备钙钛矿吸收层的设备和方法及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18859585

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18859585

Country of ref document: EP

Kind code of ref document: A1