WO2019054308A1 - 内視鏡用対物レンズユニット及び内視鏡 - Google Patents

内視鏡用対物レンズユニット及び内視鏡 Download PDF

Info

Publication number
WO2019054308A1
WO2019054308A1 PCT/JP2018/033289 JP2018033289W WO2019054308A1 WO 2019054308 A1 WO2019054308 A1 WO 2019054308A1 JP 2018033289 W JP2018033289 W JP 2018033289W WO 2019054308 A1 WO2019054308 A1 WO 2019054308A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
lens unit
objective lens
endoscope
lens group
Prior art date
Application number
PCT/JP2018/033289
Other languages
English (en)
French (fr)
Inventor
藤井 宏明
幸子 那須
Original Assignee
Hoya株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya株式会社 filed Critical Hoya株式会社
Priority to CN201880059103.1A priority Critical patent/CN111095068B/zh
Priority to US16/645,973 priority patent/US11525998B2/en
Priority to DE112018005066.1T priority patent/DE112018005066B4/de
Publication of WO2019054308A1 publication Critical patent/WO2019054308A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • G02B23/2423Optical details of the distal end
    • G02B23/243Objectives for endoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/00071Insertion part of the endoscope body
    • A61B1/0008Insertion part of the endoscope body characterised by distal tip features
    • A61B1/00096Optical elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00186Optical arrangements with imaging filters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/05Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances characterised by the image sensor, e.g. camera, being in the distal end portion
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/04Reversed telephoto objectives

Definitions

  • the present invention relates to an endoscope objective lens unit and an endoscope.
  • the endoscope includes an imaging device for imaging a living tissue illuminated by illumination light and an objective lens unit attached to the imaging device at a tip portion inserted into a human body. Since the objective lens unit is required to have a very small size and high optical performance in order to miniaturize the tip, the objective lens unit is often configured with a small number of lenses.
  • the object side in order from the object side, it consists of a front lens group, an aperture stop and a rear lens group.
  • the front lens group consists of a negative lens and a positive lens whose surface with a small radius of curvature is directed to the object side
  • the rear lens group consists of a positive lens with a small radius of curvature facing the image side and a cemented lens in which a positive lens and a negative lens are cemented, and the focal length f of the entire system and the positive lens in the rear lens group an endoscope objective lens having a predetermined relationship is known between the focal length f 3 (Patent Document 1).
  • the endoscope objective lens it is possible to provide a wide-angle lens having a small outer diameter and a low maximum ray height of the first lens.
  • a small CCD (Charge-Coupled Device) imaging device is often used as an imaging device, and it is designed such that the incident angle of incident light entering the imaging device is reduced. Further, in this imaging device, the back focus is designed to be long in order to transmit incident light before receiving light through a filter, a prism or the like.
  • imaging devices capable of receiving light even when the incident angle of incident light is large for example, a complementary metal oxide (CMOS) imaging device have been developed.
  • CMOS complementary metal oxide
  • an objective lens for an endoscope with a large angle of view which can efficiently use an imaging device capable of capturing incident light with a large incident angle, is not known.
  • this invention aims at providing the endoscope provided with the objective lens for endoscopes which can enlarge an angle of view, holding an optical performance favorably, and an endoscope-like objective lens. Do.
  • the objective lens unit for endoscopes is In order from the object side, at least a front lens unit having a negative refractive power (front lens unit G1), an aperture stop (aperture 42), and a rear lens unit having a positive refractive power (rear lens unit G2) are provided.
  • the front lens group (front lens group G1) includes at least a negative lens (negative lens L1) having a concave surface facing the image plane, and a positive lens (positive lens L2) having a convex surface facing the object side.
  • the rear lens group at least includes a positive lens (positive lens L3) having a convex surface facing the image plane side, and a cemented lens (cemented lens 46) in which a positive lens and a negative lens are cemented.
  • the focal length of the front lens group is f F
  • the focal length of the rear lens group is f R
  • the surface on the image plane side of the positive lens (positive lens L2) in the front lens group (front lens group G1) is a flat surface.
  • the object-side surface of the positive lens (positive lens L3) in the rear lens group (rear lens group G2) with the convex surface facing the image plane side be a flat surface.
  • the endoscope is The objective lens unit for the endoscope; And an imaging device for receiving an image of an object formed by the endoscope objective lens unit.
  • the configuration of the endoscope objective lens unit capable of increasing the angle of view while maintaining good optical performance is realized.
  • FIGS. 2A to 2E are diagrams showing the lens configuration and various aberrations of the first example.
  • FIGS. 7A to 7E are diagrams showing a lens configuration and various aberration diagrams of Example 2.
  • FIGS. FIGS. 7A to 7E are diagrams showing a lens configuration and various aberration diagrams of Example 3.
  • FIGS. FIGS. 7A to 7E are diagrams showing a lens configuration and various aberrations of the fourth example.
  • FIGS. FIG. 7 is a diagram showing a configuration according to specifications of Examples 1 to 3.
  • FIG. 16 is a diagram showing a configuration in a specification of Example 4;
  • FIG. 1 is a figure which shows typically an example of a structure of the endoscope which mounts the objective lens unit for endoscopes of embodiment.
  • the endoscope 10 mainly includes a distal end portion 12, a first flexible tube 14, an operation portion 16, a second flexible tube 18, and a connector 20.
  • the tip portion 12 is disposed around an imaging element 30 that receives and images an image of a living tissue, an objective lens unit 32 that forms an image of the living tissue on an imaging surface of the imaging element 30, and the objective lens unit 32. And at least a light source unit 34 for illuminating a living tissue.
  • the distal end portion 12 may be provided with an ultrasonic diagnostic probe, an opening for discharging a fluid such as water or air, or for suctioning a liquid on a living tissue.
  • the light source device 34 may be configured by a light source such as a lamp or an LED that emits light, but from the light source provided in the processor 22, the connector 20, the second flexible tube 18, the operation unit 16, the first It may be configured to have an exit for emitting light transmitted through an optical fiber in the flexible tube 14.
  • the imaging device 30 is an imaging device capable of capturing incident light with a large incident angle, and is, for example, a CMOS imaging device. The angle of view of the imaging device 30 is greater than 100 degrees, preferably 140 degrees or more.
  • the first flexible tube 14 is provided with at least a signal line for transmitting an imaging signal of the imaging device 30, a power control line for operating the imaging device 30 and the light source device 34, and various tubes through which liquid flows. ing.
  • the operation unit 16 is a portion that allows the practitioner to observe the tip 12 toward a predetermined position of the living tissue and manipulate the tip 12 so that the living tissue can be treated as needed.
  • the second flexible tube 18 is provided at least with a signal line for transmitting a light reception signal of the imaging device 30 and a power control line for operating the imaging device 30 and the light source device 34.
  • the processor 22 processes an imaging signal sent via the operation unit 16, the second flexible tube 18, and the connector unit 20 to generate an image of a living tissue and outputs the image. Further, the processor 22 outputs a control signal for controlling the operation of the light source device 34 and the imaging device 30.
  • FIG. 2 is a diagram showing an example of the configuration of the objective lens unit 32 according to the present embodiment.
  • the objective lens unit 32 shown in FIG. 2 at least includes a front lens group G1, a rear lens group G2, and a stop 42.
  • Each lens which comprises each lens group G1 and G2 has a rotationally symmetrical shape centering on the optical axis AX of the objective lens unit 32.
  • a stop 42 and an optical filter 44 are provided between the front lens group G1 and the rear lens group G2.
  • a cover glass 40 is provided on the light receiving surface (image surface) side of the imaging element 30 from the rear lens group G2.
  • the cover glass 40 is a component provided on the object side of the imaging device 30. In FIG. 2, on the image plane side of the cover glass 40, the focal position of the objective lens unit 32 is indicated by “x”.
  • the optical filter 44 is a near infrared and infrared cut filter.
  • the rear lens group G2 including the front lens group G1, the stop 42, and the optical filter 44 is provided in order from the object side to the image plane side, but the optical filter 44 is not limited to this order.
  • the objective lens unit 32 having at least the front lens group G1, the rear lens group G2, and the stop 42 means that the optical filter 44 and the cover glass 40 may be provided, and other than this It is meant to include a configuration in which an optical element having no optical power is added. Therefore, in one embodiment, the front lens group G1, the rear lens group G2, the cover glass 40, and the stop 42 are provided.
  • a front lens group G1, a rear lens group G2, a cover glass 40, a stop 42, and an optical filter 44 are provided. Further, in another embodiment, a front lens group G1, a rear lens group G2, a stop 42, and an optical filter 44 are provided.
  • the front lens group G1 is a lens group having a negative refractive power on the object side with respect to the stop 42.
  • the front lens group G1 at least includes a negative lens L1 having a concave surface on the image plane side and a positive lens L2 having a convex surface on the object side.
  • the front lens group G1 including at least the negative lens L1 and the positive lens L2 means that other lenses having substantially no optical power may be included.
  • the rear lens group G2 is a lens group having positive refractive power and located on the image plane side with respect to the stop 42.
  • the rear lens group G2 at least includes a positive lens L3 having a convex surface directed to the image plane side, and a cemented lens 46 in which the positive lens L4 and the negative lens L5 are cemented.
  • the rear lens group G2 including at least the positive lens L3 and the cemented lens 46 means that the rear lens group G2 may include other lenses having substantially no optical power.
  • the negative lens L1 has a plane on the object side
  • the positive lens L2 has a plane on the image plane side
  • the positive lens L3 is a plane on the object side
  • the positive lens L4 has a convex surface on the image plane side and a convex surface on the object side
  • the negative lens L5 has a concave surface on the image plane side and a concave surface on the object side.
  • the focal length of the front lens group G1 is f F and the focal length of the rear lens group G 2 is f R.
  • the radii of curvature of the object-side surface 46a and the image-side surface 46b of the negative lens L5 located on the image plane side are R 51 and R 52 ( ⁇ R 51 , that is, R 52 is different from R 51 )
  • the following equations (1) and (2) are satisfied.
  • Formula (1): -1.6 ⁇ f F / f R ⁇ -1.2 Equation (2): -1.0 ⁇ SF 5 (R 51 + R 52) / (R 51 -R 52) ⁇ - 0.5
  • the objective lens unit 32 satisfying the above expressions (1) and (2) can shorten the exit pupil distance and increase the angle of view while maintaining the optical performance well.
  • the angle of view can be greater than 100 degrees, preferably 120 degrees or more, more preferably 140 degrees or more, and still more preferably 140 degrees or more and 170 degrees or less.
  • the viewing angle of the objective lens unit 32 is increased, the outer diameter of the objective lens unit 32 is increased and the total length of the objective lens unit 32 is decreased.
  • increasing the outer diameter of the objective lens unit 32 Unfavorably at 12.
  • the objective lens unit 32 satisfying the expressions (1) and (2) can maintain the elongated shape to widen the viewing angle.
  • the negative refracting power of the front lens group G 1 (hereinafter, refracting power is referred to as “power”) is weakened, and the viewing angle is narrowed. In order to widen the viewing angle, the outer diameter of the front lens group G1 may be increased, but it is difficult to elongate the objective lens unit 32.
  • refracting power is referred to as “power”
  • the positive power of the rear lens group G 2 becomes weak, so the overall length of the objective lens unit 32 becomes longer, and the imaging element 30 and the objective lens are small at the small tip 12 It is not preferable to arrange the unit 32.
  • f F / f R is less than ⁇ 1.2, preferably ⁇ 1 or less, more preferably ⁇ 1 or less, and ⁇ 1.35 or less Is particularly preferred. Further, f F / f R is preferably more than ⁇ 1.6, preferably ⁇ 1.55 or more, and more preferably ⁇ 1.51 or more.
  • SF 5 (R 51 + R 52 ) / (R 51 -R 52 ) in Expression (2) is a shape factor that defines the shape of the surface of the lens L5, and light to the light receiving surface of the imaging device 30 Affect the exit angle of the lens and the exit pupil distance, and affect the chromatic aberration.
  • the light emission angle at the cemented lens 46 becomes large, the off-axis F number becomes large, and the periphery becomes dark.
  • the exit pupil distance becomes long and the angle of view becomes small.
  • SF 5 is larger than -1.0 and less than -0.5
  • SF 5 is preferably -0.8 or more, and more preferably -0.75 or more.
  • SF 5 is preferably ⁇ 0.55 or less, more preferably ⁇ 0.6 or less.
  • Equation (3) f P /f ⁇ 2.5
  • f p / f When f p / f is 2.5 or more, the power of the positive lens in the objective lens unit 32 is reduced, so that the magnification largely changes. For this reason, the change in focal length of the entire system of the objective lens unit 32 caused by the thickness change of the positive lens and the distance change of the lenses etc. in front and back of the stop 42 along the optical axis AX becomes large. Tends to be large. From such a point of view, f p / f is preferably less than 2.5, more preferably 2.0 or less, and even more preferably 1.9 or less. The lower limit of f p / f is not limited, but is 1.65 or more according to one embodiment, and is 1.7 or more according to one embodiment.
  • the surface on the image plane side of the positive lens L2 is a plane.
  • the front lens group G1 is composed of, in order from the object side, a negative lens L1 having a concave surface facing the image surface side, and a positive lens L2 having a flat surface facing the image surface side. As described above, by making the surface on the image plane side of the positive lens L2 flat, it is possible to suppress the change in magnification and the change in the angle of view by changing the lens thickness.
  • the object-side surface of the positive lens L3 is a plane.
  • the lenses of the rear lens group G2 are composed of, in order from the object side, the positive lens L3 having a flat surface facing the object side, and the cemented lens 46.
  • the object-side surface of the positive lens L3 is a plane.
  • a cemented lens 46 including a positive lens L4 having a convex surface on the object side and a negative lens L5 having a surface having a concave surface on the image side and a concave surface on the object side is provided.
  • a cemented lens 46 including a positive lens L4 having a convex surface on the object side and a negative lens L5 having a surface having a concave surface on the image side and a concave surface on the object side is provided.
  • the concave surface on the image plane side of the negative lens L1 and the convex surface on the object side of the positive lens L2 face each other adjacently.
  • the lenses L1 and L2 are disposed, and in the rear lens group G2, the lens L3 is arranged such that the convex surface on the image plane side of the positive lens L3 and the convex surface on the object side of the positive lens L4 of the cemented lens 46 are adjacent to and opposed to each other.
  • the cemented lens 46 is disposed.
  • Examples 1 to 4 Specific numerical examples of the objective lens unit 32 having such a configuration are shown in Tables 1 to 4 below (Examples 1 to 4).
  • the half angle of view of each of the first to fourth embodiments is 72 degrees or more.
  • lens configuration diagrams and various aberration diagrams of the objective lens unit 32 are shown in FIGS. In FIGS. 3-6 (a), the diaphragm 42 is not shown.
  • FIGS. 3 to 6 (b) to (e) show various aberration diagrams of Examples 1 to 4, respectively.
  • the configurations of the first to third embodiments are as shown in FIG.
  • FIG. 7 is a diagram showing configuration information in the specifications of the first to third embodiments.
  • the configuration of the fourth embodiment is as shown in FIG.
  • FIG. 8 is a diagram showing configuration information in the specification of the fourth embodiment.
  • (b) shows spherical aberration and axial chromatic aberration at d line (588 nm), g line (436 nm) and C line (656 nm) .
  • (C) shows lateral chromatic aberration at d-line, g-line and C-line.
  • the solid line indicates the aberration at the d-line
  • the dotted line indicates the aberration at the g-line
  • the alternate long and short dash line indicates the aberration at the C-line.
  • (D) shows astigmatism.
  • the solid line indicates the sagittal component (S) and the dotted line indicates the meridional component (M).
  • (E) shows distortion.
  • Fe shown in the aberration diagram represents the effective f-number.
  • Y represents the image height.
  • the vertical axis of each of FIGS. 3 to 6 (b) to (d) represents the image height (mm), and the horizontal axis represents the amount of aberration (mm).
  • the vertical axes of FIGS. 3 to 6 (e) represent the image height (mm), and the horizontal axes represent the distortion rate.
  • Example 1 The specifications of Example 1 are as shown in Table 1 below.
  • the configuration in the specifications of the first to third embodiments is as shown in FIG. FIGS. 3 (b) to 3 (e) show various aberration diagrams of Example 1.
  • NO represents the surface of an optical element such as a lens, an aperture, an optical filter, or a cover glass shown in FIG. 7
  • R represents a radius of curvature (mm) of the surface
  • D represents an image from each surface It represents the distance (mm) along the optical axis AX to the plane next to the plane side.
  • a positive value means a surface convex toward the object side
  • a negative value means a surface convex toward the image plane side.
  • the distance D of each of NO1 to 12 is the distance of each of D1 to D12 defined in FIG. N (d) represents the refractive index at the d-line, and dd represents the Abbe number.
  • F in Table 1 represents the focal length (mm) in the entire system of the objective lens unit 32.
  • Example 1 shown in Table 1 includes seven lenses, optical filters, and cover glasses. The specifications in Tables 2-3 are also described in the same format as Table 1.
  • Table 1 ⁇ 3 R of NO10,11, respectively, corresponding to R 51, R 52 defining a SF5.
  • FIGS. 4 (b) to 4 (e) show various aberration diagrams of Example 2.
  • FIG. 4 (b) to 4 (e) show various aberration diagrams of Example 2.
  • Example 3 The specifications of Example 3 are as shown in Table 3 below. 5 (b) to 5 (e) show diagrams of various aberrations of Example 3. FIG.
  • FIG. 6 (a) shows the structure
  • FIGS. 6 (b) to 6 (e) show various aberration diagrams of Example 4.
  • NO represents the surface of an optical element such as a lens, an aperture, an optical filter, or a cover glass shown in FIG. 8
  • R represents the radius of curvature (mm) of the surface
  • D represents an image from each surface It represents the distance (mm) along the optical axis AX to the plane next to the plane side.
  • a positive value means a surface convex toward the object side
  • a negative value means a surface convex toward the image plane side.
  • the distance D of each of NO1 to 13 is the distance of each of D1 to D13 defined in FIG. N (d) represents the refractive index at the d-line, and dd represents the Abbe number.
  • Example 4 shown in Table 4 seven optical elements are provided.
  • f represents the focal length (mm) in the entire system of the objective lens unit 32.
  • an optical filter 45 is disposed between the negative lens L5 and the cover glass 40 instead of the optical filter 44 shown in FIG.
  • any of the aberrations of Examples 1 to 4 is well corrected.
  • the ratios and SF 5 of respective focal lengths of Examples 1-4 are shown in Table 5 below.
  • Examples 1 to 4 satisfy the above formulas (1) and (2). From this, the objective lens unit satisfying the above formulas (1) and (2) can shorten the exit pupil distance, can make the angle of view larger than 100 degrees, and can be made 140 degrees or more. The aberration characteristics can be well maintained. Therefore, this embodiment can provide an objective lens unit for an endoscope corresponding to an imaging element with a wide angle of view.
  • the present invention is not limited to the above-mentioned composition, and various modification within the scope of the technical idea of the present invention Is possible.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Optics & Photonics (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Lenses (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Endoscopes (AREA)

Abstract

対物レンズユニットは、物体側から順に、負の屈折力を持つ前レンズ群と、絞りと、正の屈折力を持つ後レンズ群と、を備える。前記前レンズ群は、像面側に凹面を向けた負レンズと、物体側に凸面を向けた正レンズと、を含み、前記後レンズ群は、像面側に凸面を向けた正レンズと、正レンズと負レンズを接合した接合レンズと、を含む。内視鏡用対物レンズユニットは、-1.6<f/f<-1.2及び-1.0<SF<-0.5を満足する。f及びfは前レンズ群及び後レンズ群の焦点距離、SFは、(R51+R52)/(R51-R52)であり、R51、R52は、接合レンズのうち像面側にあるレンズの、物体側の面及び像面側の面それぞれの曲率半径である。

Description

内視鏡用対物レンズユニット及び内視鏡
 本発明は、内視鏡用対物レンズユニット及び内視鏡に関する。
 今日、人体内部の生体組織を検査するために内視鏡が用いられる。内視鏡は、人体内に挿入される先端部に、照明光で照明された生体組織を撮像する撮像素子及び撮像素子に付随した対物レンズユニットを備える。対物レンズユニットは、先端部を小型化させるのに極めて小さいサイズと高い光学性能が求められるため、少ないレンズ枚数によって構成されることが多い。
 例えば、物体側から順に、前レンズ群と絞りと後レンズ群とからなり、前レンズ群は、物体側より順に、負レンズと、曲率半径の小さな面を物体側へ向けた正レンズとからなり、後群レンズ群は、曲率半径の小さな面を像側へ向けた正レンズと、正レンズと負レンズを接合した接合レンズからなり、全系の焦点距離fと、後レンズ群内正レンズの焦点距離f3との間に所定の関係を備えた内視鏡用対物レンズが知られている(特許文献1)。
 上記内視鏡用対物レンズによれば、広角で、外径が小さく、第1レンズの最大光線高が低いレンズを提供することができる、とされている。
特許第4245985号公報
 内視鏡では、一般に、撮像素子として小型のCCD(Charge-Coupled Device)撮像素子が多く用いられ、撮像素子へ入射する入射光の入射角が小さくなるように設計されている。また、この撮像素子では、受光前の入射光をフィルタやプリズム等を透過するために、バックフォーカスが長くなるように設計されている。
 近年、入射光の入射角度が大きくても受光可能な撮像素子、例えばCMOS(Complementary Metal Oxide)撮像素子が開発されている。しかし、入射角度が大きい入射光を取り込める撮像素子を効率良く利用できる、画角を大きくした内視鏡用対物レンズは知られていない。
 そこで、本発明は、光学性能を良好に保持しつつ、画角を大きくすることができる内視鏡用対物レンズ、及び内視鏡様対物レンズを備えた内視鏡を提供することを目的とする。
 本発明の一態様は、内視鏡用対物レンズユニットである。以下、図2に示す実施形態における対応する部分の参照符号を一例として括弧内に示している。当該内視鏡用対物レンズユニットは、
 物体側から順に、負の屈折力を持つ前レンズ群(前レンズ群G1)と、絞り(絞り42)と、正の屈折力を持つ後レンズ群(後レンズ群G2)と、を少なくとも備える。
 前記前レンズ群(前レンズ群G1)は、像面側に凹面を向けた負レンズ(負レンズL1)と、物体側に凸面を向けた正レンズ(正レンズL2)と、を少なくとも含み、
 前記後レンズ群(後レンズ群G2)は、像面側に凸面を向けた正レンズ(正レンズL3)と、正レンズと負レンズを接合した接合レンズ(接合レンズ46)と、を少なくとも含む。
 前記前レンズ群の焦点距離をfとし、前記後レンズ群の焦点距離をfとし、前記接合レンズのうち像面側にあるレンズの、物体側の面及び像面側の面それぞれの曲率半径をR51及びR52(≠R51)としたとき、下記式(1)及び(2)を満足する。
(1) -1.6<f/f<-1.2
(2) -1.0<SF=(R51+R52)/(R51-R52)<-0.5
 前記内視鏡用対物レンズユニット内の正レンズの焦点距離の平均値をfとし、前記内視鏡用対物レンズユニットの全系の焦点距離をfとしたとき、下記式(3)を満足する、
ことが好ましい。
(3) f/f<2.5
 前記前レンズ群(前レンズ群G1)内の前記正レンズ(正レンズL2)の像面側の面は、平面である、ことが好ましい。
 前記後レンズ群(後レンズ群G2)内の、像面側に凸面を向けた前記正レンズ(正レンズL3)の物体側の面は、平面である、ことが好ましい。
 本発明の他の一態様は、内視鏡である。当該内視鏡は、
 前記内視鏡用対物レンズユニットと、
 前記内視鏡用対物レンズユニットにより結像した物体の像を受光する撮像素子と、を備える。
 上述の内視鏡用対物レンズユニットによれば、光学性能を良好に保持しつつ、画角を大きくすることができる内視鏡用対物レンズユニットの構成を実現する。
本実施形態の内視鏡用対物レンズユニットを搭載した内視鏡の構成の一例を模式的に示す図である。 本実施形態の内視鏡用対物レンズユニットの構成の一例を示す図である。 (a)~(e)は、実施例1のレンズ構成図と諸収差図を示す図である。 (a)~(e)は、実施例2のレンズ構成図と諸収差図を示す図である。 (a)~(e)は、実施例3のレンズ構成図と諸収差図を示す図である。 (a)~(e)は、実施例4のレンズ構成図と諸収差図を示す図である。 実施例1~3の仕様における構成を示す図である。 実施例4の仕様における構成を示す図である。
 以下、実施形態の内視鏡用対物レンズユニット及び内視鏡について、図面を参照しながら説明する。図1は、実施形態の内視鏡用対物レンズユニットを搭載した内視鏡の構成の一例を模式的に示す図である。
 内視鏡10は、先端部12、第1可撓管14、操作部16、第2可撓管18、及び、コネクタ20、を主に備える。
 先端部12は、生体組織の像を受光して撮像する撮像素子30、生体組織の像を撮像素子30の撮像面に結像させる対物レンズユニット32、及び、対物レンズユニット32の周りに配置して生体組織を照明する光源部34を、少なくとも備える。この他に、先端部12は、超音波診断用プローブや、水や空気等の流体を吐出する、あるいは、生体組織上の液体を吸引する開口を備えてもよい。
 光源装置34は、光を放射するランプやLED等の光源で構成されてもよいが、プロセッサ22内に設けられた光源から、コネクタ20、第2可撓管18、操作部16、第1可撓管14内の光ファイバを通して伝送された光を射出する出射口を備える構成であってもよい。
 撮像素子30は、入射角度が大きい入射光を取り込むことができる撮像素子であって、例えば、CMOS撮像素子である。撮像素子30の画角は100度より大きく、好ましくは、140度以上である。
 第1可撓管14には、撮像素子30の撮像信号を伝送する信号線、撮像素子30及び光源装置34を動作させる電力制御線、さらには液体が流れる各種管が、その内部に少なくとも設けられている。
 操作部16は、施術者が、先端部12を生体組織の所定の位置に向けて観察し、必要に応じて生体組織の処置ができるように、先端部12を操作させる部分である。
 第2可撓管18には、撮像素子30の受光信号を伝送する信号線、撮像素子30及び光源装置34を動作させる電力制御線が少なくともその内部に設けられている。
 プロセッサ22は、操作部16、第2可撓管18、及びコネクタ部20を介して送られる撮像信号を処理して、生体組織の画像を生成し、画像を出力する。また、プロセッサ22は、光源装置34及び撮像素子30の動作を制御する制御信号を出力する。
 このような先端部12には、光学性能を良好に保持しつつ、広画角の撮像素子30に適した広画角の像を結像させる内視鏡用対物レンズユニット(以降、対物レンズユニットという)32が用いられる。以下、対物レンズユニット32を説明する。図2は、本実施形態の対物レンズユニット32の構成の一例を示す図である。
 図2に示す対物レンズユニット32は、前レンズ群G1、後レンズ群G2、及び絞り42を少なくとも有している。各レンズ群G1、G2を構成する各レンズは、対物レンズユニット32の光軸AXを中心とした回転対称形状を有している。前レンズ群G1と後レンズ群G2の間には、絞り42と光学フィルタ44が設けられている。さらに、後レンズ群G2より、撮像素子30の受光面(像面)側には、カバーガラス40が設けられている。カバーガラス40は、撮像素子30の物体側に設けられる部品である。図2において、カバーガラス40の像面側には、対物レンズユニット32の焦点位置が“×”で示されている。
 光学フィルタ44は、近赤外および赤外線カットフィルタである。
 対物レンズユニット32では、物体側から像面側に向かって順番に、前レンズ群G1、絞り42、光学フィルタ44を含む後レンズ群G2が設けられるが、光学フィルタ44はこの順番に制限されない。
 なお、対物レンズユニット32は、前レンズ群G1、後レンズ群G2、及び絞り42を少なくとも有しているとは、光学フィルタ44やカバーガラス40を備えてもよいことを意味し、これ以外の光学的パワーを有さない光学素子を追加する構成も含むことを意味する。
 したがって、一実施形態では、前レンズ群G1、後レンズ群G2、カバーガラス40、及び絞り42を備える。また、別の一実施形態では、前レンズ群G1、後レンズ群G2、カバーガラス40、絞り42、及び光学フィルタ44を備える。また、別の一実施形態では、前レンズ群G1、後レンズ群G2、絞り42、及び光学フィルタ44を備える。
 前レンズ群G1は、絞り42に対して物体側にある負の屈折力を持つレンズ群である。
前レンズ群G1は、像面側に凹面を向けた負レンズL1と、物体側に凸面を向けた正レンズL2と、を少なくとも含む。前レンズ群G1は、負レンズL1と、正レンズL2と、を少なくとも含むとは、これ以外に実質的に光学的パワーを殆ど有していないレンズを含んでもよいことを意味する。
 後レンズ群G2は、絞り42に対して像面側にある正の屈折力を持つレンズ群である。後レンズ群G2は、像面側に凸面を向けた正レンズL3と、正レンズL4と負レンズL5を接合した接合レンズ46と、を少なくとも含む。後レンズ群G2は、正レンズL3と、接合レンズ46と、を少なくとも含むとは、これ以外に実質的に光学的パワーを殆ど有していないレンズを含んでもよいことを意味する。
 一実施形態によれば、図2に示すように、負レンズL1は、物体側に平面を有し、正レンズL2は、像面側に平面を有し、正レンズL3は、物体側に平面を有し、正レンズL4は、像面側に凸面を有し、物体側に凸面を有し、負レンズL5は、像面側に凹面を有し、物体側に凹面を有する。
 このような構成の前レンズ群G1及び後レンズ群G2を備える対物レンズユニット32において、前レンズ群G1の焦点距離をfとし、後レンズ群G2の焦点距離をfとし、接合レンズ46のうち像面側にある負レンズL5の、物体側の面46a及び像面側の面46bそれぞれの曲率半径をR51及びR52(≠R51、すなわち、R52はR51と異なる)したとき、下記式(1)及び(2)を満足するように構成されている。
式(1): -1.6<f/f<-1.2
式(2): -1.0<SF=(R51+R52)/(R51-R52)<-0.5
 上記式(1)、(2)を満足する対物レンズユニット32は、光学性能を良好に保持しつつ、射出瞳距離が短くでき、画角を大きくすることができる。例えば、画角を100度より大きくすることができ、好ましくは120度以上とすることができ、より好ましくは140度以上とすることができ、さらに好ましくは、140度以上170度以下とすることができる。一般に、対物レンズユニット32の視野角を広くすると、対物レンズユニット32の外径は大きく、対物レンズユニット32の全長は短くなるが、対物レンズユニット32の外径を大きくなることは、細い先端部12において好ましくない。式(1)、(2)を満足する対物レンズユニット32は、細長い形状を維持して、視野角を広くすることができる。
 f/fを-1.6以下にすると、前レンズ群G1の負の屈折力(以降、屈折力をパワーという)が弱くなるため視野角が狭くなる。視野角を広げるには、前レンズ群G1の外径を大きくすればよいが、対物レンズユニット32を細長くすることが困難になる。
 一方、f/fを-1.2以上にすると、後レンズ群G2の正のパワーが弱くなるため、対物レンズユニット32の全長が長くなり、小さな先端部12に撮像素子30及び対物レンズユニット32を配置する上で好ましくない。
 以上の観点から、f/fは、-1.2未満であり、-1.25以下であることが好ましく、-1.3以下であることがより好ましく、-1.35以下であることが特に好ましい。また、f/fは-1.6より大きく、-1.55以上であることが好ましく、-1.51以上であることがより好ましい。
 一方、式(2)のSF=(R51+R52)/(R51-R52)は、レンズL5の面の形状を規定するシェープファクタであって、撮像素子30の受光面への光の射出角度及び射出瞳距離に影響を与え、色収差に影響を与える。
 式(2)に規定する範囲の上限から外れると、接合レンズ46における光の射出角度が大きくなることにより、軸外Fナンバーが大きくなるため、周辺が暗くなる。
 また、式(2)に規定する範囲の下限から外れると、射出瞳距離が長くなり、画角が小さくなる。また、接合レンズ46の接合面の曲率半径が小さくなり、色収差の補正が困難になる不都合がある。
 以上の観点から、SFは、-1.0より大きく、-0.5未満であるが、SFは、-0.8以上であることが好ましく、-0.75以上であることがより好ましい。また、SFは、-0.55以下であることが好ましく、-0.6以下であることがより好ましい。
 また、対物レンズユニット32内の正レンズの焦点距離の平均値(単純平均値)をfとし、対物レンズユニット32の全系の焦点距離をfとしたとき、下記式(3)を満足するように構成されている、ことが好ましい。
式(3): f/f<2.5
 f/fを2.5以上にすると、対物レンズユニット32内の正レンズのパワーが小さくなるため、倍率が大きく変化する。このため、正レンズの肉厚や絞り42の光軸AX方向前後にあるレンズ等の間隔変化によって生じる、対物レンズユニット32の全系の焦点距離の変化が大きくなり、その結果、視野角の変化が大きくなり易い。このような観点から、f/fは、2.5未満であることが好ましく、2.0以下であることがより好ましく、1.9以下であることがよりいっそう好ましい。
 f/fの下限に制限はないが、一実施形態によれば1.65以上であり、一実施形態によれば、1.7以上である。
 一実施形態によれば、正レンズL2の像面側の面は、平面である。また、一実施形態によれば、前レンズ群G1は、物体側から順に、像面側に凹面を向けた負レンズL1、像面側に平面を向けた正レンズL2で構成される。このように、正レンズL2の像面側の面を平面とすることで、レンズ厚が変化することにより倍率の変化、さらには画角の変化を抑えることができる。
 一実施形態によれば、正レンズL3の物体側の面は、平面である。また、一実施形態によれば、後レンズ群G2のレンズは、物体側から順に、物体側に平面を向けた正レンズL3と、接合レンズ46で構成する。このとき、正レンズL3の物体側の面を平面とする。このように、正レンズL3の物体側の面を平面とすることにより、レンズ厚が変化することにより生じる倍率の変化、さらには画角の変化を抑えることができる。また、物体側に凸面を向けた正レンズL4と、像面側に凹面を向けた面を有し、物体側に凹面を向けた面を有する負レンズL5とで構成した接合レンズ46を設けることにより、射出角度の変化を抑えつつ色収差を抑えることができる。
 一実施形態によれば、図2に示すように、前レンズ群G1において、負レンズL1の像面側の凹面と、正レンズL2の物体側の凸面とが互いに隣接して対向するように、レンズL1,L2を配置し、後レンズ群G2において、正レンズL3の像面側の凸面と、接合レンズ46の正レンズL4の物体側の凸面とが互いに隣接して対向するように、レンズL3と接合レンズ46を配置することが好ましい。
(実施例1~4)
 このような構成の対物レンズユニット32の具体的数値実施例を下記表1~4に示す(実施例1~4)。実施例1~4の半画角は、いずれも72度以上ある。
 一方、対物レンズユニット32のレンズ構成図と諸収差図を図3~6に示す。図3~6(a)において、絞り42は図示されない。図3~6(b)~(e)は、実施例1~4の諸収差図を示す。実施例1~3の構成は、図2に示す通りである。図7は、実施例1~3の仕様における構成情報を示す図である。実施例4の構成は、図8に示す通りである。図8は、実施例4の仕様における構成情報を示す図である。
 図3~6(b)~(e)の各収差図のうち、(b)は、d線(588nm)、g線(436nm)、C線(656nm)での球面収差及び軸上色収差を示す。(c)は、d線、g線、C線での倍率色収差を示す。(b),(c)中、実線はd線での収差を、点線はg線での収差を、一点鎖線はC線での収差を、それぞれ示す。(d)は、非点収差を示す。(d)中、実線はサジタル成分(S)を、点線はメリディオナル成分(M)を、それぞれ示す。(e)は、歪曲収差を示す。収差図に示すFeは、実効Fナンバーを表す。Yは、像高を表す。
 図3~6(b)~(d)の各図の縦軸は像高(mm)を、横軸は収差量(mm)を、それぞれ表す。図3~6(e)の縦軸は像高(mm)を、横軸は歪曲率を、それぞれ表す。 
 実施例1の仕様は、下記表1に示すとおりである。実施例1~3の仕様における構成は図7に示すとおりである。図3(b)~(e)は、実施例1の諸収差図を示す。表1において、NOは、図7に示すレンズ、絞り、光学フィルタ、カバーガラス等の光学素子の面を表し、Rは、その面の曲率半径(mm)を表し、Dは、各面から像面側の隣にある面までの光軸AXに沿った距離(mm)を表す。曲率半径Rにおいて、正の値は、物体側に凸を成した面を意味し、負の値は像面側に凸を成した面を意味する。表1においてNO1~12それぞれの距離Dは、図7に定めるD1~D12のそれぞれの距離である。N(d)は、d線における屈折率を、νdは、そのアッベ数を表す。表1中のfは、対物レンズユニット32の全系における焦点距離(mm)を表す。表1に示す実施例1は、レンズ、光学フィルタ、及びカバーガラスを7つ備える。表2~3においても各仕様が表1と同じ形式で記載されている。表1~3において、NO10,11のRが、それぞれ、SF5を定めるR51,R52に対応する。
Figure JPOXMLDOC01-appb-T000001
 実施例2の仕様は、下記表2に示すとおりである。図4(b)~(e)は、実施例2の諸収差図を示す。
Figure JPOXMLDOC01-appb-T000002
 実施例3の仕様は、下記表3に示すとおりである。図5(b)~(e)は、実施例3の諸収差図を示す。
Figure JPOXMLDOC01-appb-T000003
 実施例4の仕様は、下記表4に示すとおりである。図6(a)は、構成を示し、図6(b)~(e)は、実施例4の諸収差図を示す。表4において、NOは、図8に示すレンズ、絞り、光学フィルタ、カバーガラス等の光学素子の面を表し、Rは、その面の曲率半径(mm)を表し、Dは、各面から像面側の隣にある面までの光軸AXに沿った距離(mm)を表す。曲率半径Rにおいて、正の値は、物体側に凸を成した面を意味し、負の値は像面側に凸を成した面を意味する。表4においてNO1~13それぞれの距離Dは、図8に定めるD1~D13のそれぞれの距離である。N(d)は、d線における屈折率を、νdは、そのアッベ数を表す。表4に示す実施例4では、光学素子が7つ備える。fは対物レンズユニット32全系における焦点距離(mm)を表す。実施例4では、図8に示すように、図7に示す光学フィルタ44に代えて負レンズL5とカバーガラス40との間に、光学フィルタ45を配置した。表4において、NO9,10のRが、それぞれ、SF5を定めるR51,R52に対応する。
Figure JPOXMLDOC01-appb-T000004
 図3~6(b)~(e)に示す収差図からわかるように、実施例1~4のいずれの収差も良好に補正されている。
 実施例1~4の各焦点距離の比及びSFを、下記表5に示す。
Figure JPOXMLDOC01-appb-T000005
 表5に示すように、実施例1~4は、上記式(1),(2)を満足する。
 これより、上記式(1),(2)を満たす対物レンズユニットは、射出瞳距離を短くでき、画角を100度より大きくすることができ、さらに、140度以上にすることができ、かつ、収差特性を良好に保持することができる。したがって、本実施形態は、広い画角の撮像素子に対応した内視鏡用の対物レンズユニットを提供することができる。
 以上、本実施形態の内視鏡用対物レンズユニット及び内視鏡について説明したが、本発明は、上記の構成に限定されるものではなく、本発明の技術的思想の範囲内において様々な変形が可能である。
10 内視鏡
12 先端部
14 第1可撓管
16 操作部
18 第2可撓管
20 コネクタ
22 プロセッサ
30 撮像素子
32 対物レンズユニット
34 光源部
40 カバーガラス
42 絞り
44,45 光学フィルタ
46 接合レンズ

Claims (5)

  1.  内視鏡用対物レンズユニットであって、
     物体側から順に、負の屈折力を持つ前レンズ群と、絞りと、正の屈折力を持つ後レンズ群と、を少なくとも備え、
     前記前レンズ群は、像面側に凹面を向けた負レンズと、物体側に凸面を向けた正レンズと、を少なくとも含み、
     前記後レンズ群は、像面側に凸面を向けた正レンズと、正レンズと負レンズを接合した接合レンズと、を少なくとも含み、
     前記前レンズ群の焦点距離をfとし、前記後レンズ群の焦点距離をfとし、前記接合レンズのうち像面側にあるレンズの、物体側の面及び像面側の面それぞれの曲率半径をR51及びR52(≠R51)としたとき、下記式(1)及び(2)を満足する、
    ことを特徴とする内視鏡用対物レンズユニット。
    (1) -1.6<f/f<-1.2
    (2) -1.0<SF=(R51+R52)/(R51-R52)<-0.5
  2.  前記内視鏡用対物レンズユニット内の正レンズの焦点距離の平均値をfとし、前記内視鏡用対物レンズユニットの全系の焦点距離をfとしたとき、下記式(3)を満足する、請求項1に記載の内視鏡用対物レンズユニット。
    (3) f/f<2.5
  3.  前記前レンズ群内の前記正レンズの像面側の面は、平面である、請求項1または2に記載の内視鏡用対物レンズユニット。
  4.  前記後レンズ群内の、像面側に凸面を向けた前記正レンズの物体側の面は、平面である、請求項1~3のいずれか1項に記載の内視鏡用対物レンズユニット。
  5.  請求項1~4のいずれか1項に記載の内視鏡用対物レンズユニットと、
     前記内視鏡用対物レンズユニットにより結像した物体の像を受光する撮像素子と、を備えることを特徴とする内視鏡。
PCT/JP2018/033289 2017-09-12 2018-09-07 内視鏡用対物レンズユニット及び内視鏡 WO2019054308A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880059103.1A CN111095068B (zh) 2017-09-12 2018-09-07 内窥镜用物镜单元与内窥镜
US16/645,973 US11525998B2 (en) 2017-09-12 2018-09-07 Endoscope objective lens unit and endoscope
DE112018005066.1T DE112018005066B4 (de) 2017-09-12 2018-09-07 Endoskopobjektivlinseneinheit und endoskop

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-174964 2017-09-12
JP2017174964A JP2019049680A (ja) 2017-09-12 2017-09-12 内視鏡用対物レンズユニット及び内視鏡

Publications (1)

Publication Number Publication Date
WO2019054308A1 true WO2019054308A1 (ja) 2019-03-21

Family

ID=65723653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/033289 WO2019054308A1 (ja) 2017-09-12 2018-09-07 内視鏡用対物レンズユニット及び内視鏡

Country Status (5)

Country Link
US (1) US11525998B2 (ja)
JP (1) JP2019049680A (ja)
CN (1) CN111095068B (ja)
DE (1) DE112018005066B4 (ja)
WO (1) WO2019054308A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020112091A1 (de) 2020-05-05 2021-11-11 Sick Ag Optoelektronischer Sensor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07253536A (ja) * 1994-03-14 1995-10-03 Olympus Optical Co Ltd テレビ画像撮影装置
JP2006064904A (ja) * 2004-08-26 2006-03-09 Olympus Corp 接合レンズを備えた光学系及びそれを用いた撮像装置
JP2011013647A (ja) * 2009-07-06 2011-01-20 Hoya Corp 内視鏡用対物レンズ、及び内視鏡
US20140268369A1 (en) * 2013-03-18 2014-09-18 Kinko Optical Co., Ltd. Miniature image pickup lens

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005530971A (ja) 2002-06-28 2005-10-13 ザ ゲイツ コーポレイション ベルト取り付け工具
JP4245985B2 (ja) 2003-05-30 2009-04-02 オリンパス株式会社 内視鏡用対物レンズ
US7405889B2 (en) 2004-08-26 2008-07-29 Olympus Imaging Corp. And Olympus Corporation Optical system and imaging system incorporating it
JP5410199B2 (ja) 2008-11-26 2014-02-05 Hoya株式会社 ズームレンズ系及びそれを用いた電子撮像装置
JP4902033B1 (ja) * 2010-04-07 2012-03-21 オリンパスメディカルシステムズ株式会社 対物レンズ及びそれを用いた内視鏡
US9140888B2 (en) 2010-06-01 2015-09-22 Hoya Corporation Objective lens for endoscope, and endoscope
JP5587113B2 (ja) 2010-09-21 2014-09-10 Hoya株式会社 ズームレンズ系及びこれを用いた電子撮像装置
JP5653243B2 (ja) * 2011-02-10 2015-01-14 Hoya株式会社 内視鏡用光学系、及び内視鏡
JP6461665B2 (ja) 2015-03-24 2019-01-30 Hoya株式会社 光源光学系及び光源装置
JP6460934B2 (ja) * 2015-07-22 2019-01-30 富士フイルム株式会社 撮像レンズおよび撮像装置
CN107076967B (zh) 2015-09-07 2020-09-01 Hoya株式会社 内窥镜用变倍光学系统及内窥镜
CN106716214A (zh) 2015-09-07 2017-05-24 Hoya株式会社 内窥镜用变倍光学系统以及内窥镜
WO2017145264A1 (ja) 2016-02-23 2017-08-31 Hoya株式会社 内視鏡用変倍光学系及び内視鏡
WO2017145265A1 (ja) 2016-02-23 2017-08-31 Hoya株式会社 内視鏡用変倍光学系及び内視鏡
JP2017173807A (ja) 2016-03-16 2017-09-28 Hoya株式会社 撮像光学系
JP2018087938A (ja) 2016-11-30 2018-06-07 Hoya株式会社 撮像光学系

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07253536A (ja) * 1994-03-14 1995-10-03 Olympus Optical Co Ltd テレビ画像撮影装置
JP2006064904A (ja) * 2004-08-26 2006-03-09 Olympus Corp 接合レンズを備えた光学系及びそれを用いた撮像装置
JP2011013647A (ja) * 2009-07-06 2011-01-20 Hoya Corp 内視鏡用対物レンズ、及び内視鏡
US20140268369A1 (en) * 2013-03-18 2014-09-18 Kinko Optical Co., Ltd. Miniature image pickup lens

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020112091A1 (de) 2020-05-05 2021-11-11 Sick Ag Optoelektronischer Sensor
US11307084B2 (en) 2020-05-05 2022-04-19 Sick Ag Optoelectronic sensor comprising an optical filter element arranged without a gap between first and second part lenses of at least one reception lens
DE102020112091B4 (de) 2020-05-05 2024-05-08 Sick Ag Optoelektronischer Sensor

Also Published As

Publication number Publication date
CN111095068B (zh) 2022-01-11
CN111095068A (zh) 2020-05-01
DE112018005066B4 (de) 2024-02-08
DE112018005066T5 (de) 2020-06-18
JP2019049680A (ja) 2019-03-28
US11525998B2 (en) 2022-12-13
US20200201021A1 (en) 2020-06-25

Similar Documents

Publication Publication Date Title
JP4999078B2 (ja) 内視鏡用対物レンズおよび内視鏡
JP5706590B2 (ja) 内視鏡用対物レンズおよび内視鏡
JP4229754B2 (ja) 対物レンズ及びそれを用いた内視鏡
KR101594957B1 (ko) 캡슐형 내시경용 촬상광학계
WO2017146021A1 (ja) 内視鏡用変倍光学系、内視鏡及び内視鏡システム
JP4919419B2 (ja) 内視鏡用対物レンズおよび内視鏡
JP2009192562A (ja) 再結像光学系及びそれを用いた内視鏡
JP6046322B1 (ja) 内視鏡用変倍光学系及び内視鏡
JP2012032576A (ja) 内視鏡用変倍光学系、及び内視鏡
JP2017142295A (ja) 内視鏡用対物レンズおよび内視鏡
JPH07294807A (ja) 観察部分と、結像光学系を内蔵する内視鏡鏡胴とを有する内視鏡
JP2008116877A (ja) 内視鏡用対物レンズ
JP5107144B2 (ja) 対物光学系及び内視鏡
CN111095069B (zh) 内窥镜用物镜单元与内窥镜
WO2019054308A1 (ja) 内視鏡用対物レンズユニット及び内視鏡
KR101725982B1 (ko) 내시경용 촬영 렌즈계
JP4373749B2 (ja) 撮像光学系、内視鏡用撮像装置及び内視鏡システム
JP3530571B2 (ja) 硬性内視鏡
JP6754916B2 (ja) 内視鏡用変倍光学系及び内視鏡
JP2018025591A (ja) 内視鏡用対物光学系及び内視鏡
JPH07325249A (ja) 硬性鏡光学系
CN111656244A (zh) 内窥镜用光学系统及内窥镜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18856866

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18856866

Country of ref document: EP

Kind code of ref document: A1